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Abstract: Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacte-
ria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these
bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a
multi-omics study informed the control of putative anaerobic keystone species during a transition
in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence
data with epifluorescence microscopy showed that during periods of rapid lung function loss, the
patient’s lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging
to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cul-
tures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric
acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by
quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fer-
mentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy
targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of
fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa,
even though this patient’s strain was resistant to this antibiotic. The treatment stabilized the patient’s
lung function and improved respiratory health for two months, lengthening by a factor of four the
between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of
P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports
the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Per-
sonalized multi-omics may become a viable approach for routine clinical diagnostics in the future,
providing critical information to inform treatment decisions.

Keywords: clindamycin; anaerobes; fermentation; mucus plugs; WinCF; metagenomics; metabolomics;
transcriptomics

1. Introduction

Keystone species are members of a community with disproportionately high impor-
tance to community stability despite being less abundant than other community mem-
bers [1]. In the human microbiome, this ecological concept gave rise to the keystone-
pathogen hypothesis, positing that “certain low-abundance microbial pathogens can orches-
trate inflammatory disease by remodeling a normally benign microbiota into a dysbiotic
one” [2]. However, microbial ecology studies identify keystone species mainly based on
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their central position in network analyses [3,4]. One caveat of this approach is that these
networks are often built based on co-occurrence relationships in metagenomes and tran-
scriptomes [5,6]. Identifying real keystone species requires manipulating the microbiome
in vivo [7,8].

The fast pace of technological advancements for the description of human microbiomes
during health and disease is propelling the field towards informed manipulation of the
microbiome. Many strategies have been proposed to steer dysbiotic microbial communities
towards healthy states, including probiotics, prebiotics, phage therapy, and microbiome
transplants [9]. In reality, manipulation of the microbiome has been performed for decades
through the use of narrow-spectrum antibiotics during clinical treatments [7,8]. Multiple
omics studies have characterized the microbiome changes resulting from antimicrobial
drugs [10]. However, to the best of our knowledge, only one study applied omics tools
to prospectively inform the choice of antibiotics [11]. In this study, the abundance of
the pathogen P. aeruginosa decreased in both patient groups, receiving only standard care
receiving additional individualized antibiotics targeting the third and fourth most abundant
members of the community, according to 16S sequencing. However, the microbiome
community composition returned to initial state after one month. A combination of multi-
omics approaches may be a viable (yet still costly) solution for guiding the treatment of
polymicrobial diseases characterized by highly individualized microbial communities in
cases where standard antibiotic treatment does not improve patient’s health [12–14]. One
of these approaches is the cystic fibrosis rapid response (CFRR), where metagenomes,
metatranscriptomes, metabolomes, and viromes are generated within 48 h from patients
undergoing rapid loss in lung function [12]. The CFRR has illuminated the causes of lung
function loss that could not be solved by standard clinical diagnosis and treatment. Yet, to
date, none of the CFRR studies has timely informed a successful choice of treatment.

Cystic fibrosis (CF) patients suffer from chronic polymicrobial infections throughout
their lives, being treated with multiple antibiotics from an early age [15]. Alterations in
anion transport and mucociliary clearance of the respiratory epithelium facilitate the micro-
bial colonization [16–19]. These communities elicit strong innate immune responses that
drive the airway wall remodeling and gas exchange abnormalities, eventually resulting
in respiratory failure or a need for lung transplantation in over 80% of CF patients. The
climax–attack ecological model [20] builds upon the polymicrobial nature of CF airway
infections [20–25]. The attack community consists of transient members that elicit strong
innate immune responses and acute deterioration [26,27]. In contrast, climax communities
cause chronic infections. They include most of the classic CF pathogens, such as P. aerugi-
nosa, which are inherently resistant to antimicrobial therapy, grow slowly forming biofilms,
and generate suboxic environments in mucus plugs [28–30]. Hypoxic metabolisms are
frequent in CF patients with advanced lung disease or during exacerbations. In these
periods, microbes use alternative electron acceptors (nitrates, sulfates, iron, and fumarate)
and fermentation [27,31,32], accumulating toxic metabolic products in the lung [33,34].

Previous network analysis and in vitro studies suggested that anaerobic bacteria
function as keystone species, sustaining the microbial community growth and disease
progression in CF [35,36]. The mechanistic basis of this hypothesis is the cross-feeding
that occurs as mucin-degrading anaerobes release fermentation products that sustain the
growth of pathogens such as P. aeruginosa, an inefficient mucus-degrading bacterium [36].
Amino-acid incorporation experiments demonstrate that anaerobes are active in the lung
communities even at low abundances [37]. The minimum inhibitory concentration of
the most susceptible member of a community grown under this nutritional dependency
defines the inhibitory concentration of the whole community [38]. These data suggest that
clinically targeting the weakest link in the nutritional consortium could control polymi-
crobial infections. However, clinical studies showed that patients treated with antibiotics
with broad antibiotic activity against anaerobes showed no difference in lung function re-
covery compared with those treated with antibiotics with minimal anaerobe coverage [39].
Here, a multi-omics-informed clinical treatment using clindamycin to target Gram-positive
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anaerobes offered an invaluable opportunity to test in vivo the CF keystone hypothesis.
Quantitative multi-omics and community culturing showed that clindamycin suppressed
not only anaerobes but also P. aeruginosa. Disturbance of microbial cross-feeding was
observed through transcriptomics and improved the patient’s health by extending the
between-hospitalization time by a factor of four. This study demonstrates that standard
narrow-spectrum antibiotics combined with personalized multi-omics represent a low-risk
manipulation tool to test hypotheses and guide future approaches for broadening targeted
microbiome manipulation.

2. Results

Clinical data: The CF Rapid Response (CFRR), a real-time multi-omics study of a
CF patient during a period of rapid loss in lung function, was launched at the time of an
exacerbation event of CF146 (33). At Day 0 (First day of CFRR), the patient displayed an
acute decline in respiratory health characterized by severe cough, dyspnea, and a drop
in his percent predicted Forced Expiratory Volume in 1 s (ppFEV1) to 44%, 9% below
the median ppFEV1 (Figure S1). In the 27 days of hospitalization that followed (period
A in this study), the patient received colistin, vancomycin, piperacillin-tazobactam, and
ceftazidime-avibactam. The ppFEV1 increased to 59%, leading to the patient’s discharge.
During the following eight days (period B), the patient was off antibiotics. Six days after
hospital discharge, the ppFEV1 rapidly decreased to 50%, accompanied of intense cough
and shortness of breath. In period C, oral clindamycin treatment was initiated, improving
overall symptoms, including cough and shortness of breath, and maintaining ppFEV1
at 49%.

Bacterial abundances: The bacterial load in the sputum sample collected at Day
1 was 6.7 × 108 cells per ml, and R. mucilaginosa dominated the community (78% of
the community, Figure 1). After two weeks of intravenous antibiotics in Period A, the
bacterial load decreased to 2.9 × 107. Most members of the community decreased their
abundance, except for Staphylococcus haemolyticus and Veillonella dispar. In period B, when
the patient was off antibiotics, the microbial abundance increased to 2.6 × 108. At this point,
S. haemolyticus and S. sanguinis were the most abundant bacteria, followed by R. mucilaginosa
and P. aeruginosa. The clindamycin treatment (Period C) decreased microbial load to
2.4 × 107, and the community became dominated by Haemophilus sp. and Neisseria sp.
Both Haemophilus sp. and Neisseria sp. decreased in abundance to less than 0.001% of the
community after two months.

Bacterial transcriptional activity: Transcriptome mapping to the draft genome se-
quences of Rothia mucilaginosa, Streptococcus sanguinis, Staphylococcus haemolyticus, Veillonela
dispar, and Pseudomonas aeruginosa isolated from the patient’s sputum showed the com-
munity activity. The most active community members were R. mucilaginosa, S. sanguinis,
V. dispar, and P. aeruginosa, respectively (Figure 1b). S. haemolyticus had low transcriptional
activity, despite its 54% abundance in the metagenome three days after hospital discharge.
During intravenous colistin treatment, R. mucilaginosa was the most transcriptionally active
community member. Upon release from antibiotics, V. dispar transcripts increased, followed
by S. sanguinis and R. mucilaginosa. After six days off antibiotics, P. aeruginosa became the
most active member of the community. Oral clindamycin treatment correlated with a
decrease in transcript abundance not only in the target species S. sanguinis, but also in
V. dispar, R. mucilaginosa, and P. aeruginosa.

Acetoin metabolism genes are responsible for the synthesis of the 2,3-butenediol
and butanedione, critical metabolites in the cross-feeding between Streptococcus spp. and
P. aeruginosa [35]. The genes encoding acetoin biosynthesis acetolactate synthase (budB),
acetolactate decarboxylase (budA), and butanediol dehydrogenase (budC) were expressed
by Streptococcus spp. and Staphylococcus spp. at higher levels in periods of lung function
loss (Figure 1c). R. mucilaginosa also expressed budB early in the sampling period, and
Haemophilus sp. and Neisseria sp. expressed these genes after the onset of clindamycin treat-
ment. P. aeruginosa was the taxon with the highest expression of the genes acoA and acoB,
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whose products catabolize acetoin for utilization in central metabolism (Figure 1d). The
production of phenazine followed that of aco genes by P. aeruginosa (Figure 1d). Phenazines
are virulence factors that act as alternative electron acceptors allowing P. aeruginosa to
thrive in anoxic regions of biofilms and mucus plugs.
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the position of each contig along the y axis is defined by k-mer similarity (k = 4) rather than position in the genome. The 
letters A, B and C within the plot area indicate the different antibiotic treatment periods. (c) Abundance of transcripts 
involved in the pathway of acetoin and butanediol production (budA, budB, and budC). Each point in the plot is divided 
by the taxonomic assignment of the transcripts. The transcript abundance per ml (y axis) was calculated as the product of 
the number of transcripts per Kb per taxon and the total number of Kbs of a that same taxon, calculated from the abun-
dances and genome sizes. (d) Abundance of transcripts involved in the pathway of acetoin and butanediol consumption 
(acoA and acoB) and phenazine production (phzABCDEFG, shown as a sum of all transcripts in this gene cluster). Each 
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Figure 1. Bacterial abundances and transcriptional activity. (a) Changes in abundance of most abundant bacterial genera
in the sputum from patient CF146. Abundances (in cell counts per mL of sputum) were obtained as the product of the
fractional abundance from metagenomes normalized by genome size and by the total cell counts from epifluorescence
microscopy. (b) Recruitment of metatranscriptomic reads to contigs obtained from sequencing the genomes of clinical
bacterial isolates. The height of each peak in the plot denotes mean coverage of a contig divided by overall sample mean
coverage and scaled to the microbial abundances per mL of sputum sample. As these are draft and not complete genomes,
the position of each contig along the y axis is defined by k-mer similarity (k = 4) rather than position in the genome. The
letters A, B and C within the plot area indicate the different antibiotic treatment periods. (c) Abundance of transcripts
involved in the pathway of acetoin and butanediol production (budA, budB, and budC). Each point in the plot is divided by
the taxonomic assignment of the transcripts. The transcript abundance per ml (y axis) was calculated as the product of the
number of transcripts per Kb per taxon and the total number of Kbs of a that same taxon, calculated from the abundances
and genome sizes. (d) Abundance of transcripts involved in the pathway of acetoin and butanediol consumption (acoA and
acoB) and phenazine production (phzABCDEFG, shown as a sum of all transcripts in this gene cluster). Each point in the plot
is divided by the taxonomic assignment of the transcripts. The transcript abundance per mL (y axis) was calculated as in 4B.



Int. J. Mol. Sci. 2021, 22, 12050 5 of 15

Fermentation and metabolomics: On Day 1, the community cultures in the Wino-
gradsky CF (WinCF) system produced fermentation gas that occupied 19% of the WinCF
tube (Figure 2a). Simultaneously, the pH decreased below five starting at 0.33 mm of the
tube (Figure 2b). The pH change depth corresponds to the oxic/anoxic transition and is
analogous to the oxygen penetrance in the mucus plugs in the lung [34]. The amount of
fermentation gas decreased to non-detectable after two weeks of antibiotic treatment in
period A (Figure 2a), and the depth of pH change in the tubes increased (Figure 2b). After
the hospital discharge, gas production increased to 42%. This period corresponded to a
decrease in pH change depth to 0 mm, loss of lung function, and overall deterioration
of patient’s health. The clindamycin treatment was initiated nine days after the hospital
discharge. Clindamycin treatment correlated with a sustained decrease in the fermentation
levels after 24 h, which remained below 3% for 60 days. The GC-MS metabolomic profiles
showed that during the period the patient was off antibiotics, there was an increase in
the abundance of fermentation products (Figure 2c). Lactic acid peaked 6–8 days after
the patient stopped intravenous colistin treatment and coincided with the increase in
fermentation gas and deterioration of heath. There was also an increase in the abundance
of free amino acids.

Microbial community structure: Figure 3a shows a 2D projection of sample clusters
identified by an unsupervised random forest analysis of microbial abundances, transcrip-
tional activities, and community cultures (NMDS, stress = 0.05, Linear fit R2 = 0.98). The first
cluster includes samples from periods of lowest ppFEV1 and worst symptoms, coinciding
with the highest fermentation levels and highest P. aeruginosa abundance and transcrip-
tional activity. The antibiotic treatment in period A lowered microbial load and correlated
with the abundance and transcriptional activity of Rothia mucilaginosa. In period B, the abun-
dance of Streptococcus sanguinis, Staphylococcus haemolyticus, and Veillonella dispar increased
as the patient’s health deteriorated. A return to low lung function and high fermentation
followed, coinciding with high P. aeruginosa abundance and transcriptional activity.

Clindamycin treatment in period C drove the community to a third state, character-
ized by high Neisseria sp. and Haemophilus sp. abundance and transcriptional activity,
with low total microbial load and fermentation. The abundance of S. sanguinis was the
most important variable differentiating the three clusters, followed by the abundance of
P. aeruginosa and S. sanguinis transcriptional activities. A random forest analysis supervised
by the antibiotic regimes (Periods A, B, and C) showed an out of bag error rate estimate of
11.1%. S. sanguinis abundance was the variable with the highest importance differentiating
the periods, followed by R. mucilaginosa, S. haemolyticus, and Haemophilus sp. transcriptional
activities (Figure 3b, p-values in the permutational random forest test were 0.002, 0.009,
0.02, and 0.04, respectively).
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Figure 2. Fermentation in the sputum of patient CF146. (a) production of fermentation gas in in WinCF capillary tubes
inoculated with sputum microbial communities in artificial sputum media; (b) depth of pH change in WinCF capillary tubes.
The depth of tube where the pH changes corresponds to the transition from the oxic to anoxic environment and is analogous
to the oxygen penetrance in the mucus plugs in the lung [34]. (c) Relative abundances of polar molecules identified by
GC-MS metabolomic analysis. Abundances were normalized by rows (days) to allow between-sample comparisons and
plotted are the z-scores of this normalization. The letters A, B and C within the plot area in the three panels indicate the
different antibiotic treatment periods.
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Figure 3. Microbial community succession. (a) Non-metric multidimensional scaling (NMDS) of sputum samples over
time. The variables used as input for the NMDS were fermentation, total microbial abundances, genera-specific microbial
abundances, and genera-specific transcriptomic activity. Symbols are color-coded by antibiotic treatment periods (green: A—
colistin, vancomycin, ceftazidime-avibactam, and piperacillin-tazobactam; blue: B—no antibiotics; pink: C—clindamycin),
and numbers inside the symbols indicate days since hospital admission event when Rapid Response was initiated. The
dotted ellipses indicate health status groups supported by an unsupervised random forest analysis followed by clustering
using Ward distances (out of bag error = 11.1%). (b) Important variables differentiating treatment periods in a classification
random forest analysis supervised by treatments. The variables marked by an asterisk and surrounded by a black box
indicate variables with p-values less than 0.05 in the permutational test. (c) Conceptual model of succession events in
patient CF146: (1) The mucosal surfaces are colonized by facultative anaerobes, including Streptococcus sp. and Rothia sp.,
capable of efficient mucus degradation producing free-amino acids and short-chain fatty acids (SCFA, i.e., propionate,
acetate, butyrate, and butanediol). (2) The free amino acids and SCFAs open a niche for the growth of P. aeruginosa, which
degrades mucins poorly. P. aeruginosa grows forming an anaerobic biofilm and produces phenazines. (3) The P. aeruginosa
biofilm facilitates the growth of obligate anaerobes such as Veillonella sp. and Prevotella sp. There is an overall growth of the
whole microbial community, with Pseudomonas benefitting from the metabolic products from anaerobes. (4) The onset of
clindamycin treatment suppresses the growth of Gram-positive anaerobes, such as Streptococcus sp. and Staphylococcus sp.
The suppression of mucus-degrading bacteria removes the main nutritional source for P. aeruginosa, leading to an overall
decrease in microbial abundances. Period A corresponds to 28 days of hospitalization when the patient was treatment with
colistin, vancomycin, piperacillin-tazobactam, and ceftazidime-avibactam; in period Period B the patient was released and
was off antibiotics; Period C is the clindamycin treatment.
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3. Discussion

Microbial colonization of the lungs in CF patients represents a case of complex micro-
bial dysbiosis driving disease progression, often without the identification of an individual
causative pathogen [30]. Metabolic networks based on co-occurrence have predicted
that Streptoccoccus, Prevotella, and Veillonella are the genera with the highest keystoneness
in CF [36]. These species are efficient mucus-degraders, and their anaerobic metabolism
releases short-chain fatty acids that sustain the growth of P. aeruginosa [37]. Our community-
culture and multi-omics data show that these pathways were active in the lungs of CF146.
Based on the multivariate statistical analysis of the combined multi-omics dataset, we
propose the following model of community succession facilitated by anaerobes in this
CF microbiome (Figure 3c). First, facultative anaerobes, including Streptococcus spp. and
R. mucilaginosa, efficiently degraded mucins, producing free-amino acids and short-chain
fatty acids (SCFA, i.e., propionate, acetate, butyrate, and butanediol). The free amino
acids and SCFAs open a niche for the growth of P. aeruginosa, which degrades mucins
poorly. P. aeruginosa forms an anaerobic biofilm and produces phenazines. Volatile fermen-
tation products such as lactic acid and 2,3-butanediol have been previously detected in CF
breath gas [35,40]. These molecules can induce pyocyanine production, dormancy, and
biofilm formation in P. aeruginosa, stimulating its growth and virulence [41,42]. Moreover,
2,3-butanediol has a direct toxic effect on human cells [35]. We further propose that the
anoxic biofilm created by P. aeruginosa facilitates the growth of strict anaerobes, includ-
ing Veillonella spp. and Prevotella spp., fueling a positive feedback loop that sustains the
growth of the whole microbial community. The onset of clindamycin treatment suppresses
mucus-degrading anaerobes, removing the primary nutritional sources for P. aeruginosa,
and destabilizing the community.

Clindamycin is a semisynthetic derivative of lincomycin acting on ribosome translo-
cation that inhibits protein synthesis. It affects Gram-positive anaerobes, such as Staphy-
lococcus spp. and Streptococcus spp., and Gram-negative anaerobes, including Prevotella
spp. [43]. In addition to these anaerobes, clindamycin reduced the abundance and activity
of P. aeruginosa, which is resistant to this drug (Figure 1). The decrease in P. aeruginosa
indicates its dependency on Streptococcus spp. and Veillonella spp. byproducts for growth.
P. aeruginosa’s large genome is highly adapted to mucus plugs, encoding alternate oxidative
metabolism and virulence factors [44]. However, P. aeruginosa grows poorly on mucins and
depends on cross-feeding by mucus-fermenting anaerobes [37]. In vitro antibiotic challenge
targeting a mucin-fermenting community containing Veillonella parvula, Fusarium nucleatum,
Prevotella melaninogenica, and Streptococcus parasanguinis in co-cultures with P. aeruginosa
controlled both the fermenters and P. aeruginosa [45]. These antibiotic challenges indicated
that the total community minimum inhibitory concentration dropped to that of the weakest
link—the least resistant species that provides resources to other community members [45].
The dataset presented here provides evidence that the weakest link phenomenon occurs
in vivo and corroborates that Streptococcus and Veillonella operated as keystone genera in
this CF microbiome. Clindamycin is not traditionally used to treat CF lung infections, and
its long-term use can facilitate the development of colitis by Clostridium difficile coloniza-
tion [46]. Likewise, colistin poses a risk of kidney toxicity, which precludes its long-term
use [47]. The lack of antibiotic drugs that can stabilize the lung microbial community in the
long-term demands the development of novel strategies to manipulate the CF microbiome
by removing keystone species and metabolisms.

Expectorated sputum is subject to contamination by saliva and oropharynx flora
during expectoration. However, 50–80% saliva contamination would be necessary to
explain the abundances of Rothia, Streptococcus, and other common oral genera in the
periods of lowest lung function shown here, which is unrealistic given the purulent sputum
expectorated by the patient during the entire study period. Sputum samples mostly
represent the communities coming from the lower respiratory tract [27,48], and anaerobes
are active inside expectorated mucus plugs [38]. Differences between sputum and the
lower tract may increase in end-stage patients because many of the airways undergo
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bronchiectasis and become clogged [49], which is not the case in this study. Therefore,
saliva contamination cannot explain the patterns observed in the present dataset.

A major advancement of this study is the introduction of a quantitative metagenomics
and metatranscriptomics approach combining sequence data with epifluorescence mi-
croscopy. The use of relative abundances in omics studies is considered one of the most
significant bottlenecks in the microbiome field [50]. Internal standards have been applied
to biological samples prior to sequencing to obtain absolute abundances [51,52]. A direct
comparison between the approach introduced here and the use of internal stands was
not performed here. Yet, epifluorescence microscopy is a standard and accurate method
for the quantification of total bacterial abundances [53] and is not subject to biases in
the efficiency of nucleic acid extraction that may interfere with quantifications [54]. Both
methods provide a better assessment of the community composition and activity than
simple relative abundances for between-sample comparisons.

The multi-omics case study presented here provides clinical support for the synergism
between Gram-positive anaerobes and classic pathogens (i.e., P. aeruginosa) in CF. While
the keystone anaerobe hypothesis has been probed in vitro and in correlation-based omics
studies, a debate on the role of anaerobes persists in the CF field [37–39,55,56]. The clinical
study presented here offers critical information to the cystic fibrosis research community
and, more broadly, to those studying polymicrobial diseases, exposing the need for future
clinical studies with large patient cohorts. Previous studies with larger sample sizes
based on 16S rRNA data have shown that the low diversity and dominance of a single
pathogen are indicative of rapid lung function loss [56]. This pattern is consistent with the
concept of keystone species presented here. Community members with low abundance had
disproportional importance in community function by nutritionally sustaining a dominant
pathogen. While the cost of a multi-omics study as the one presented here is currently
prohibitive for full clinical deployment, the WinCF is an available method to quantify
fermentation, allowing the selection of patients for in-depth studies. Future studies with
large patient cohorts will show whether the keystone dynamics observed here is common
in cystic fibrosis microbiomes.

4. Methods

Clinical data: Sample collection procedures and access to clinical data were approved
by the institutional review boards (IRBs) of the University of California San Diego (UCSD)
(HRPP 081510), and San Diego State University (IRB approval number 1711018R). Clin-
ical microbiology and spirometry tests were performed for clinical indications during
the normal care of the patient. Spirometry tests were used to calculate the percentage of
predicted FEV1 (forced expiratory volume in one second), as previously described [57].
The age*FEV1% predicted product is a derived variable calculated by multiplying the age
of the individual at the most recent FEV1 by the best FEV1% during the previous year
and is used to assess disease risk [58,59]. ppFEV1 is a standard metric to evaluate lung
function, as the volume of exhaled air decreases when the lungs clog due to infection
and inflammation. Patient 146 is a 33-year-old male (delF508/Q1382X) who has highly
variable lung function as assessed by the dynamics of his percent predicted Forced Ex-
piratory Volume in 1 s (ppFEV1) [59]. In the year preceding this study, the patient had
ten periods of rapid lung function loss that led to hospitalization and intravenous (IV)
antibiotic treatments (Figure S1). The ppFEV1 varied between 38% and 67% during that
year (median = 53 ± 5.7 SD). The clinical microbiology tests were positive for P. aeruginosa;
however, the patient’s lung function did not stabilize with oral antibiotic treatment after
each hospital discharge.

WinCF community culture: Winogradsky CF community culture was modified from
the work of Quinn et al. (2015) by adjusting the pH 7.4 prior to use in WinCF experi-
ments [34,60–62]. Briefly, sputum samples were collected by expectoration, homogenized,
and diluted 10-fold into sterile ASM. The mixture was inoculated into capillary tubes that
were plugged at one end and then laid horizontally in a 100% humidity environment at
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37 ◦C. At the end of incubations, capillary tubes were imaged in the dark on white backlight
(5.5 × 9 inches2 light box, Logan Electric, Chicago, IL, USA) using a Canon EOS Rebel
T3 camera (Canon USS Inc., Melville, NY, USA). All images were taken under identical
settings (manual focus, ISO 3200, Aperture F4.5) and saved in raw and JPEG format. Gas
production was quantified as the percentage of capillary tube length occupied by gas. The
air penetrance in the capillary was defined as depth of the tube where pH dropped below
5, as indicated by color change in the phenol red/bromocresol purple tubes (pH drops due
to fermentation products). Negative control tubes were filled with media and reagents but
not inoculated with sputum and incubated alongside the treatment tubes. If the negative
control tubes showed no signal of microbial growth (color change and gas production),
the experiment was kept and described in this study, whereas if there was any signal of
microbial growth, which indicated contamination, that experiment was discarded.

Metagenomes: Total DNA was extracted from sputum samples using an adapted
PowerSoil DNA Isolation kit protocol (Qiagen, Hilden, Germany). The samples were
subject to 5 freeze-thaw cycles (5 min flash-freeze, 5 min at 100 ◦C) followed by bead-
beating for 45 min using the bead tubes from the PowerSoil kit. The DNA was eluted in
molecular-grade water and metagenome libraries were constructed using a Nextera DNA
library preparation kit (Illumina, San Diego, CA, USA). Libraries were sequenced on an
Illumina MiSeq platform Reagent Kit v3 150-cycle (Illumina, San Diego, CA, USA) with
depth of 1.5 to 3 M reads per sample. Negative controls were included in each batch of
sample preparation from extraction to sequencing library quality control. If the negative
controls generated zeros in the final step of quality control, that batch of samples was
sequenced and included in the study, if not, the samples were discarded, and the procedure
re-initiated from the raw biological sample. Quality filtering and dereplication were done
using PRINSEQ++ [63] with minimum quality threshold 20, dereplication and entropy
threshold 50. Cloning vector sequences were removed using SMALT [64] with 80% identity
against the NCBI UniVec database. Human genome sequences were removed using SMALT
with 80% identity against the human reference genome GRCh38 (Table S1, Supplementary
Data S1). Microbial taxonomy assignments at the genus level were made from SMALT
with 96% identity against the NCBI RefSeq database of complete bacterial genomes.

Bacterial isolation and genome sequencing: Fresh sputum sample from the first day
of hospitalization in this study (Day 0) were resuspended in saline buffer and plated on
BHI agar. Plates were incubated overnight at 37 ◦C. Colonies with distinct morphologies
were picked and re-plated on BHI plates. Isolates had their 16S gene sequenced using
the Sanger method and one representative of the each of the five most abundant species
in the metagenomes (by sequence recruitment at 96% identity) were selected for full
genome sequencing: Rothia mucilaginosa, Streptococcus sanguinis, Staphylococcus haemolyticus,
Veillonella dispar, and Pseudomonas aeruginosa. Total DNA was extracted and prepared for
sequencing using KAPA HyperPlus (KAPA Biosystems, Wilmington, MA). The libraries
were sequenced on an Illumina MiSeq platform using a Reagent Kit v3 150-cycle (Illumina,
San Diego, CA, USA). Quality filtering, dereplication and cloning vector removal were
performed as above. Sequences were assembled using Spades [65]. Genome completeness
was estimated in ANVI’O [66] through a HMM profile search of bacterial single-copy core
genes. The coverage of each of these genomes in the metagenomes and transcriptomes
varied from 0 to 851 per sample, as shown in Figure 1. L50 varied from 9.4 Kb (Streptococcus)
to 1456 Kb (Rothia). The closest relatives of each isolate were obtained through the Similar
Genome Finder Tool in the Pathosystems Resource Integration Center (PATRIC), which
searches all public genomes using Mash, a k-mer based tool for whole-genome distance
pairwise estimation (Table S2) [67].

Metabolomics: Sputum samples (1 mL) were thawed and treated with 40 µL 20%
dihidroteitrol (DTT dissolved in water), followed by vortexing. Samples were frozen at
−80 ◦C, then lyophilized before extraction to concentrate all metabolites. A methylchlo-
roformate (MCF) derivatization was used as described by Smart et al., 2010 [68]. Briefly,
after lyophilization, 150 µL 2N NaOH were added to each sample and vortexed. Then,
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150 µL 100% methanol were added, followed by 150 µL 10 mM L-methionine (2,3,3,4,4-D5;
methyl-D3), as internal standard (Cambridge Isotope Laboratories, Tewksbury, MA, USA)
and 20 µL pyridine as a catalyst. For derivatization, 40 µL methyl chloroformate (MCF)
were added, followed by vortexing 30 s. Another 40 µL MCF were added, with 30 s
of vortexing. Samples were extracted using chloroform, dried over sodium sulfate, and
analyzed directly by gas chromatography–mass spectrometry (GC-MS). The metabolites
were identified using the NIST library (2007) using the Automated Mass Deconvolution
and Identification System (AMDIS) program.

Metatranscriptomics: Total RNA was extracted from raw sputum samples using guani-
dinium thiocyanate according to manufacturer’s protocol (TRIzol, Invitrogen, Waltham,
MA, USA). RNA was resuspended in 50 µL of RNAse-free water and DNase treatment
was performed by adding 2 µL of TURBO DNase (Thermo Fischer Scientific, Waltham,
MA, USA). First strand RNA was synthesized using Superscript II reverse transcriptase
(Invitrogen, Waltham, MA, USA). Sequencing libraries were prepared using the Ovation
Complete Prokaryotic RNA-Seq System (NuGEN Technologies, Redwood City, CA, USA).
Libraries were sequenced using a Reagent Kit v3 150-cycle in a MiSeq platform (Day 0)
and NovaSeq platform (all other samples, 20M reads per sample) (Illumina, San Diego,
CA, USA). Quality filtering, dereplication and cloning vector removal were performed
as above (Table S1, Supplementary Data S1). The transcripts were mapped to the NCBI
RefSeq database of complete bacterial genomes using SMALT at 96% identity. We also
mapped the transcripts to the genomes of bacterial isolates obtained from the same patient
at 96% identity using SMALT.

Quantitative metagenomics and transcriptomics: The interpretation of omics datasets
is largely limited by the analyses of relative abundances that prevent accurate between-
sample comparisons [50]. In these datasets, the relative abundance of one community
member can increase or decrease even when its actual abundance in the original sample
remained the same due to variations in abundance of other community members. Ob-
taining actual microbial abundances and transcriptional activities per ml of sputum was
essential to accurately inform antibiotic treatment decision in the present study. To solve
this problem, we developed a quantitative metagenomics and transcriptomics approach
integrating epifluorescence microscopy counts of the total microbial abundance, complete
genomes, and metagenomic and transcriptomic sequence data. For metagenomes, the
number of reads mapping to the bacterial genomes sequenced from clinical isolates (as
shown earlier) was normalized by genome length using FRAP [69] to calculate the relative
abundances at species level in the metagenome. The relative abundances were multiplied
by the total microbial abundances determined by epifluorescence microscopy, yielding
the number of cells of each species per ml of sputum. A similar approach was utilized for
metatranscriptomes, where the number of transcripts mapping to a genome was normal-
ized by genome size using FRAP [69] to calculate relative number of transcripts per taxon
per sample. This relative transcriptional activity was multiplied by the number of cells
per ml of sputum to obtain the taxon-specific transcriptional activity per ml of sputum.
The relative transcript abundance was normalized by microbial abundances per mL of
sample to allow between-sample comparisons. This scaling assumes that the total bacterial
transcriptional activity per ml of sputum is proportional to the bacterial abundance per ml
of sputum. The transcript recruitment to the genomes of clinical isolates was visualized
using ANVI’O [66].

Multivariate analyses: Microbial abundances were combined with taxon-specific tran-
scriptomic activity per mL, WinCF fermentation, and total microbial abundances in one
dataset (Supplementary Data S1–S3) and analyzed through a non-metric multidimensional
scaling (NMDS) using Bray-Curtis distances in the vegan package in R. The two first dimen-
sions are visualized in Figure 1a. Samples were clustered using the proximity matrix from
an unsupervised random forest in the R package randomForest using 5000 trees and Ward
method for hierarchical clustering. Random forest is a robust non-parametric statistical
learning method for the identification of clusters and variables of importance in complex
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multi-omics data [70,71]. The effects of different antibiotic regimes (clindamycin, no antibi-
otics, and the combination of colistin, piperacillin-tazobactam, ceftazidime-avibactam, and
vancomycin) were tested using a supervised permutational random Forest (5000 trees and
1000 permutations) where the three antibiotic regimes were used as supervising variable in
the package rfPermute.

5. Conclusions

The integration of omics tools presented here demonstrates in vivo the role of facul-
tative anaerobes, mainly Streptococcus, as keystone bacteria in a CF microbiome. These
anaerobes release fermentation products that sustain the growth of the classic pathogen
P. aeruginosa. Disturbing community stability with antibiotics targeting Gram-positive
and anaerobic bacteria improves patient lung function. By applying the ecological con-
cept of keystone species, this study points toward alternative antimicrobial treatments for
polymicrobial diseases guided by personalized multi-omic analyses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222112050/s1, Figure S1: Patient’s lung function over time. Day zero indicates the
first day of hospitalization in the period focused on in this study. Percent predicted FEV1 (forced
expiratory volume in one second) are shown by the dots; the blue line shows the median spline
regression (effective degrees of freedom = 29). The shadow block indicates the window of time
analyzed here by multi-omics. The diamond symbols indicate clinical microbiology tests positive
for Pseudomonas aeruginosa and Rothia sp. during stand care. The vertical dotted lines indicate the
three periods of interest in this study: Period A corresponds to 28 days of hospitalization when the
patient was treatment with colistin, vancomycin, piperacillin-tazobactam, and ceftazidime-avibactam;
in period Period B the patient was released and was off antibiotics; Period C is the clindamycin
treatment. Table S1. Summary of metagenomic and transcriptomic data. The criteria for quality
control and filtering are described in the methods. rRNA reads were not removed from metagenomic
data. The first column indicates the number of days since the onset of the Rapid Response. Table S2:
Summary of draft genomes from bacterial isolates. Distances were calculated using the Mash k-mer
comparisons through the Similar Genome Finder tool in the PATRIC Resource Center, Supplementary
Data S1: Raw clinical data including ppFEV over time; Supplementary Data S2: Abundance of gene
transcripts analyzed in Figure 2; Supplementary Data S3: Multi-omics data used input for random
forest analyses.
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