Abstract Alloy Instances

FM
Artifact

Evaluation

Jan Oliver Ringert![0000-0002-3610-3920] 5nq Allison *

: 2[0000—0001—7400—2218]
Sullivan Available

! Bauhaus-University Weimar, Weimar, Germany
2 The University of Texas at Arlington, Arlington, Texas; US

Abstract. Alloy is a textual modeling language for structures and be-
haviors of software designs. One of the reasons for Alloy to become a pop-
ular light-weight formal method is its support for automated, bounded
analyses, which is provided through the Analyzer toolset. The Analyzer
provides the means to compute, visualize, and browse instances that ei-
ther satisfy a model or violate an assertion. Understanding instances for
the given analysis often requires much effort and there is no guarantee on
the order or level of information of computed instances. To help address
this, we introduce the concept of abstract Alloy instances, which abstract
information common to all instances, while preserving information spe-
cific to the analysis. Our abstraction is based on introducing lower and
upper bounds for elements that may appear in Alloy’s instances. We
evaluate computation times and sizes of abstract instances on a set of
benchmark Alloy models.

Keywords: Alloy Analyzer, Instances, Relational Logic, Abstraction

1 Introduction

Alloy [89I10] is a textual modeling language based on relational first-order logic.
Alloy models declaratively express structures and behaviors of software designs.
The Alloy Analyzer [2] provides various analyses for finding instances of Alloy
models. This analysis is automated due to the use of a bounded scope and an
automated translations to SAT solvers, making Alloy a popular light-weight
formal method [10]. Alloy has been used to validate software designs [I6/31], to
formalize class diagrams [41215], to test and debug code [6I13], to repair program
states [21J30] and to provide security analysis [TJ29].

Simplified, Alloy models consist of signatures, fields, and constraints. Intu-
itively, a signature introduces a set of atoms, a field relates atoms to other atoms,
and constraints define valid configurations — instances — of atoms and their re-
lations. Most Alloy analyses produce a very large numbers of instances, which
can number in the hundreds or even thousands, even after automatically filter-
ing symmetric instances [28]. These instances are presented to the user in the
order the underlying SAT solver discovers them, which is effectively random. In
the Analyzer, users can iterate over instances one by one, visually inspecting
them for correctness. However, given the size of instances and Alloy’s unordered

https://doi.org/10.5281/zenodo.7339931

2 Jan Oliver Ringert and Allison Sullivan

enumeration, this inspection process places a high burden on the user [147].
Therefore, recent work has looked to address this problem by trying to com-
pute more informative, e.g., minimal, instances [I5], analyzing "why" and "why
not" questions for elements of instances [I4], or providing a lightweight order
to the enumeration by allowing the user to preserve or change elements of in-
stances [23]. However, all of these approaches deal with valid, complete Alloy
instances. Unfortunately, not everything present in an instance is there to sat-
isfy the explicitly executed commands. Alloy instances must also satisfy global
properties and no prior work separates the different origins of constraints that
influence the shape of an instance.

To address this, we introduce the concept of abstract Alloy instances, a gener-
alization over concrete Alloy instances that abstract away information common
to all instances, while preserving information specific to a concrete outcome of
the analysis. Our abstraction is based on introducing lower and upper boundsEI
for Alloy’s signatures and fields. The lower bound represents atoms and relations
that must be contained in every Alloy instance that concretizes the abstract in-
stance, while the upper bound captures possible additions of atoms and tuples.
An abstract instance either represents multiple concrete Alloy instances — those
in the upper and lower bounds — or the bounds coincide and the abstract in-
stance is a concrete instance. Our abstraction of Alloy instances is specific to the
analysis run by the user, e.g., an Alloy run command sampling specific instances
or a check command looking for counterexamples of an assertion.

In this paper, we make the following contributions:

Abstract Instances: We introduce abstract instances for Alloy that define
lower and upper bounds that preserve information in the instance related to
satisfying explicitly executed formulas of a command.

Computing Maximal Abstract Instances: We present an algorithm to gen-
erate a maximal abstract Alloy instance, which is an abstract instance whose
bounds maximize the number of concrete instances represented by the abstract
instance.

Evaluation: We evaluate different performance aspects related to generating
abstract instances over a broad benchmark of Alloy models. Our results highlight
that there is minor overhead to producing abstract instances, but these abstract
instances successfully reduce the information presented to the user.

Open Source: Our open-source implementation and evaluation materials are
available on GitHub [20] and Zenodo [19).

2 Example

To introduce the basics of Alloy and computed instances, consider the model
of a gradebook shown in Fig.[I} The model describes students, professors, classes,
and assignments as well as their relations. Alloy’s main structural elements are

3 The Alloy Analyzer requires analysis scopes as cardinalities for signatures. Our
bounds are refinements of the bounds induced by those scopes, see Sect. @

Abstract Alloy Instances 3

1 abstract sig Person {}

2 sig Student, Professor extends Person {}

3 sig Class {instructor: one Professor, assistant: set Student}

4 sig Assignment {associated_with: set Class, assigned_to: some Student}
5 fact {all a : Assignment | one a.associated_with}

6 pred PolicyAllowsGrading(p: Person, a: Assignment) {

7 p in a.associated_with.assistant or

8 p in a.associated_with.instructor

o }

10 assert NoOneCanGradeTheirOwnAssignment {

11 all p : Person { all a : Assignment {

12 PolicyAllowsGrading[p, al] implies not p in a.assigned_to
13}

14 check NoOneCanGradeTheirOwnAssignment for 3

Fig. 1. Alloy model Gradebook from [15]

‘ Asgmt0 Asgmtl ‘ Asgmt2 ‘ ‘ Asgmt2 ‘

Class0 Classl
'\

’ Stud0 ‘ ’ Prof0 Stud1 ‘ Stud1l ’ Studo ‘ ’ Prof0 ‘ Stud1l ‘
(a) (b) (c)

—— associated with—— assigned to

— assistant — instructor

Fig. 2. Two concrete counterexamples (a) and (c) for the check command in Fig.[l|and
an abstract instance (b) representing both (a) and (c)

signatures, e.g., signatures Student and Professor, which both inherit from sig-
nature Person (Fig. [1} 1. 1-2). Other signatures in the model are Class and
Assignment (1. 3-4). These signatures declare fields to express relations between
the instances of signatures (called atoms). As an example, classes have one pro-
fessor as instructor and a set of students as assistants (1. 3). Assignments are
associated with a set of classes and assigned to at least one (some) student (1. 4).
A fact restricts all assignments to be associated with exactly one class (1. 5).

The engineers developing the Alloy model want to make sure that no student
grades their own assignment. They express a grading policy for persons p and
assignments a in a predicate (Il. 6-8) that allows p to grade a iff a belongs to a
class where p is an assistant (1. 7) or an instructor (1. 8). An assertion (Il. 10-
12) quantifies over all persons p and all assignments a and asserts that if p can
grade assignment a according to the policy expressed in the predicate then the
assignment is not assigned to be solved by p.

The Alloy Analyzer allows the engineers to check the validity of the assertion
in a bounded scope (1. 14, for up to 3 atoms of each of the signatures). It turns
out that the assertion is not valid and a counterexample is presented to the
engineers. The counterexample in Fig. [2| (a) is the one of the instances the Alloy

4 Jan Oliver Ringert and Allison Sullivan

Analyzer computes. It shows three assignments, two classes, two students, a
professor, and their relations, e.g., Prof0 is the professor of both classes. It is not
easy for the engineers to spot the violation of their assertion, as the engineers
need to try to determine which assignment(s) and grader(s) are relevant to the
violation.

An abstract instance for Fig.[2| (a) is shown in Fig. [2[(b). Assignment Asgmt2 is
assigned to student Stud1 who is also assistant in class Classo0 that the assignment
is associated with, i.e., this student can mark their own assignment. Note that
the abstract instance is much smaller than the concrete instance and focuses
on the reason the assertion is violated, while abstracting away some elements,
e.g., the information that Prof0 is the instructor of the class or that there are
multiple assignments not relevant to the violation. The abstract instance is not
necessarily a complete Alloy instance, but it can be extended to many concrete
instances by adding atoms and their relations. For instance, Fig. [2[(¢) shows a
different concrete instance that extends the abstract instance.

3 Preliminaries

3.1 Alloy semantics

We now sketch the semantics of Alloy models as sets of relations. Detailed defi-
nitions can be obtained by the descriptions of language elements in [93].

The semantics of Alloy models is defined by a set R of n-ary relations r € R.
Intuitively each signature defines a unary relation and each field defines a relation
of the arity of the field plus one. The domain of an n-ary relation is a subset of n-
ary tuples over a universe UNIV of atoms, i.e., dom(r) C UNIV". As an example,
the domain of the relation for signature Student (Fig. |1} 1. 2) is a set of atoms
and the relation for field instructor (Fig.[l] 1. 3) is a set of pairs of atoms from
relations of signatures Class and Professor. The set R of all relations of an
Alloy model is defined by the declared signatures, fields, and built-in signatures,
e.g., built-in signature Int, whose atoms represent the in-scope integers.

Multiplicities of signatures and fields constrain the valuations of relations,
e.g., the multiplicity one constrains the relation for field instructor (Fig.[1} 1. 3)
to include exactly one pair of Class and Professor atoms for every Class atom.
The semantics of facts, predicates, assertions, and expressions are constraints
over the tuples in relations R of the model. As an example, a fact in Fig.[1] 1. 5
requires that for every atom in the relation for signature Assignment the relation
for field associated_with contains exactly one tuple.

3.2 Alloy analyses

The Alloy Analyzer enables automated analyses of Alloy models via run and
check commands. Run commands compute instances satisfying a predicate and
check commands provide instances violating assertions, i.e., counterexamples.
The analysis of Alloy models by the Alloy Analyzer requires bounds B for
relations R. Every r € R has a lower bound LBg(r) C dom(r) and an upper

Abstract Alloy Instances 5

bound UBg(r) C dom(r) with LBg(r) C UBg(r) (see [28]). Bounds are derived
from user-defined scopes that determine the maximal numbers of atoms in re-
lations for all signatures of the model. As an example, the check command in
Fig.|1} 1. 14 defines scope 3 setting |UBp(r)| = 3 for all relations r of signatures,
e.g., the relation for signature Student.

We distinguish between two constraints M and C on the relations R of an Al-
loy model. M is the constraint defined by the semantics of the model (signatures
and facts) and C is the constraint defined by a command (predicate or asser-
tion). As an example, for the model in Fig. [1} the constraint M expresses the
multiplicities and facts as sketched in Sect. [3.I] and the constraint C' expresses
the assertion in Fig.[I] 1. 10-12. Thus, we define an Alloy instance as:

Definition 1 (Alloy instance). An instance of an Alloy model is a valuation
T of relations r € R within bounds B that satisfies the constraints M and C
denoted by ¥r € R: LBg(r) CZ(r) C UBg(r) and T EM A C.

Note that Def. [I] does not distinguish between run and check commands, as
internally Alloy translates check commands to run commands by negating the
assertion. The Alloy instance is then also called a counterexample.

4 Abstract Alloy Instances

To introduce abstract Alloy instances, we first define a partial order on bounds
B, i.e., pairs of lower and upper bounds for relations R.

Definition 2 (Partial order on bounds). Two bounds B and B’ over rela-
tions R are in a partial order relation < where B’ < B iff Vr € R : LBg(r) C
LBg/(r) N UBp/(r) C UBg(r).

The relation < is reflexive, transitive, and antisymmetric (because subset
inclusion C is a partial order). Intuitively, bound B is greater or equal to bound
B’ if B contains all bounds of B’, i.e., all lower bounds in B are smaller and all
upper bounds are larger.

As an illustration, consider increasing the scope in Fig. [I} 1. 14 from 3 to
5. The bounds have identical lower bounds (empty), but the upper bounds are
equal or larger for when increasing scope 3 to scope 5. Typically, bounds for
lower scopes are smaller with respect to =< than those obtained for larger scopes.
We may write Z < B for instances Z where we set LBz (r) = Z(r) = UBz(r) for
all » € R. Of note, our partial order on bounds is quite different from the partial
order on instances defined for Aluminum [I5]. First, their order does not include
upper bounds, and second, their order is the reverse of ours for lower bounds.

Next, we define abstract instances for Alloy commands.

Definition 3 (Abstract Instance). An abstract instance A for model M,
command C, and bounds B are bounds A < B s.t. all valuations T in A that
satisfy M also satisfy C, formallyVZ st. T A: (ZEM)= (T = C).

6 Jan Oliver Ringert and Allison Sullivan

1 sig Professor {} 1 abstract sig Person {}
2 run {one Professor} for 3 |2 sig Professor, Student extends Person{}

(a)

Fig. 3. Alloy models demonstrating interesting properties of abstract instances

It is important to define Z in Def. [3| again as valuations (as before in Def.
rather than Alloy instances. Alloy instances would need to satisfy both M and
C, but for abstract instances the satisfaction of the command constraints C' is
only relevant if the model constraints M are satisfied.

By design, abstract instances abstract away the common constraints M of
the model and preserve the reasons for satisfying commands C, i.e., all valid
extensions (those satisfying the model) of the lower bounds up to the upper
bounds must satisfy the analyzed command. As an example, consider the ab-
stract instance in Fig. [2 (b) where the lower bound consists of the displayed
atoms and relations and the upper bound is unbounded (B). Any valid exten-
sion of the lower bound, e.g., Fig.[2| (a), violates the assertion, as a student grades
their own assignment. We are interested in mazimal abstract instance, i.e., an
abstract instance A that is maximal wrt. < (there is no abstract instance A’
with A" # A and A < A’). A maximal abstract instance represents a maximal
number of Alloy instances.

Torlak and Jackson [28] define partial instances for KodKod, which is the tool
used by the Analyzer to translate the Alloy model into a boolean satisfiability
problem, as the lower bounds of the relational problem. The purpose in [28] is to
assist the solver. In contrast, our purpose is to provide information to engineers.
Since our abstract instances contain lower bounds, they have a flavor of partial
instances. However, the lower bounds of an abstract instance A may be smaller
than KodKod’s partial instances as M ensures that all represented instances 7
include KodKod’s partial instances. The lower bounds of A may also be larger
than KodKod’s partial instances, if required for instances Z to satisfy C.

3 run {some Person} for 3

4.1 Properties of abstract instances

We now present six general properties of abstract instances.

First, every concrete instance Z from Def. [I] interpreted as bounds is also an
abstract instance (again setting LBz(r) = Z(r) = UBz(r)) because Z = M A C.
We say that an abstract instance A represents concrete instance Z iff 7 < A.
Every concrete instance seen as an abstract instance only represents itself, i.e.,
for all concrete instances Z and Z' we have 7' < 7T = 7' = T (by unfolding the
definitions). We are interested in generating abstract instances that represent
many concrete instances.

Second, some maximal abstract instances A are concrete instances, i.e., re-
ducing any lower or increasing any upper bound of A would allow for valuations
Z < A where T = M but Z }= C. An example is shown in Fig. [3| (a) where the
instance consisting of one Professor atom is a maximal abstract instance.

Third, for a model M, command C', and bounds B, we typically have mul-
tiple maximal abstract instances (incomparable wrt. the partial order <). As

Abstract Alloy Instances 7

an example, the run command of the model in Fig. [3 (b) requires that in-
stances contain at least one atom of type Person. We denote by s and p the
relations defined by signatures Student and Professor. The abstract instances
A (at least one student) and A’ (at least one professor) where [LB4(s)| = 1,
LBA/(S) = (Z), LBA(p) = [Z), |LB_A/(p)| = 1, UBA(S) = UBA/(S) = UBB(S), and
UB4(p) = UB4/(p) = UBp(p) are both maximal abstract instances (reducing
any lower bound would not ensure the existence of a Person atom and upper
bounds are already maximal)ﬁ

Fourth, concrete instances may be represented by multiple maximal abstract
instances. As an example, consider the model shown in Fig.|3|(b) and the concrete
instance consisting of a Student and a Professor atom. This concrete instance
is represented by both of the incomparable abstract instances A (at least one
student) and A" (at least one professor). This observation means that maximal
abstract instances do not partition the set of instances they represent. There are
however always partitions of the set of concrete instances by abstract instances,
e.g., the trivial one where we treat concrete instances as abstract ones.

Fifth, from Def. [3] we can see that increasing a lower bound or decreasing an
upper bound of an abstract instance A (up to upper bounds in B) preserves the
abstract instance properties (as the set of valuations Z < A becomes smaller).
In contrast, decreasing a lower bound or increasing an upper bound may allow
for new valuations 7’ < A that satisfy M but not C.

Finally, some maximal abstract instances have trivial bounds, e.g., when M
implies C the requirement Z = M = 7 |= C from Def. [3| becomes true. Then all
lower bounds of maximal abstract instances A are empty (Vr € R : LB 4(r) = ()
and all upper bounds correspond to upper bounds in B (Vr € R : UB4(r) =
UBg(r)). A common example is where an Alloy user executes an empty run
command to browse arbitrary instances. In this case, our abstraction, which
focuses on the analysis of the command, has nothing to preserve.

5 Computing Abstract Alloy Instances

We have seen in Sect. that abstract instances are relatively easy to obtain by
computing concrete instances and translating them into bounds. However, these
abstract instances might not be very informative, as they represent a single
concrete instance. We thus aim to compute maximal abstract instances.

Our algorithm for computing a maximal abstract instance is illustrated in
Alg.[1] First, a concrete instance Z satisfying the model and command constraints
M AC is computed by Alloy’s regular solver shown as a call to solve(M AC, B).
From this concrete instance we start an iteration that increases the bounds A
(initialized as A < Z) in every iteration of the while loop, i.e., A" < A. This
iteration is necessary as upper and lower bounds may depend on each other. The
iteration terminates as lower bounds may only shrink to the empty set (§)) and

4 We oversimplify the case of inheritance and relations for illustrative purposes, see
our implementation in Sect. @ for a more thorough handling.

8 Jan Oliver Ringert and Allison Sullivan

Algorithm 1 Computation of an abstract instance for model M, command C
and bounds B
1: Z < solve(M AN C, B)
AT
A 0
while A # A’ do
A+~ A
LBA ¢ minimize(LB 4/) down to 0
UB 4 < maximize(UB_4/) up to UBp
end while
return A

Algorithm 2 Computation of the check used for minimization in Alg. [] for
cand C LB 4 with bounds A’ and B, model M, and command C from Alg.
1: M’ «+ M U sigs4Bounds(cand, UB 4/)

2: bounds < expr4Bounds(cand, UB 4/)

3: return (solve(M’ Abounds A —=C, B) == UNSAT)

upper bounds may grow at most up to B. The algorithm then returns a maximal
abstract instance A (by construction of the bounds).

To minimize and maximize bounds we use Delta Debugging [32]. Delta De-
bugging computes minimal subsets of a set that satisfy a check criterion. We
can easily convert our bounds to sets (e.g., |J,cp LBa/(7) is a set of atoms and
tuples) and back by tracking Alloy’s type information.

We show our implementation of check(cand) in Alg. [2l A candidate cand C
U,er LBa/(r) is valid if the abstract instance criterion from Def. [3|is satisfied,
i.e., for all Z/ within the bounds of the abstract instance 7' = M = 7’ = C.
In Alg. [2| the lower bounds we use for valuations 7’ are cand and the upper
bounds are UB 4/ (for maximizing UB 4/ check uses cand and LB 4/). We encode
these as the constraint bounds (see Sect. . Finally, to evaluate the abstract
instance criterion, we invoke the solver and convert the universal quantification
over valuations 7’ into an existential one that satisfies M and violates C.

5.1 Encoding of bounds in Alloy

Ideally, we would like to pass bounds A instead of B to Alloy’s solver Kod-
Kod [28]. However, the bounds used by KodKod are different from the ones in-
dicated in Def. [T} Def. 2] and Def. 3] e.g., KodKod does not support inheritance
and thus additional relations may be created in the translation to KodKod. Since
our prototype implementation stays on the abstraction level of Alloy, we encode
bounds as additional signatures (sigs4Bounds) and constraints (expr4Bounds).
Method sigs4Bounds creates signatures with multiplicity lone extending the
primary signatureﬁEI of the model to represent atoms, e.g., signatures created for
the atoms shown in Fig. 2| (a) are declared in Fig. 4] 1l. 1-2. Method expr4Bounds

5 Alloy distinguishes between primary and subset signatures where atoms of subset
signatures always also belong to primary signatures.

Abstract Alloy Instances 9

lone sig AsgmtO, Asgmtl, Asgmt2 extends Assignment {3}
lone sig ClassO, Classl extends Class {}

(one Asgmt2) and (one ClassO) and (one Studl)
(ClassO -> Studl in assistant) and (Asgmt2 -> Studl in assigned_to)

(Person = Student + Professor) and (Student = Stud0 + Studl) and ...
assistant in (ClassO -> Stud0 + ClassO -> Studl)

o N e oA W N e

Fig. 4. Excerpt of encoding of bounds from Fig. [2| via signatures and constraints
then uses this representation of atoms to express lower bounds by requiring the
existence of the atoms and tuples, e.g., for the lower bound in Fig [2] (b) see
Fig. [1. 4. Similarly, tuples are required by lower bounds, e.g., in Fig. [1. 5.
Whereas the constraints of lower bounds are local for individual elements, upper
bounds are global in the sense that we must constrain all atoms of a signature,
e.g., Fig.[4 1. 7, and all tuples of a relation at once, e.g., Fig.[4 1. 8. The upper
bound constraints in Fig. [4] 1l. 7-8 are an excerpt of upper bounds initialized
from the instance in Fig. [2] (a).

The use of a generic minimizer in Alg. [} which is unaware of dependencies
between tuples and atoms, may lead to cases where a tuple is present in the
lower or upper bounds when one of its atoms is not. In both cases, expr4Bounds
does not generate a constraint for the tuple, i.e., the constraint for the lower
bound is weaker and might fail (the larger cand set with the missing atom will
then be searched) and the constraint for the upper bound might be stronger and
may succeed (the larger set with the additional atom will then also be checked).

Note that our implementation uses APIs of the Alloy Analyzer and does not
explicitly create the syntax shown in Fig. 4l This has two advantages: (1) we do
not need to disambiguate fields with same names and (2) we can also constrain
signatures marked as private, e.g., the signature 0rd in Alloy’s ordering module.

5.2 Running time complexity

We estimate the running time complexity of the algorithm in terms of Alloy’s
solver calls by Alg. [I] Minimization and maximization with Delta Debugging
has a running time in O(N?). The while loop in Alg. [l|leads to an overall time
complexity in O(N?) (worst case where every iteration adds/removes only one
element). In Alg.[l] 1. 6 N = [LB 4| with [LB/| < |Z|. In Alg.[I 1. 7 N = [UB 4 |
with [UB4/| < |UBg|. In both cases, N <) _p|dom(R)|. Looking at the
structure of Alloy models with signatures sigs, fields fields and scope max.Scope,
we have N € O(maxScope - |sigs| + |fields| - maxScope™erArity(fields)y Note
that the size of Z is often much smaller, but this is not the case for |[UBg]|.

5.3 Different Upper Bound Kinds

We have defined abstract instances in Def. |3| without any restriction on the
shape of bounds. The running time analysis in Sect. shows that restrictions

10 Jan Oliver Ringert and Allison Sullivan

Eile Instance Theme Min Options Window

AE= AE= E d\ & E ksl E Projection: none

Txt Table Tree Orig | Theme Magiclayout Evaluator New

%LB Assignment$2->Class$0: 1
%LB Class$0->Student$0: 1
%LB Class%$0->Student$1: 1

Assignment2
($LB, $NoOneCanGradeTheirOwnAssignment_a)

/ﬁsumatsd_wth

Class0
($LB)

$LB assistant_for
$LB assistant|for

StudentO Studentl Prof
($LB) ($LB, $NcOneCanGradeTheirOwnAssignment_s) (R

Assignment0 Assignmentl

Upper bound selection: exact

UB=1]

Fig. 5. Abstract instance visualized on top of a concrete instance (UB is unbounded)
on the kind of upper bounds we compute may improve running times. We have
implemented four kinds of upper bounds and briefly describe these here.

Ezxact. Exact upper bounds are the most natural variant used in Sect.
Every atom and every tuple have to be considered when maximizing the upper
bound of an abstract instance. The number of elements to find a maximal subset
for is in O(maxScope - |sigs| + | fields| - maxScope™=ATtY),

Instance or None. The upper bound for each signature and field r € R is as
in the concrete instance UB_4(r) = UBz(r) or unrestricted UB 4(r) = UBg(r).
The number of elements to find a maximal subset for is in O(|sigs| + | fields]).

Instance. The upper bound is always the instance. There is no call to
maximize in Alg.[I] 1. 7 and UB 4 remains as initialized from UB7.

None. We do not consider any restriction of the upper bound. There is no
call to maximize in Alg.[I] 1. 7 and UB4 is instead treated as UBg.

The latter two bound kinds reduce the overall running time complexity from
O(N*) to O(N?). For the first three kinds an abstract instance always exists
(in the worst case it only represents 7); however, kind None is incomplete, i.e.,
some concrete instances require upper bounds (see Fig. 3| (a)).

5.4 Implementation and Visualization

We have implemented our work as an extension to the latest stable release of the
Analyzer, version 6.0.0 [2] (our implementation is available from [20]). Impor-
tantly, since we extend the main IDE for Alloy, users can maintain their current
workflow while gradually exploring the new functionality. Users can access ab-
stract instances during the standard enumeration process, which occurs in the
VizGUI. When viewing a specific instance, the user is able to select the “Abs”
button which will update the active display to present the associated abstract
instance. The lower bound of the abstract instance is displayed visually in the
main panel, while the upper bound is conveyed textually below.

Abstract Alloy Instances 11

Users are given two display options. Eile Instance Theme Min Options Window
First, the “Over Instance” view will high- Se = e bl M%ym
light the lower bound of the abstract in- : :
stance, with any excluded portion of the Al- M
loy instance grayed out. As an example, for
the Gradebook model from Fig. [, Fig.
shows a possible instance using the “Over In-
stance” visualization. Second, the “Indepen-
dent” view which will visualize just the lower
bound of the abstract instance. As an exam-
ple, Fig. [6] shows the same instance as that Upper bound selection: xact
in Fig. [f] but with the “Independent” view. U =D
In addition, users can also select which of
the four upper bound kinds from Sect. @ Fig. 6. Abstract instance visualized
to use. The user can switch back to the orig- independently of any concrete in-
inal instance using the “Orig” button. stance (UB is unbounded)

Assignment

associated_with

;sslstant_for

Student0 Studentl

6 Evaluation

To evaluate abstract instances, we use a collection of 78 benchmark Alloy models.
We executed all experiments on Ubuntu 22.04 LTS (64Bit) with an Intel Core
i7-7700K 4.20GHz processor and 32 GB RAM. We use Alloy’s default options
and selected MiniSatJNI as SAT solver.

We address the following research questions, where by abstract instance we
always mean maximal abstract instance:

— RQ1: What is the time overhead of generating an abstract instance?
RQ2: How do the sizes of abstract and concrete instances compare?

RQ3: As concrete instances are enumerated, what is the diversity of the
underlying abstract instance?

— RQ4: What is the time/size/diversity impact of the upper bound kind?

Set Up. To evaluate abstract in-

stances, we rely on meaningful Table 1. Subjects

commands. Therefore, we focus on _Subject ||#M|Avg.S|Avg.R|#C|Avg.C
two collections of models used to ARepair|| 33| 427 291 36| 1.10
illustrate how Alloy works: models Book 28| 4.46) 3.20) 34 121
from the Alloy textbook [9] (Book) perpe] L0 G0l rob] a2l
and models included as examples in the official Analyzer release (Examples). In
addition, we include models used to evaluate recent automated repair work for
Alloy (ARepair) whose commands execute faulty portions of the model. For
each model, we consider every command present; however, we filter out com-
mands that are: (1) empty (“run {}”), which only execute the facts of the model,
(2) commands that produce no instances and (3) commands that use temporal
logic, which is new to Alloy 6 and not currently supported by our implementa-
tion. After this filtering, we are left with 28 Book models, 17 Example models,

12 Jan Oliver Ringert and Allison Sullivan

and 33 ARepair models. For each collection of models, Table [1| gives the fol-
lowing information to convey the size and number of models in the benchmarks:
Column #M shows the number of models, #Avg S is the average number of
signatures per model, #Avg R is the average number of relations per model,
#C is the total number of commands, and #Avg C is the average number
of commands per model. For each command, we enumerate up to the first 10
instances, with an enumeration timeout of 10 minutes. For research questions
1-3, we use Fzact upper bounds as a default.

6.1 RQ1: Overhead

Abstract instances are generated from an existing concrete instance that has been
enumerated for a command. To explore the overhead of this process, Figure [6.1
(a) depicts a boxplot that shows the distribution of the ratio between the time it
takes to generate the first abstract instance compared to the time to generate the
first concrete instance. A ratio larger than 1 means the abstract instance took
longer to produce than the paired concrete instance. We consider only the time to
the first instance because the Analyzer uses incremental SAT solvers; therefore,
the time to produce the first instance includes all the novel effort to resolve the
executed constraints, while future instances are often quickly produced due to
the ability to reuse previous work. There are 38, 33 and 34 abstract-concrete
instances pairs in the boxplot for ARepair, Book and Example respectively.
Example excludes two commands which timed out generating the first instance.
The first quartile to third quartile ratios range from 2.14 to 4.5 for ARepair,
from 1.84 to 11.81 for Book and from 5.35 to 62.10 for Example.

These results indicate that abstract instances frequently take longer to pro-
duce compared to their paired concrete instance. However, this does not mean
abstract instances have a prohibitive overhead. In particular, finding concrete
instances is quick: all concrete instances are produced in less than .5 seconds.
In comparison, 61 of the abstract instances take less than 2 seconds to produce,
while 34 abstract instances take between 2 seconds and 10 seconds to produce,
which is a slight overhead but not unreasonable. However, 17 abstract instance
take longer than 10 seconds to produce, including 5 abstract instances that take
longer than one minute. These 5 abstract instances all use a larger scope than
the default scope (3) and include the “ordering” module. In fact, across all three
data sets, all but two outliers capture abstract instances that come from models
that uses the “ordering” module. While ARepair contains 1 abstract instance
that includes the “ordering” module, Book has 10 and Example has 30, which
directly translates into the increasingly larger ratios observed in Figure (a).

On average, abstract instances have a minor overhead to produce; however,
if the “ordering” module is present, the time overhead quickly increases. The
“ordering” module bloats the time to generate an abstract instance because the
module increases the size of the upper bound since it places an ordering on the
atoms of a signature and all possible orders must be considered.

Abstract Alloy Instances 13

0.4 - °

0.3 I
) a a
0.1 —

ARepair Book Examples

)
o 00
—
®

102 R

°

8

]
10ty 8 @
10° 4 E
ARepair Book Examples ARepair Book Examples
(a) (b) (c)

S
o

Ratio Abstract/Concrete Time
o

Ratio Abstract/Concrete Size
Ratio Abstract/Concrete Diversity

Fig. 7. Comparison of Abstract Instance to Concrete Instance Performance
6.2 RQ2: Size Comparison

Given that abstract instances are meant to refine concrete instances, we expect
that abstract instances are, on average, smaller than concrete instances. To ex-
plore if this holds, Figure (b) depicts a boxplot showing the distribution of
size ratios, which is calculated by taking the size of the abstract instance and
dividing it by the size of the corresponding concrete instance used to produce
the abstract instance. We define the size of a concrete instance as the number
of its atoms and tuples and we define the size of an abstract instance as the
number of atoms and tuples in the lower bound plus the number of relations
constrained in by the upper bound. A ratio of less than 1 means the abstract
instance is smaller than the paired concrete instance. There are 339, 253, and
282 abstract-instance pairs in the boxplot for ARepair, Book and Examples
respectively. The first quartile to third quartile ratios range from 0.31 to 0.58
for ARepair, from 0.31 to 0.67 for Book and from 0.17 to 0.53 for Example.

The results highlight that on average the abstract instance is smaller than
the concrete instance, and often the abstract instance reduces the size by at
least half. Rarely, the abstract instance ends up the same size or larger than the
concrete instance. This occurs just 6, 6, and 1 times for ARepair, Book and
Examples respectively. In the opposite direction, for 30 ARepair instances, the
abstract instance produced is an empty instance. This is expected as all of these
instances are associated with the model “student16” that is under-constrained
due to the student failure to write anything for the predicates. As a result,
when the faulty predicates are run, only the facts of the model are enforced.
The results also highlight that while models that use the “ordering” module will
have longer abstract instance generation times, these models do not consistently
produce larger abstract instances, as Example models has the smallest quartile
1 to quartile 3 range despite having the most models that use “ordering.”

We find that the abstract instance noticeably reduce the size of the concrete
instance, highlighting that commonly half or more of the information in an in-
stance is there regardless of the explicitly executed constraints of the command.

14 Jan Oliver Ringert and Allison Sullivan

6.3 RQ3: Diversity

To gain insight into how many different abstract instances the user will en-
counter, Figure (c) depicts a boxplot showing the distribution of diversity
ratios, which is calculated by taking the number of unique abstract instance and
dividing it by the number of concrete instances for each command. We include
only those commands that were able to produce 10 concrete instances. A ratio
of less than one means there were fewer unique abstract instances than concrete
instances, with a ratio if 0.1 meaning all 10 concrete instances reduced to the
same abstract instance. There are 33, 21 and 25 commands in the boxplot for
ARepair, Book and Examples respectively. The first quartile to third quartile
ratios range from 0.1 to 0.2 ARepair, from 0.2 to 0.3 Book and from 0.1 to 0.2
Example. The median is equivalent to the 1st quartile for all data sets.

The results demonstrate that ARepair and Example models frequently
produce only 1 or 2 abstract instances for the first 10 instances enumerated.
For both data sets, 17 of their commands produce a single abstract instance. In
contrast, Book models have a little bit more diversity, with only 4 commands
producing a single abstract instance. However, even for Book, no command
produces more than 4 unique abstract instances. Since a user is likely to inspect
the first few instances, but maybe not too many more, our results indicate that
the user is often looking at instances that all satisfy the explicitly executed
commands in the exact same way. Therefore, as future work, we plan to explore
how to directly enumerate unique abstract instances, which will ensure users are
able to quickly view diverse ways the command can be satisfied.

6.4 RQ4: Impact of Upper Bound Kind

As outlined in Section[5.3] abstract instances can be calculated with four different
upper bounds. While Ezact is the default, Figure [6.4] compares the performance
across all four upper bound kinds. In Figure[6.4] E represents Ezact, I represents
Instance, IoN represents Instance or None and N represents None. Across the
performance metrics, None consistently represents fewer data points as None
is incomplete for 41 of the commands in the evaluation. For the other three
bounds, there is a minor difference in the number of data points, as some of the
more time expensive upper bound kinds occasionally timeout while enumerating
instances.

Figure (a) compares the overhead of each upper bound kind by depict-
ing the ratio between the time to generate the abstract instance and generate
the concrete instance. We again look at the time to produce the first instance.
There are 103, 105, 105 and 64 abstract-concrete pairs in the boxplot for Ez-
act, Instance, Instance or None and None respectively. The results in Figure [6.4]
(a) highlights that on average, Ezact is the most expensive upper bound and
Instance is the fastest upper bound, both of which is expected.

Figure (b) compares the size of the abstract instances produced by the
different upper bound kinds. We again present size as a ratio of the size of the
abstract instance divided by the size of the corresponding concrete instance.

Abstract Alloy Instances 15

2

) ‘B
E 8 £
g ’ ° ° o & ° ° .g °

10° ° ° © =)
2 S g ! e °
|4 ° = 2 0.4 e ® o
S el e § g e o
g 10 ° 3 g
O e o <]
e & o
b 1 Q ~
c 10 l g 05 5
|4 = 3]
£ % g
2 R a £ 0.2
< 10 < ko)
o 2 <
- - =]
:‘g 107" & 0 k-

E I IoN N E I N N |& E I ToN N
(a) (b) (c)

Fig. 8. Comparison of Performance for Different Upper Bounds

There are 871, 913, 901, 570 abstract-concrete pairs in the boxplot for Fzact,
Instance, Instance or None and None respectively. For Fxact, Instance or None
and None, the size performance is very similar. In contrast, Instance consistently
produces smaller abstract instances than all other three upper bound kinds.
While the other three produce just 30 empty abstract instances, all for the
“student16” submission, Instance produces 210 abstract instances without lower
bounds. This translates directly into the observed performance difference in size.

Figure (c¢) compares the diversity of generated abstract instances pro-
duced by the different upper bound kids. We again present diversity as a ratio of
the number of unique abstract instances divided by the number of unique con-
crete instances per command that do enumerate 10 concrete instances. There
are 77, 86, 83 and 54 commands in the boxplot for Fzact, Instance, Instance
or None and None respectively. As Figure (c) shows, the different upper
bound kinds have very similar performance in terms of diversity. Ezact upper
bounds does produce slightly more abstract instances on average across the first
10 instance, with all other upper bounds having a median of 0.1, meaning only
one unique abstract instance, while Ezxact’s median is 0.2.

6.5 Threats to validity

There are two main threats to validity for our results. First, we selected our
benchmark models to eliminate the likelihood of encountering trivial commands.
Therefore, our results may not generalize to other Alloy models which may use
different operators and signature constraints than those that appear in our eval-
uation models. Second, our implementation may have bugs. To mitigate this
threat we have used existing components where possible, e.g., Delta Debug-
ging [32] and Alloy’s APIs and solver (see Sect. . In addition, we have added
assertions and ran our algorithms on all available models. Before Alg. [T} 1. 4 we
check whether solve((M U sigs4Bounds(.A)) A expr4Bounds(A) A C, B) is satisfi-
able (otherwise expr4Bounds is incorrect as Z must be a solution). In Alg. [2| we
check that solve(M’ Abounds A C, B) is satisfiable, i.e., that there are instances
represented by the candidate.

16 Jan Oliver Ringert and Allison Sullivan

7 Related Work

Ezxplaining Alloy Instances. Our motivation for developing abstract instances
is to help users understand why a given instance was generated by the Ana-
lyzer for an executed command. There have been two notable efforts related
to helping explain Alloy instances. First, Amalgam is an extension to the Ana-
lyzer, which uses provenance chains to inform the user why a specific tuple does
or does not appear in the scenario [I4]. Unlike abstract instances, Amalgam’s
provenance chain includes the facts of the model and thus it is possible for the
provenance chain of a tuple to never reference the explicitly invoked formulas of
the command. Second, recent work [7] explored how presenting novice users with
a combination of instances and non-instances for a command can help the user
understand a modeled constraint. This work uses tailored instances that were
selected for the study and thus does not try to influence an active enumeration.

Instance Enumeration for Alloy. Our technique is closely related to
techniques which look to enhance the Analyzer’s instance enumeration process.
One traditional approach is to reduce the number of instances through symme-
try breaking, where the goal is to remove isomorphic instances [22ITT]. Beyond
symmetry breaking, several past projects improve instance enumeration by (1)
influencing the order of instances [24125] and (2) trying to narrow what scenar-
ios are generated using a specific criteria, e.g., abstract functions [26], minimal-
ity [15], maximality [33], field exhaustiveness [I7], and coverage [27/I8]. All of
these techniques reduce the number of instances that are generated by applying
additional criteria to how any new instance generated must differ from the previ-
ous set of instances. Of these, Aluminium, which enumerates minimal instances,
is the most closely related to our technique. In contrast to abstract instances,
Aluminium produces complete instances, which can prevent Aluminium from
further reducing the information presented as there are lower bounds enforced
by the constraints of the model that Aluminum will be required to meet to ensure
the instance satisfies the facts of the model, in addition to the command.

8 Conclusion

This paper introduces the concept of abstract instances for the Alloy modeling
language. These instances serve to remove information in the instance that is not
directly relevant to the executed predicate or assertion invoked by the command.
Our experimental results show that abstract instances can often be produced
with a small overhead but do successfully reduce the information presented to
the user. In addition, our results reveal that an abstract instances often represent
multiple concrete instances. As future work, we plan to conduct a user study to
evaluate how abstract instances help users understand analysis results, explore
how we can efficiently enumerate unique abstract instances, and extend our
approach to handle Alloy’s new temporal logic extension.

Abstract Alloy Instances 17

References

10.

11.

12.

13.

14.

Akhawe, D., Barth, A., Lam, P.E., Mitchell, J.C., Song, D.: Towards a formal
foundation of web security. In: Proceedings of the 23rd IEEE Computer Secu-
rity Foundations Symposium, CSF 2010, Edinburgh, United Kingdom, July 17-19,
2010. pp. 290-304. IEEE Computer Society (2010). https://doi.org/10.1109/
CSF.2010.27, https://doi.org/10.1109/CSF.2010.27

Alloy: Alloy Tools GitHub. https://github.com/AlloyTools| (2022), accessed
5/2022

. Alloy 6 Language Reference. https://alloytools.org/spec.html (2022), accessed

8/2022

Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model
transformation from UML to alloy. Software and Systems Modeling 9(1), 69—
86 (2010). https://doi.org/10.1007/s10270-008-0110-3, https://doi.org/
10.1007/s10270-008-0110-3

Cunha, A., Garis, A.G., Riesco, D.: Translating between alloy specifications and
UML class diagrams annotated with OCL. Software and Systems Modeling 14(1),
5-25 (2015). https://doi.org/10.1007/s10270-013-0353-5| https://doi.org/
10.1007/s10270-013-0353-5

Dini, N., Yelen, C., Alrmaih, Z., Kulkarni, A., Khurshid, S.: Korat-API: A frame-
work to enhance Korat to better support testing and reliability techniques. In: SAC
(2018)

Dyer, T., Nelson, T., Fisler, K., Krishnamurthi, S.: Applying cognitive principles
to model-finding output: the positive value of negative information. Proc. ACM
Program. Lang. 6(OOPSLA), 1-29 (2022). https://doi.org/10.1145/3527323,
https://doi.org/10.1145/3527323

Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256-290 (2002)

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

Jackson, D.: Alloy: a language and tool for exploring software designs. Com-
mun. ACM 62(9), 6676 (2019). https://doi.org/10.1145/3338843, https://
doi.org/10.1145/3338843

Khurshid, S., Marinov, D., Shlyakhter, I., Jackson, D.: A case for efficient solution
enumeration. In: SAT (2003)

Maoz, S., Ringert, J.O., Rumpe, B.: Cd2alloy: Class diagrams analysis using alloy
revisited. In: Whittle, J., Clark, T., Kiithne, T. (eds.) Model Driven Engineering
Languages and Systems, 14th International Conference, MODELS 2011, Welling-
ton, New Zealand, October 16-21, 2011. Proceedings. Lecture Notes in Com-
puter Science, vol. 6981, pp. 592-607. Springer (2011). https://doi.org/10.1007/
978-3-642-24485-8_44, https://doi.org/10.1007/978-3-642-24485-8_44
Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of
Java programs. In: ASE (2001)

Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of "why"
and "why not": enriching scenario exploration with provenance. In: Bodden, E.,
Schifer, W., van Deursen, A., Zisman, A. (eds.) Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017. pp. 106-116. ACM (2017). https://doi.org/10.
1145/3106237.3106272, https://doi.org/10.1145/3106237.3106272

https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1109/CSF.2010.27
https://github.com/AlloyTools
https://doi.org/10.1007/s10270-008-0110-3
https://doi.org/10.1007/s10270-008-0110-3
https://doi.org/10.1007/s10270-008-0110-3
https://doi.org/10.1007/s10270-008-0110-3
https://doi.org/10.1007/s10270-013-0353-5
https://doi.org/10.1007/s10270-013-0353-5
https://doi.org/10.1007/s10270-013-0353-5
https://doi.org/10.1007/s10270-013-0353-5
https://doi.org/10.1145/3527323
https://doi.org/10.1145/3527323
https://doi.org/10.1145/3527323
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1145/3106237.3106272
https://doi.org/10.1145/3106237.3106272
https://doi.org/10.1145/3106237.3106272
https://doi.org/10.1145/3106237.3106272
https://doi.org/10.1145/3106237.3106272

18

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

Jan Oliver Ringert and Allison Sullivan

Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: Notkin, D., Cheng, B.H.C.,
Pohl, K. (eds.) 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013. pp. 232-241. IEEE Computer So-
ciety (2013). https://doi.org/10.1109/ICSE.2013.6606569, https://doi.org/
10.1109/ICSE.2013.6606569

Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: LISA (2010)

Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive testing. In: FSE
(2016)

Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT: Specification-
guided coverage for model finding. In: FM (2018)

Ringert, J.O., Sullivan, A.K.: Abstract alloy instances artefact (Nov 2022).
https://doi.org/10.5281/zenodo.7339931, https://doi.org/10.5281/
zenodo.7339931

Ringert, J.O., Sullivan, A.K.: Abstract alloy instances code (Nov 2022), https:
//github.com/jringert/alloy-absinst

Samimi, H., Aung, E.D., Millstein, T.D.: Falling back on executable specifications.
In: ECOOP. pp. 552-576 (2010)

Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. In: SAT (2001)

Sullivan, A.: Hawkeye: User-guided enumeration of scenarios. In: Jin, Z., Li, X., Xi-
ang, J., Mariani, L., Liu, T., Yu, X., Ivaki, N. (eds.) 32nd IEEE International Sym-
posium on Software Reliability Engineering, ISSRE 2021, Wuhan, China, October
25-28, 2021. pp. 569-578. IEEE (2021). https://doi.org/10.1109/ISSRE52982.
2021.00064, https://doi.org/10.1109/ISSRE52982.2021.00064

Sullivan, A.: Hawkeye: User guided enumeration of scenarios. In: ISSRE (2021)
Sullivan, A., Jovanovic, A.: Reach: Refining alloy scenarios by size. In: ISSRE
(2022)

Sullivan, A., Marinov, D., Khurshid, S.: Solution enumeration abstraction - A
modeling idiom to enhance a lightweight formal method. In: ICFEM (2019)
Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test generation
and mutation testing for alloy. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017.
pp. 264-275. IEEE Computer Society (2017). https://doi.org/10.1109/ICST.
2017.31, https://doi.org/10.1109/ICST.2017.31

Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 13th International Conference, TACAS 2007, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2007 Braga,
Portugal, March 24 - April 1, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4424, pp. 632-647. Springer (2007). https://doi.org/10.1007/
978-3-540-71209-1_49| https://doi.org/10.1007/978-3-540-71209-1_49
Trippel, C., Lustig, D., Martonosi, M.: Security verification via automatic
hardware-aware exploit synthesis: The CheckMate approach. IEEE Micro (2019)
Zaeem, R.N., Khurshid, S.: Contract-based data structure repair using Alloy. In:
ECOQOP. pp. 577-598 (2010)

Zave, P.: Reasoning about identifier spaces: How to make chord correct. IEEE
Trans. Software Eng. 43(12), 1144-1156 (2017). https://doi.org/10.1109/TSE.
2017.2655056, https://doi.org/10.1109/TSE.2017.2655056

https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.5281/zenodo.7339931
https://doi.org/10.5281/zenodo.7339931
https://doi.org/10.5281/zenodo.7339931
https://doi.org/10.5281/zenodo.7339931
https://github.com/jringert/alloy-absinst
https://github.com/jringert/alloy-absinst
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056

32.

33.

Abstract Alloy Instances 19

Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input.
IEEE Trans. Software Eng. 28(2), 183-200 (2002). https://doi.org/10.1109/
32.988498

Zhang, C., Wagner, R., Orvalho, P., Garlan, D., Manquinho, V., Martins, R.,
Kang, E.: Alloymax: Bringing maximum satisfaction to relational specifications.
In: Proceedings of the 29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. p.
155-167. ESEC/FSE 2021, Association for Computing Machinery, New York, NY,
USA (2021)

https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498

	Abstract Alloy Instances

