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Figure 1: We divide the scene geometry using triangle footprints to gather shading via Oversampling (blue) and L-packing (green) into a
shading atlas. With this data, we construct near ground-truth novel views in under 1 ms on a desktop and with full 60 FPS on a smartphone.

Abstract
Presenting high-fidelity 3D content on compact portable devices with low computational power is challenging. Smartphones,
tablets and head-mounted displays (HMDs) suffer from thermal and battery-life constraints and thus cannot match the render
quality of desktop PCs and laptops. Streaming rendering enables to show high-quality content but can suffer from potentially
high latency. We propose an approach to efficiently capture shading samples in object space and packing them into a texture.
Streaming this texture to the client, we support temporal frame up-sampling with high fidelity, low latency and high mobility.
We introduce two novel sample distribution strategies and a novel triangle representation in the shading atlas space. Since such
a system requires dynamic parallelism, we propose an implementation exploiting the power of hardware-accelerated tessella-
tion stages. Our approach allows fast de-coding and rendering of extrapolated views on a client device by using hardware-
accelerated interpolation between shading samples and a set of potentially visible geometry. A comparison to existing shading
methods shows that our sample distributions allow better client shading quality than previous atlas streaming approaches and
outperforms image-based methods in all relevant aspects.

CCS Concepts
• Computing methodologies → Rendering; Texturing; Virtual reality; Image-based rendering;

1. Introduction

Ideal virtual reality (VR) solutions should be able to deliver high-
fidelity content at imperceivable latencies without any restrictions
on the user’s movement. Current solutions always fall short on at
least one of these three aspects. Tethered head mounted display
(HMD) systems such as Oculus Rift or HTC VIVE offer superb
movement tracking and visual fidelity, but they restrain the user’s
movement by being bound by a thick cable to a high-end PC. Un-
tethered solutions allow full freedom of movement. However, they
only have a mobile GPU, e.g., Oculus Go, Microsoft HoloLens,
Google Daydream, or Samsung Gear. Due to thermal and power
restrictions mobile GPUs are unable to render high-fidelity content.

A solution to displaying high-fidelity content without movement
restrictions is streaming rendering. Some vendors (Sony, Nvidia,
Google) offer a commercial cloud gaming service over a wide area
network. In this case, the bandwidth and latency of wireless net-
works are the main problem, as VR games have to be instantly
responsive [CCT∗11, MHUC12]. The latency and bandwidth re-
quirements are barely met by edge servers [CWSR12] and wireless
local area networks [LCC∗15].

The introduction of wireless adaptors (HTC) further underlines
the movement towards streaming the 3D content. While these adap-
tors offer unrestricted movement, they add additional weight to the
already bulky HMDs and offer poor battery life.
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Figure 2: Our split rendering pipeline for VR determines poten-
tially visible geometry, performs object space shading and trans-
mits the shading data to the client. The client uses the pre-shaded
information to render novel views with no perceived latency to head
movement. In this paper, we focus on shading gathering (yellow).

Building on the fact that mobile GPUs are sufficient to dis-
play pre-shaded content, we propose a combination of object
space shading [RKLC∗11, HY16] with a texture atlas to split the
traditional rendering pipeline between a powerful server and a
lightweight client, as shown in figure 2: The server computes which
geometry might become visible under head movements (determin-
ing a potentially visible set (PVS)). These triangles are sampled and
shaded in object space and gathered in a texture atlas. The atlas is
transmitted to the client, which renders novel views from this data
until new shading information arrives. Concurrently with our work,
Shading Atlas Streaming (SAS) [MVD∗18], a similar approach has
been published, underlining the importance of the topic.

Traditional object-space shading [RKLC∗11] has the advan-
tage that shading costs can be amortized for multiple objects
[Bak16, Che15]. However, their global object-space map size is
proportional to the scene size and thus it becomes too expensive to
maintain and stream for large scenes [LD12]. Thus, streaming ap-
proaches must carefully manage texture space. Gathering shading
in a predefined rectangular packing [MVD∗18], achieves good tex-
ture space utilization, but creates subpar sample distributions which
either lead to high bandwidth requirements or low quality.

In this paper we propose a novel method to dynamically gather
shading samples akin to how geometry is actually sampled on
screen. We do not cover the potentially visible set (PVS) compu-
tation here, as we have covered it in our previous work [HSS].

In our method the shading is computed and stored per triangle.
The sample distribution is chosen on a per-triangle basis to best fit
its screen-space footprint. After determining the color of the shad-
ing samples we store them into shading atlas in a representation
that minimizes wasted atlas space. The client then uses the shading
atlas to shade the PVS; thus providing novel views.

For shading gathering, we make the following contributions:

• Tessellation dynamic parallelism. We introduce a novel ap-
proach to leveraging the tessellation stages to dynamically
spawn shading threads and infer additional data per tessellation-
spawned sample. This allows to process the geometry in blocks
of varying sizes within one dispatch, which is not possible with
the current compute-mode execution on the GPU.

• Two sampling strategies. We propose two complementary
strategies for distributing object-space shading samples on the
surface of a triangle. For each method we present efficient en-
coding/decoding functions and mapping into a shading atlas.
• Novel triangle representation. We introduce a novel represen-

tation of triangle samples as L-shapes, which pack efficiently
into one another and minimize the space in a shading atlas.

By having full control of the shading quality per primitive, we eas-
ily support per-object priorities, foveated rendering, and can reduce
the shading sampling density when the PVS is large. Our sampling
distribution strategies support effective compression and efficient
filtering on the client.

We outperform traditional image-based and object-space shad-
ing strategies in terms of quality, speed, and memory. In compari-
son to SAS [MVD∗18], we do not require preprocessing, achieve
better quality, and avoid artifacts for slanted triangles. Our end-to-
end implementation shows that our approach even works well on
an untethered headset using an off-the-shelf smartphone.

2. Related work

Most related to our approach are the areas of object-space shading,
image-based rendering (IBR) and remote rendering.

2.1. Object-space shading

Object-space shading is a popular alternative to image-space shad-
ing [Bak16], as it is able to exploit temporal and spatial coherence
[RKLC∗11]. Many object-space methods propose GPU extensions
and can thus not be used in practice [BFM10, CTM13, CTH∗14,
AHTAM14]. On current hardware, a pre-charted texture per visible
object can be used for simple scenes [Bak16]. For complex scenes,
fine-grained visibility and pre-charted mip-mapped textures can be
used [HY16]. Unfortunately, this is not suitable for streaming as
large portions of the textures remain empty.

Considering alternative texture layouts, techniques like
Ptex [BL08] and Mesh Color Textures [Yuk17] become interest-
ing, as they map distinct samples to each triangle. As our approach
dynamically chooses per-triangle sampling rates, there is a similar-
ity to those approaches. Systematically, Reyes rendering [CCC87]
is also related, as it dynamically determines the number of shading
sampling on a per-primitive level. In any case, the major difference
to all aforementioned approaches is that our approach does not
require a predefined mapping to texture space or any specific
shape. We dynamically determine the number and organization of
per-triangle shading samples and map them into a texture.

2.2. Image-based rendering

Image-based rendering (IBR) is omnipresent to hide latency for
VR headsets. Most well known is asynchronous time warping
(ATW) [Ocu18], which hides the latency during rapid view offsets
by warping the viewport inside a slightly overscanned framebuffer.
ATW cannot reveal dis-occlusions and thus can only show perspec-
tively wrong images to the user, which becomes apparent under
high latencies or faster head movements. More advanced warping
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methods are able to handle full 3D motion [DER∗10]. For example
by represent the source view as a set of points [CW93], as layered
depth images [SGHS98] or unstructured lumigraphs [BBM∗01].
However, the most popular representation suitable for real-time
warping remains a geometric proxy from the depth buffer. The
shading samples are mapped to the proxy using projective tex-
ture mapping [MMB97]. To optimize the performance and re-
duce memory footprint, a geometric simplification can be applied
[DRE∗10,YTS∗11,BMS∗12,LCC∗15]. These methods suffer from
the resolution limits of the depth buffer.

2.3. Remote rendering

Remote rendering systems fundamentally differ by the data they
transmit [SH15]. A minimal system transfers no geometry and thus
forces the client to use pure ATW. The rendering data present on
the server side can be used for color+depth compression [PHE∗11]
or efficient MPEG encoding [NCO03].

Using only the rendered depth buffer to derive the proxy geome-
try makes IBR independent of the scene complexity. The transmit-
ted data can be represented as color+depth images, from which a
novel view can be obtained by splatting or texture-mapping [CG02,
SNC12]. This is compatible with speculative rendering [LCC∗15]
or residual image transmission [YN00, BG04, CWC∗15]. Static
scenes can be pre-processed into an IBR database, using view-
dependent texture maps [COMF99], sparse [TL01] or dense
[BCC16] impostors or geometry images [SMSW11].

In many video games the background geometry remains static.
This fact can be exploited as the static geometry can be used di-
rectly for perspective texture mapping, optionally with further sim-
plification [RKR∗16]. Keeping the full model data on client and
server allows to reduce transmission only to images after factoring
in low-frequency illumination [Lev95], disocclusions [MCO97] or
removing complex indirect illumination effects [CLM∗15].

Similar to our approach Shading Atlas Streaming (SAS)
[MVD∗18] also splits the rendering pipeline between a sever and
client. While previous split rendering approaches tried to tempo-
rally or spatially augment shading on a client [CWC∗15], SAS re-
duces the geometry on the client and performs all complex shading
on the server. While their pipeline is similar to ours, their shading
atlas can be characterized as a dynamic version of virtual textures
for rectangular shapes, similar to the ones in Far Cry [Che15]. Their
main contribution is a dynamic memory management for those
rectangular texture blocks in shader on the GPU. Using rectangu-
lar blocks comes with the downside that each mesh requires pre-
processing into rectangular patches. Furthermore, when triangles
are very small or elongated—which is natural during perspective
projection—no good rectangular representation exists. Then, SAS
wastes shading samples or falls back to lower quality.

Our approach does not require preprocessing and adapts to each
triangle’s shape on screen. Thus, it can handle completely dynamic
geometry, e.g., supporting tessellation. Additionally, it does not
introduce color bleeding between adjacent triangles, e.g., across
edges on a cube. Most importantly, we never create excessive un-
used shading samples, as we always choose a fitting representation

in the texture atlas. Thus, our results are sharper while using less
memory and avoid visible artifacts across triangle boundaries.

3. Method

When gathering shading samples for streaming rendering into a
shading atlas, we have the following objectives:

O1 The number of shading samples generated per primitive should
be similar to the number of samples the primitive covers on
screen. This is important to bound the shading and transmission
costs to be similar to standard shading.

O2 The distribution of shading samples should be close to the sam-
ples generated for the expected view. Perspective transforma-
tions generate non-equal distances between samples which must
be captured to generate sharp output images.

O3 Shading samples should be packed effectively into the texture
atlas, using the available space efficiently. This is important to
reduce bandwidth requirements during streaming and allows for
more efficient encoding.

O4 The captured shading samples must allow for efficient recon-
struction. As the client is usually light-weight, efficient recon-
struction must be supported, e.g., using bilinear interpolation.

O5 Preprocessing should be avoided. Modern graphics content is
highly dynamic, making use of tessellation and highly dynamic
objects. Thus any preprocessing strongly limits the applicability.

To fulfill these objectives, we introduce two methods to sample
shading on the surface of a triangle: L-packing and Oversampling.
Both draw inspiration from the built-in hardware tessellation pat-
terns of modern GPUs and are complementary: Oversampling is
well suited for slanted triangles and L-packing for all other cases.

3.1. Dynamic parallelism and tessellation

To gather shading samples, similar to the way a triangle is pro-
jected for a reference frame (O1), one needs to dynamically ad-
just the shading samples generated per triangle. Traditionally, one
would use rasterization to invoke fragment shader instances for all
samples. However, this only works efficiently, if the samples are
generated continuously and can be covered by a triangle. As we
will show later, violating these prerequisites has advantages.

Using standard compute execution to spawn threads on the GPU
would require a complex approach. One would have use multiple
kernel launches, where the first one determines the total number of
samples per triangle and writes out to global memory. Then, a pre-
fix sum could determine and allocate thread blocks of varying sizes.
Block communication and synchronization would be necessary to
handle corner cases, overall slowing performance significantly.

Recently, Nvidia introduced mesh shaders [Mou18]. While they
allow to dynamically launch workers per input meshlet, there are
two major restrictions. First, current hardware internally uses only
a single group size to be launched: 32 threads. Thus, mesh shaders
cannot be used effectively for small triangles, i.e., if only a few
samples are needed. Second, even if a different group size were
supported, it must be constant for the entire launch. Thus, the sam-
ple count cannot dynamically adjust to a triangle’s screen size.

Finally, tessellation provides a way to dynamically launch
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(a) Level 4 (b) Level 5

Figure 3: The vertices of the tessellation pattern correspond to
the locations for sample gathering. To pack the samples into an
L-shape, we cut the triangle open along the yellow samples and
duplicate them to allow for interpolation. We duplicate at most 32
samples per triangle using the highest available tessellation level.

threads using hardware acceleration. However, the control over the
tessellation pattern of a triangle is limited. Users can specify four
tessellation factors L =

[
lo0 lo1 lo2 li

]
ranging from 1 to 64

to control the subdivision along the three edges of the triangle
(lo0− lo2) and the number of inner circles (li). A method for spec-
ifying an exact number of threads spawned or a sample id within
a patch is not provided.By in-depth analysis of the tessellation pat-
terns, we have derived formulas for computing this additional data,
which allows us to use the dynamically launched threads of the
tessellation stage for our needs. The only remaining limit is the
number of threads spawned per patch—3169 on current hardware
(all four levels set to 64). For our shading approach we add a pre-
tessellation step to alleviate this limitation.

To reduce complexity, we always set all four tessellation fac-
tors to the same value l. The outer tessellation factors would only
change the number of threads (vertices) spawned for the respec-
tive edges, but not influence the inner pattern, which is the major
source for spawning threads. This yields the following equations
for spawned threads (vertices) v(l) and generated triangles t(l):

v(l) = 3
(⌊

l
2

⌋
+1
)(⌊

l
2

⌋
+ l mod 2

)
+(l +1) mod 2, (1)

t(l) = l mod 2+3(l + l mod 2)
⌊

l
2

⌋
. (2)

3.2. L-packing

L-packing is best suited for near-equilateral triangles. It takes in-
spiration from the uniform triangle tessellation pattern and mesh
color textures [Yuk17]. Each vertex spawned by the tessellator rep-
resents a sample on the surface of the triangle, which we directly
use to sample the shading information (figure 3). This sampling pat-
tern is well suited to represent shading on a triangle, as samples are

Figure 4: The effects of perspective-corrected sample positions
[MHAM08]. Note that we cannot achieve true screen-space uni-
formity on the red-blue edge of the triangle in the bottom right.

placed on the triangle edges and are naturally distributed over the
triangle [Yuk17]. Thus, shading information can be reconstructed
for any point within a triangle.

Using this type of sample distribution is arguably well suited if a
equilateral triangle is viewed straight on. However, the more a trian-
gle’s shape deviates from an equilateral, the less uniform the sam-
ples are distributed in object space. More importantly, perspective
projection not only changes the triangle shape, but also the between
sample distance (O2). To counteract this effect, we adjustment the
samples considering the perspective projection [MHAM08], which
increases the screen-space uniformity of the pattern (see figure 4).
Although the sample locations are moved, the connectivity of the
tessellation does not change and thus the pattern shown in figure 3
still holds—which we will use for encoding. Note that this perspec-
tive adjustment is only possible when working on a triangle basis
and not on patches [MVD∗18].

Encoding & Atlas layout Analyzing the pattern generated by the
uniform tessellation (see figure 3), one can see an inherent quad
structure underlying the tessellation. Thus, locally bilinear interpo-
lation can be used to interpolate between four adjacent sample lo-
cations. This points towards an efficient way of encoding (O3) and
interpolating the shading data (O4). The underlying quad structure
can be brought forth by identifying six different sections of a trian-
gle and cutting it along one subsection, which unfolds the triangle
into an L-shape, as shown in figure 3.

We introduce a lightweight function that maps from a sample’s
barycentric coordinates to its position within the L-shape. There
are two ways of identifying the sample’s location on the triangle
based on the maximum and minimum barycentric coordinates as
illustrated in figure 5. For the given tessellation level l we can deter-
mine two key distances in the barycentric coordinates space: inner
distance i and outer distance o:

o(l) =
1
l
, i(l) =

2
3l
. (3)
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(a) Side identification (b) Tip identification

Figure 5: Given a sample on the surface of the triangle we identify
different areas where the sample lands based on its barycentric co-
ordinates. We distinguish between three sides (a) and three tips (b)
used in Oversampling and L-packing, respectively.

Figure 6: In-detail view on samples spawned for the green tip of the
triangle (left). (middle) The yellow dashed line represents the inner
distance i(l) and the magenta dashed line the outer distance o(l)
(equation 3). The red line depicts the block’s diagonal under which
we flip the row/column coordinates for atlas mapping (equation 4).
(right) The samples are arrangement into a block; three such blocks
(one for each tip) form a full L-shape of a triangle.

These distances and the corresponding block-layout of the samples
belonging to the green tip are depicted in figure 6.

Each sample generated by the tessellation pattern can
be uniquely identified by its barycentric coordinates B =[
λ1 λ2 λ3

]
where λ3 = 1−λ1−λ2. For the barycentric coor-

dinates B , we identify the minimum, median and maximum values[
λmin λmed λmax

]
and obtain the corresponding row and col-

umn indices by:

row(B, l) = λmin

i(l)
column(B, l) =

λmed +
λmin

2
o(l)

(4)

For samples under the diagonal (red line in figure 6) the row and
column indices must be flipped. Thus, we achieve a nice packing
of samples from one section of the triangle into its corresponding
square. The dimension of this square is

dim(l) = d(l +1)/2e.

Then, we offset the squares based on the triangle section to
which they belong (determined by the maximal barycentric coor-
dinate). The blue section has its height offset by dim(l), the green
section has its width offset by dim(l) and the red section stays. To
achieve efficient packing of neighboring triangles in the atlas, we
flip every other L-shape. The final result can be seen in figure 1.

As the triangle is cut open, we need to duplicate one line of sam-
ples. In the case of even tessellation levels, the samples that fall
on the yellow dashed line in figure 3 are duplicated to both hands
of the L-shape, resulting in a symmetric L. For uneven tessellation

Figure 7: An example of a very slanted triangle where the L-
packing does not perform well: The triangle covers seven pixels,
however the built-in tessellation pattern spawns samples at the de-
picted locations, which leaves vital parts of the triangle unshaded.

levels, the cut falls in-between two sample rows, thus we duplicate
one of the two rows to the other hand of the L (also see figure 3b).
Thus, one hand of the L becomes one row thicker than the other.

Note that the samples are generated directly in the tessellation
evaluation shader and are written to the texture from there. The ras-
terizer does not run. Generating very small triangles and forward-
ing them to the rasterizer to write to the texture would be inefficient,
especially considering quad-shading.

Single-pixel primitives Using the smallest tessellation factor (l =
1) creates three samples. For very small triangles this is excessive
(O1). To this end, we write single pixels directly to the texture in
the tessellation control shader for tiny triangles. We then set l = 0
yielding a discard before tessellation evaluation.

Decoding On the client, decoding happens on a per fragment basis.
We first obtain the barycentric coordinate of the fragment, but since
we used the perspective correction [MHAM08], we apply an in-
verse perspective-encoding function. Starting from the barycentric
coordinate

[
u v 1−u− v

]
we obtain inverse-encoded barycen-

tric coordinates B−1 =
[
u′ v′ 1−u′− v′

]
using:

u′ =
uZ1

Z0(1−u− v)+uZ1 + vZ2

v′ =
vZ2

Z0(1−u− v)+uZ1 + vZ2

(5)

To assign the correct shading atlas location for the given fragment,
we apply equation 4 to B−1 to identify the sample’s correct location
within the L. This supports fast lookups in novel view synthesis and
allows for hardware-accelerated bilinear interpolation (O4).

3.3. Oversampling

The proposed L-packing approach is not suitable for very slanted
triangles for which we get sub-optimal sample counts (O2) and/or
distributions (O3) due to the nature of the tessellation pattern, as
shown in figure 7. To decide whether a triangle can be handled
with L-packing, we measure the ratio between the longest edge of
the projected triangle and its height. This yields the "slantedness"
ratio, which we threshold to decide between the two approaches.

Oversampling aims to find a simple arrangement of a projected
triangle in the shading atlas, as shown in figure 9. Again, we need
to dynamically spawn shading threads for this purpose, for which
we again exploit tessellation. We derive equations for unique sam-
ple identification within the tessellation evaluation to obtain a linear
thread id, which then allows us to create custom sample patterns for
any triangle. Oversampling requires placing samples outside of the
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(a) Screen space (b) Atlas space

Figure 8: Two slanted triangles K and L are split into right-angled
triangles k1,k2 and l1,l2, respectively and encoded in the shading
atlas next to another.

triangle in order to allow efficient computation of the required sam-
ple count and hardware-accelerated interpolation over the whole
surface of the triangle.

We do not use the rasterizer for Oversampling due to two rea-
sons. First, samples outside of the triangle are required for bilinear
interpolation, which not even conservative rasterization provides
with any setting of current hardware-supported implementations.
Second, using tessellation for both L-packing and Oversampling
allows for a unified approach and reduce the number of passes.

To spawn an arbitrary number of samples, we mainly use the
inner tessellation factor of the triangle which generates an expo-
nential number of samples. We use the other tessellation factor to
select threads between two exponential steps. To receive a consec-
utive thread id, we derive the inner layer of each sample using the
previously derived inner and outer distances (equation 3):

l(B,L) = λmin

i(li)
.

Summing the number of threads in all inner layers plus adding an
offset within each layer, unrolls the layers into a consecutive thread
id I. To determine the order in each layer, we again rely on tip and
side identification, and compute the local id for each side using:

os(B,L, t) =
⌊(

t− l(B,L)i(li)
)
li
⌉
, (6)

where t is the outer tessellation level (see figure 5a). For a global id
we identify the sample count in all previous layers as:

p(B,L) = v

(
2
(⌊ li−1

2

⌋
− l(B,L)

)
+
⌊ lo +1

2

⌋)
(7)

and finally obtain the thread id I as:

I = O(B,L) = o(B,L)+ p(B,L) (8)

For a more in depth derivation including formulas handling corner
cases, see the supplemental material. The final formula is a non-
recursive function and can be implemented as a series of simple
arithmetic operations on GPU code without even using a loop.

Encoding & Atlas layout When a triangle is classified for Over-
sampling, we split it into two right-angled triangles based on its
longest edge (base) and its corresponding height, as shown in fig-
ure 8. We compute the pixel coverage of base and height in screen
space, which then gives the triangle’s pixel-width w and pixel-

Figure 9: An example of a slanted triangle with w = 17 and h =
6. Sample coloring indicates the challenges: black inside, orange
spawned by conservative rasterization, green required for bilinear
interpolation, red added by us to simplify computations. There are
four blocks of height four (colored blue, green, yellow and red); the
purple block is computed from the residual triangle length.

height h. We use these values to derive the number of samples
needed.

It is far from trivial to identify the exact number of pixels re-
quired for bilinear interpolation, i.e., determining the exact one
neighborhood of texture samples that can be hit by any position
within a triangle. To this end, we introduce additional samples con-
servatively to enable efficient computation. According to our tests,
these additional samples stay within 25 to 35% and mostly stem
from very small triangles, which notoriously show a high oversam-
pling.

Our conservative overestimation relies on rectangular blocks, as
shown in figure 9. Using w and h, we compute a block height R and
block count P:

R =
⌈w

h

⌉
, P =

h
R
. (9)

These hold true for w > h (slopes s > 1). If s ≤ 1, we simply flip
the width and height. The total number of samples is computed as:

r = R ·P · (w− (P+1)/2)+2h+w+1 (10)

After computing I, w and h we get the x,y coordinates within a
triangle’s grid as:

x = bid(I,w,h) mod bw(I,w,h),

y =
bid(I,w,h)
bw(I,w,h)

+

⌈
h
w

⌉
·b(I,w,h),

(11)

where bid(I,w,h) calculates the id of the sample within the current
block (figure 9) and bw(I,w,h) calculates the current block width.

We need to transform the x,y grid coordinates onto the triangle’s
surface, i.e., into barycentric coordinates. We first obtain the ratio
at which the longest side of the triangle is split. For triangle T =

(p0,p1,p2) with pi =
[
xi yi zi

]T and a = p1− p0,b = p2− p0
we compute the split ratio as:

a(T ) =

∣∣∣ a·b
|a|2 a

∣∣∣
|a| (12)

The resulting barycentric coordinates λ
′
1,λ
′
2,λ
′
3 are computed as:

λ
′
1 =

y
h

λ
′
2 = a(T )(1−λ

′
1)±

x
r

λ
′
3 = 1−λ

′
2−λ

′
1.
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Figure 10: Simplified diagram of the shading gathering stages.

Since in the first step we split the triangle according to the longest
side and its corresponding height, the ± sign in λ

′
2 stands for the

left/right half of the slanted triangle. In the end, we again apply the
perspective-correction offset to the new samples [MHAM08].

Decoding To locate each triangle in the atlas, we keep a buffer con-
taining each triangle’s dimensions and position in the shading atlas.
Since we applied the perspective-correction at the end of sample
gathering, we again modify the triangle’s barycentric coordinates
according to equation 5 for the texture lookup.

4. Implementation

We have implemented our pipeline, as shown in figure 10, using a
combination of CUDA compute stages and OpenGL. The input to
our method is a PVS computed for the current view cell [HSS].

PVS Tessellation Since the number of samples be spawned by the
tessellator is limited (typically by a tessellation factor of 64), we
perform a first tessellation to split those triangles that go beyond
this limit. We capture those triangles using transform feedback.

Mesh Split Next, we determine whether a triangle is subject to
L-packing or Oversampling using the aspect ratio of the triangle’s
longest edge and its height in screen-space.

Atlas Mapping We determine the location of each triangle in the
shading atlas using atomics, by first binning each triangle and then
computing its offset in the bin. For L-packing, we use the triangle’s
tessellation level for binning (resulting in 64 bins) and an atomi-
cally increased linear counter for its location within the bin. For
Oversampling, binning uses the triangle’s base length and its height
to compute the offset within the bin, as shown in figure 8.

Sample Gathering + Encoding In this stage both L-packing and
Oversampling execute OpenGL’s tessellation shaders to spawn the
necessary number of shading samples as detailed before and write
the shading data to the atlas. Finally, we use JPEG encoding on the
completed atlas [Wal91]. We can ignore empty spaces in the atlas
when computing the coefficients within individual JPEG blocks,
efficiently using the available bandwidth without introducing sharp
triangle boundaries, as shown in figure 1. Aligning triangles to 8x8
compression blocks could increase quality. However, as triangles
with similar materials and color are naturally placed close to an-
other (due to primitive order), we did not notice a need to enforce
such boundaries, making more efficient use of the available space.

Decoding In order to determine the correct shading atlas locations,
L-packing requires information about the tessellation level of a tri-
angle and its position in the bin, which can be packed into four

(a) Viking Village (4.6M triangles)
1 shadow map

(b) Robot Lab (472k triangles)
3 shadow maps

Figure 11: Examples of the tested scenes. Viking Village is a large
outdoor scene, Robot Lab is a smaller indoor scene. The scenes’
shading consists of image-based lighting computation, soft shadow
maps and tone mapping. Robot Lab has more demanding shading
computation than Viking Village.

Figure 12: The linear gradient used for color mapping of DSSIM.

bytes of data per primitive. For decoding, Oversampling requires
16 bytes per primitive—its width/height and its position.

5. Results

To evaluate our approach, we test two scenes: Robot Lab (RL) and
Viking Village (VV). For both scenes we set up complex shaders
to highlight the costs of the different approaches as shown in figure
11. All tests were run on an Intel Xeon CPU E5-2643 @ 3.40 GHz
with 32 GB of RAM and an NVIDIA Titan Xp. We consider a
head movement of up to 30 cm and rotations of up to 120 degree.
The camera fov is 60 degree. All client renderings are performed
in 1920× 1080. The configurations for our walkthroughs and the
average size of the potentially visible geometry generated is shown
in table 1. For all tests, the input is a PVS computed for a given view
cell, which was created by sampling 256 views in 4K resolution.
The shading atlas for the walkthrough is a 24 Mpix texture. We
compare our method to Texel Shading [HY16] (TS) and Shading
Atlas Streaming [MVD∗18] (SAS). All quality comparisons use
DSSIM with the color gradient in figure 12 for visual comparisons.

5.1. Computation time

In order to assess the overhead of the different methods, we mea-
sured the average per-sample computation time, as shown in ta-

Table 1: Our test walkthroughs use three PVS configurations, with
increasing translational and rotational movement support. The re-
sulting PVS geometry ranges from 60k triangles up to 160k (per-
centages provide the average amount of slanted triangles).

Label Transl ^ Robot Lab Viking Village

p1 10 cm 40 deg 64.3 K (30%) 109.6 K (41%)
p2 20 cm 80 deg 82.5 K (32%) 135.0 K (41%)
p3 30 cm 120 deg 97.7 K (33%) 158.7 K (41%)
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Table 2: The per shading sample cost in nanoseconds shows the
overhead of the shading techniques. Robot Lab has more complex
shading but less overdraw than Viking Village. L-Packing (LP) and
SAS are pretty close to forward shading (FW) for Viking Village.
Oversampling (OS) and Texel Shading (TS) show more overhead.
For Robot Lab, all methods show a higher relative overhead.

Scene FW LP OS TS SAS

RL 1.2 ns 3.05 ns 8.48 ns 11.21 ns 3.10 ns
VV 0.74 ns 0.75 ns 1.86 ns 1.35 ns 0.71 ns

ble 2. Forward rendering (FW) shows that RL has a higher shad-
ing cost than VV, which is mostly due using three shadow maps.
On the other hand, VV has more overdraw, which slightly reduces
the shading efficiency of FW in VV. In comparison, SAS and LP,
show nearly the same per sample cost in VV. Note that SAS es-
sentially renders non-overlapping quads into the atlas, resulting in
nearly perfect conditions for the hardware. Thus, the performance
of LP is highly competitive. For RL (where FW shows less over-
draw overhead), the additional costs of LP and SAS become appar-
ent, increasing the cost of these object space shading approaches
to nearly 3× FW. OS shows a 2− 3× overhead in comparison to
LP, which underlines the cost of more complex id computations.
Furthermore, texture access might be less efficient, as there is no
guarantee the neighboring samples are executed on the SIMD lanes
on the GPU. Finally, TS shows significant overheads, especially for
RL.

5.2. Texel Shading Comparison

Due to the limitations of texel shading, we split the comparison
to SAS and TS. TS requires unique texture spaces for all objects.
Usually, the same textures (and even the same objects) are used
multiple times in a scene, e.g., wall textures in RL and buildings
in VV. To perform a meaningful comparison, we have re-baked the
textures for both scenes into a big unique texture. Of course, this
step blows up texture memory and reduces texture quality. In com-
parison to our approach, TS additionally needs an inverse texture
mapping from texels to primitive ids. This disallows any dynamic
mesh refinement and increase memory requirements further. Addi-
tionally, the mipmapped textures are only partially filled.

Table 3 shows the comparison between TS and our approach.
Clearly, TS requires nearly an order of magnitude more time for
shading and generates 5× more shading samples. Still, it does not
reach our quality in RL and is significantly worse in VV. As TS
always shades in blocks of 8× 8 pixels, they generate many shad-
ing samples which are not necessary. Our better image quality is
due two facts: First, our sample generation is independent of the
texture resolution and thus can capture shading information at arbi-
trary resolution. Furthermore, the mipmapping in TS may mix color
information from different triangles, resulting in color bleeding.

Image quality comparisons to TS are given in figure 13, which
clearly show the aforementioned issues. The only advantage of
TS is efficient decoding, where a simple texture lookup suffices,
whereas we need to consider L-packing and adjust for perspective

effects. Nevertheless, our decode performance is sufficient to ren-
der with any currently supported display frame rate. Our approach
is also suitable for streaming, while TS only partially fills the tex-
tures, which would blow up encoding times and bandwidth. Over-
all, our approach is superior in all relevant characteristics.

5.3. Shading Atlas Streaming Comparison

To compare to SAS, we use the original textures, which results in
sharper images than in the TS comparison. As SAS organizes its
texture atlas in blocks, it requires preprocessing to merge triangles
into rectangles, which also prohibits dynamic geometry. Further-
more, their sample distribution aims to be uniform on a triangle,
but as multiple triangles are combined within a block, their respec-
tive sample choices influence one another. As the sizes of different
blocks in SAS’ shading atlas are limited to powers of two, fine
grained size selections are not possible. Finally, SAS does not con-
sider perspective effects when choosing sample distributions.

These considerations are reflected in the results, shown in table
4. On average, SAS generates more samples than ours, is faster
during sample gathering, but achieves lower overall quality. Inter-
estingly, the number of samples collect by SAS remains mostly
constant, while our approach adapts to the PVS size. While we
keep the image quality approximately constant, SAS loses qual-
ity with increasing PVS size. As can be seen, the performance dif-
ference mainly comes from Oversampling being less efficient than
L-packing. While Oversampling generates fewer samples than L-
packing it requires more than twice the shading time. Note that
we did not observe any temporal instability artifacts when a trian-
gle switches between L-packing and Oversampling as we achieve
a sufficient sampling density in both approaches.

Although SAS generates more samples, their lower quality hints
that they do not use these samples effectively. They add unneces-
sary samples by always shading complete blocks. At the same time,
they miss samples where perspective effects and slanted triangles
would require denser sampling. These cases are clearly seen in Fig-
ure 14. Note that SSIM does not heavily punish those, although they
are very visible when comparing the methods side-by-side. Over-
all, our approach is the more flexible as it works independently of a
scene’s triangulation quality and projection. The prize for our supe-
rior quality is an increased cost for shading gathering, which how-
ever happens on the server and may thus be tolerable.

Our decode time on the client is significantly lower than SAS.
For L-packing, we compute atlas positions in the vertex shader
and require few arithmetic operations to convert barycentric coordi-
nates to the texture coordinates in the fragment shader (Equation 4).
For Oversampling, we directly use the interpolated texture coordi-
nates. SAS decodes block locations from a bit field and needs to re-
cover texture coordinates from the rectangular packing established
during preprocessing, which results in the observed overhead.

While it might appear that Oversampling is costly compared to
L-packing, it is necessary to achieve consistent high quality, as can
be seen in figure 15. In this example, the pipe consists of few very
slanted triangles spanning over its whole length. L-packing would
generate blurry artifacts; Oversampling handles these cases well.

submitted to Eurographics Symposium on Rendering (2019)



J. Hladky, H. P. Seidel, and M. Steinberger / Tessellated Shading Streaming 9

Table 3: The comparison to Texel Shading (TS) clearly shows the advantage of our approach. We gather significantly fewer samples (sum of
L-packing (LP), Oversampling (OS) inside and outside), in way less time (total time) and achieve better quality (DSSIM - lower is better).
TS achieves better decode times (in ms), however our times are also sufficient to easily achieve 120Hz on current devices.

Config. Gather and encode Total Samples gathered Our Decode Texel Shading
LP OS time LP OS in OS out DSSIM time Samples Time DSSIM Decode

RL-p1 26.38 ms 54.41 ms 83.36 ms 8.2 M 3.33 M 1.70 M 0.0143 0.41 ms 117.79 M 1779 ms 0.0191 0.24 ms
RL-p2 42.25 ms 83.84 ms 128.64 ms 13.7 M 5.42 M 2.71 M 0.0144 0.43 ms 139.11 M 1894 ms 0.0191 0.25 ms
RL-p3 55.91 ms 114.68 ms 173.21 ms 18.2 M 7.30 M 3.69 M 0.0144 0.45 ms 153.33 M 2003 ms 0.0192 0.25 ms

VV-p1 4.05 ms 17.25 ms 24.06 ms 4.9 M 3.62 M 1.24 M 0.016 0.35 ms 136.12 M 1347 ms 0.0729 0.14 ms
VV-p2 5.87 ms 24.44 ms 33.09 ms 7.9 M 5.25 M 1.73 M 0.0158 0.37 ms 145.44 M 1217 ms 0.0727 0.14 ms
VV-p3 7.51 ms 30.4 ms 40.69 ms 10.6 M 6.58 M 2.17 M 0.0159 0.38 ms 154.61 M 1135 ms 0.0722 0.15 ms

Figure 13: The comparison between Texel Shading and our approach (L-Packing in green, Oversampling in blue) clearly shows the quality
differences. For example, TS does not capture the high frequency detail on the railing in RL and shows clear quality issues along small and
thin triangles, as on the sides of the buildings in VV. Our approach generates significantly sharper images and shows more uniform quality
distributions. Please zoom in for details.

Table 4: The comparison to Shading Atlas Streaming (SAS) clearly shows that our approach clearly adapts more to the different usecases,
increasing load and samples as the PVS increases and always achieves consistent quality. SAS generates significantly more shading samples
but does not reach our quality. SAS is between 1.4× slower and 2.5× faster, depending on the amount of Oversampling we perform.

Config. Gather and encode Total Samples gathered Our Decode Shading Atlas Streaming
LP OS time LP OS in OS out DSSIM time Samples Time DSSIM Decode

RL-p1 26.71 ms 54.27 ms 83.52 ms 8.2 M 3.34 M 1.70 M 0.1208 0.42 ms 14.6 M 57.12 ms 0.1346 1.02 ms
RL-p2 42.99 ms 85.48 ms 131.01 ms 13.7 M 5.44 M 2.71 M 0.1209 0.43 ms 13.6 M 55.19 ms 0.1478 0.91 ms
RL-p3 55.77 ms 109.71 ms 168.01 ms 18.3 M 7.31 M 3.69 M 0.1208 0.45 ms 18.6 M 66.21 ms 0.1813 0.81 ms

VV-p1 4.29 ms 17.93 ms 24.95 ms 5.2 M 3.86 M 1.30 M 0.0711 0.39 ms 21.6 M 34.69 ms 0.0679 1.03 ms
VV-p2 6.31 ms 26.08 ms 35.16 ms 8.4 M 5.71 M 1.87 M 0.0712 0.4 ms 17.3 M 33.19 ms 0.0816 0.87 ms
VV-p3 7.99 ms 32.79 ms 43.58 ms 11.1 M 7.20 M 2.38 M 0.0712 0.42 ms 20.2 M 35.74 ms 0.1526 0.77 ms
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Figure 14: The comparison between Shading Atlas Streaming and our approach (L-packing in green, Oversampling in blue) highlights the
issues when capturing shading samples in rectangular blocks. The weaknesses of SAS are clearly visible when patches are large (lattice
structure in RL) and triangles are slanted (railing in RL and roof in VV). Our flexibility in using the atlas space for different shapes is clearly
visible when comparing the atlases. Please zoom in for details.

Figure 15: An example where Oversampling (bottom) handles
slanted triangles better than L-packing (top). The right column
shows color-mapped DSSIM with the ground truth.

Figure 16: The performance of gathering and encoding 5.64 M
samples with Oversampling in Robot Lab: Using tessellation to dy-
namically spawn threads (left most ba ), is clearly superior to using
compute shaders with any fixed block size (32-512 threads).

submitted to Eurographics Symposium on Rendering (2019)



J. Hladky, H. P. Seidel, and M. Steinberger / Tessellated Shading Streaming 11

(a) Intel compute stick (2015)
HD Graphics 515

(b) Google Daydream +
Smartphone with Adreno 540

Figure 17: Thin client devices used for the streaming experiment.
The Daydream is an untethered smartphone-based headset show-
ing a frame from Robot Lab rendered at 2880×1440.

5.4. Dynamic parallelism comparison

To evaluate the performance gained by using the tessellation stages,
we decided to implement the Oversampling shading strategy using
OpenGL compute shaders. The measurements in figure 16 show
how fixed block size compute execution performs sub-optimally
for tasks requiring dynamic workloads.

5.5. Real-life testing

To demonstrate the real-time capabilities of our method, we have
implemented a client prototype running on a smartphone with
Adreno 540 (early 2017) and on an Intel compute stick (thumb-
sized PC) with Intel HD Graphics 515 (late 2015) shown in figure
17. The numbers we provide are for Robot Lab and Viking Village,
respectively. For computing the visibility on the server we use the
COS method [HSS]. The server runs with in average 10fps with the
visibility pass taking about 70/80ms and shading pass 20ms. The
compressed geometry updates come down to about 20KB/frame
for either scene resulting in 4Mbps bandwidth at 10fps. The JPEG
compression of our 8 Mpix atlas achieves a good quality with
40Mbps. With such timings we fit well within the bandwidth lim-
itations of the current 802.11ac standard. The combined rendering
and transfer latency over Wi-Fi comes down to about 150ms. The
Adreno 540 can render this amount of geometry with 60 fps (the
maximum supported refresh rate of the smartphone). Although con-
siderably weaker, the compute stick still achieves 25fps.

6. Limitations and future work

One of the limitations of our method is a sub-optimal packing of tri-
angles into the Oversampling shading atlas (see figure 1). A tighter
packing could be achieved by changing the triangle representation
or by employing multi-dimensional binning.

In its current state, our method supports only object-space shad-
ing effects. The atlas data structure does not store information about
the screen-space neighborhood of a sample. For such effects we
would have to store additional data per-sample or per-triangle.

If geometry is near-parallel to the viewing direction, artifacts can
occur, as the screen-space footprint of the triangle changes rapidly
under small camera movements. Similarly, a novel view far from

the reference camera my show lower quality. Both issues can be
fixed by considering the triangle’s size under all potential views
and applying more advanced filtering on the client.

While tessellation is an efficient way to generate shading sam-
ples (especially for L-packing), it still shows some overhead, espe-
cially when considering pre-tessellation and linear id computations
for Oversampling. An alternative to tessellation for dynamic shad-
ing sample generation, could be dynamic scheduling [SKB∗14] or
a custom software rendering pipeline [KKSS18], especially consid-
ering that we do not employ the rasterizer.

By computing shading in tessellation there is no support for ex-
plicit derivative computations (dFdx in GLSL). However, in many
cases implicit derivatives are sufficient. For example, we compute
the mipmap level based on analytic sample distribution.

Our client always shows the shading information gathered during
the last server frame, which might be inaccurate for dynamic/view-
dependent effects. To alleviate this issue, the server could pro-
vide information to perform shading extrapolation between server
frames. This would of course increase the load on the client.

7. Conclusion

By deriving a set of functions providing additional data in tessel-
lation stages, we have introduced a novel approach to leveraging
the dynamic parallelism of the hardware-accelerated tessellator. We
have introduced two novel strategies to sample shading on the sur-
face of a triangle: L-packing and Oversampling. L-packing pro-
vides a novel triangle representation within a shading atlas. Both
strategies allow for efficient encoding and decoding and support
hardware-accelerated interpolation between samples.

We have demonstrated a split rendering pipeline that uses en-
coded shading data for fast novel-view extrapolation. Our method
works without any pre-processing and achieves near ground-truth
novel view quality. Our tests show that our method is also suitable
for use in a streaming-rendering scenario.

We consider our approach to launch and identify any number
of threads using tessellation, a way to open up new possibilities for
dynamic per-triangle work generation. Oversampling is just one ex-
ample. Naturally, a novel tessellation pattern for true screen-space
uniformity is another example to consider.

This research was supported by the Max Planck Center for Vi-
sual Computing and Communication, by the German Research
Foundation (DFG) grant STE 2565/1-1, the Austrian Science
Fund(FWF) grant I 3007, and NVIDIA Corporation who donated
the GPU used for this research.
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