
SQL Practice Problems
57 beginning, intermediate, and advanced challenges for you

to solve using a "learn-by-doing" approach

Sylvia Moestl Vasilik

Sold to
ngovinh87@gmail.com

Copyright © 2016

by Sylvia Moestl Vasilik

All rights reserved. This book or any portion thereof may not be reproduced

 or used in any manner whatsoever without the express written permission

of the publisher except for the use of brief quotations in a book review.

ISBN: 978-1540422651

Ordering Information:

Special discounts are available on quantity purchases by corporations, associations, and others. For

details, contact the publisher at info@SQLPracticeProblems.com.

mailto:info@SQLPracticeProblems.com

How to use this book

This edition of SQL Practice Problems assumes that you have some basic background knowledge about

relational databases and tables. However, I’ve added some beginner level questions to gradually introduce

the various parts of the SQL Select statement for those with less experience in SQL.

A note on the database used—the database used for these problems, which you will set up in the in the

Installation Instructions, is not the standard Northwind database. There have been multiple modifications

made to it, including additional tables, and modified data, to support the problems in this book. Do not try

to use the standard Northwind sample database that came with previous installations of SQL Server, many

of the problems will not work.

Do you need to finish all the problems? Absolutely not. The introductory problems are fairly simple, so

you may want to skip directly to the Intermediate Problems section. If you’re not a beginner, but not sure

where you should start, just take a look at the problems and expected results in the Introductory Problems

section and make sure you understand the concepts. If you do, start working on the Intermediate Problems

section.

If you’re uncertain about how to start on a problem, the hints are designed to gradually walk you through

how to approach each problem. Try hard to solve the problems first without the hints! The information

will stick better if you can do that. But if you’re stuck, the hints will get you starting in thinking with a

data mindset.

If there’s code you want to copy from this book and run on your server—believe it or not, I recommend

that you actually type it out, instead of copying and pasting. Why go to the hassle of re-typing something?

Science shows that the act of typing establishes it more firmly in your mind. Sometimes when you just

copy and paste, the code just goes directly from one window in your computer to another, without making

much impression on your memory. But when you type it out, you have to focus much more, and that helps

tremendously with retaining the information.

Should you search online for answers, examples, etc.? Absolutely. I expect you do research online

throughout the book, and in many places it’s necessary. I do not include all the syntax in this book. In my

day-to-day work as a data engineer, I would be lost without being able to do online research. Sometimes I

search online just for a reminder of a certain syntax, sometimes for examples of a particular type of code,

and sometimes for approaches to specific problems. Learning to find answers online effectively can cut

your problem-solving time dramatically.

Once you finish all the questions, you’ll have some very useful skills in data analysis and advanced Select

statement usage. This isn’t all there is to SQL, of course. There’s also the syntax that let’s you actually

modify data (update, insert, delete), DDL (data definition language, i.e. how to create and modify database

objects), programming concept such as stored procedures, and of course many other topics.

In this book, I’m only presenting problems involving retrieving data with Select statements, because that’s

an area where it’s hard for people to get solid practice with real life data problems, without actually

working as a data engineer or programmer. It’s also a critical first step for almost any of the other database

topics.

Any feedback would be greatly appreciated. For any questions or issues, please send email to

feedback@SQLPracticeProblems.com and I will be happy to respond.

Thank you for purchasing this book!

mailto:feedback@SQLPracticeProblems.com

Table of Contents

How to use this book ... 3

Setup .. 9

Introductory Problems ... 11

1. Which shippers do we have? .. 11

2. Certain fields from Categories .. 11

3. Sales Representatives .. 12

4. Sales Representatives in the United States ... 13

5. Orders placed by specific EmployeeID .. 13

6. Suppliers and ContactTitles .. 14

7. Products with “queso” in ProductName ... 15

8. Orders shipping to France or Belgium .. 16

9. Orders shipping to any country in Latin America .. 17

10. Employees, in order of age.. 18

11. Showing only the Date with a DateTime field .. 19

12. Employees full name ... 20

13. OrderDetails amount per line item .. 21

14. How many customers? .. 22

15. When was the first order? ... 22

16. Countries where there are customers .. 23

17. Contact titles for customers ... 23

18. Products with associated supplier names .. 24

19. Orders and the Shipper that was used ... 26

Intermediate Problems ... 29

20. Categories, and the total products in each category .. 29

21. Total customers per country/city ... 29

22. Products that need reordering.. 31

23. Products that need reordering, continued .. 31

24. Customer list by region ... 32

25. High freight charges .. 34

26. High freight charges - 2015... 35

27. High freight charges with between ... 35

28. High freight charges - last year ... 36

29. Inventory list ... 37

30. Customers with no orders .. 38

31. Customers with no orders for EmployeeID 4 ... 39

Advanced Problems ... 41

32. High-value customers .. 41

33. High-value customers - total orders .. 43

34. High-value customers - with discount ... 43

35. Month-end orders .. 44

36. Orders with many line items ... 45

37. Orders - random assortment .. 46

38. Orders - accidental double-entry ... 47

39. Orders - accidental double-entry details.. 48

40. Orders - accidental double-entry details, derived table ... 49

41. Late orders ... 50

42. Late orders - which employees? .. 51

43. Late orders vs. total orders .. 52

44. Late orders vs. total orders - missing employee .. 53

45. Late orders vs. total orders - fix null ... 54

46. Late orders vs. total orders - percentage ... 55

47. Late orders vs. total orders - fix decimal ... 55

48. Customer grouping .. 56

49. Customer grouping - fix null ... 58

50. Customer grouping with percentage ... 59

51. Customer grouping - flexible .. 60

52. Countries with suppliers or customers .. 62

53. Countries with suppliers or customers, version 2 ... 63

54. Countries with suppliers or customers - version 3 .. 64

55. First order in each country .. 65

56. Customers with multiple orders in 5 day period ... 67

57. Customers with multiple orders in 5 day period, version 2 .. 69

ANSWERS .. 72

Introductory Problems ... 72

1. Which shippers do we have?... 72

2. Certain fields from Categories .. 73

3. Sales Representatives .. 73

4. Sales Representatives in the United States ... 74

5. Orders placed by specific EmployeeID .. 75

6. Suppliers and ContactTitles .. 75

7. Products with “queso” in ProductName ... 76

8. Orders shipping to France or Belgium .. 77

9. Orders shipping to any country in Europe .. 77

10. Employees, in order of age.. 78

11. Showing only the Date with a DateTime field .. 79

12. Employees full name ... 79

13. OrderDetails amount per line item .. 80

14. How many customers? .. 81

15. When was the first order? ... 81

16. Countries where there are customers .. 82

17. Contact titles for customers ... 82

18. Products with associated supplier names .. 83

19. Orders and the Shipper that was used ... 84

Intermediate Problems ... 86

20. Categories, and the total products in each category .. 86

21. Total customers per country/city ... 86

22. Products that need reordering.. 87

23. Products that need reordering, continued .. 88

24. Customer list by region ... 89

25. High freight charges .. 90

26. High freight charges - 2015... 90

27. High freight charges with between ... 91

28. High freight charges - last year ... 92

29. Inventory list ... 92

30. Customers with no orders ... 93

31. Customers with no orders for EmployeeID 4 ... 94

Advanced Problems ... 95

32. High-value customers.. 95

33. High-value customers - total orders .. 96

34. High-value customers - with discount .. 97

35. Month-end orders .. 98

36. Orders with many line items ... 98

37. Orders - random assortment .. 99

38. Orders - accidental double-entry ... 100

39. Orders - accidental double-entry details.. 100

40. Orders - accidental double-entry details, derived table ... 101

41. Late orders ... 102

42. Late orders - which employees? .. 102

43. Late orders vs. total orders .. 103

44. Late orders vs. total orders - missing employee .. 104

45. Late orders vs. total orders - fix null ... 105

46. Late orders vs. total orders - percentage ... 106

47. Late orders vs. total orders - fix decimal ... 107

48. Customer grouping .. 108

49. Customer grouping - fix null ... 109

50. Customer grouping with percentage ... 110

51. Customer grouping - flexible .. 111

52. Countries with suppliers or customers .. 112

53. Countries with suppliers or customers, version 2 ... 113

54. Countries with suppliers or customers - version 3 .. 114

55. First order in each country .. 115

56. Customers with multiple orders in 5 day period ... 116

57. Customers with multiple orders in 5 day period, version 2 .. 116

9

Setup

This section will help you install Microsoft SQL Server 2016, SQL Server Management Studio (SSMS)

and also walk you through setting up the practice database. The setup of Microsoft SQL Server 2016 and

SSMS will take about 45 minutes, with about 5 minutes of interaction here and there. It may take one or

two reboots of your system, depending on which version of certain support files you have (dot.net

framework).

SQL Server 2016 will run with more recent versions of Windows, including Windows 8 and Windows 10.

Please review this requirements page (https://msdn.microsoft.com/en-us/library/ms143506.aspx) for full

details.

Install Steps

Pre-setup - To download the backup file necessary in step 3, as well as a PDF version of this book and a

SQL setup script to use if you already have SQL Server 2012 or SQL Server 2014, go to

www.SQLPracticeProblems.com. Click on the “Buy Now” button. Don’t worry, you don’t actually have

to buy anything. Use the 100% off coupon code “KCSPurch” to bypass the credit card information, and

get a download link sent directly to your email for free.

You may want to consider viewing this book via the PDF instead of the paper or Kindle copy, since you’ll

be able to click on the links, and copy and paste code more easily.

Note: If you already have SQL Server 2012 or 2014 installed, and don’t want to install SQL Server 2016,

you don’t need to. There’s a setup script called Northwind2012.sql (also works for SQL Server 2014)

included in the zipped file that will allow you to use your existing version. Open that file, and follow the

instructions. You can then skip all the below steps.

1. Install MS SQL Server Express Edition 2016 - Download and install MS SQL Server Express

Edition 2016 (https://www.microsoft.com/en-cy/sql-server/sql-server-editions-express). It’s a free

download, and the Express Edition, unlike the Developer Edition, doesn’t require you to jump through any

hoops with Live.Microsoft.com subscriptions.Feel free to do the Basic install unless you need it to go in a

particular location on your hard drive.

The install of Express Edition and SSMS (in the next step) will take about 45 minutes. Almost all of this is

hands-off. A reboot may be required, depending on some of your system files.

2. SQL Server Management Studio (SSMS) 2016 - Download and install SQL Server Management

Studio (SSMS) 2016 (https://msdn.microsoft.com/en-us/library/mt238290.aspx).This is the tool that

allows you to interact with SQL Server. You can either do this as a part of the MS SQL Server Express

Edition 2016 install (there’s a link at the bottom), or download it directly.

https://msdn.microsoft.com/en-us/library/ms143506.aspx
https://www.microsoft.com/en-cy/sql-server/sql-server-editions-express
https://msdn.microsoft.com/en-us/library/mt238290.aspx

10

3. Move the practice database - The Northwind database backup file is included in the zip file that you

downloaded. Unzip the file Northwind2016.bak and place it in the backup directory of your SQL Server

Express Edition install. With the Basic install, the default location is here: C:\Program Files\Microsoft

SQL Server\MSSQL13.SQLEXPRESS\MSSQL\Backup.

This practice database is based on the Microsoft sample Northwind database, but it’s been substantially

modified, so in order to be able to solve the problems, you’ll need this version.

4. Setup the practice database - Follow the instructions on this video

(https://www.youtube.com/embed/mBLhXiXIHW0?rel=0) to restore the practice database that you just

downloaded onto your freshly installed SQL Server.

Questions or problems with the setup? Email me at feedback@SQLPracticeProblems.com

https://www.youtube.com/embed/mBLhXiXIHW0?rel=0
mailto:feedback@SQLPracticeProblems.com

11

Introductory Problems

1. Which shippers do we have?

We have a table called Shippers. Return all the fields from all the shippers

Expected Results

ShipperID CompanyName Phone
----------- -- ------------------------
1 Speedy Express (503) 555-9831
2 United Package (503) 555-3199
3 Federal Shipping (503) 555-9931

(3 row(s) affected)

Hint

The standard format for a select statement that returns all columns and all rows is “Select * from

TableName”.

2. Certain fields from Categories

In the Categories table, selecting all the fields using this SQL:

Select * from Categories

…will return 4 columns. We only want to see two columns, CategoryName and Description.

Expected Results

CategoryName Description
--------------- --
Beverages Soft drinks, coffees, teas, beers, and ales
Condiments Sweet and savory sauces, relishes, spreads, and seasonings

12

Confections Desserts, candies, and sweet breads
Dairy Products Cheeses
Grains/Cereals Breads, crackers, pasta, and cereal
Meat/Poultry Prepared meats
Produce Dried fruit and bean curd
Seafood Seaweed and fish

(8 row(s) affected)

Hint

Instead of * in the Select statement, specify the column names with a comma between them

3. Sales Representatives

We’d like to see just the FirstName, LastName, and HireDate of all the employees with the Title of Sales

Representative. Write a SQL statement that returns only those employees.

Expected Results

FirstName LastName HireDate
---------- -------------------- -----------------------
Nancy Davolio 2010-05-01 00:00:00.000
Janet Leverling 2010-04-01 00:00:00.000
Margaret Peacock 2011-05-03 00:00:00.000
Michael Suyama 2011-10-17 00:00:00.000
Robert King 2012-01-02 00:00:00.000
Anne Dodsworth 2012-11-15 00:00:00.000

(6 row(s) affected)

Hint

To filter out only certain rows from a table, use a Where clause. The format for a where clause with a

string filter is:

Where
 FieldName = 'Filter Text'

13

4. Sales Representatives in the United States

Now we’d like to see the same columns as above, but only for those employees that both have the title of

Sales Representative, and also are in the United States.

Expected Results

FirstName LastName HireDate
---------- -------------------- -----------------------
Nancy Davolio 2010-05-01 00:00:00.000
Janet Leverling 2010-04-01 00:00:00.000
Margaret Peacock 2011-05-03 00:00:00.000

(3 row(s) affected)

Hint

To apply multiple filters in a where clause, use “and” to separate the filters.

5. Orders placed by specific EmployeeID

Show all the orders placed by a specific employee. The EmployeeID for this Employee (Steven

Buchanan) is 5.

Expected Results

OrderID OrderDate
----------- -----------------------
10248 2014-07-04 08:00:00.000
10254 2014-07-11 02:00:00.000
10269 2014-07-31 00:00:00.000
10297 2014-09-04 21:00:00.000
10320 2014-10-03 12:00:00.000
10333 2014-10-18 18:00:00.000
10358 2014-11-20 05:00:00.000
10359 2014-11-21 14:00:00.000
10372 2014-12-04 10:00:00.000
10378 2014-12-10 00:00:00.000
10397 2014-12-27 17:00:00.000
10463 2015-03-04 13:00:00.000
10474 2015-03-13 16:00:00.000
10477 2015-03-17 02:00:00.000

14

10529 2015-05-07 01:00:00.000
10549 2015-05-27 03:00:00.000
10569 2015-06-16 15:00:00.000
10575 2015-06-20 22:00:00.000
10607 2015-07-22 09:00:00.000
10648 2015-08-28 22:00:00.000
10649 2015-08-28 00:00:00.000
10650 2015-08-29 06:00:00.000
10654 2015-09-02 07:00:00.000
10675 2015-09-19 06:00:00.000
10711 2015-10-21 03:00:00.000
10714 2015-10-22 03:00:00.000
10721 2015-10-29 08:00:00.000
10730 2015-11-05 07:00:00.000
10761 2015-12-02 08:00:00.000
10812 2016-01-02 02:00:00.000
10823 2016-01-09 17:00:00.000
10841 2016-01-20 21:00:00.000
10851 2016-01-26 00:00:00.000
10866 2016-02-03 01:00:00.000
10869 2016-02-04 09:00:00.000
10870 2016-02-04 12:00:00.000
10872 2016-02-05 06:00:00.000
10874 2016-02-06 14:00:00.000
10899 2016-02-20 09:00:00.000
10922 2016-03-03 02:00:00.000
10954 2016-03-17 16:00:00.000
11043 2016-04-22 17:00:00.000

(42 row(s) affected)

Hint

The EmployeeID is an integer field, and not a string field. So, the value “5” does not need to be

surrounded by single quotes in the where clause.

6. Suppliers and ContactTitles

In the Suppliers table, show the SupplierID, ContactName, and ContactTitle for those Suppliers whose

ContactTitle is not Marketing Manager.

Expected Results

SupplierID ContactName ContactTitle

15

----------- ------------------------------ ------------------------------
1 Charlotte Cooper Purchasing Manager
2 Shelley Burke Order Administrator
3 Regina Murphy Sales Representative
5 Antonio del Valle Saavedra Export Administrator
6 Mayumi Ohno Marketing Representative
8 Peter Wilson Sales Representative
9 Lars Peterson Sales Agent
11 Petra Winkler Sales Manager
12 Martin Bein International Marketing Mgr.
13 Sven Petersen Coordinator Foreign Markets
14 Elio Rossi Sales Representative
16 Cheryl Saylor Regional Account Rep.
17 Michael Björn Sales Representative
18 Guylène Nodier Sales Manager
19 Robb Merchant Wholesale Account Agent
20 Chandra Leka Owner
21 Niels Petersen Sales Manager
22 Dirk Luchte Accounting Manager
23 Anne Heikkonen Product Manager
24 Wendy Mackenzie Sales Representative
26 Giovanni Giudici Order Administrator
27 Marie Delamare Sales Manager
28 Eliane Noz Sales Representative
29 Chantal Goulet Accounting Manager

(24 row(s) affected)

Hint

To learn how to do the “not”, you can search online for SQL comparison operators.

7. Products with “queso” in ProductName

In the products table, we’d like to see the ProductID and ProductName for those products where the

ProductName includes the string “queso”.

Expected Results

ProductID ProductName
----------- --
11 Queso Cabrales
12 Queso Manchego La Pastora

(2 row(s) affected)

16

Hint

In an earlier problem, we were looking for exact matches—where our filter matched the value in the field

exactly. Here, we’re looking for rows where the ProductName field has the value “queso” somewhere in

it.

Use the “like” operator, with wildcards, in the answer. Feel free to do some research online to find

examples.

8. Orders shipping to France or Belgium

Looking at the Orders table, there’s a field called ShipCountry. Write a query that shows the OrderID,

CustomerID, and ShipCountry for the orders where the ShipCountry is either France or Belgium.

Expected Results

OrderID CustomerID ShipCountry
----------- ---------- ---------------
10248 VINET France
10251 VICTE France
10252 SUPRD Belgium
10265 BLONP France
10274 VINET France
10295 VINET France
10297 BLONP France
10302 SUPRD Belgium
10311 DUMON France
10331 BONAP France
10334 VICTE France
10340 BONAP France
10350 LAMAI France
10358 LAMAI France

... (skipping some rows)

10923 LAMAI France
10927 LACOR France
10930 SUPRD Belgium
10932 BONAP France
10940 BONAP France
10964 SPECD France
10971 FRANR France
10972 LACOR France

17

10973 LACOR France
10978 MAISD Belgium
11004 MAISD Belgium
11035 SUPRD Belgium
11038 SUPRD Belgium
11043 SPECD France
11051 LAMAI France
11076 BONAP France

(96 row(s) affected)

Hint

In the where clause, instead of combining the filters with an “and” use the “or”.

9. Orders shipping to any country in Latin America

Now, instead of just wanting to return all the orders from France of Belgium, we want to show all the

orders from any Latin American country. But we don’t have a list of Latin American countries in a table

in the Northwind database. So, we’re going to just use this list of Latin American countries that happen to

be in the Orders table:

Brazil

Mexico

Argentina

Venezuela

It doesn’t make sense to use multiple Or statements anymore, it would get too convoluted. Use the In

statement.

Expected Results

OrderID CustomerID ShipCountry
----------- ---------- ---------------
10250 HANAR Brazil
10253 HANAR Brazil
10256 WELLI Brazil
10257 HILAA Venezuela
10259 CENTC Mexico
10261 QUEDE Brazil
10268 GROSR Venezuela
10276 TORTU Mexico
10283 LILAS Venezuela

18

10287 RICAR Brazil
10997 LILAS Venezuela

... (skipping some rows)

11014 LINOD Venezuela
11019 RANCH Argentina
11022 HANAR Brazil
11039 LINOD Venezuela
11042 COMMI Brazil
11049 GOURL Brazil
11052 HANAR Brazil
11054 CACTU Argentina
11055 HILAA Venezuela
11059 RICAR Brazil
11065 LILAS Venezuela
11068 QUEEN Brazil
11069 TORTU Mexico
11071 LILAS Venezuela
11073 PERIC Mexico

(173 row(s) affected)

Hint

Here’s an example of the previous questions, about orders shipping to France or Belgium, done as an In

statement instead of using multiple Where clauses.

Select
 OrderID
 ,CustomerID
 ,OrderDate
 ,ShipCountry
From Orders
where
 ShipCountry in ('France','Belgium')

10. Employees, in order of age

For all the employees in the Employees table, show the FirstName, LastName, Title, and BirthDate. Order

the results by BirthDate, so we have the oldest employees first.

19

Expected Results

FirstName LastName Title BirthDate
---------- -------------------- ------------------------------ -----------------------
Margaret Peacock Sales Representative 1955-09-19 00:00:00.000
Nancy Davolio Sales Representative 1966-12-08 00:00:00.000
Andrew Fuller Vice President, Sales 1970-02-19 00:00:00.000
Steven Buchanan Sales Manager 1973-03-04 00:00:00.000
Laura Callahan Inside Sales Coordinator 1976-01-09 00:00:00.000
Robert King Sales Representative 1978-05-29 00:00:00.000
Michael Suyama Sales Representative 1981-07-02 00:00:00.000
Janet Leverling Sales Representative 1981-08-30 00:00:00.000
Anne Dodsworth Sales Representative 1984-01-27 00:00:00.000

(9 row(s) affected)

Hint

You’ll need to use the Order by clause here for sorting the results. Look online for examples.

11. Showing only the Date with a DateTime field

In the output of the query above, showing the Employees in order of BirthDate, we see the time of the

BirthDate field, which we don’t want. Show only the date portion of the BirthDate field.

Expected Results

FirstName LastName Title DateOnlyBirthDate
---------- -------------------- ------------------------------ -----------------
Margaret Peacock Sales Representative 1955-09-19
Nancy Davolio Sales Representative 1966-12-08
Andrew Fuller Vice President, Sales 1970-02-19
Steven Buchanan Sales Manager 1973-03-04
Laura Callahan Inside Sales Coordinator 1976-01-09
Robert King Sales Representative 1978-05-29
Michael Suyama Sales Representative 1981-07-02
Janet Leverling Sales Representative 1981-08-30
Anne Dodsworth Sales Representative 1984-01-27

(9 row(s) affected)

20

Hint

Use the Convert function to convert the BirthDate column (originally a DateTime column) to a Date

column.

12. Employees full name

Show the FirstName and LastName columns from the Employees table, and then create a new column

called FullName, showing FirstName and LastName joined together in one column, with a space in-

between.

Expected Results

FirstName LastName FullName
---------- -------------------- -------------------------------
Nancy Davolio Nancy Davolio
Andrew Fuller Andrew Fuller
Janet Leverling Janet Leverling
Margaret Peacock Margaret Peacock
Steven Buchanan Steven Buchanan
Michael Suyama Michael Suyama
Robert King Robert King
Laura Callahan Laura Callahan
Anne Dodsworth Anne Dodsworth

(9 row(s) affected)

Hint

Joining two fields like this is called concatenation. Look online for examples of string concatenation with

SQL Server.

21

13. OrderDetails amount per line item

In the OrderDetails table, we have the fields UnitPrice and Quantity. Create a new field, TotalPrice, that

multiplies these two together. We’ll ignore the Discount field for now.

In addition, show the OrderID, ProductID, UnitPrice, and Quantity. Order by OrderID and ProductID.

Expected Results

OrderID ProductID UnitPrice Quantity TotalPrice
----------- ----------- --------------------- -------- ---------------------
10248 11 14.00 12 168.00
10248 42 9.80 10 98.00
10248 72 34.80 5 174.00
10249 14 18.60 9 167.40
10249 51 42.40 40 1696.00
10250 41 7.70 10 77.00
10250 51 42.40 35 1484.00
10250 65 16.80 15 252.00
10251 22 16.80 6 100.80
10251 57 15.60 15 234.00
10251 65 16.80 20 336.00

... (skipping some rows)

11077 13 6.00 4 24.00
11077 14 23.25 1 23.25
11077 16 17.45 2 34.90
11077 20 81.00 1 81.00
11077 23 9.00 2 18.00
11077 32 32.00 1 32.00
11077 39 18.00 2 36.00
11077 41 9.65 3 28.95
11077 46 12.00 3 36.00
11077 52 7.00 2 14.00
11077 55 24.00 2 48.00
11077 60 34.00 2 68.00
11077 64 33.25 2 66.50
11077 66 17.00 1 17.00
11077 73 15.00 2 30.00
11077 75 7.75 4 31.00
11077 77 13.00 2 26.00

(2155 row(s) affected)

Hint

In this computed column, you need to use the arithmetic operator for multiplication.

22

14. How many customers?

How many customers do we have in the Customers table? Show one value only, and don’t rely on getting

the recordcount at the end of a resultset.

Expected Results

TotalCustomers

91

(1 row(s) affected)

Hint

In order to get the total number of customers, we need to use what’s called an aggregate function. Look

online for an aggregate function that would work for this problem.

15. When was the first order?

Show the date of the first order ever made in the Orders table.

Expected Results

FirstOrder

2014-07-04 08:00:00.000

(1 row(s) affected)

Hint

There’s a aggregate function called Min that you need to use for this problem.

23

16. Countries where there are customers

Show a list of countries where the Northwind company has customers.

Expected Results

Country

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Norway
Poland
Portugal
Spain
Sweden
Switzerland
UK
USA
Venezuela

(21 row(s) affected)

Hint

You’ll want to use the Group By clause for this query.

17. Contact titles for customers

Show a list of all the different values in the Customers table for ContactTitles. Also include a count for

each ContactTitle.

This is similar in concept to the previous question “Countries where there are customers”, except we now

want a count for each ContactTitle.

24

Expected Results

ContactTitle TotalContactTitle
------------------------------ -----------------
Owner 17
Sales Representative 17
Marketing Manager 12
Sales Manager 11
Accounting Manager 10
Sales Associate 7
Marketing Assistant 6
Sales Agent 5
Assistant Sales Agent 2
Order Administrator 2
Assistant Sales Representative 1
Owner/Marketing Assistant 1

(12 row(s) affected)

Hint

The answer for this problem builds on multiple concepts introduced in previous problem, such as

grouping, aggregate functions, and aliases.

18. Products with associated supplier names

We’d like to show, for each product, the associated Supplier. Show the ProductID, ProductName, and the

CompanyName of the Supplier. Sort by ProductID.

This question will introduce what may be a new concept, the Join clause in SQL. The Join clause is used

to join two or more relational database tables together in a logical way.

Here’s a data model of the relationship between Products and Suppliers.

25

Expected Results

ProductID ProductName Supplier
----------- -- ------------------------------
1 Chai Exotic Liquids
2 Chang Exotic Liquids
3 Aniseed Syrup Exotic Liquids
4 Chef Anton's Cajun Seasoning New Orleans Cajun Delights
5 Chef Anton's Gumbo Mix New Orleans Cajun Delights
6 Grandma's Boysenberry Spread Grandma Kelly's Homestead
7 Uncle Bob's Organic Dried Pears Grandma Kelly's Homestead
8 Northwoods Cranberry Sauce Grandma Kelly's Homestead
9 Mishi Kobe Niku Tokyo Traders
10 Ikura Tokyo Traders

... (skipping some rows)

66 Louisiana Hot Spiced Okra New Orleans Cajun Delights
67 Laughing Lumberjack Lager Bigfoot Breweries
68 Scottish Longbreads Specialty Biscuits, Ltd.
69 Gudbrandsdalsost Norske Meierier
70 Outback Lager Pavlova, Ltd.
71 Flotemysost Norske Meierier
72 Mozzarella di Giovanni Formaggi Fortini s.r.l.
73 Röd Kaviar Svensk Sjöföda AB
74 Longlife Tofu Tokyo Traders
75 Rhönbräu Klosterbier Plutzer Lebensmittelgroßmärkte AG
76 Lakkalikööri Karkki Oy

26

77 Original Frankfurter grüne Soße Plutzer Lebensmittelgroßmärkte AG

(77 row(s) affected)

Hint

Just as a reference, here’s an example of what the syntax for the Join looks like, using different tables

from the Northwind database. It will show all the products, with the associated CategoryName.

Select
 ProductID
 ,ProductName
 ,CategoryName
From Products
 Join Categories
 on Products.CategoryID = Categories.CategoryID

19. Orders and the Shipper that was used

We’d like to show a list of the Orders that were made, including the Shipper that was used. Show the

OrderID, OrderDate (date only), and CompanyName of the Shipper, and sort by OrderID.

In order to not show all the orders (there’s more than 800), show only those rows with an OrderID of less

than 10300.

Expected Results

OrderID OrderDate Shipper
----------- ---------- --
10248 2014-07-04 Federal Shipping
10249 2014-07-05 Speedy Express
10250 2014-07-08 United Package
10251 2014-07-08 Speedy Express
10252 2014-07-09 United Package
10253 2014-07-10 United Package
10254 2014-07-11 United Package
10255 2014-07-12 Federal Shipping
10256 2014-07-15 United Package
10257 2014-07-16 Federal Shipping
10258 2014-07-17 Speedy Express
10259 2014-07-18 Federal Shipping
10260 2014-07-19 Speedy Express
10261 2014-07-19 United Package
10262 2014-07-22 Federal Shipping
10263 2014-07-23 Federal Shipping

27

10264 2014-07-24 Federal Shipping

... (skipping some rows)

10284 2014-08-19 Speedy Express
10285 2014-08-20 United Package
10286 2014-08-21 Federal Shipping
10287 2014-08-22 Federal Shipping
10288 2014-08-23 Speedy Express
10289 2014-08-26 Federal Shipping
10290 2014-08-27 Speedy Express
10291 2014-08-27 United Package
10292 2014-08-28 United Package
10293 2014-08-29 Federal Shipping
10294 2014-08-30 United Package
10295 2014-09-02 United Package
10296 2014-09-03 Speedy Express
10297 2014-09-04 United Package
10298 2014-09-05 United Package
10299 2014-09-06 United Package

(52 row(s) affected)

Hint

First, create a SQL statement that shows only the rows and columns you need from the Orders table.

Then, work on adding the join to the Shipper table, and the necessary field from that table.

This data model should help you visualize the join between the Orders table and the Shippers table.

28

Hint

One thing to note for this problem is that when you join two tables, the field that’s joined on does not

necessarily need to have the same name. Usually, they do. However, in this case, the ShipVia field in

Orders is joined to ShipperID in Shippers.

Congratulations! You've completed the introductory problems

Any questions or feedback on the problems, hints, or answers? I'd like to hear from you. Please email me

at feedback@SQLPracticeProblems.com.

mailto:feedback@SQLPracticeProblems.com

29

Intermediate Problems

20. Categories, and the total products in each category

For this problem, we’d like to see the total number of products in each category. Sort the results by the

total number of products, in descending order.

Expected Results

CategoryName TotalProducts
--------------- -------------
Confections 13
Beverages 12
Condiments 12
Seafood 12
Dairy Products 10
Grains/Cereals 7
Meat/Poultry 6
Produce 5

(8 row(s) affected)

Hint

To solve this problem, you need to combine a join, and a group by.

A good way to start is by creating a query that shows the CategoryName and all ProductIDs associated

with it, without grouping. Then, add the Group by

21. Total customers per country/city

In the Customers table, show the total number of customers per Country and City.

30

Expected Results

Country City TotalCustomer
--------------- --------------- -------------
UK London 6
Mexico México D.F. 5
Brazil Sao Paulo 4
Brazil Rio de Janeiro 3
Spain Madrid 3
Argentina Buenos Aires 3
France Paris 2
USA Portland 2
France Nantes 2
Portugal Lisboa 2
Finland Oulu 1
Italy Reggio Emilia 1
France Reims 1
Brazil Resende 1

... (skipping some rows)

Canada Montréal 1
Germany München 1
Germany Münster 1
Germany Aachen 1
USA Albuquerque 1
USA Anchorage 1
Denmark Århus 1
Spain Barcelona 1
Venezuela Barquisimeto 1
Italy Bergamo 1
Germany Berlin 1
Switzerland Bern 1
USA Boise 1
Sweden Bräcke 1
Germany Brandenburg 1
Belgium Bruxelles 1

(69 row(s) affected)

Hint

Just as you can have multiple fields in a Select clause, you can also have multiple fields in a Group By

clause.

31

22. Products that need reordering

What products do we have in our inventory that should be reordered? For now, just use the fields

UnitsInStock and ReorderLevel, where UnitsInStock is less than the ReorderLevel, ignoring the fields

UnitsOnOrder and Discontinued.

Order the results by ProductID.

Expected Results

ProductID ProductName UnitsInStock ReorderLevel
----------- -- ------------ ------------
2 Chang 17 25
3 Aniseed Syrup 13 25
11 Queso Cabrales 22 30
21 Sir Rodney's Scones 3 5
30 Nord-Ost Matjeshering 10 15
31 Gorgonzola Telino 0 20
32 Mascarpone Fabioli 9 25
37 Gravad lax 11 25
43 Ipoh Coffee 17 25
45 Rogede sild 5 15
48 Chocolade 15 25
49 Maxilaku 10 15
56 Gnocchi di nonna Alice 21 30
64 Wimmers gute Semmelknödel 22 30
66 Louisiana Hot Spiced Okra 4 20
68 Scottish Longbreads 6 15
70 Outback Lager 15 30
74 Longlife Tofu 4 5

(18 row(s) affected)

Hint

We want to show all fields where the UnitsInStock is less than the ReorderLevel. So in the Where clause,

use the following:

 UnitsInStock < ReorderLevel

23. Products that need reordering, continued

Now we need to incorporate these fields—UnitsInStock, UnitsOnOrder, ReorderLevel, Discontinued—

into our calculation. We’ll define “products that need reordering” with the following:

32

 UnitsInStock plus UnitsOnOrder are less than or equal to ReorderLevel

 The Discontinued flag is false (0).

Expected Results

ProductID ProductName UnitsInStock UnitsOnOrder ReorderLevel Discontinued
----------- ----------------------- ------------ ------------ ------------ ------------
30 Nord-Ost Matjeshering 10 0 15 0
70 Outback Lager 15 10 30 0

(2 row(s) affected)

Hint

For the first part of the Where clause, you should have something like this:

 UnitsInStock + UnitsOnOrder <= ReorderLevel

24. Customer list by region

A salesperson for Northwind is going on a business trip to visit customers, and would like to see a list of

all customers, sorted by region, alphabetically.

However, he wants the customers with no region (null in the Region field) to be at the end, instead of at

the top, where you’d normally find the null values. Within the same region, companies should be sorted

by CustomerID.

Expected Results

CustomerID CompanyName Region
---------- -- ---------------
OLDWO Old World Delicatessen AK
BOTTM Bottom-Dollar Markets BC
LAUGB Laughing Bacchus Wine Cellars BC
LETSS Let's Stop N Shop CA
HUNGO Hungry Owl All-Night Grocers Co. Cork
GROSR GROSELLA-Restaurante DF
SAVEA Save-a-lot Markets ID
ISLAT Island Trading Isle of Wight
LILAS LILA-Supermercado Lara
THECR The Cracker Box MT
RATTC Rattlesnake Canyon Grocery NM

33

... (skipping some rows)

SANTG Santé Gourmet NULL
SEVES Seven Seas Imports NULL
SIMOB Simons bistro NULL
SPECD Spécialités du monde NULL
SUPRD Suprêmes délices NULL
TOMSP Toms Spezialitäten NULL
TORTU Tortuga Restaurante NULL
VAFFE Vaffeljernet NULL
VICTE Victuailles en stock NULL
VINET Vins et alcools Chevalier NULL
WANDK Die Wandernde Kuh NULL
WARTH Wartian Herkku NULL
WILMK Wilman Kala NULL
WOLZA Wolski Zajazd NULL

(91 row(s) affected)

Hint

You won’t be able to sort directly on the Region field here. You’ll need to sort on the Region field, and

also on a computed field that you create, which will give you a secondary sort for when Region is null

First, without ordering, create a computed field that has a value which will sort the way you want. In this

case, you can create a field with the Case statement, which allows you do to if/then logic. You want a field

that is 1 when Region is null.

Take a look at the Examples section in the SQL Server documentation for Case

(https://msdn.microsoft.com/en-us/library/ms181765.aspx#examples).

Note that when filtering for null values, you can't use “FieldName = Null”. You must use “FieldName is

null”.

Hint

You should have something like this:

Select
 CustomerID
 ,CompanyName
 ,Region
 ,Case
 when Region is null then 1
 else 0
 End
From Customers

When the Region contains a null, you will have a 1 in the final column. Now, just add the fields for the

Order By clause, in the right order.

https://msdn.microsoft.com/en-us/library/ms181765.aspx#examples

34

25. High freight charges

Some of the countries we ship to have very high freight charges. We'd like to investigate some more

shipping options for our customers, to be able to offer them lower freight charges. Return the three ship

countries with the highest average freight overall, in descending order by average freight.

Expected Results

ShipCountry AverageFreight
--------------- ---------------------
Austria 184.7875
Ireland 145.0126
USA 112.8794

(3 row(s) affected)

Hint

We'll be using the Orders table, and using the Freight and ShipCountry fields.

Hint

You'll want to group by ShipCountry, and use the Avg function. Don't worry about showing only the top 3

rows until you have the grouping and average freight set up.

Hint

You should have something like this:

Select
 ShipCountry
 ,AverageFreight = avg(freight)
From Orders
Group By ShipCountry
Order By AverageFreight desc;

Now you just need to show just the top 3 rows.

35

26. High freight charges - 2015

We're continuing on the question above on high freight charges. Now, instead of using all the orders we

have, we only want to see orders from the year 2015.

Expected result

ShipCountry AverageFreight
--------------- ---------------------
Austria 178.3642
Switzerland 117.1775
France 113.991

(3 row(s) affected)

Hint

You need to add a Where clause to the query from the previous problem. The field to filter on is

OrderDate.

Hint

When filtering on dates, you need to know whether the date field is a DateTime, or a Date field. Is

OrderDate a Datetime or a Date field?

27. High freight charges with between

Another (incorrect) answer to the problem above is this:

Select Top 3
 ShipCountry
 ,AverageFreight = avg(freight)
From Orders
Where
 OrderDate between '1/1/2015' and '12/31/2015'
Group By ShipCountry
Order By AverageFreight desc;

Notice when you run this, it gives Sweden as the ShipCountry with the third highest freight charges.

However, this is wrong - it should be France.

36

What is the OrderID of the order that the (incorrect) answer above is missing?

Expected Result

(no expected results this time - we’re looking for a specific OrderID)

Hint

The Between statement is inclusive. Why isn’t it showing the orders made on December 31, 2015?

Hint

Run this query, and look at the rows around December 31, 2015. What do you notice? Look specifically at

the Freight field.

select * from orders order by OrderDate

28. High freight charges - last year

We're continuing to work on high freight charges. We now want to get the three ship countries with the

highest average freight charges. But instead of filtering for a particular year, we want to use the last 12

months of order data, using as the end date the last OrderDate in Orders.

Expected Results

ShipCountry AverageFreight
--------------- ---------------------
Ireland 200.21
Austria 186.4596
USA 119.3032

(3 row(s) affected)

Hint

First, get the last OrderDate in Orders. Write a simple select statement to get the highest value in the

OrderDate field using the Max aggregate function.

37

Hint

You should have something like this:

Select Max(OrderDate) from Orders

Now you need to get the date 1 year before the last order date. Create a simple select statement that

subtracts 1 year from the last order date

You can use the DateAdd function for this. Note that within DateAdd, you can use the subquery you

created above. Look online for some examples if you need to.

Hint

You should have something like this:

Select Dateadd(yy, -1, (Select Max(OrderDate) from Orders))

Now you just need to put it in the where clause.

29. Inventory list

We're doing inventory, and need to show information like the below, for all orders. Sort by OrderID and

Product ID.

Expected Results

EmployeeID LastName OrderID ProductName Quantity
----------- -------------------- ----------- -- --------
5 Buchanan 10248 Queso Cabrales 12
5 Buchanan 10248 Singaporean Hokkien Fried Mee 10
5 Buchanan 10248 Mozzarella di Giovanni 5
6 Suyama 10249 Tofu 9
6 Suyama 10249 Manjimup Dried Apples 40
4 Peacock 10250 Jack's New England Clam Chowder 10
4 Peacock 10250 Manjimup Dried Apples 35
4 Peacock 10250 Louisiana Fiery Hot Pepper Sauce 15
3 Leverling 10251 Gustaf's Knäckebröd 6
3 Leverling 10251 Ravioli Angelo 15
3 Leverling 10251 Louisiana Fiery Hot Pepper Sauce 20
4 Peacock 10252 Sir Rodney's Marmalade 40
4 Peacock 10252 Geitost 25
4 Peacock 10252 Camembert Pierrot 40
3 Leverling 10253 Gorgonzola Telino 20

38

3 Leverling 10253 Chartreuse verte 42
3 Leverling 10253 Maxilaku 40
…

(total 2155 rows)

Hint

You'll need to do a join between 4 tables, displaying only those fields that are necessary.

30. Customers with no orders

There are some customers who have never actually placed an order. Show these customers.

Expected Results

Customers_CustomerID Orders_CustomerID
-------------------- -----------------
FISSA NULL
PARIS NULL

(2 row(s) affected)

Hint

One way of doing this is to use a left join, also known as a left outer join.

Hint

Select
 Customers_CustomerID = Customers.CustomerID
 ,Orders_CustomerID = Orders.CustomerID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID

This is a good start. It shows all records from the Customers table, and the matching records from the

Orders table. However, we only want those records where the CustomerID in Orders is null. You still need

a filter

39

31. Customers with no orders for EmployeeID 4

One employee (Margaret Peacock, EmployeeID 4) has placed the most orders. However, there are some

customers who've never placed an order with her. Show only those customers who have never placed an

order with her.

Expected Result

CustomerID CustomerID
---------- ----------
SEVES NULL
THEBI NULL
LAZYK NULL
GROSR NULL
PARIS NULL
FISSA NULL
SPECD NULL
LAUGB NULL
PRINI NULL
VINET NULL
FRANR NULL
CONSH NULL
NORTS NULL
PERIC NULL
DUMON NULL
SANTG NULL

(16 row(s) affected)

Hint

Building on the previous problem, you might think you need to do something like this:

Select
 Customers.CustomerID
 ,Orders.CustomerID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID
Where
 Orders.CustomerID is null
 and Orders.EmployeeID = 4

…adding this filter in the where clause:

and Orders.EmployeeID = 4

However, this returns no records.

Note that with outer joins, the filters on the where clause are applied after the join.

40

Congratulations! You've completed the intermediate problems

Any questions or feedback on the problems, hints, or answers? I'd like to hear from you. Please email me

at feedback@SQLPracticeProblems.com.

mailto:feedback@SQLPracticeProblems.com

41

Advanced Problems

32. High-value customers

We want to send all of our high-value customers a special VIP gift. We're defining high-value customers

as those who've made at least 1 order with a total value (not including the discount) equal to $10,000 or

more. We only want to consider orders made in the year 2016.

Expected Result

CustomerID CompanyName OrderID TotalOrderAmount
---------- -- ----------- ---------------------
QUICK QUICK-Stop 10865 17250.00
SAVEA Save-a-lot Markets 11030 16321.90
HANAR Hanari Carnes 10981 15810.00
KOENE Königlich Essen 10817 11490.70
RATTC Rattlesnake Canyon Grocery 10889 11380.00
HUNGO Hungry Owl All-Night Grocers 10897 10835.24

(6 row(s) affected)

Hint

First, let's get the necessary fields for all orders made in the year 2016. Don't bother grouping yet, just

work on the Where clause. You'll need the CustomerID, CompanyName from Customers; OrderID from

Orders; and Quantity and unit price from OrderDetails. Order by the total amount of the order, in

descending order.

Hint

You should have something like this:

42

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.OrderID
 ,Amount = Quantity * UnitPrice
From Customers
 join Orders
 on Orders.CustomerID = Customers.CustomerID
 join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'

This gives you the total amount for each Order Detail item in 2016 orders, at the Order Detail level. Now,

which fields do you need to group on, and which need to be summed?

Hint

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.OrderID
 ,TotalOrderAmount = sum(Quantity * UnitPrice)
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group By
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.OrderID

The fields at the Customer and Order level need to be grouped by, and the TotalOrderAmount needs to be

summed.

How would you filter on the sum, in order to get orders of $10,000 or more? Can you put it straight into

the where clause?

43

33. High-value customers - total orders

The manager has changed his mind. Instead of requiring that customers have at least one individual orders

totaling $10,000 or more, he wants to define high-value customers as those who have orders totaling

$15,000 or more in 2016. How would you change the answer to the problem above?

Expected Result

CustomerID CompanyName TotalOrderAmount
---------- -- ---------------------
SAVEA Save-a-lot Markets 42806.25
ERNSH Ernst Handel 42598.90
QUICK QUICK-Stop 40526.99
HANAR Hanari Carnes 24238.05
HUNGO Hungry Owl All-Night Grocers 22796.34
RATTC Rattlesnake Canyon Grocery 21725.60
KOENE Königlich Essen 20204.95
FOLKO Folk och fä HB 15973.85
WHITC White Clover Markets 15278.90

(9 row(s) affected)

Hint

This query is almost identical to the one above, but there's just a few lines you need to delete or comment

out, to group at a different level.

34. High-value customers - with discount

Change the above query to use the discount when calculating high-value customers. Order by the total

amount which includes the discount.

Expected Result

CustomerID CompanyName TotalsWithoutDiscount TotalsWithDiscount

---------- ------------------------------ --------------------- ----------------------

ERNSH Ernst Handel 42598.90 41210.6500244141

QUICK QUICK-Stop 40526.99 37217.3150024414

SAVEA Save-a-lot Markets 42806.25 36310.1097793579

HANAR Hanari Carnes 24238.05 23821.1999893188

RATTC Rattlesnake Canyon Grocery 21725.60 21238.2704410553

44

HUNGO Hungry Owl All-Night Grocers 22796.34 20402.119934082

KOENE Königlich Essen 20204.95 19582.7739868164

WHITC White Clover Markets 15278.90 15278.8999862671

FOLKO Folk och fä HB 15973.85 13644.0674972534

SUPRD Suprêmes délices 11862.50 11644.5999984741

BOTTM Bottom-Dollar Markets 12227.40 11338.5500488281

(11 row(s) affected)

Hint

To start out, just use the OrderDetails table. You'll need to figure out how the Discount field is structured.

Hint

You should have something like this:

Select
 OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,Discount
 ,TotalWithDisccount = UnitPrice * Quantity * (1- Discount)
from OrderDetails

Note that Discount is applied as a percentage. So, if there's a 0.15 in the discount field, you need to

multiply the UnitPrice * Quantity by .85 (1.00 - .15). You need parenthesis around (1 - Discount) to make

sure that calculation is done first.

35. Month-end orders

At the end of the month, salespeople are likely to try much harder to get orders, to meet their month-end

quotas. Show all orders made on the last day of the month. Order by EmployeeID and OrderID

Expected Result

EmployeeID OrderID OrderDate
----------- ----------- -----------------------
1 10461 2015-02-28 00:00:00.000
1 10616 2015-07-31 00:00:00.000

45

2 10583 2015-06-30 00:00:00.000
2 10686 2015-09-30 00:00:00.000
2 10989 2016-03-31 00:00:00.000
2 11060 2016-04-30 00:00:00.000
3 10432 2015-01-31 00:00:00.000
3 10806 2015-12-31 00:00:00.000
3 10988 2016-03-31 00:00:00.000
3 11063 2016-04-30 00:00:00.000
4 10343 2014-10-31 00:00:00.000
4 10522 2015-04-30 00:00:00.000
4 10584 2015-06-30 00:00:00.000
4 10617 2015-07-31 00:00:00.000
4 10725 2015-10-31 00:00:00.000
4 10807 2015-12-31 00:00:00.000
4 11061 2016-04-30 00:00:00.000
4 11062 2016-04-30 00:00:00.000
5 10269 2014-07-31 00:00:00.000
6 10317 2014-09-30 00:00:00.000
7 10490 2015-03-31 00:00:00.000
8 10399 2014-12-31 00:00:00.000
8 10460 2015-02-28 00:00:00.000
8 10491 2015-03-31 00:00:00.000
8 10987 2016-03-31 00:00:00.000
9 10687 2015-09-30 00:00:00.000

(26 row(s) affected)

Hint

You can work on calculating this yourself, with a combination of date functions such as DateAdd and

DateDiff. But feel free to shortcut the process by doing some research online.

36. Orders with many line items

The Northwind mobile app developers are testing an app that customers will use to show orders. In order

to make sure that even the largest orders will show up correctly on the app, they'd like some samples of

orders that have lots of individual line items. Show the 10 orders with the most line items, in order of total

line items.

Expected Result

OrderID TotalOrderDetails
----------- -----------------
11077 25
10979 6

46

10657 6
10847 6
10845 5
10836 5
10714 5
10670 5
10691 5
10698 5

(10 row(s) affected)

Hint

Using Orders and OrderDetails, you'll use Group by and count() functionality.

37. Orders - random assortment

The Northwind mobile app developers would now like to just get a random assortment of orders for beta

testing on their app. Show a random set of 2% of all orders.

Expected Result

(note - your results will be different, because we’re returning a random set)

OrderID

11034
10400
10948
10931
10942
10604
10350
10499
10927
10896
10774
10932
10592
10706
10479
10782
10898

(17 row(s) affected)

47

Hint

Note that in the below SQL, the RandomValue field returns the same random value for each row. Do

some research online to figure out how to get a new random value for each row.

Select
 OrderID
 , RandomValue = Rand()
From Orders

38. Orders - accidental double-entry

Janet Leverling, one of the salespeople, has come to you with a request. She thinks that she accidentally

double-entered a line item on an order, with a different ProductID, but the same quantity. She remembers

that the quantity was 60 or more. Show all the OrderIDs with line items that match this, in order of

OrderID.

Expected Result

OrderID

10263
10263
10990
10658
11030

(5 row(s) affected)

Hint

You might start out with something like this:

Select
 OrderID
 ,ProductID
 ,Quantity
From OrderDetails
Where Quantity >= 60

48

However, this will only give us the orders where at least one order detail has a quantity of 60 or more. We

need to show orders with more than one order detail with a quantity of 60 or more. Also, the same value

for quantity needs to be there more than once.

Hint

In addition to grouping on the OrderID, we also need to group by the Quantity, since we need to show the

order details that have the same quantity, within an order. So, we need to group by both OrderID, and

Quantity.

39. Orders - accidental double-entry details

Based on the previous question, we now want to show details of the order, for orders that match the above

criteria.

Expected Result

OrderID ProductID UnitPrice Quantity Discount
----------- ----------- --------------------- -------- -------------
10263 16 13.90 60 0.25
10263 30 20.70 60 0.25
10263 24 3.60 65 0
10263 74 8.00 65 0.25
10658 60 34.00 55 0.05
10658 21 10.00 60 0
10658 40 18.40 70 0.05
10658 77 13.00 70 0.05
10990 34 14.00 60 0.15
10990 21 10.00 65 0
10990 55 24.00 65 0.15
10990 61 28.50 66 0.15
11030 29 123.79 60 0.25
11030 5 21.35 70 0
11030 2 19.00 100 0.25
11030 59 55.00 100 0.25

(16 row(s) affected)

49

Hint

There are many ways of doing this, including CTE (common table expression) and derived tables. I

suggest using a CTE and a subquery. Here's a good article on CTEs (https://technet.microsoft.com/en-

us/library/ms175972.aspx).

This is an example of a simple CTE in Northwind. It returns orders made by the oldest employee:

;with OldestEmployee as (
Select top 1
 EmployeeID
from Employees
order by BirthDate
)
Select
 OrderID
 ,OrderDate
from Orders
where
 EmployeeID in (Select EmployeeID from OldestEmployee)

40. Orders - accidental double-entry details, derived table

Here's another way of getting the same results as in the previous problem, using a derived table instead of

a CTE. However, there's a bug in this SQL. It returns 20 rows instead of 16. Correct the SQL.

Problem SQL:

Select
 OrderDetails.OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,Discount
From OrderDetails
 Join (
 Select
 OrderID
 From OrderDetails
 Where Quantity >= 60
 Group By OrderID, Quantity
 Having Count(*) > 1
) PotentialProblemOrders
 on PotentialProblemOrders.OrderID = OrderDetails.OrderID
Order by OrderID, ProductID

https://technet.microsoft.com/en-us/library/ms175972.aspx
https://technet.microsoft.com/en-us/library/ms175972.aspx

50

Hint

Your first step should be to run the SQL in the derived table

Select
 OrderID
From OrderDetails
Where Quantity >= 60
Group By OrderID, Quantity
Having Count(*) > 1

What do you notice about the results?

Hint

There are 2 rows for OrderID 10263, because there are 2 sets of rows that have the same, identical

quantity, that's 60 or above.

When you do a join to a table that has duplicates, you will get duplicates in the output as well, unless you

take steps to avoid it.

Find a single keyword that you can easily add to avoid duplicates in SQL.

41. Late orders

Some customers are complaining about their orders arriving late. Which orders are late?

Expected Result

OrderID OrderDate RequiredDate ShippedDate

----------- ---------- ------------ -----------

10264 2014-07-24 2014-08-21 2014-08-23

10271 2014-08-01 2014-08-29 2014-08-30

10280 2014-08-14 2014-09-11 2014-09-12

10302 2014-09-10 2014-10-08 2014-10-09

10309 2014-09-19 2014-10-17 2014-10-23

10380 2014-12-12 2015-01-09 2015-01-16

10423 2015-01-23 2015-02-06 2015-02-24

10427 2015-01-27 2015-02-24 2015-03-03

10433 2015-02-03 2015-03-03 2015-03-04

10451 2015-02-19 2015-03-05 2015-03-12

10483 2015-03-24 2015-04-21 2015-04-25

10515 2015-04-23 2015-05-07 2015-05-23

51

10523 2015-05-01 2015-05-29 2015-05-30

10545 2015-05-22 2015-06-19 2015-06-26

10578 2015-06-24 2015-07-22 2015-07-25

10593 2015-07-09 2015-08-06 2015-08-13

10596 2015-07-11 2015-08-08 2015-08-12

10663 2015-09-10 2015-09-24 2015-10-03

10687 2015-09-30 2015-10-28 2015-10-30

10660 2015-09-08 2015-10-06 2015-10-15

10705 2015-10-15 2015-11-12 2015-11-18

10709 2015-10-17 2015-11-14 2015-11-20

10726 2015-11-03 2015-11-17 2015-12-05

10727 2015-11-03 2015-12-01 2015-12-05

10749 2015-11-20 2015-12-18 2015-12-19

10777 2015-12-15 2015-12-29 2016-01-21

10779 2015-12-16 2016-01-13 2016-01-14

10788 2015-12-22 2016-01-19 2016-01-19

10807 2015-12-31 2016-01-28 2016-01-30

10816 2016-01-06 2016-02-03 2016-02-04

10827 2016-01-12 2016-01-26 2016-02-06

10828 2016-01-13 2016-01-27 2016-02-04

10847 2016-01-22 2016-02-05 2016-02-10

10924 2016-03-04 2016-04-01 2016-04-08

10927 2016-03-05 2016-04-02 2016-04-08

10960 2016-03-19 2016-04-02 2016-04-08

10970 2016-03-24 2016-04-07 2016-04-24

10978 2016-03-26 2016-04-23 2016-04-23

10998 2016-04-03 2016-04-17 2016-04-17

(39 row(s) affected)

Hint

To determine which orders are late, you can use a combination of the RequiredDate and ShippedDate. It's

not exact, but if ShippedDate is actually AFTER RequiredDate, you can be sure it's late.

42. Late orders - which employees?

Some salespeople have more orders arriving late than others. Maybe they're not following up on the order

process, and need more training. Which salespeople have the most orders arriving late?

52

Expected Result

EmployeeID LastName TotalLateOrders
----------- -------------------- ---------------
4 Peacock 10
3 Leverling 5
8 Callahan 5
9 Dodsworth 5
7 King 4
2 Fuller 4
1 Davolio 3
6 Suyama 3

(8 row(s) affected)

Hint

The answer from the problem above is a good starting point. You'll need to join to the Employee table to

get the last name, and also add Count to show the total late orders.

43. Late orders vs. total orders

Andrew, the VP of sales, has been doing some more thinking some more about the problem of late orders.

He realizes that just looking at the number of orders arriving late for each salesperson isn't a good idea. It

needs to be compared against the total number of orders per salesperson. Return results like the following:

Expected Result

EmployeeID LastName AllOrders LateOrders
----------- -------------------- ----------- -----------
1 Davolio 123 3
2 Fuller 96 4
3 Leverling 127 5
4 Peacock 156 10
6 Suyama 67 3
7 King 72 4
8 Callahan 104 5
9 Dodsworth 43 5

(8 row(s) affected)

53

Hint

You can use more than one CTE in a query. That would be a straightforward way of solving this problem.

Hint

Here are 2 SQL statements that could be put into CTEs and put together into a final SQL statement.

-- Late orders
Select
 EmployeeID
 ,TotalOrders = Count(*)
From Orders
Where
 RequiredDate <= ShippedDate
Group By
 EmployeeID

-- Total orders
Select
 EmployeeID
 ,TotalOrders = Count(*)
From Orders
Group By
 EmployeeID

44. Late orders vs. total orders - missing employee

There's an employee missing in the answer from the problem above. Fix the SQL to show all employees

who have taken orders.

Expected Result

EmployeeID LastName AllOrders LateOrders
----------- -------------------- ----------- -----------
1 Davolio 123 3
2 Fuller 96 4
3 Leverling 127 5
4 Peacock 156 10
5 Buchanan 42 NULL
6 Suyama 67 3
7 King 72 4
8 Callahan 104 5
9 Dodsworth 43 5

54

(9 row(s) affected)

Hint

How many rows are returned when you run just the AllOrders CTE? How about when you run just the

LateOrders CTE?

Hint

You'll want to add a left join (also known as a left outer join), to make sure that we show a row, even if

there are no late orders.

45. Late orders vs. total orders - fix null

Continuing on the answer for above query, let's fix the results for row 5 - Buchanan. He should have a 0

instead of a Null in LateOrders.

Expected Result

EmployeeID LastName AllOrders LateOrders
----------- -------------------- ----------- -----------
1 Davolio 123 3
2 Fuller 96 4
3 Leverling 127 5
4 Peacock 156 10
5 Buchanan 42 0
6 Suyama 67 3
7 King 72 4
8 Callahan 104 5
9 Dodsworth 43 5

(9 row(s) affected)

Hint

Find a function to test if a value is null, and return a different value when it is.

55

46. Late orders vs. total orders - percentage

Now we want to get the percentage of late orders over total orders.

Expected Result

EmployeeID LastName AllOrders LateOrders PercentLateOrders

----------- -------------------- ----------- ----------- -------------------

1 Davolio 123 3 0.0243902439024

2 Fuller 96 4 0.0416666666666

3 Leverling 127 5 0.0393700787401

4 Peacock 156 10 0.0641025641025

5 Buchanan 42 0 0.0000000000000

6 Suyama 67 3 0.0447761194029

7 King 72 4 0.0555555555555

8 Callahan 104 5 0.0480769230769

9 Dodsworth 43 5 0.1162790697674

(9 row(s) affected)

Hint

By dividing late orders by total orders, you should be able to get the percentage of orders that are late.

However, there's a common problem people run into, which is that an integer divided by an integer returns

an integer. For instance, if you run the following SQL to divide 3 by 2:

select 3/2

You’ll get 1 instead of 1.5, because it will return the closest integer.

Do some research online to find the answer to this issue.

47. Late orders vs. total orders - fix decimal

So now for the PercentageLateOrders, we get a decimal value like we should. But to make the output

easier to read, let's cut the PercentLateOrders off at 2 digits to the right of the decimal point.

Expected Result

EmployeeID LastName AllOrders LateOrders PercentLateOrders

----------- -------------------- ----------- ----------- -------------------

56

1 Davolio 123 3 0.02

2 Fuller 96 4 0.04

3 Leverling 127 5 0.04

4 Peacock 156 10 0.06

5 Buchanan 42 0 0.00

6 Suyama 67 3 0.04

7 King 72 4 0.06

8 Callahan 104 5 0.05

9 Dodsworth 43 5 0.12

(9 row(s) affected)

Hint

One straightforward way of doing this would be to explicitly convert PercentageLateOrders to a specific

Decimal data type. With the Decimal datatype, you can specify how many digits you want to the right of

the decimal point

Hint

The calculation PercentLateOrders is getting a little long and complicated, and it can be tricky to get all

the commas and parenthesis correct.

One way to simplify it is to break it down with an actual value instead of a calculation.

For instance:

Select convert(decimal(10,2), 0.0243902439024)

48. Customer grouping

Andrew Fuller, the VP of sales at Northwind, would like to do a sales campaign for existing customers.

He'd like to categorize customers into groups, based on how much they ordered in 2016. Then, depending

on which group the customer is in, he will target the customer with different sales materials.

The customer grouping categories are 0 to 1,000, 1,000 to 5,000, 5,000 to 10,000, and over 10,000.

A good starting point for this query is the answer from the problem “High-value customers - total orders.

We don’t want to show customers who don’t have any orders in 2016.

Order the results by CustomerID.

57

Expected Result

CustomerID CompanyName TotalOrderAmount CustomerGroup
---------- -- --------------------- -------------
ALFKI Alfreds Futterkiste 2302.20 Medium
ANATR Ana Trujillo Emparedados y helados 514.40 Low
ANTON Antonio Moreno Taquería 660.00 Low
AROUT Around the Horn 5838.50 High
BERGS Berglunds snabbköp 8110.55 High
BLAUS Blauer See Delikatessen 2160.00 Medium
BLONP Blondesddsl père et fils 730.00 Low
BOLID Bólido Comidas preparadas 280.00 Low
BONAP Bon app' 7185.90 High
BOTTM Bottom-Dollar Markets 12227.40 Very High
BSBEV B's Beverages 2431.00 Medium
CACTU Cactus Comidas para llevar 1576.80 Medium
CHOPS Chop-suey Chinese 4429.40 Medium

... (skipping some rows)

SPLIR Split Rail Beer & Ale 1117.00 Medium
SUPRD Suprêmes délices 11862.50 Very High
THEBI The Big Cheese 69.60 Low
THECR The Cracker Box 326.00 Low
TOMSP Toms Spezialitäten 910.40 Low
TORTU Tortuga Restaurante 1874.50 Medium
TRADH Tradição Hipermercados 4401.62 Medium
TRAIH Trail's Head Gourmet Provisioners 237.90 Low
VAFFE Vaffeljernet 4333.50 Medium
VICTE Victuailles en stock 3022.00 Medium
WANDK Die Wandernde Kuh 1564.00 Medium
WARTH Wartian Herkku 300.00 Low
WELLI Wellington Importadora 1245.00 Medium
WHITC White Clover Markets 15278.90 Very High
WILMK Wilman Kala 1987.00 Medium
WOLZA Wolski Zajazd 1865.10 Medium

(81 row(s) affected)

Hint

This is the SQL from the problem “High-value customers - total orders”, but without the filter for order

totals over 10,000.

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where

58

 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group By
 Customers.CustomerID
 ,Customers.CompanyName
Order By TotalOrderAmount Desc;

Hint

You can use the above SQL in a CTE (common table expression), and then build on it, using a Case

statement on the TotalOrderAmount.

49. Customer grouping - fix null

There's a bug with the answer for the previous question. The CustomerGroup value for one of the rows is

null.

Fix the SQL so that there are no nulls in the CustomerGroup field.

Expected Result

(Including only a subset of the output)

CustomerID CompanyName TotalOrderAmount CustomerGroup

---------- ------------------------------- --------------------- -------------

LILAS LILA-Supermercado 5994.06 High

LINOD LINO-Delicateses 10085.60 Very High

LONEP Lonesome Pine Restaurant 1709.40 Medium

MAGAA Magazzini Alimentari Riuniti 1693.00 Medium

MAISD Maison Dewey 5000.20 High

MORGK Morgenstern Gesundkost 245.00 Low

NORTS North/South 45.00 Low

OCEAN Océano Atlántico Ltda. 3031.00 Medium

OLDWO Old World Delicatessen 5337.65 High

OTTIK Ottilies Käseladen 3012.70 Medium

PERIC Pericles Comidas clásicas 1496.00 Medium

PICCO Piccolo und mehr 4393.75 Medium

PRINI Princesa Isabel Vinhos 2633.90 Medium

QUEDE Que Delícia 1353.60 Medium

QUEEN Queen Cozinha 7007.65 High

QUICK QUICK-Stop 40526.99 Very High

RANCH Rancho grande 1694.70 Medium

RATTC Rattlesnake Canyon Grocery 21725.60 Very High

REGGC Reggiani Caseifici 4263.00 Medium

59

RICAR Ricardo Adocicados 7312.00 High

Hint

What is the total order amount for CustomerID MAISD? How does that relate to our CustomerGroup

boundaries?

Hint

Using “between” works well for integer values. However, the value we're working with is Money, which

has decimals. Instead of something like:

when TotalOrderAmount between 0 and 1000 then 'Low'

You'll need to something like this:

when TotalOrderAmount >= 0 and TotalOrderAmount < 1000 then 'Low'

50. Customer grouping with percentage

Based on the above query, show all the defined CustomerGroups, and the percentage in each. Sort by the

total in each group, in descending order.

Expected Result

CustomerGroup TotalInGroup PercentageInGroup
------------- ------------ ---------------------------------------
Medium 35 0.432098765432
Low 20 0.246913580246
High 13 0.160493827160
Very High 13 0.160493827160

(4 row(s) affected)

Hint

As a starting point, you can use the answer from the problem “Customer grouping - fix null”.

60

Hint

We no longer need to show the CustomerID and CompanyName in the final output. However, we need to

count how many customers are in each CustomerGrouping. You can create another CTE level in order to

get the counts in each CustomerGrouping for the final output.

51. Customer grouping - flexible

Andrew, the VP of Sales is still thinking about how best to group customers, and define low, medium,

high, and very high value customers. He now wants complete flexibility in grouping the customers, based

on the dollar amount they've ordered. He doesn’t want to have to edit SQL in order to change the

boundaries of the customer groups.

How would you write the SQL?

There's a table called CustomerGroupThreshold that you will need to use. Use only orders from 2016.

Expected Result

(The expected results are the same as for the original problem, it’s just that we’re getting the answer

differently.)

CustomerID CompanyName TotalOrderAmount CustomerGroupName
---------- -- --------------------- --------------------
ALFKI Alfreds Futterkiste 2302.20 Medium
ANATR Ana Trujillo Emparedados y helados 514.40 Low
ANTON Antonio Moreno Taquería 660.00 Low
AROUT Around the Horn 5838.50 High
BERGS Berglunds snabbköp 8110.55 High
BLAUS Blauer See Delikatessen 2160.00 Medium
BLONP Blondesddsl père et fils 730.00 Low
BOLID Bólido Comidas preparadas 280.00 Low
BONAP Bon app' 7185.90 High
BOTTM Bottom-Dollar Markets 12227.40 Very High
BSBEV B's Beverages 2431.00 Medium
CACTU Cactus Comidas para llevar 1576.80 Medium
CHOPS Chop-suey Chinese 4429.40 Medium
COMMI Comércio Mineiro 513.75 Low

... (skipping some rows)

SPLIR Split Rail Beer & Ale 1117.00 Medium
SUPRD Suprêmes délices 11862.50 Very High
THEBI The Big Cheese 69.60 Low
THECR The Cracker Box 326.00 Low

61

TOMSP Toms Spezialitäten 910.40 Low
TORTU Tortuga Restaurante 1874.50 Medium
TRADH Tradição Hipermercados 4401.62 Medium
TRAIH Trail's Head Gourmet Provisioners 237.90 Low
VAFFE Vaffeljernet 4333.50 Medium
VICTE Victuailles en stock 3022.00 Medium
WANDK Die Wandernde Kuh 1564.00 Medium
WARTH Wartian Herkku 300.00 Low
WELLI Wellington Importadora 1245.00 Medium
WHITC White Clover Markets 15278.90 Very High
WILMK Wilman Kala 1987.00 Medium
WOLZA Wolski Zajazd 1865.10 Medium

(81 row(s) affected)

Hint

As a starting point, use the SQL of the first CTE from the problem “Customer grouping with percentage”

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
From Customers
 join Orders
 on Orders.CustomerID = Customers.CustomerID
 join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group By
 Customers.CustomerID
 ,Customers.CompanyName

Hint

When thinking about how to use the table CustomerGroupThreshold, note that when joining to a table,

you don't need to only use an equi-join (i.e., “=“ in the join). You can also use other operators, such as

between, and greater than/less than (> and <).

62

52. Countries with suppliers or customers

Some Northwind employees are planning a business trip, and would like to visit as many suppliers and

customers as possible. For their planning, they’d like to see a list of all countries where suppliers and/or

customers are based.

Expected Results

Country

Argentina
Australia
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Japan
Mexico
Netherlands
Norway
Poland
Portugal
Singapore
Spain
Sweden
Switzerland
UK
USA
Venezuela

(25 row(s) affected)

Hint

Use the Union statekent for this. It’s a good way of putting together a simple resultset from multiple SQL

statements.

63

53. Countries with suppliers or customers, version 2

The employees going on the business trip don’t want just a raw list of countries, they want more details.

We’d like to see output like the below, in the Expected Results.

Expected Result

SupplierCountry CustomerCountry
--------------- ---------------
NULL Argentina
Australia NULL
NULL Austria
NULL Belgium
Brazil Brazil
Canada Canada
Denmark Denmark
Finland Finland
France France
Germany Germany
NULL Ireland
Italy Italy
Japan NULL
NULL Mexico
Netherlands NULL
Norway Norway
NULL Poland
NULL Portugal
Singapore NULL
Spain Spain
Sweden Sweden
NULL Switzerland
UK UK
USA USA
NULL Venezuela

(25 row(s) affected)

Hint

A good way to start would be with a list of countries from the Suppliers table, and a list of countries from

the Customers table. Use either Distinct or Group by to avoid duplicating countries. Sort by country name

Hint

You should have something like this:

Select Distinct Country from Customers
Select Distinct Country from Suppliers

64

You can combine these with a CTEs or derived tables.

Note that there’s a specific type of outer join you’ll need, designed to return rows from either resultset.

What is it? Look online for the different types of outer join available.

54. Countries with suppliers or customers - version 3

The output of the above is improved, but it’s still not ideal

What we’d really like to see is the country name, the total suppliers, and the total customers.

Expected Result

Country TotalSuppliers TotalCustomers
--------------- -------------- --------------
Argentina 0 3
Australia 2 0
Austria 0 2
Belgium 0 2
Brazil 1 9
Canada 2 3
Denmark 1 2
Finland 1 2
France 3 11
Germany 3 11
Ireland 0 1
Italy 2 3
Japan 2 0
Mexico 0 5
Netherlands 1 0
Norway 1 1
Poland 0 1
Portugal 0 2
Singapore 1 0
Spain 1 5
Sweden 2 2
Switzerland 0 2
UK 2 7
USA 4 13
Venezuela 0 4

(25 row(s) affected)

65

Hint

You should be able to use the above query, and make a few changes to the CTE source queries to show

the total number of Supplier countries and Customer countries. You won’t be able to use the Distinct

keyword anymore.

Hint

When joining the 2 CTEs together, you can use a computed column, with the IsNull function to show a

non-null Country field, instead of the Supplier country or the Customer country.

55. First order in each country

Looking at the Orders table—we’d like to show details for each order that was the first in that particular

country, ordered by OrderID.

So, we need one row per ShipCountry, and CustomerID, OrderID, and OrderDate should be of the first

order from that country.

Expected Results

ShipCountry CustomerID OrderID OrderDate
--------------- ---------- ----------- ----------
Argentina OCEAN 10409 2015-01-09
Austria ERNSH 10258 2014-07-17
Belgium SUPRD 10252 2014-07-09
Brazil HANAR 10250 2014-07-08
Canada MEREP 10332 2014-10-17
Denmark SIMOB 10341 2014-10-29
Finland WARTH 10266 2014-07-26
France VINET 10248 2014-07-04
Germany TOMSP 10249 2014-07-05
Ireland HUNGO 10298 2014-09-05
Italy MAGAA 10275 2014-08-07
Mexico CENTC 10259 2014-07-18
Norway SANTG 10387 2014-12-18
Poland WOLZA 10374 2014-12-05
Portugal FURIB 10328 2014-10-14
Spain ROMEY 10281 2014-08-14
Sweden FOLKO 10264 2014-07-24
Switzerland CHOPS 10254 2014-07-11
UK BSBEV 10289 2014-08-26
USA RATTC 10262 2014-07-22
Venezuela HILAA 10257 2014-07-16

66

(21 row(s) affected)

Hint

Your first step will probably be to create a query like this:

Select
 ShipCountry
 ,CustomerID
 ,OrderID
 ,OrderDate = convert(date, OrderDate)
From orders
Order by
 ShipCountry
 ,OrderID

…which shows all the rows in the Order table, sorted first by Country and then by OrderID.

Hint

Your next step is to create a computed column that shows the row number for each order, partitioned

appropriately.

There’s a class of functions called Window functions or Ranking functions that you can use for this

problem. Specifically, use the Row_Number() function, with the Over and Partition clause, to get the

number, per country, of a particular order.

Hint

You’ll have something like this:

Select
 ShipCountry
 ,CustomerID
 ,OrderID
 ,OrderDate = convert(date, OrderDate)
 ,RowNumberPerCountry =
 Row_Number()
 over (Partition by ShipCountry Order by ShipCountry, OrderID)
From Orders

Because of some limitations with Window functions, you can’t directly filter the computed column

created above. Use a CTE to solve the problem.

67

56. Customers with multiple orders in 5 day period

There are some customers for whom freight is a major expense when ordering from Northwind.

However, by batching up their orders, and making one larger order instead of multiple smaller orders in a

short period of time, they could reduce their freight costs significantly.

Show those customers who have made more than 1 order in a 5 day period. The sales people will use this

to help customers reduce their costs.

Note: There are more than one way of solving this kind of problem. For this problem, we will not be using

Window functions.

Expected Result

CustomerID InitialOrderID InitialOrderDate NextOrderID NextOrderDate DaysBetween
---------- -------------- ---------------- ----------- ------------- -----------
ANTON 10677 2015-09-22 10682 2015-09-25 3
AROUT 10741 2015-11-14 10743 2015-11-17 3
BERGS 10278 2014-08-12 10280 2014-08-14 2
BERGS 10444 2015-02-12 10445 2015-02-13 1
BERGS 10866 2016-02-03 10875 2016-02-06 3
BONAP 10730 2015-11-05 10732 2015-11-06 1
BONAP 10871 2016-02-05 10876 2016-02-09 4
BONAP 10932 2016-03-06 10940 2016-03-11 5
BOTTM 10410 2015-01-10 10411 2015-01-10 0
BOTTM 10944 2016-03-12 10949 2016-03-13 1
BOTTM 10975 2016-03-25 10982 2016-03-27 2
BOTTM 11045 2016-04-23 11048 2016-04-24 1
BSBEV 10538 2015-05-15 10539 2015-05-16 1
BSBEV 10943 2016-03-11 10947 2016-03-13 2

... (skipping some rows)

SEVES 10800 2015-12-26 10804 2015-12-30 4
SUPRD 10841 2016-01-20 10846 2016-01-22 2
SUPRD 11035 2016-04-20 11038 2016-04-21 1
TRADH 10830 2016-01-13 10834 2016-01-15 2
TRADH 10834 2016-01-15 10839 2016-01-19 4
TRAIH 10574 2015-06-19 10577 2015-06-23 4
VICTE 10806 2015-12-31 10814 2016-01-05 5
VICTE 10843 2016-01-21 10850 2016-01-23 2
VINET 10737 2015-11-11 10739 2015-11-12 1
WARTH 10412 2015-01-13 10416 2015-01-16 3
WELLI 10803 2015-12-30 10809 2016-01-01 2
WELLI 10900 2016-02-20 10905 2016-02-24 4
WHITC 10693 2015-10-06 10696 2015-10-08 2
WILMK 10873 2016-02-06 10879 2016-02-10 4

(71 row(s) affected)

68

Hint

You can use a self-join, with 2 instances of the Orders table, joined by CustomerID. Good naming for the

table aliases (table instances) are important for readability. Don't name them Order1 and Order2.

Hint

Select
 InitialOrder.CustomerID
 ,InitialOrderID = InitialOrder.OrderID
 ,InitialOrderDate = InitialOrder.OrderDate
 ,NextOrderID = NextOrder.OrderID
 ,NextOrderDate = NextOrder.OrderDate
from Orders InitialOrder
 join Orders NextOrder
 on InitialOrder.CustomerID = NextOrder.CustomerID
Order by
 InitialOrder.CustomerID
 ,InitialOrder.OrderID

This is a good start. You will need to filter on additional fields in the join clause between InitialOrder and

NextOrder, because as it is, this returns far too many orders. It has what's called a cartesian product

between the 2 instances of the Orders table. This means that for the total number of orders for a particular

customer in Orders, you'll have that number, squared, in the output.

Look at some of the OrderID and OrderDate values in InitialOrder and NextOrder. Some of them

definitely disqualify a row based on our criteria.

Hint

Should the OrderID of the NextOrder ever be less than or equal to the OrderID of the NextOrder?

Hint

Based on the hint above, we added a where clause.

Select
 InitialOrder.CustomerID
 ,InitialOrderID = InitialOrder.OrderID
 ,InitialOrderDate = InitialOrder.OrderDate
 ,NextOrderID = NextOrder.OrderID
 ,NextOrderDate = NextOrder.OrderDate
from Orders InitialOrder
 join Orders NextOrder
 on InitialOrder.CustomerID = NextOrder.CustomerID
where
 InitialOrder.OrderID < NextOrder.OrderID
Order by
 InitialOrder.CustomerID

69

 ,InitialOrder.OrderID

Adding this filter:

and InitialOrder.OrderID < NextOrder.OrderID

…has cut down the output a lot. However, we still need to filter for the 5 day period.

Create a new field called DaysBetween that calculates the number of days between the InitialOrder

OrderDate and the NextOrder OrderDate. Use the DateDiff function.

Hint

You should now have a line like this:

 DaysBetween = datediff(dd, InitialOrder.OrderDate, NextOrder.OrderDate)

Use this calculation in the Where clause to filter for 5 days or less between orders.

57. Customers with multiple orders in 5 day period, version 2

There’s another way of solving the problem above, using Window functions. We would like to see the

following results.

Expected Results

CustomerID OrderDate NextOrderDate DaysBetweenOrders
---------- ---------- ------------- -----------------
ANTON 2015-09-22 2015-09-25 3
AROUT 2015-11-14 2015-11-17 3
BERGS 2014-08-12 2014-08-14 2
BERGS 2015-02-12 2015-02-13 1
BERGS 2016-02-03 2016-02-06 3
BONAP 2015-11-05 2015-11-06 1
BONAP 2016-02-05 2016-02-09 4
BONAP 2016-03-06 2016-03-11 5
BOTTM 2015-01-10 2015-01-10 0
BOTTM 2016-03-12 2016-03-13 1
BOTTM 2016-03-25 2016-03-27 2
BOTTM 2016-04-23 2016-04-24 1

... (skipping some rows)

SAVEA 2016-03-27 2016-03-30 3
SAVEA 2016-04-17 2016-04-17 0
SEVES 2015-12-26 2015-12-30 4

70

SUPRD 2016-01-20 2016-01-22 2
SUPRD 2016-04-20 2016-04-21 1
TRADH 2016-01-13 2016-01-15 2
TRADH 2016-01-15 2016-01-19 4
TRAIH 2015-06-19 2015-06-23 4
VICTE 2015-12-31 2016-01-05 5
VICTE 2016-01-21 2016-01-23 2
VINET 2015-11-11 2015-11-12 1
WARTH 2015-01-13 2015-01-16 3
WELLI 2015-12-30 2016-01-01 2
WELLI 2016-02-20 2016-02-24 4
WHITC 2015-10-06 2015-10-08 2
WILMK 2016-02-06 2016-02-10 4

(69 row(s) affected)

Hint

The window function to use here is the Lead function.

Look up some examples of the Lead function online.

As a first step, write SQL using the Lead function to return results like the following. The NextOrderDate

is a computed column that uses the Lead function.

CustomerID OrderDate NextOrderDate
---------- ---------- -------------
ALFKI 2015-08-25 2015-10-03
ALFKI 2015-10-03 2015-10-13
ALFKI 2015-10-13 2016-01-15
ALFKI 2016-01-15 2016-03-16
ALFKI 2016-03-16 2016-04-09
ALFKI 2016-04-09 NULL
ANATR 2014-09-18 2015-08-08
ANATR 2015-08-08 2015-11-28
ANATR 2015-11-28 2016-03-04
ANATR 2016-03-04 NULL

Hint

You should have something like this:

Select
 CustomerID
 ,OrderDate = convert(date, OrderDate)
 ,NextOrderDate =
 convert(
 date
 ,Lead(OrderDate,1)
 OVER (Partition by CustomerID order by CustomerID, OrderDate)
)
From Orders
Order by
 CustomerID

71

 ,OrderID

Now, take the output of this, and using a CTE and the DateDiff function, filter for rows which match our

criteria.

Congratulations! You've completed the advanced problems

Any questions or feedback on the problems, hints, or answers? I'd like to hear from you. Please email me

at feedback@SQLPracticeProblems.com.

mailto:feedback@SQLPracticeProblems.com

72

ANSWERS

Introductory Problems

1. Which shippers do we have?

Answer

Select
 *
From Shippers

Discussion

This is a basic select statement, returning all rows, just to get you warmed up.

Most of the time, a simple select statement like this is written all on one line, like this:

Select * From Shippers

But because we’ll be getting more complex quickly, we’ll start out with formatting it with separate lines

for each clause, which we’ll be doing in future questions.

73

2. Certain fields from Categories

Answer

Select
 CategoryName
 ,Description
from Categories

Discussion

Instead of doing a “Select *”, we specify the column names, and only get those columns returned.

3. Sales Representatives

Answer

Select
 FirstName
 ,LastName
 ,HireDate
From Employees
Where
 Title = 'Sales Representative'

Discussion

This is a simple filter against a string datatype. When comparing a value to a string datatype, you need to

enclose the value in single quotes.

What happens when you don’t? Try running the following:

Select
 FirstName
 ,LastName
 ,HireDate
From Employees
Where
 Title = Sales Representative

Notice that SQL Server gives the error:

74

Incorrect syntax near 'Representative'.

What about if you compare against a number? Try the following:

Select
 FirstName
 ,LastName
 ,HireDate
From Employees
Where
 Title = 1

You should get a conversion failure error.

4. Sales Representatives in the United States

Answer

Select
 FirstName
 ,LastName
 ,HireDate
From Employees
Where
 Title = 'Sales Representative'
 and Country = 'USA'

Discussion

You can have as many filters in the where clause as you need. I usually indent all the filters, and put them

on new lines, in order to make it easier to read.

75

5. Orders placed by specific EmployeeID

Answer

Select
 OrderID
 ,OrderDate
From Orders
Where
 EmployeeID = 5

Discussion

This simple query filters for one value in the EmployeeID field, using the “=” comparison operator.

Here’s another set of very commonly used comparison operators that you’re probably familiar with from

math class:

 > Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

6. Suppliers and ContactTitles

Answer

Select
 SupplierID
 ,ContactName
 ,ContactTitle
From Suppliers
Where
 ContactTitle <> 'Marketing Manager'

Discussion

Another way of expressing the Not is by using the following

!=

76

So, the below is equivalent to the answer with “<>”.

Select
 CompanyName
 ,ContactName
 ,ContactTitle
From Suppliers
Where
 ContactTitle != 'Marketing Manager'

7. Products with “queso” in ProductName

Answer

Select
 ProductID
 ,ProductName
From Products
Where
 ProductName like '%queso%'

Discussion

The “Like” operator is always used with wildcards, such as the percent symbol (%), which substitutes for

any number of characters.

Note that even though the search string used a lowercase “q” with the Like clause

ProductName like '%queso%'

the resulting rows both had an uppercase Q.

Queso Cabrales

Queso Manchego La Pastora

This is because the default installation of SQL Server is case insensitive, although it is also possible to

have a case-sensitive installation.

77

8. Orders shipping to France or Belgium

Answer

Select
 OrderID
 ,CustomerID
 ,ShipCountry
From Orders
where
 ShipCountry = 'France'
 or ShipCountry = 'Belgium'

Discussion

This is a very simple example, but in many situations you will have multiple where clauses, with

combined “Or” and “And” sections.

In this situation, an alternative would have been to use the “In” operator. We’ll do that in a future

problem.

9. Orders shipping to any country in Europe

Answer

Select
 OrderID
 ,CustomerID
 ,ShipCountry
From Orders
where
 ShipCountry in
 (
 'Brazil'
 ,'Mexico'
 ,'Argentina'
 ,'Venezuela'
)

78

Discussion

Using the In statement like this is a very common scenario when writing SQL. Whenever there’s more

than just a few—say 2 or 3—values that we’re filtering for, I will generally put them on separate lines. It’s

easier to read, understand, and modify.

Also, many times the list of items you’re filtering for will be coming from somewhere else—for instance,

a spreadsheet—and will already be on separate lines.

10. Employees, in order of age

Answer

Select
 FirstName
 ,LastName
 ,Title
 ,BirthDate
From Employees
Order By Birthdate

Discussion

This is a simple example of an Order By clause.

By default, SQL Server sorts by ascending order (first to last). To sort in desending order (last to first), run

the following, with the desc keyword:

Select
 FirstName
 ,LastName
 ,Title
 ,BirthDate
From Employees
Order By Birthdate desc -- keyword desc for last to first search

79

11. Showing only the Date with a DateTime field

Answer

Select
 FirstName
 ,LastName
 ,Title
 ,DateOnlyBirthDate = convert(date, BirthDate)
From Employees
Order By Birthdate

Discussion

What we’re using here is called a computed column, also sometimes called a calculated column. Anytime

you’re doing something besides just returning the column, as it is stored in the database, you’re using a

computed column. In this case, we’re applying a function to convert the datatype returned.

Note that we’ve added a name, DateOnlyBirthDate, for our computed column. This is called an “alias”.

DateOnlyBirthDate = convert(date, BirthDate)

If you don’t actually specify the column alias, you get an empty column header, which is very unhelpful.

12. Employees full name

Answer

Select
 FirstName
 ,LastName
 ,FullName = FirstName + ' ' + LastName
From Employees

Discussion

This is another example of the computed column. In this case, instead of applying a function to a field,

we’re concatenating two fields.

Another way to do concatenation, as of SQL Server 2012, is using the Concat function, as below.

80

Select
 FirstName
 ,LastName
 ,FullName = concat(FirstName , ' ' , LastName)
From Employees

The Concat function isn’t very well known yet, since SQL programmers are more familiar with using the

+ operator to concatenate strings. However, there are benefits to using Concat—mainly when there are

nulls in the data.

13. OrderDetails amount per line item

Answer

Select
 OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,TotalPrice = UnitPrice * Quantity
From OrderDetails
Order by
 OrderID
 ,ProductID

Discussion

Here we have another example of a computed column, this time using the arithmetic operator “*”for

multiplication.

A note on aliases—I believe the alias structure that I have above, with the alias name first and the

computation after, is easiset to read.

However, you’ll also very frequently see this structure, using “as”:

Select
 OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,UnitPrice * Quantity as TotalPrice -- Alias using "as"
From OrderDetails
Order by
 OrderID

81

 ,ProductID

14. How many customers?

Answer

Select
 TotalCustomers = count(*)
from Customers

Discussion

Aggregates functions and grouping are very important when retrieving data. In almost all cases, when

doing data analysis, you’ll be using multiple groupings and aggregates.

15. When was the first order?

Answer

Select
 FirstOrder = min(OrderDate)
From Orders

Discussion

For the aggregate function Count, you don’t need to specify a column name - just count(*) will work.

However, for other aggregate functions such as Min, Avg, Sum, etc, you will need to specify a column

name since you’re not just counting all rows.

82

16. Countries where there are customers

Answer

Select
 Country
From Customers
Group by
 Country

Discussion

The Group By clause is a cornerstone of SQL. With most data analysis of any complexity at all, you’ll be

using multiple Group By clauses, so they’re important to understand.

Another way of getting the same results is to use the Distinct keyword, as below:

Select distinct
 Country
From Customers

It looks simpler, and it is, for queries that are very straightforward. But in everyday use, you’ll almost

always be using the Group By instead of Distinct, because you’ll need to use additional aggregate

functions such as Count, and Sum.

17. Contact titles for customers

Answer

Select
 ContactTitle
 ,TotalContactTitle = count(*)
From Customers
Group by
 ContactTitle
Order by
 count(*) desc

83

Discussion

This particular construction, with a grouping, and then a count of the total in each group, is very common

both on its own, and as a part of other queries.

18. Products with associated supplier names

Answer

Select
 ProductID
 ,ProductName
 ,Supplier = CompanyName
From Products
 Join Suppliers
 on Products.SupplierID = Suppliers.SupplierID

Discussion

Joins can range from the very simple, which we have here, to the very complex. You need to understand

them thoroughly, as they’re critical in writing anything but the simplest SQL.

One thing you’ll see when reading SQL code is, instead of something like the answer above, something

like this:

Select
 ProductID
 ,ProductName
 ,Supplier = CompanyName
From Products P -- Aliased table
 Join Suppliers S -- Aliased table
 on P.SupplierID = S.SupplierID

Notice that the Products table and Suppliers table is aliased, or renamed, with one letter aliases—P and S.

If this is done, the P and S need to be used in the On clause as well.

I’m not a fan of this type of aliasing, although it’s common. The only benefit is avoiding some typing,

which is trivial. But the downside is severe—it leads to code that is much harder to read.

It’s not so much a problem in small chunks of SQL like this one. However, in long, convoluted SQL,

you’ll find yourself wondering what the one-letter aliases mean, always needing to refer back to the From

clause, and translate in your head.

84

The only time I use tables aliases is if the table name is extremely long. And then, I use table alias names

that are understandable, just shortened.

19. Orders and the Shipper that was used

Answer

Select
 OrderID
 ,OrderDate = convert(date, OrderDate)
 ,Shipper = CompanyName
From Orders
 join Shippers
 on Shippers.ShipperID = Orders.ShipVia
Where
 OrderID < 10300
Order by
 OrderID

Discussion

One common coding practice is to write the SQL as follows, with a table alias added to each column in

the Select statement:

Select
 O.OrderID
 ,OrderDate = convert(date, O.OrderDate)
 ,Shipper = S.CompanyName
From Orders O
 join Shippers S
 on S.ShipperID = O.ShipVia
Where
 O.OrderID < 10300
Order by
 O.OrderID

In this case O is prefixed to the fields from the Orders table, and S to the fields from the Shippers table.

Usually I don’t do this—I think it just adds extra text without enhancing readability.

However, it is sometimes impossible to run SQL without prefixing the column name with the table name.

For instance, try running the following:

Select
 ProductID

85

 ,ProductName
 ,Supplier = CompanyName
 ,SupplierID
From Products
 Join Suppliers
 on Products.SupplierID = Suppliers.SupplierID

What error do you get? Fix the error by adding a table name in front of the SupplierID.

Adding a table name to SupplierID is necessary because otherwise SQL Server doesn’t know if you want

to return the SupplierID from Products or Suppliers.

86

Intermediate Problems

20. Categories, and the total products in each category

Answer

Select
 CategoryName
 ,TotalProducts = count(*)
From Products
 Join Categories
 on Products.CategoryID = Categories.CategoryID
Group by
 CategoryName
Order by
 count(*) desc

Discussion

We’re expanding our knowledge of grouping here with a very common scenario—grouping across two

joined tables. In this case, the tables have what’s called a parent-child relationship. The parent table is

Categories, and the child table is Products.

21. Total customers per country/city

Answer

Select
 Country
 ,City
 ,TotalCustomer = Count(*)
From Customers
Group by
 Country
 ,City
Order by

87

 count(*) desc

Discussion

Note that once you have a Group by clause in a SQL statement, every field that appears in the Select

statement needs to either appear in the Group by clause, or needs to have some kind of aggregate function

applied to it.

For instance, try running the following, with the City in the Group by clause commented out, so we’re no

longer grouping by City.

Select
 Country
 ,City
 ,TotalCustomer = Count(*)
From Customers
Group by
 Country
 --,City
Order by
 count(*) desc

When you run this, you should receive this error message:

Msg 8120, Level 16, State 1, Line 3
Column 'Customers.City' is invalid in the select list because it is not contained in either an
aggregate function or the GROUP BY clause.

This means that the query engine doesn't know which City that you want to display. Every field in the

Select clause needs to either have an aggregate function (like Sum, Count, etc), or also be in the Group by.

The reason behind this is that there could potentially be multiple different cities for any one value in the

Country, and the database engine wouldn’t know whinch one to show.

22. Products that need reordering

Answer

Select
 ProductID
 ,ProductName
 ,UnitsInStock
 ,ReorderLevel

88

From Products
Where
 UnitsInStock <= ReorderLevel
Order by ProductID

Discussion

This is a straightforward query on one table. Instead of using a string or numeric value to filter, we’re

using another field.

23. Products that need reordering, continued

Answer

Select
 ProductID
 ,ProductName
 ,UnitsInStock
 ,UnitsOnOrder
 ,ReorderLevel
 ,Discontinued
From Products
Where
 UnitsInStock + UnitsOnOrder <= ReorderLevel
 and Discontinued = 0
Order by ProductID

Discussion

Instead of writing

and Discontinued = 0

…you can also write the following if you find it easier to read:

and Discontinued = convert(bit, 'FALSE')

SQL Server will automatically convert it to 0.

89

24. Customer list by region

Answer

Select
 CustomerID
 ,CompanyName
 ,Region
From Customers
Order By
 Case
 when Region is null then 1
 else 0
 End
 ,Region
 ,CustomerID

Discussion

Once we have the Case expression set up correctly, you just need to create an Order By clause for it, and

add the additional fields for sorting (Region and CustomerID).

If we had wanted to include the sorting field in the output , you could write this:

Select
 CustomerID
 ,CompanyName
 ,Region
 ,RegionOrder=
 Case
 when Region is null then 1
 else 0
 End
From Customers
Order By
 RegionOrder
 ,Region
 ,CustomerID

You would not need to repeat the case statement in the Order By, you can just refer to the alias -

RegionOrder.

90

25. High freight charges

Answer

Select Top 3
 ShipCountry
 ,AverageFreight = Avg(freight)
From Orders
Group By ShipCountry
Order By AverageFreight desc;

Discussion

Using Top is the easiest and most commonly used method of showing only a certain number of records.

Another way is by using Offset, as below.

Select
 ShipCountry
 ,AverageFreight = AVG(freight)
From Orders
Group By ShipCountry
Order by AverageFreight DESC
OFFSET 0 ROWS FETCH FIRST 3 ROWS ONLY

26. High freight charges - 2015

Answer

Select Top 3
 ShipCountry
 ,AverageFreight = avg(freight)
From Orders
Where
 OrderDate >= '20150101'
 and OrderDate < '20160101'
Group By ShipCountry
Order By AverageFreight desc;

Discussion

An alternate way to write the where clause is this:

91

Where
 OrderDate >= '1/1/2015'
 and OrderDate < '1/1/2016'

Depending on which date format you're used to, it may be easier to read. However, using the format

YYYYMMDD will be correct world-wide, regardless of the DateFormat setting in SQL Server.

And here’s still another way of writing this:

Select Top 3
 ShipCountry
 ,AverageFreight = avg(freight)
From Orders
Where
 year(OrderDate) = 2015 -- using Year function
Group By ShipCountry
Order By AverageFreight desc;

This looks straightforward and is easy to read. However, when you put a function such as Year on the

OrderDate field, we can’t use the index anymore. Also, you can only filter for specific calendar years, so

it’s not very flexible.

27. High freight charges with between

Answer

The OrderID that’s causing the different results is 10806.

Discussion

There’s an order made on December 31, 2015 with a really high value in the Freight field. This would

have skewed the results, and put France in third place for highest freight charges, but only if it were

included in the Where clause.

This SQL would have worked fine if OrderDate were a Date field, instead of DateTime.

OrderDate between '1/1/2015' and '12/31/2015'

However, since it’s a DateTime field, it gives an incorrect answer because it's not taking into account

records where the OrderDate is during the day on December 31, 2015.

Note that for a DateTime field, the value

12/31/2015

92

is equivalent only to

2015-12-31 00:00:00.000

…and not to values that have a time component.

28. High freight charges - last year

Answer

Select TOP (3)
 ShipCountry
 ,AverageFreight = Avg(freight)
From Orders
Where
 OrderDate >= Dateadd(yy, -1, (Select max(OrderDate) from Orders))
Group by ShipCountry
Order by AverageFreight desc;

Discussion

Using SQL like this that can generate a dynamic date range is critical for most data analysis work. Most

reports and queries will need to be flexible, without hard-coded date values.

29. Inventory list

Answer

Select
 Employees.EmployeeID
 ,Employees.LastName
 ,Orders.OrderID
 ,Products.ProductName
 ,OrderDetails.Quantity
From Employees
 join Orders
 on Orders.EmployeeID = Employees.EmployeeID

93

 join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 join Products
 on Products.ProductID = OrderDetails.ProductID
Order by
 Orders.OrderID
 ,Products.ProductID

Discussion

This problem is more practice with basic joins and multiple tables.

You can replace Join with Inner Join, but mostly people just use Join.

30. Customers with no orders

Answer

Select
 Customers_CustomerID = Customers.CustomerID
 ,Orders_CustomerID = Orders.CustomerID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID
Where
 Orders.CustomerID is null

Discussion

There are many ways of getting the same results. The main options are the Left Join with Is Null, Not In,

and Not Exists.

Above, we used the Left Join option. When performance is equivalent, I prefer the Not In method, shown

below.

Select CustomerID
From Customers
Where
 CustomerID not in (select CustomerID from Orders)

I believe this is the easiest to read and understand.

94

Another option is to use Not Exists. This requires a correlated subquery.

Select CustomerID
From Customers
Where Not Exists
 (
 Select CustomerID
 from Orders
 where
 Orders.CustomerID = Customers.CustomerID
)

Performance for the different options can be affected by whether or not the fields are indexed or nullable.

For additional reading on the details, check out this article: NOT IN vs. NOT EXISTS vs. LEFT JOIN / IS

NULL: SQL Server (https://explainextended.com/2009/09/15/not-in-vs-not-exists-vs-left-join-is-null-sql-

server/).

31. Customers with no orders for EmployeeID 4

Answer

Select
 Customers.CustomerID
 ,Orders.CustomerID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID
 and Orders.EmployeeID = 4
Where
 Orders.CustomerID is null

Discussion

Because the filters in the Where clause are applied after the results of the Join, we need the EmployeeID =

4 filter in the Join clause, instead of the Where clause.

Run the below query and review the results. It should give you a better sense of how the left join with “is

null” works. Note that the Where clause is commented out.

Select
 Customers.CustomerID
 ,Orders.CustomerID
 ,Orders.EmployeeID
From Customers
 left join Orders

https://explainextended.com/2009/09/15/not-in-vs-not-exists-vs-left-join-is-null-sql-server/
https://explainextended.com/2009/09/15/not-in-vs-not-exists-vs-left-join-is-null-sql-server/

95

 on Orders.CustomerID = Customers.CustomerID
 and Orders.EmployeeID = 4
-- Where
-- Orders.CustomerID is null

The most common way to solve this kind of problem is as above, with a left join. However, here are some

alternatives using Not In and Not Exists.

Select CustomerID
From Customers
Where
 CustomerID not in (select CustomerID from Orders where EmployeeID = 4)

Select CustomerID
From Customers
Where Not Exists
 (
 Select CustomerID
 from Orders
 where Orders.CustomerID = Customers.CustomerID
 and EmployeeID = 4
)

Advanced Problems

32. High-value customers

Answer

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.OrderID
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where

96

 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group by
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.Orderid
Having Sum(Quantity * UnitPrice) > 10000
Order by TotalOrderAmount DESC

Discussion

If you tried putting this filter

and sum(Quantity * UnitPrice) >= 10000

… in the where clause, you got an error. Aggregate functions can only be used to filter (with some

exceptions) in the Having clause, not the Where clause.

33. High-value customers - total orders

Answer

Select
 Customers.CustomerID
 ,Customers.CompanyName
 --,Orders.OrderID
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group by
 Customers.CustomerID
 ,Customers.CompanyName
 --,Orders.Orderid
Having sum(Quantity * UnitPrice) > 15000
Order by TotalOrderAmount desc;

97

Discussion

All that was necessary here was to comment out references in the Select clause and the Group By clause

to OrderID. By doing that, we're grouping at the Customer level, and not at the Order level.

34. High-value customers - with discount

Answer

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalsWithoutDiscount = SUM(Quantity * UnitPrice)
 ,TotalsWithDiscount = SUM(Quantity * UnitPrice * (1- Discount))
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group by
 Customers.CustomerID
 ,Customers.CompanyName
Having sum(Quantity * UnitPrice * (1- Discount)) > 10000
Order by TotalsWithDiscount DESC;

Discussion

Note that you need to use the new calculation for order totals with discounts in the Select clause, the

Having clause, and also the Order by clause. In the Order by clause, you can re-use the alias that you

created in the Select clause, but in the Having clause, you need to repeat the calculation.

98

35. Month-end orders

Answer

Select
 EmployeeID
 ,OrderID
 ,OrderDate
From Orders
Where OrderDate = EOMONTH(OrderDate)
Order by
 EmployeeID
 ,OrderID

Discussion

Very frequently the end of the month will be needed in queries and reports. The function EOMONTH was

introduced in SQL Server 2012, so before that point, developers had to use a combination of functions like

the below:

Where OrderDate = dateadd(month,1 + datediff(month,0,OrderDate),-1)

36. Orders with many line items

Answer

Select top 10
 Orders.OrderID
 ,TotalOrderDetails = count(*)
From Orders
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Group By Orders.OrderID
Order By count(*) desc

Discussion

What happens when you select the top 50 instead of top 10? There are many more rows that have 5 as the

TotalOrderDetails. If you want to show all of them you can use the With Ties option as below:

Select top 10 With Ties

99

 Orders.OrderID
 ,TotalOrderDetails = count(*)
From Orders
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Group By Orders.OrderID
Order By count(*) desc

Note that the same query, with the “With Ties” keyword, now returns 37 rows because there are many

rows with a value of 5 for TotalOrderDetails.

37. Orders - random assortment

Answer

Select top 2 percent
 OrderID
From Orders
Order By NewID()

Discussion

The NewID() function creates a globally unique identifier (GUID). When you order by this identifier, you

get a random sorting. In this case, we're using

top 2 percent

...to get the top 2 percent instead of a specific number of rows.

Using NewID() on a very large table can cause some problems, see this article

(https://msdn.microsoft.com/en-us/library/cc441928.aspx) for more details.

https://msdn.microsoft.com/en-us/library/cc441928.aspx

100

38. Orders - accidental double-entry

Answer

Select
 OrderID
From OrderDetails
Where Quantity >= 60
Group By
 OrderID
 ,Quantity
Having Count(*) > 1

Discussion

This SQL shows orders that have at least 1 order detail with a quantity of 60 or more (the Where clause),

and the quantity is duplicated within the order (the Group by and Having clause). This occurs because

we're grouping on both OrderID and Quantity.

39. Orders - accidental double-entry details

Answer

;with PotentialDuplicates as (
 Select
 OrderID
 From OrderDetails
 Where Quantity >= 60
 Group By OrderID, Quantity
 Having Count(*) > 1
)
Select
 OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,Discount
From OrderDetails
Where
 OrderID in (Select OrderID from PotentialDuplicates)
Order by
 OrderID
 ,Quantity

101

Discussion

There are quite a few different ways of getting the same results for this problem. Based on years of painful

troubleshooting caused by poorly-written, tangled SQL, I suggest that writing easily understandable,

straightforward code is one of the most important things to strive for. Using a well thought-out CTE is one

way of doing this.

In the next problem, we'll look at another way of getting the same result.

40. Orders - accidental double-entry details, derived table

Answer

Select
 OrderDetails.OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,Discount
From OrderDetails
 Join (
 Select distinct
 OrderID
 From OrderDetails
 Where Quantity >= 60
 Group By OrderID, Quantity
 Having Count(*) > 1
) PotentialProblemOrders
 on PotentialProblemOrders.OrderID = OrderDetails.OrderID
Order by OrderID, ProductID

Discussion

Note the Distinct keyword, added after the Select in the derived table. This gives us only distinct rows in

the output, which avoids the problem with duplicate OrderIDs.

102

41. Late orders

Answer

Select
 OrderID
 ,OrderDate = convert(date, OrderDate)
 ,RequiredDate = convert(date, RequiredDate)
 ,ShippedDate = convert(date, ShippedDate)
From Orders
Where
 RequiredDate <= ShippedDate

Discussion

This is a straight-forward query that we'll use as a base for future problems.

42. Late orders - which employees?

Answer

Select
 Employees.EmployeeID
 ,LastName
 ,TotalLateOrders = Count(*)
From Orders
 Join Employees
 on Employees.EmployeeID = Orders.EmployeeID
Where
 RequiredDate <= ShippedDate
Group By
 Employees.EmployeeID
 ,Employees.LastName
Order by TotalLateOrders desc

Discussion

Note that both the LastName and the EmployeeID from the Employees table need to be included in the

Group by clause, otherwise we get the error:

Msg 8120, Level 16, State 1, Line 3

103

Column 'Employees.LastName' is invalid in the select list because it is not contained in either an
aggregate function or the GROUP BY clause.

Technically, EmployeeID is a primary key field, and since we’re grouping by that already, there can only

be one LastName associated with an EmployeeID. However, the database engine doesn’t know this, and

still requires the LastName in the Group by clause.

43. Late orders vs. total orders

Answer

;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = LateOrders.TotalOrders
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

104

Discussion

The above query is almost correct, but if you're paying careful attention, you'll realize it has a slight

problem. We'll learn more in the next problem.

44. Late orders vs. total orders - missing employee

Answer

;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = LateOrders.TotalOrders
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Left Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion

If we wanted to show all employees, even if they had no orders, we would also have needed to use a Left

Join for AllOrders.

105

45. Late orders vs. total orders - fix null

Answer

;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = IsNull(LateOrders.TotalOrders, 0)
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Left Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion

Using a straightforward IsNull on LateOrder is the best way to solve this problem.

Another way to write it would be using a Case statement

LateOrders =
 Case
 When LateOrders.TotalOrders is null Then 0
 Else LateOrders.TotalOrders
 End

But when you don’t need any other logic besides a test for null, IsNull is the way to go.

106

46. Late orders vs. total orders - percentage

Answer

;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = IsNull(LateOrders.TotalOrders, 0)
 ,PercentLateOrders =
 (IsNull(LateOrders.TotalOrders, 0) * 1.00) / AllOrders.TotalOrders
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Left Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion

If you just add a field like this:

PercentLateOrders = LateOrders.TotalLateOrders/AllOrders.TotalOrders

…you'll get 0 for all the fields, although that's obviously not correct. But this is what happens when you

divide two integers together. You need to convert one of them to a data type such as decimal. A common

way to convert to a decimal datatype is by multiplying by 1.00

Note that you need to convert the integer to a decimal before you do the division. If you do it after the

division, like this:

(IsNull(LateOrders.TotalOrders, 0) / AllOrders.TotalOrders) * 1.00

… you'll still get 0.

107

47. Late orders vs. total orders - fix decimal

Answer

;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = IsNull(LateOrders.TotalOrders, 0)
 ,PercentLateOrders =
 Convert(
 Decimal (10,2)
 ,(IsNull(LateOrders.TotalOrders, 0) * 1.00) / AllOrders.TotalOrders
)
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Left Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion

Rounding, truncating, and converting data types can get complicated, and there are many ways that you

could get unexpected results. Always check your results carefully, and know whether you want rounding,

or truncation.

Frequently, when creating this kind of query, you’ll put the output into a tool like Excel, and do any

additional formatting such as setting the decimal precision there. However, it’s good to at least know how

to do it in SQL.

You may have noticed that I added some new lines in the calculation to make it easier to read. This isn’t

necessary, but it’s good programming practice, and easier to read and troubleshoot compared to having

everything on one line.

108

48. Customer grouping

Answer

;with Orders2016 as (
 Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
 Group by
 Customers.CustomerID
 ,Customers.CompanyName
)
Select
 CustomerID
 ,CompanyName
 ,TotalOrderAmount
 ,CustomerGroup =
 Case
 when TotalOrderAmount between 0 and 1000 then 'Low'
 when TotalOrderAmount between 1001 and 5000 then 'Medium'
 when TotalOrderAmount between 5001 and 10000 then 'High'
 when TotalOrderAmount > 10000 then 'Very High'
 End
from Orders2016
Order by CustomerID

Discussion

(Note - there's a small bug in the above SQL, which we'll review in the next problem.)

The CTE works well for this problem, but it's not strictly necessary. You could also use SQL like this:

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 ,CustomerGroup =
 Case
 when SUM(Quantity * UnitPrice) between 0 and 1000 then 'Low'
 when SUM(Quantity * UnitPrice) between 1001 and 5000 then 'Medium'
 when SUM(Quantity * UnitPrice) between 5001 and 10000 then 'High'
 when SUM(Quantity * UnitPrice) > 10000 then 'Very High'
 End
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID

109

 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group By
 Customers.CustomerID
 ,Customers.CompanyName

This gives the same result, but notice that the calculation for getting the TotalOrderAmount was repeated

5 times, including the 4 times in the Case statement.

It's best to avoid repeating calculations like this. The calculations will usually be quite complex and

difficult to read, and you want to have them only in one place. In something simple, like Quantity *

UnitPrice, it's not necessarily a problem. But most of the time, you should avoid repeating any

calculations and code. An easy way to remember this is with the acronym DRY - “Don’t Repeat

Yourself”. Here’s an article (https://en.wikipedia.org/wiki/Don%27t_repeat_yourself) on the topic.

49. Customer grouping - fix null

Answer

;with Orders2016 as (
 Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
 Group by
 Customers.CustomerID
 ,Customers.CompanyName
)
Select
 CustomerID
 ,CompanyName
 ,TotalOrderAmount
 ,CustomerGroup =
 case
 when TotalOrderAmount >= 0 and TotalOrderAmount < 1000 then 'Low'

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

110

 when TotalOrderAmount >= 1000 and TotalOrderAmount < 5000 then 'Medium'
 when TotalOrderAmount >= 5000 and TotalOrderAmount <10000 then 'High'
 when TotalOrderAmount >= 10000 then 'Very High'
 end
from Orders2016
Order by CustomerID

Discussion

As you've been seeing in the above problems, knowing the data types you're working with and

understanding the differences between them is important to get the right results. Using “between” would

have been fine for integer values, but not for Money.

50. Customer grouping with percentage

Answer

;with Orders2016 as (
 Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 From Customers
 join Orders
 on Orders.CustomerID = Customers.CustomerID
 join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
 Group By
 Customers.CustomerID
 ,Customers.CompanyName
)
,CustomerGrouping as (
 Select
 CustomerID
 ,CompanyName
 ,TotalOrderAmount
 ,CustomerGroup =
 case
 when TotalOrderAmount >= 0 and TotalOrderAmount < 1000 then 'Low'
 when TotalOrderAmount >= 1000 and TotalOrderAmount < 5000 then 'Medium'
 when TotalOrderAmount >= 5000 and TotalOrderAmount <10000 then 'High'
 when TotalOrderAmount >= 10000 then 'Very High'
 end

111

 from Orders2016
 -- Order by CustomerID
)
Select
 CustomerGroup
 , TotalInGroup = Count(*)
 , PercentageInGroup = Count(*) * 1.0/ (select count(*) from CustomerGrouping)
from CustomerGrouping
group by CustomerGroup
order by TotalInGroup desc

Discussion

In the answer we added an intermediate CTE called CustomerGrouping. CustomerGrouping is referenced

twice - once to get the total number of customers in the group, and once to get the total, as the

denominator for the percentage.

Notice that the Order by in the second CTE is commented out. If you leave it in, you get this error:

Msg 1033, Level 15, State 1, Line 32
The ORDER BY clause is invalid in views, inline functions, derived tables, subqueries, and common
table expressions, unless TOP, OFFSET or FOR XML is also specified.

51. Customer grouping - flexible

Answer

;with Orders2016 as (
 Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
 Group by
 Customers.CustomerID
 ,Customers.CompanyName
)
Select
 CustomerID

112

 ,CompanyName
 ,TotalOrderAmount
 ,CustomerGroupName
from Orders2016
 Join CustomerGroupThresholds
 on Orders2016.TotalOrderAmount between
 CustomerGroupThresholds.RangeBottom and CustomerGroupThresholds.RangeTop
Order by CustomerID

Discussion

Note that this gives the same results as the original problem. However, instead of using hard-coded values

in the Case statement to define the boundaries of the CustomerGroups, you have them in a table.

The benefit of this is that you don't need to duplicate the following code in every query where you need to

group customers, since it's defined in the table.

,CustomerGroup =
 case
 when TotalOrderAmount >= 0 and TotalOrderAmount < 1000 then 'Low'
 when TotalOrderAmount >= 1000 and TotalOrderAmount < 5000 then 'Medium'
 when TotalOrderAmount >= 5000 and TotalOrderAmount <10000 then 'High'
 when TotalOrderAmount >= 10000 then 'Very High'
 end

Also, take a look at the values in CustomerGroupThresholds.

select * From CustomerGroupThresholds

Note that there's no overlap between the rows, with regards to the RangeBottom and RangeTop. If it were

a data type besides Money (which goes to 4 decimal places), there might be gaps or overlap.

52. Countries with suppliers or customers

Answer

Select Country From Customers
Union
Select Country From Suppliers
Order by Country

113

Discussion

There are 2 ways of using the Union statement. One is a simple Union as in the answer here. Using a

simple Union statement eliminates all the duplicates in the resultset.

You can also use Union All. Try it and take a look at the resultset:

Select distinct Country From Customers
Union All
Select distinct Country From Suppliers
Order by Country

Notice that within the individual SQL statements, I’ve put a Distinct. However, there are still duplicates in

the final output, because we have Union All, which doesn’t eliminate duplicates.

53. Countries with suppliers or customers, version 2

Answer

;With SupplierCountries as
 (Select Distinct Country from Suppliers)
,CustomerCountries as
 (Select Distinct Country from Customers)
Select
 SupplierCountry = SupplierCountries .Country
 ,CustomerCountry = CustomerCountries .Country
From SupplierCountries
 Full Outer Join CustomerCountries
 on CustomerCountries.Country = SupplierCountries.Country

Discussion

The Full Outer join isn’t commonly used, but in certain situations it’s critical. Another way that these

queries could have been joined is via a derived table, like below.

Select
 SupplierCountry = SupplierCountries .Country
 ,CustomerCountry = CustomerCountries .Country
From (Select Distinct Country from Suppliers) SupplierCountries
 Full Outer Join (Select Distinct Country from Customers) CustomerCountries
 on CustomerCountries.Country = SupplierCountries.Country

114

In this instance, you get the identical output to the CTE option, but I think the CTE option is easier to

read.

Why are CTEs, in general, easier to read? The main reason is that the code can be more logically

structured, and read from top to bottom without needing to jump around to different sections. See this

article (http://www.essentialsql.com/non-recursive-ctes/) for more details.

Are CTEs always the answer? No, not always. The main case in which you should switch from a CTE to

something else (for instance, a table variable or temporary table) would be when you need to reference the

results of the select statement multiple times, in a longer piece of code

54. Countries with suppliers or customers - version 3

Answer

;With SupplierCountries as
 (Select Country , Total = Count(*) from Suppliers group by Country)
,CustomerCountries as
 (Select Country , Total = Count(*) from Customers group by Country)
Select
 Country = isnull(SupplierCountries.Country, CustomerCountries.Country)
 ,TotalSuppliers= isnull(SupplierCountries.Total,0)
 ,TotalCustomers= isnull(CustomerCountries.Total,0)
From SupplierCountries
 Full Outer Join CustomerCountries
 on CustomerCountries.Country = SupplierCountries.Country

Discussion

Note that we had to switch from Distinct to Group By in the CTE, because we needed to get the total with

Count(*), for which you need to do a Group By.

The Full Outer type join is not very commonly used, but in some situations, it’s the only thing that will get

the results we want.

http://www.essentialsql.com/non-recursive-ctes/

115

55. First order in each country

Answer

;with OrdersByCountry as
(
 Select
 ShipCountry
 ,CustomerID
 ,OrderID
 ,OrderDate = convert(date, OrderDate)
 ,RowNumberPerCountry =
 Row_Number()
 over (Partition by ShipCountry Order by ShipCountry, OrderID)
 From Orders
)
Select
 ShipCountry
 ,CustomerID
 ,OrderID
 ,OrderDate
From OrdersByCountry
Where
 RowNumberPerCountry = 1
Order by
 ShipCountry

Discussion

Before Window functions were available, in previous versions of SQL Server, there were other options to

get the same results.

The below returns the same resultset as we got with the Row_Number() function:

;with FirstOrderPerCountry as (
 Select
 ShipCountry
 ,MinOrderID = min(OrderID)
 From Orders
 Group by
 ShipCountry)
Select
 Orders.ShipCountry
 ,CustomerID
 ,OrderID
from FirstOrderPerCountry
 Join Orders
 on Orders.OrderID = FirstOrderPerCountry.MinOrderID
Order by
 Orders.ShipCountry

However, what if we had wanted to order by something else, and not the OrderID? For instance, the

ShippedDate? Since ShippedDate isn’t a unique value like OrderID, we would not have been able to join

on it.

116

There are workarounds for this issue, but a Window function is definitely easier.

56. Customers with multiple orders in 5 day period

Answer

Select
 InitialOrder.CustomerID
 ,InitialOrderID = InitialOrder.OrderID
 ,InitialOrderDate = convert(date, InitialOrder.OrderDate)
 ,NextOrderID = NextOrder.OrderID
 ,NextOrderDate = convert(date, NextOrder.OrderDate)
 ,DaysBetween = datediff(dd, InitialOrder.OrderDate, NextOrder.OrderDate)
from Orders InitialOrder
 join Orders NextOrder
 on InitialOrder.CustomerID = NextOrder.CustomerID
where
 InitialOrder.OrderID < NextOrder.OrderID
 and datediff(dd, InitialOrder.OrderDate, NextOrder.OrderDate) <= 5
Order by
 InitialOrder.CustomerID
 ,InitialOrder.OrderID

Discussion

Including multiple instances of a table is one way of finding the answer we need.

When aliasing tables and columns, be careful to name them something meaningful, that you can read and

understand your SQL.

57. Customers with multiple orders in 5 day period, version 2

Answer

;With NextOrderDate as (
 Select
 CustomerID

117

 ,OrderDate = convert(date, OrderDate)
 ,NextOrderDate =
 convert(
 date
 ,Lead(OrderDate,1)
 OVER (Partition by CustomerID order by CustomerID, OrderDate)
)
 From Orders
)
Select
 CustomerID
 ,OrderDate
 ,NextOrderDate
 ,DaysBetweenOrders = DateDiff (dd, OrderDate, NextOrderDate)
From NextOrderDate
Where
 DateDiff (dd, OrderDate, NextOrderDate) <= 5

Discussion

There’s two main ways of solving this problem, the first using multiple instances of the table (which we

did in the first version of the problem), and the other using Window functions.

Which is better? If we’re okay with getting a narrower resultset, I’d prefer this version, using the Lead

window function, instead of the previous solution.

But if we need multiple columns from the following order, then it’s best to use the first version.

Otherwise, you’d need multiple calculated columns with the same Partition and Order by.

Notice that the row count between the 2 answers are slightly different, 71 and 69. You can use this SQL to

look at one difference in more detail.

Select
 CustomerID
 ,OrderID
 ,OrderDate
From Orders
Where
 CustomerID = 'ERNSH'
 Order by
 CustomerID
 ,OrderID

What causes the difference between the 2 answers?

118

Congratulations!

You’re finished! If you have a moment, I would really appreciate a review of the book on Amazon.com

(https://www.amazon.com/SQL-Practice-Problems-learn-doing/dp/1540422658). Your honest opinon can

help people decide between the many SQL learning options available.

Now that you’ve completed the practice problems, you’ve improved your SQL skills tremendously. If

you’ve just read through the book without actually writing out the SQL—that’s a great start! I encourage

you to go through the problems again, this time actually working out the SQL, and not looking at the

answers and hints unless you need to.

Any comments and sugggestions are most welcome! Please email me at:

feedback@SQLPracticeProblems.com.

Thank you!

Sylvia Moestl Vasilik

https://www.amazon.com/SQL-Practice-Problems-learn-doing/dp/1540422658
mailto:feedback@SQLPracticeProblems.com

