
Tensor Algebra Notes

Jacob Shin

ContentsContents

Chapter 0 Tensor Definitions Page 3

Chapter 1 Forward and Backwards Transformations Page 5

1.1 Forward Transformation 5

1.2 Backwards Transformation 5

1.3 Generalizing to N-Dimensions 6

Chapter 2 Vector Definition Page 8

Chapter 3 Vector Transformation Rules Page 9

3.1 Generalization to 𝑛-dimensions 9

3.2 Notation 10

Chapter 4 What are covectors? Page 11

4.1 Visualizing Covectors 11

Chapter 5 Covector Components Page 12

Chapter 6 Convector Transformation Rules Page 14

Chapter 7 Linear Maps Page 16

Chapter 8 Linear Map Transformation Rules Page 18

Chapter 9 The Metric Tensor Page 21

9.1 Lengths using the Metric Tensor 21

9.2 Angles using the Metric Tensor 22

1

9.3 How Metric Tensor Components Transform with a Change in Coordinates 22

9.4 Confirming Length Stays Constant 22

9.5 Summary 23

9.6 Revisiting the Coordinate Tensor Definition 23

Chapter 10 Bilinear Forms Page 25

10.1 Metric Tensor Review 25

10.2 Bilinear Forms 25

10.3 Properties of the Metric Tensor 26

Chapter 11 Linear Maps are Vector-Covector Pairs Page 27

Chapter 12 Bilinear Forms as Covector-Covector Pairs Page 29

12.1 Benefits of Tensor Product Definition for Linear Maps 29

12.2 Bilinear Forms as Covector-Covector Pairs 30

Chapter 13 Tensor Product vs. Kronecker Product Page 32

13.1 Definition of Tensor Product 32

13.2 Kronecker Product 33

13.3 Relation between Tensor Product and Kronecker Product 33

Chapter 14 Tensors as General Vector/Covector Combinations Page 34

14.1 Review of Tensors Written using Tensor Product 34

14.2 New Tensors 34

What are the transformation rules? — 34 • What is the Multiplication Rule for 𝑄(𝐷) — 35 • What are the
array shapes for 𝐷 and 𝑄 — 36

Chapter 15 Tensor Product Spaces Page 37

Chapter 16 Raising/Lowering Indexes Page 39

2

Chapter 0

Tensor Definitions

Based on the video series by eigenchris

Definition 0.0.1: Tensors as multidimensional arrays

Examples:

1. Rank 0 Tensor: Scalar
[4] or 4

2. Rank 1 Tensor: Vector 
1
2
3


3. Rank 2 Tensor: 2D-Matrix 

1 2 3
4 5 6
7 8 9


4. Rank 3 Tensor: 3D-Matrix ”Cube” of values

Although tensors can be represented as matrices/arrays, this definition doesn’t describe what tensors
actually are since this definition doesn’t explain the geometric meaning of tensors.

Definition 0.0.2: Tensors as objects invariant under a change in coordinates

1. Tensors have components that change in a predictable way when the coordinates are changed

2. Vectors are invariant, but vector components are not

3. Example of something invariant under coordinate transformation: length

4. Converting tensor components from one coordinate system to another is called a Forward Trans-
formation, while doing the reverse if Backwards Transformation

Definition 0.0.3: Tensors as a combination of vectors and convectors combined
using the tensor product

Best definition, but a bit abstract.

3

https://youtube.com/playlist?list=PLJHszsWbB6hrkmmq57lX8BV-o-YIOFsiG

Definition 0.0.4: Tensors as partial derivatives and gradients that transform with
the Jacobean matrix

4

Chapter 1

Forward and Backwards
Transformations

Old Basis: {
®𝑒1 , ®𝑒2

}
New Basis: {

®̃𝑒1 , ®̃𝑒2
}

1.1 Forward Transformation

Convert from the old basis to the new basis:

®̃𝑒1 = 𝑐1 ®𝑒1 + 𝑐2 ®𝑒2
®̃𝑒2 = 𝑐3 ®𝑒1 + 𝑐4 ®𝑒2

where 𝑐1 , 𝑐2 , 𝑐3 , and 𝑐4 are scalar constants.
We can rewrite the above linear equations in matrix form by defining a forward transformation matrix,

𝐹

𝐹 =

[
𝑐1 𝑐3
𝑐2 𝑐4

]
[
®̃𝑒1 ®̃𝑒2

]
=

[
®𝑒1 ®𝑒2

]
𝐹 =

[
®𝑒1 ®𝑒2

] [
𝑐1 𝑐3
𝑐2 𝑐4

]
Note that the 𝐹 matrix is flipped along the diagonal (transposed) from what we’d get if we multiplied the

forward transformation matrix before the old basis.

𝐹̃ = 𝐹𝑇 =

[
𝑐1 𝑐2
𝑐3 𝑐4

]
[
®̃𝑒1
®̃𝑒2

]
= 𝐹̃

[
®𝑒1
®𝑒2

]
=

[
𝑐1 𝑐2
𝑐3 𝑐4

] [
®𝑒1
®𝑒2

]
1.2 Backwards Transformation

Similarly, we can convert from the new basis to the old basis with a backwards transformation

®𝑒1 = 𝑎1 ®̃𝑒1 + 𝑎2 ®̃𝑒2
®𝑒2 = 𝑎3 ®̃𝑒1 + 𝑎4 ®̃𝑒2

where 𝑎1 , 𝑎2 , 𝑎3 , and 𝑎4 are scalar constants.

5

Rewrite in terms of the backwards transformation matrix, 𝐵

𝐵 =

[
𝑎1 𝑎3
𝑎2 𝑎4

]
[
®𝑒1 ®𝑒2

]
=

[
®̃𝑒1 ®̃𝑒2

]
𝐵 =

[
®̃𝑒1 ®̃𝑒2

] [
𝑎1 𝑎3
𝑎2 𝑎4

]
If we multiply 𝐹 and 𝐵 we get the identity matrix:

𝐵𝐹 =

[
1 0
0 1

]
Thus one is the inverse of the other:

𝐵 = 𝐹−1

1.3 Generalizing to N-Dimensions

We can generalize to 𝑛 dimensions

𝐹 =


𝐹11 𝐹12 . . . 𝐹1𝑛
𝐹21 𝐹22 . . . 𝐹2𝑛
...

...
...

...
𝐹𝑛1 𝐹𝑛2 . . . 𝐹𝑛𝑛


®̃𝑒1 = 𝐹11 ®𝑒1 + 𝐹21 ®𝑒2 + . . . + 𝐹𝑛1 ®𝑒𝑛
®̃𝑒2 = 𝐹12 ®𝑒1 + 𝐹22 ®𝑒2 + . . . + 𝐹𝑛2 ®𝑒𝑛

...

®̃𝑒𝑛 = 𝐹1𝑛 ®𝑒1 + 𝐹2𝑛 ®𝑒2 + . . . + 𝐹𝑛𝑛 ®𝑒𝑛
This can be written more simply as:

®̃𝑒𝑖 =
𝑛∑
𝑗=1

𝐹𝑗𝑖 ®𝑒 𝑗

Similarly we have

®𝑒𝑖 =
𝑛∑
𝑗=1

𝐵 𝑗𝑖 ®̃𝑒 𝑗

We still have that 𝐹 and 𝐵 are inverses

𝐹𝐵 =


1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
...
0 0 . . . 1


Proof:

®𝑒𝑖 =
𝑛∑
𝑗=1

𝐵 𝑗𝑖 ®̃𝑒 𝑗

®𝑒𝑖 =
𝑛∑
𝑗=1

𝐵 𝑗𝑖

(
𝑛∑

𝑘=1

𝐹𝑘 𝑗 ®𝑒𝑘

)
=

𝑛∑
𝑗=1

(
𝑛∑

𝑘=1

𝐹𝑘 𝑗𝐵 𝑗𝑖 ®𝑒𝑘

)
=

𝑛∑
𝑘=1

©­«
𝑛∑
𝑗=1

𝐹𝑘 𝑗𝐵 𝑗𝑖 ®𝑒𝑘ª®¬
6

Note that we want ®𝑒1 = ®𝑒1, ®𝑒2 = ®𝑒2, etc. so that implies that∑
𝑗

𝐹𝑘 𝑗𝐵 𝑗𝑖 = 𝛿𝑘𝑖 =

{
0 𝑖 ≠ 𝑘

1 𝑖 = 𝑘

which means that the matrix 𝐹𝐵 has 1’s on the diagonals and 0’s elsewhere (identity matrix).
□

7

Chapter 2

Vector Definition

A vector is an example of a tensor.

Definition 2.0.1: Vector Definition

1. Naive definition: Array of numbers

• The list of numbers are the components of the vector, not the vector itself. Remember that
vectors are invariant under a coordinate transformation while the components are not.

2. Arrow in space

• A bit better than the above definition

• Not all vectors can be visualized as arrows (like functions!)

• An arrow is just a special type of vector: A Euclidean vector

3. Member of a Vector Space

Definition 2.0.2: Vector Space

©­­« 𝑉︸︷︷︸
Set of vectors

, 𝑆︸︷︷︸
Set of Scalars

, +︸︷︷︸
Vector addition

, ·︸︷︷︸
𝑉𝑒𝑐𝑡𝑜𝑟𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

ª®®¬
Vectors can be

• added together +

• Multiplied by a scalar ·

For these notes, when we say vector, we mean a euclidean vector.

8

Chapter 3

Vector Transformation Rules

To convert the vector components from the old basis
{
®𝑒1 , ®𝑒2

}
to components in the new basis,

{
®̃𝑒1 , ®̃𝑒2

}
, we apply

the backwards transformation on the old basis components:
Vector, 𝑣, in the old basis:

®𝑣 = 𝑣1 ®𝑒1 + 𝑣2 ®𝑒2 =

[
𝑣1
𝑣2

]
®𝑒𝑖

In the new basis

®𝑣 = 𝑣1 ®̃𝑒1 + 𝑣2 ®̃𝑒2 =

[
𝑣1
𝑣2

]
®̃𝑒𝑖

where 𝑏1 , 𝑏2 , 𝑏3 and , 𝑏4 are scalars.
Converting vector components in the old basis to new

𝐵

[
𝑣1
𝑣2

]
®𝑒𝑖
=

[
𝑣1
𝑣2

]
®̃𝑒𝑖

When the basis vectors get larger, the ”measuring stick” gets bigger, which means the components of the
vector get smaller so that the length remains the same.

Similarly, when the basis vectors are rotated clockwise, from the perspective of the vector, the components
have to be rotated counterclockwise to maintain the same orientation in space.

Since the vector components transform contrary to the basis vectors, we say that the vector components
are contravariant.

3.1 Generalization to 𝑛-dimensions

Proof:

®𝑣 =

𝑛∑
𝑖=1

𝑣𝑖 ®𝑒𝑖 =
𝑛∑
𝑗=1

𝑣 𝑗 ®̃𝑒 𝑗

®̃𝑒 𝑗 =
𝑛∑
𝑖=1

𝐹𝑖 𝑗 ®𝑒𝑖

®𝑒 𝑗 =
𝑛∑
𝑖=1

𝐵𝑖 𝑗 ®̃𝑒𝑖

®𝑣 =

𝑛∑
𝑗=1

𝑣 𝑗 ®̃𝑒 𝑗 =
𝑛∑
𝑗=1

𝑣 𝑗

(
𝑛∑
𝑖=1

𝐹𝑖 𝑗 ®𝑒𝑖

)
=

𝑛∑
𝑖=1

©­«
𝑛∑
𝑗=1

𝐹𝑖 𝑗𝑣 𝑗 ®𝑒𝑖ª®¬
®𝑣𝑖 =

𝑛∑
𝑗=1

𝐹𝑖 𝑗 ®̃𝑣 𝑗

This proves that converting the vector components in the new basis to the old basis requires the forward
transformation □

9

3.2 Notation

Since the vector components are contravariant (do the opposite of the basis vectors), we write the index for the
vector components as a superscript:

®𝑣 =

𝑛∑
𝑖=1

𝑣 𝑖 ®𝑒𝑖 =
𝑛∑
𝑖=1

𝑣 𝑖 ®̃𝑒𝑖

10

Chapter 4

What are covectors?

Covectors are our second example of a tensor.
You can think of covectors as row vector. Row vectors are not simply just column vectors flipped on its

side (only true in orthonormal basis).
Covectors/Row vectors can both be thought of as functions that act on a vector:

𝛼 : 𝑉 → ℝ

Covectors exhibit linearity:
𝛼

(
®𝑣 + ®𝑤

)
= 𝛼(®𝑣) + 𝛼

(
®𝑤
)

𝛼(𝑛®𝑣) = 𝑛𝛼(®𝑣)
Covectors are also elements of a vector space, called the dual vector space, 𝑉∗

(𝑛𝛼) (®𝑣) = 𝑛𝛼(®𝑣)

(𝛽 + 𝛼) (®𝑣) = 𝛽(®𝑣) + 𝛼(®𝑣)
where 𝛼 is the covector

4.1 Visualizing Covectors

Take the 2-D case:

𝛼 =
[
2 1

]
𝛼(®𝑣) =

[
2 1

] ([
𝑥
𝑦

])
= 2𝑥 + 1𝑦

We can visualize the covector by looking at the isolines (i.e. where 𝛼 = 𝑘, with 𝑘 as a constant)

2𝑥 + 1𝑦 = 0

2𝑥 + 1𝑦 = 1

2𝑥 + 1𝑦 = 2

...

2D Covectors form a ”stack” of lines. Graphically, the value of 𝛼 acting on ®𝑣 is the number of isolines that
®𝑣 pierces

11

Chapter 5

Covector Components

Like vectors, covectors are invariant, but their components are not.
Covectors form a vector space, 𝑉∗, and are not part of 𝑉, so we need new basis vectors, 𝜖1 and 𝜖2: 𝑉 → ℝ.

They are defined as follows:

𝜖1
(
®𝑒1
)
= 1

𝜖2
(
®𝑒1
)
= 0

𝜖1
(
®𝑒2
)
= 0

𝜖2
(
®𝑒2
)
= 1

or simply
𝜖𝑖

(
®𝑒 𝑗
)
= 𝛿𝑖 𝑗

Let’s see what the two covector bases looks like when acting on a vector, ®𝑣

𝜖1
(
®𝑣
)
= 𝜖1

(
𝑣1 ®𝑒1 + 𝑣2 ®𝑒2

)
Since covectors are linear:

= 𝜖1
(
𝑣1 ®𝑒1 + 𝑣2 ®𝑒2

)
= 𝑣1𝜖1

(
®𝑒1
)
+ 𝑣2𝜖1

(
®𝑒2
)
= 𝑣1 · 1 + 𝑣2 · 0 = 𝑣1

Similarly,
𝜖2

(
®𝑣
)
= 𝑣2

Now consider a general covector, 𝛼 acting on ®𝑣

𝛼
(
®𝑣
)
= 𝛼

(
𝑣1 ®𝑒1 + 𝑣2 ®𝑒2

)
= 𝑣1𝛼(𝑒1) + 𝑣2𝛼(𝑒2)

Using the definitions of 𝜖1(®𝑣) = 𝑣1 and 𝜖2(®𝑣) = 𝑣2 gives:

𝛼(®𝑣) = 𝜖1
(
®𝑣
)
· 𝛼 (𝑒1) + 𝜖2

(
®𝑣
)
· 𝛼 (𝑒2)

Let 𝛼1 = 𝛼(®𝑒1) and 𝛼2 = 𝛼(®𝑒2)

𝛼
(
®𝑣
)
= 𝜖1

(
®𝑣
)
𝑎1 + 𝜖2

(
®𝑣
)
𝑎2 =

(
𝑎1𝜖

1 + 𝑎2𝜖
2
) (

®𝑣
)

=⇒ 𝛼 = 𝛼1𝜖
1 + 𝛼2𝜖

2

We see that we can rewrite any generic covector, 𝛼, as a linear combination of 𝜖1 and 𝜖2. Thus the covectors
𝜖1 and 𝜖2 form a dual basis.

To summarize, with any set of basis vectors (®𝑒1 and ®𝑒2), we can define basis convectors (𝜖1 and 𝜖2). Then
we can represent any convector as a linear combination of these basis convectors.

To convert between components of a convector from an old dual basis to a new dual basis, you use the
Forward matrix [

𝛼1 𝛼2

]
𝜖𝑖
𝐹 =

[
𝛼̃1 𝛼̃2

]
𝜖𝑖

12

Converting from the new basis to the old basis requires the Backwards matrix :[
𝛼̃1 𝛼̃2

]
𝜖𝑖
𝐵 =

[
𝛼1 𝛼2

]
𝜖𝑖

Note this is the opposite compared to what happens for a change of basis for normal vector components.
This shows that the vector components are not always the same as convector components. See the

eigenchris’ video for examples.

13

https://youtu.be/rG2q77qunSw?t=512

Chapter 6

Convector Transformation Rules

We now know how covector components transform in 2D. This chapter will show how to go from an old dual
vector basis to a new dual basis. Then we will use this result to prove how covector components transform in
N-dimension.

We want to find the matrix, 𝑄, where

𝜖1 = 𝑄11𝜖
1 +𝑄12𝜖

2

𝜖2 = 𝑄21𝜖
1 +𝑄22𝜖

2

Claim 6.0.1 Dual Basis Transformations

𝜖𝑖 =
𝑛∑
𝑗=1

𝐵𝑖 𝑗𝜖
𝑗 𝜖𝑖 =

𝑛∑
𝑗=1

𝐹𝑖 𝑗𝜖 𝑗

Proof:

®̃𝑒 𝑗 =
𝑛∑
𝑖=1

𝐹𝑖 𝑗 ®𝑒𝑖 ®𝑒 𝑗 =
𝑛∑
𝑖=1

𝐵𝑖 𝑗 ®̃𝑒𝑖

𝜖𝑖
(
®𝑒 𝑗
)
= 𝛿𝑖 𝑗 𝜖𝑖

(
®̃𝑒 𝑗
)
= 𝛿𝑖 𝑗

𝜖𝑖 =
𝑛∑
𝑗=1

𝑄𝑖 𝑗𝜖
𝑗

=⇒ 𝜖𝑖
(
®̃𝑒𝑘
)
=

𝑛∑
𝑗=1

𝑄𝑖 𝑗𝜖
𝑗
(
®̃𝑒𝑘
)
= 𝛿𝑖 𝑗 =

𝑛∑
𝑗=1

𝑄𝑖 𝑗𝜖
𝑗

(
𝑛∑
𝑙=1

𝐹𝑙𝑘 ®𝑒𝑙

)
𝛿𝑖 𝑗 =

𝑛∑
𝑗=1

𝑛∑
𝑙=1

𝐹𝑙𝑘𝑄𝑖 𝑗𝜖
𝑗
(
®𝑒𝑙
)
=

𝑛∑
𝑗=1

𝑛∑
𝑙=1

𝐹𝑙𝑘𝑄𝑖 𝑗𝛿𝑙𝑘

=⇒ 𝛿𝑖 𝑗 = 𝐹𝑗𝑘𝑄𝑖 𝑗

=⇒ 𝑄 = 𝐹−1

Since 𝐹 only has one inverse this means
𝑄 = 𝐵 =⇒ 𝑄𝑖 𝑗 = 𝐵𝑖 𝑗

𝜖𝑖 =
𝑛∑
𝑗=1

𝐵𝑖 𝑗𝜖
𝑗

□

14

The proof for the inverse process is similar to the above. These results explain why we write the dual basis
vectors as 𝜖𝑖 with a superscript, since they transform opposite the way euclidean basis vectors do.

Using these results, we can find out how covector components transform in 𝑛-dimensions

Claim 6.0.2 Covector Component Transformations in 𝑛-dimensions

𝛼 𝑗 =

𝑛∑
𝑖=1

𝐹𝑖 𝑗𝛼𝑖 𝛼 𝑗 =

𝑛∑
𝑖=1

𝐵𝑖 𝑗𝛼𝑖

Proof:

𝜖𝑖 =
𝑛∑
𝑗=1

𝐵𝑖 𝑗𝜖
𝑗 𝜖𝑖 =

𝑛∑
𝑗=1

𝐹𝑖 𝑗𝜖 𝑗

𝛼 =

𝑛∑
𝑖=1

𝛼𝑖𝜖
𝑖 =

𝑛∑
𝑗=1

𝛼 𝑗𝜖 𝑗

𝛼 =

𝑛∑
𝑖=1

𝛼𝑖
©­«

𝑛∑
𝑗=1

𝐹𝑖 𝑗𝜖 𝑗
ª®¬ =

𝑛∑
𝑗=1

(
𝑛∑
𝑖=1

𝐹𝑖 𝑗𝛼𝑖

)
𝜖 𝑗

=⇒
𝑛∑
𝑖=1

𝐹𝑖 𝑗𝛼𝑖 = 𝛼 𝑗

□

As expected, the covector components transform in the same way as euclidean basis vectors, which is why
a subscript is used (𝛼𝑖).

Note:-

Summary of Transformation Rules

®̃𝑒 𝑗 =
𝑛∑
𝑖=1

𝐹𝑖 𝑗 ®𝑒𝑖 ®𝑒 𝑗 =
𝑛∑
𝑖=1

𝐵𝑖 𝑗 ®̃𝑒𝑖 Covariant

®̃𝑣 𝑖 =
𝑛∑
𝑗=1

𝐵𝑖 𝑗𝑣
𝑗 ®𝑣 𝑖 =

𝑛∑
𝑗=1

𝐹𝑖 𝑗𝑣 𝑗 Contravariant

𝜖𝑖 =
𝑛∑
𝑗=1

𝐵𝑖 𝑗𝜖
𝑗 𝜖𝑖 =

𝑛∑
𝑗=1

𝐹𝑖 𝑗𝜖 𝑗 Contravariant

𝛼 𝑗 =

𝑛∑
𝑖=1

𝐹𝑖 𝑗𝛼𝑖 𝛼 𝑗 =

𝑛∑
𝑖=1

𝐵𝑖 𝑗𝛼𝑖 Covariant

15

Chapter 7

Linear Maps

Definition 7.0.1: Array Definition

Matrices can be used to represent linear maps, just like how column vectors can be used to represent
euclidean vectors and row vectors can be used to represent covectors.
Linear maps transform the input vectors, but they do not transform basis vectors.

Definition 7.0.2: Coordinate Definition

Linear maps are spatial transforms that

1. Keep gridlines parallel

2. Keep gridlines evenly spaced

3. Keep the origin stationary

Translations are not true linear maps under this definition.

Definition 7.0.3: Abstract Definition

1. A function that maps 𝑉 → 𝑊 , where 𝑉 and 𝑊 are vector spaces

2. Adds inputs and outputs: 𝐿
(
®𝑣 + ®𝑤

)
= 𝐿(®𝑣) + 𝐿

(
®𝑤
)

3. Scale the input and outputs: 𝐿(𝑛®𝑣) = 𝑛𝐿(®𝑣)

Linear maps have linearity like covectors, except in this case, the output of the function is a vector and
not a scalar. Linearity should not be confused with closure under multiplication by scalars and closure
under addition of vectors. Linearity applies to functions and their inputs/outputs.

Example 7.0.1 (Where do we get Matrix Multiplication?)

Consider a linear map, 𝐿 : 𝑉 → 𝑉, acting on a vector, ®𝑣

®𝑤 = 𝐿
(
®𝑣
)
= 𝐿

(
𝑣1 ®𝑒1 + 𝑣2 ®𝑒2

)
= 𝑣1𝐿(®𝑒1) + 𝑣2𝐿

(
®𝑒2
)

Let us define the output of the linear map as follows:

𝐿(®𝑒1) = 𝐿1
1 ®𝑒1 + 𝐿1

2 ®𝑒2
𝐿(®𝑒2) = 𝐿2

1 ®𝑒1 + 𝐿2
2 ®𝑒2

we can do this since we know that the output vector of the linear map is an element of the vector space,
𝑉, which means we can write the output vector as a linear combination of the basis vectors, ®𝑒1 and ®𝑒2.

16

®𝑤 = 𝑣1
(
𝐿1
1 ®𝑒1 + 𝐿2

1 ®𝑒2
)
+ 𝑣2

(
𝐿1
2 ®𝑒1 + 𝐿2

2 ®𝑒2
)

®𝑤 = ®𝑒1
(
𝐿1
1𝑣

1 + 𝐿1
2𝑣

2
)︸ ︷︷ ︸

𝑤1

+ ®𝑒2
(
𝐿2
1𝑣

1 + 𝐿2
2𝑣

2
)︸ ︷︷ ︸

𝑤2

Thus we have
𝑤1 = 𝐿1

1𝑣
1 + 𝐿1

2𝑣
2

𝑤2 = 𝐿2
1𝑣

1 + 𝐿2
2𝑣

2

Notice this is the formula we get when multiplying the matrix, 𝐿 with the vector, 𝑣, in 2D. This is where
we get the way we multiply matrices.

In 𝑛-dimensions we have

®𝑤 =

𝑛∑
𝑖=1

𝑤 𝑖 ®𝑒𝑖

𝐿
(
®𝑒𝑖
)
=

𝑛∑
𝑗=1

𝐿
𝑗

𝑖
®𝑒 𝑗

Thus the matrix multiplication rule we get is:

𝑤 𝑖 =

𝑛∑
𝑗=1

𝐿𝑖
𝑗𝑣

𝑗

17

Chapter 8

Linear Map Transformation Rules

We want to be able to do a change of basis on ®𝑒𝑖 to get ®̃𝑒𝑖 and compute the linear map on those vectors:
In the original basis

𝐿
(
®𝑒𝑖
)
=

𝑛∑
𝑘=1

𝐿𝑘
𝑖
®𝑒𝑘

In the new basis

𝐿
(
®̃𝑒𝑖
)
=

𝑛∑
𝑞=1

𝐿
𝑞

𝑖
®̃𝑒𝑞

We want to find what these 𝐿
𝑞

𝑖
coefficients are

Claim 8.0.1 Linear Map Transformation

𝐿
𝑞

𝑖
=

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝐵
𝑞

𝑘
𝐿𝑘
𝑗 𝐹

𝑗

𝑖

Proof: We have the basis vector transformation rules:

®̃𝑒𝑖 =
𝑛∑
𝑗=1

𝐹
𝑗

𝑖
®𝑒 𝑗 ®𝑒𝑘 =

𝑛∑
𝑙=1

𝐵𝑙
𝑘
®̃𝑒𝑙

𝐿
(
®̃𝑒𝑖
)
=

𝑛∑
𝑞=1

𝐿
𝑞

𝑖
®̃𝑒𝑞

𝐿
(
®̃𝑒𝑖
)
= 𝐿

©­«
𝑛∑
𝑗=1

𝐹
𝑗

𝑖
®𝑒 𝑗ª®¬

=⇒
𝑛∑

𝑞=1

𝐿
𝑞

𝑖
®̃𝑒𝑞 =

𝑛∑
𝑗=1

𝐹
𝑗

𝑖
𝐿

(
®𝑒 𝑗
)

Use the definition of 𝐿 applied on ®𝑒𝑖
𝑛∑

𝑞=1

𝐿
𝑞

𝑖
®̃𝑒𝑞 =

𝑛∑
𝑗=1

𝐹
𝑗

𝑖

𝑛∑
𝑘=1

𝐿𝑘
𝑗
®𝑒𝑘

Now get the RHS in terms of the new basis vectors, ®̃𝑒𝑘 using the backwards transformation:

𝑛∑
𝑞=1

𝐿
𝑞

𝑖
®̃𝑒𝑞 =

𝑛∑
𝑗=1

𝐹
𝑗

𝑖

𝑛∑
𝑘=1

𝐿𝑘
𝑗

𝑛∑
𝑙=1

𝐵𝑙
𝑘
®̃𝑒𝑙

18

Rearranging gives
𝑛∑

𝑞=1

𝐿
𝑞

𝑖
®̃𝑒𝑞 =

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝑛∑
𝑙=1

𝐹
𝑗

𝑖
𝐿𝑘
𝑗 𝐵

𝑙
𝑘
®̃𝑒𝑙

Rewriting 𝑞 = 𝑙
𝑛∑

𝑞=1

𝐿
𝑞

𝑖
®̃𝑒𝑞 =

𝑛∑
𝑞=1

©­«
𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝐹
𝑗

𝑖
𝐿𝑘
𝑗 𝐵

𝑞

𝑘

ª®¬ ®̃𝑒𝑞

Thus we arrive at the final expression for the new linear map matrix:

𝐿
𝑞

𝑖
=

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝐹
𝑗

𝑖
𝐿𝑘
𝑗 𝐵

𝑞

𝑘

□

In einstein notation, we can rewrite this as:

𝐿
𝑞

𝑖
= 𝐹

𝑗𝑗𝑗

𝑖
𝐿𝑘𝑘𝑘
𝑗𝑗𝑗
𝐵
𝑞

𝑘𝑘𝑘

The bolded letters are the indices we sum over. Whenever we have the superscript followed by the same subscript
(or vice versa), we sum over that letter.

Similarly, using Einstein notation we have:

®̃𝑒𝑖 = 𝐹
𝑗𝑗𝑗

𝑖
®𝑒𝑗𝑗𝑗 ®𝑒𝑘 = 𝐵𝑙𝑙𝑙

𝑘
®𝑒𝑙𝑙𝑙

Example 8.0.1 (Multiplying by Identity Matrix with Einstein Notation)

If we have a matrix 𝑀
𝑀𝐼 = 𝑀

=⇒ (𝑀𝐼)𝑘𝑖 =
𝑛∑
𝑗=1

𝑀
𝑗

𝑖
𝛿𝑘𝑗 = 𝑀

𝑗𝑗𝑗

𝑖
𝛿𝑘
𝑗𝑗𝑗
= 𝑀𝑘

𝑖

From this example, we can see that 𝛿𝑘
𝑗
acts to cancel consecutive summation indices.

Proof: Now we will prove how to go from the new basis to the old basis for linear maps:
We have the following equality:

𝛿𝑥𝑦 = 𝐵𝑧
𝑦𝐹

𝑥
𝑧

From the definition of the first transformation matrix we got:

𝐿𝑙
𝑖
= 𝐵𝑙

𝑘
𝐿𝑘
𝑗 𝐹

𝑗

𝑖

Multiply both sides with 𝐹 and 𝐵

𝐹𝑠
𝑙
𝐿𝑙
𝑖
𝐵𝑖
𝑡 = 𝐹𝑠

𝑙
𝐵𝑙
𝑘
𝐿𝑘
𝑗 𝐹

𝑗

𝑖
𝐵𝑖
𝑡

𝐹𝑠
𝑙
𝐿𝑙
𝑖
𝐵𝑖
𝑡 = 𝛿𝑠

𝑘
𝐿𝑘
𝑗 𝛿

𝑗

𝑡

𝐹𝑠
𝑙
𝐿𝑙
𝑖
𝐵𝑖
𝑡 = 𝐿𝑠

𝑡

□

Definition 8.0.1: Contravariant (1, 0)-Tensors

𝜖𝑖 = 𝐵𝑖
𝑗𝜖

𝑗 𝜖𝑖 = 𝐹 𝑖
𝑗𝜖

𝑗

𝑣 𝑖 = 𝐵𝑖
𝑗𝑣

𝑗 𝑣 𝑖 = 𝐹 𝑖
𝑗𝑣

𝑗

19

Definition 8.0.2: Covariant (1, 0)-Tensors

®̃𝑒 𝑗 = 𝐹 𝑖
𝑗
®𝑒𝑖 ®𝑒 𝑗 = 𝐵𝑖

𝑗
®̃𝑒𝑖

𝛼 𝑗 = 𝐹 𝑖
𝑗𝛼𝑖 𝛼 𝑗 = 𝐵𝑖

𝑗𝛼𝑖

Definition 8.0.3: (1, 1) Tensor

𝐿𝑖
𝑗
= 𝐵𝑖

𝑘
𝐿𝑘
𝑙
𝐹 𝑙
𝑗 𝐿𝑖

𝑗 = 𝐹 𝑖
𝑘
𝐿𝑘
𝑙
𝐵𝑙
𝑗

Since this tensor uses both the forward and backwards matrices, it is called a (1, 1)-tensor.

20

Chapter 9

The Metric Tensor

9.1 Lengths using the Metric Tensor

When getting the length of a vector, we usually just use the pythagorean theorem. However, the pythagorean
theoerem assumes an orthonormal basis, since assume we can make a right triangle with the basis vectors and
the vector we’re getting the length of.

The pythagorean theorem only works for basis vectors of length 1 that are orthgonal.
The real way to compute length is with the dot product:

∥𝑣∥2 = ®𝑣 · ®𝑣 =
(
𝑣1

)2 (
®𝑒1 · ®𝑒1

)
+ 2𝑣1𝑣2

(
®𝑒1 · ®𝑒2

)
+ (𝑣2)2

(
®𝑒2 · ®𝑒2

)
Note that in the case of an orthonormal basis,

𝛿𝑖 𝑗 = ®𝑒𝑖 · ®𝑒 𝑗
which means we just get the pythagorean theorem.

Example 9.1.1 (Metric Tensor)

Consider a vector, 𝑣, in an old basis, ®𝑒𝑖 , and in a new basis, ®̃𝑒𝑖 . Let the old basis be orthonormal and the
following be true for the new basis:

®̃𝑒1 · ®̃𝑒1 = 5, ®̃𝑒1 · ®̃𝑒2 = −3

4
, ®̃𝑒1 · ®̃𝑒2 =

5

16
In the old basis the length squared is

∥®𝑣∥ =
(
𝑣1

)2 + (
𝑣2

)2
and in the new basis:

∥®𝑣∥ = 5
(
𝑣1

)2
+ 2

(
−3

4

)
𝑣1𝑣2 + 5

16

(
®̃𝑣2
)2

These two equations can be rewritten in matrix form:

∥𝑣∥2 =
[
𝑣1 𝑣2

] [
1 0
0 1

] [
𝑣1

𝑣2

]
∥𝑣∥2 =

[
𝑣1 𝑣2

] [
5 − 3

4
− 3

4
5
16

] [
𝑣1

𝑣2

]
The matrices in the middle are called the metric tensor, denoted by 𝑔

𝑔 ®𝑒𝑖 =

[
1 0
0 1

]
®𝑒𝑖

𝑔 ®̃𝑒𝑖
=

[
5 − 3

4
− 3

4
5
16

]
®̃𝑒𝑖

Note these are the same metric tensor, but represented with a different basis

21

The length of a vector can then be rewritten in terms of the metric tensor :

∥®𝑣∥2 = 𝑣 𝑖𝑣 𝑗
(
®𝑒𝑖 · ®𝑒 𝑗

)
= 𝑣 𝑖𝑣 𝑗 𝑔𝑖 𝑗 = 𝑣 𝑖 𝑔𝑖 𝑗𝑣

𝑗

Note the use of einstein notation with an implied summation over 𝑖 and 𝑗 in the above equation

𝑔𝑖 𝑗 = ®𝑒𝑖 · ®𝑒 𝑗

9.2 Angles using the Metric Tensor

The metric tensor can also be used to compute the angle between two vectors, ®𝑤 and ®𝑣. Create a unit basis
vectors that is in the dirction of ®𝑣 and another unit basis vector in the direction of ®𝑤:

®𝑒1 · ®𝑒1 = 1

®𝑒2 · ®𝑒2 = 1

®𝑒1 · ®𝑒2 = cos𝜃

=⇒ ®𝑣 · ®𝑤 = ∥®𝑣∥∥ ®𝑤∥ cos𝜃(
®𝑣 · ®𝑤

)
∥®𝑣∥∥ ®𝑤∥

= cos𝜃

®𝑣 · ®𝑤 =
(
𝑣1 ®𝑒1 + 𝑣2 ®𝑒2

)
·
(
𝑤1 ®𝑒1 + 𝑤2 ®𝑒2

)
®𝑣 · ®𝑤 = 𝑣1𝑤1

(
®𝑒1 · ®𝑒1

)
+ 𝑣1𝑤2

(
®𝑒1 · ®𝑒2

)
+ 𝑣2𝑤1

(
®𝑒2 · ®𝑒1

)
+ 𝑣2𝑤2

(
®𝑒2 · ®𝑒2

)
®𝑣 · ®𝑤 = 𝑣1𝑤1𝑔11 + 𝑣1𝑤2𝑔12 + 𝑣2𝑤1𝑔21 + 𝑣2𝑤2𝑔22

®𝑣 · ®𝑤 = 𝑣 𝑖𝑤 𝑖 𝑔𝑖 𝑗

9.3 How Metric Tensor Components Transform with a Change in
Coordinates

Converting from old to new

®̃𝑒 𝑗 = 𝐹 𝑖
𝑗
®𝑒𝑖 ®𝑒 𝑗 = 𝐵𝑖

𝑗 𝑒̃𝑖

𝑔̃𝑖 𝑗 = ®̃𝑒𝑖 · ®̃𝑒 𝑗 = 𝐹𝑘
𝑖
®𝑒𝑘 · 𝐹 𝑙

𝑗
®𝑒𝑙

𝑔̃𝑖 𝑗 = 𝐹𝑘
𝑖 𝐹

𝑙
𝑗

(
®𝑒𝑘 · ®𝑒𝑙

)
𝑔̃𝑖 𝑗 = 𝐹𝑘

𝑖 𝐹
𝑙
𝑗 𝑔𝑘𝑙 = 𝐹𝑘

𝑖 𝑔𝑘𝑙𝐹
𝑙
𝑗

Similarly from new to old:

𝑔𝑘𝑙 = 𝐵𝑖
𝑘
𝐵
𝑗

𝑙
𝑔̃𝑖 𝑗

9.4 Confirming Length Stays Constant

We have the transformation rules for vectors

𝑣 𝑖 = 𝐵𝑖
𝑗𝑣

𝑗 𝑣 𝑖 = 𝐹 𝑖
𝑗𝑣

𝑗

and the transformation rules for the metric tensor

𝑔̃𝑖 𝑗 = 𝐹𝑘
𝑖 𝐹

𝑙
𝑗 𝑔𝑘𝑙 𝑔𝑘𝑙 = 𝐵𝑖

𝑘
𝐵
𝑗

𝑙
𝑔̃𝑖 𝑗

∥𝑣∥2 = 𝑣 𝑖𝑣 𝑗 𝑔̃𝑖 𝑗

∥𝑣∥2 = 𝐵𝑖
𝑎𝑣

𝑎𝐵
𝑗

𝑏
𝑣𝑏

(
𝐹𝑘
𝑖 𝐹

𝑙
𝑗 𝑔𝑘𝑙

)
= 𝑣𝑎𝑣𝑏𝛿𝑘𝑎𝛿

𝑙
𝑏
𝑔𝑘𝑙

∥𝑣∥2 = 𝑣𝑎𝑣𝑏 𝑔𝑎𝑏

22

9.5 Summary

Definition 9.5.1: Contravariant (1, 0)-Tensors

𝜖𝑖 = 𝐵𝑖
𝑗𝜖

𝑗 𝜖𝑖 = 𝐹 𝑖
𝑗𝜖

𝑗

𝑣 𝑖 = 𝐵𝑖
𝑗𝑣

𝑗 𝑣 𝑖 = 𝐹 𝑖
𝑗𝑣

𝑗

Definition 9.5.2: Covariant (1, 0)-Tensors

®̃𝑒 𝑗 = 𝐹 𝑖
𝑗
®𝑒𝑖 ®𝑒 𝑗 = 𝐵𝑖

𝑗
®̃𝑒𝑖

𝛼 𝑗 = 𝐹 𝑖
𝑗𝛼𝑖 𝛼 𝑗 = 𝐵𝑖

𝑗𝛼𝑖

Definition 9.5.3: (1, 1) Tensor

𝐿𝑖
𝑗
= 𝐵𝑖

𝑘
𝐿𝑘
𝑙
𝐹 𝑙
𝑗 𝐿𝑖

𝑗 = 𝐹 𝑖
𝑘
𝐿𝑘
𝑙
𝐵𝑙
𝑗

Since this tensor uses both the forward and backwards matrices, it is called a (1, 1)-tensor.

Definition 9.5.4: (2, 0)-Tensor

𝑔̃𝑖 𝑗 = 𝐹𝑘
𝑖 𝐹

𝑙
𝑗 𝑔𝑙𝑘

𝑔𝑙𝑘 = 𝐵𝑖
𝑘
𝐵
𝑗

𝑙
𝑔̃𝑖 𝑗

Called the (2, 0)-tensor since the metric tensor uses two covariant rules

9.6 Revisiting the Coordinate Tensor Definition

Earlier we gave a coordinate definition of the tensor:

Definition 9.6.1: Tensors as objects invariant under a change in coordinates

1. Tensors have components that change in a predictable way when the coordinates are changed

2. Vectors are invariant, but vector components are not

3. Example of something invariant under coordinate transformation: length

4. Converting tensor components from one coordinate system to another is called a Forward Trans-
formation, while doing the reverse if Backwards Transformation

Now we can explain the predictable way that tensor components transform. Suppose we have a tensor, 𝑇

𝑇
𝑖 𝑗𝑘...

𝑟𝑠𝑡...

𝑖 𝑗𝑘 . . . are the contravariant components while 𝑟𝑠𝑡 . . . are the covariant parts of the tensor, 𝑇
The predictabe way tensors transform is defined by the following:

𝑇𝑎𝑏𝑐
𝑥𝑦𝑧 =

(
𝐵𝑎
𝑖 𝐵

𝑏
𝑗 𝐵

𝑐
𝑘
. . .

)
𝑇
𝑖 𝑗𝑘

𝑟𝑠𝑡

(
𝐹𝑟
𝑥𝐹

𝑠
𝑦𝐹

𝑡
𝑧

)
𝑇
𝑖 𝑗𝑘

𝑟𝑠𝑡 =

(
𝐹 𝑖
𝑎𝐹

𝑗

𝑏
𝐹𝑘
𝑐 . . .

)
𝑇𝑎𝑏𝑐
𝑥𝑦𝑧

(
𝐵𝑥
𝑟 𝐵

𝑦
𝑠 𝐵

𝑧
𝑡 . . .

)
23

When a tensor has 𝑚 contravariant components and 𝑛 covariant components, the tensor is called a (𝑚, 𝑛)-
tensor.

24

Chapter 10

Bilinear Forms

Another type of tensor is a bilinear form. A metric tensor is a special type of bilinear form.

10.1 Metric Tensor Review

Note that since 𝑔𝑖 𝑗 = ®𝑒𝑖 · ®𝑒 𝑗 , and the dot product is commutative, this means the metric tensor is symmetric.
You can think of the metric tensor, 𝑔, as a function 𝑔 : 𝑉 ×𝑉 → ℝ

𝑔
(
®𝑣, ®𝑤

)
↦→ 𝑣 𝑖𝑤 𝑖 𝑔𝑖 𝑗

Multiplying by 𝑎 means you can move the 𝑎 to one of the inputs, but not both:

𝑎𝑔(®𝑣, ®𝑤) = 𝑔
(
®𝑣
)
, 𝑎 ®𝑤) = 𝑔(𝑎®𝑣, ®𝑤)

𝑎𝑔(®𝑣, ®𝑤) ≠ 𝑔(𝑎®𝑣, 𝑎 ®𝑤)
Adding a vector to one of the inputs:([

𝑣1 𝑣2
]
+

[
𝑢1 𝑢2

]) [
𝑔11 𝑔12
𝑔21 𝑔22

] [
𝑤1

𝑤2

]
[
𝑣1 𝑣2

] [
𝑔11 𝑔12
𝑔21 𝑔22

] [
𝑤1

𝑤2

]
+

[
𝑢1 𝑢2

] [
𝑔11 𝑔12
𝑔21 𝑔22

] [
𝑤1

𝑤2

]
(
𝑣 𝑖 + 𝑢 𝑖

)
𝑤 𝑗 𝑔𝑖 𝑗 = 𝑣 𝑖𝑤 𝑗 𝑔𝑖 𝑗 + 𝑢 𝑖𝑤 𝑗 𝑔𝑖 𝑗

=⇒ 𝑔
(
®𝑣 + ®𝑢, ®𝑤

)
= 𝑔(®𝑣, ®𝑤) + 𝑔(®𝑢, ®𝑤)

𝑔
(
®𝑣, ®𝑤 + ®𝑡

)
= 𝑔

(
®𝑣, ®𝑤

)
+ 𝑔

(
®𝑣, ®𝑡

)
𝑔
(
®𝑣 + ®𝑢, ®𝑤 + ®𝑡

)
= 𝑔

(
®𝑣, ®𝑤

)
+ 𝑔

(
®𝑢, ®𝑤

)
+ 𝑔

(
®𝑣, ®𝑤

)
+ 𝑔

(
®𝑣, ®𝑡

)
10.2 Bilinear Forms

Like the metric tensor, bilinear forms are (0, 2)-tensors with the same properties as metric tensors:

ℬ : 𝑉 ×𝑉 → ℝ

ℬ ↦→ 𝑣 𝑖𝑤 𝑗𝐵𝑖 𝑗

𝑎ℬ
(
®𝑣, ®𝑤

)
= ℬ

(
®𝑣, 𝑎 ®𝑤

)
= ℬ

(
𝑎®𝑣, ®𝑤

)
ℬ

(
®𝑣 + ®𝑢, ®𝑤

)
= ℬ

(
®𝑣, ®𝑤

)
+ ℬ

(
®𝑢, ®𝑤

)
25

ℬ
(
®𝑣, ®𝑤 + ®𝑡

)
= ℬ

(
®𝑣, ®𝑤

)
+ ℬ

(
®𝑣, ®𝑤®𝑡

)
with the same transformation rules as the metric tensor:

ℬ̃𝑖 𝑗 = 𝐹𝑘
𝑖 𝐹

𝑙
𝑗ℬ𝑙𝑘

ℬ𝑙𝑘 = 𝐵𝑖
𝑘
𝐵
𝑗

𝑙
ℬ̃𝑖 𝑗

A form is just a function that takes vectors are inputs and output a scalar:

𝑉 ×𝑉 ×𝑉 . . . ×𝑉 → ℝ

Covectors are somtimes called 1-Forms since they are linear forms. If you look at one input of the bilinear
form, it behaves like a covector (scaling and addition work the same way).

10.3 Properties of the Metric Tensor

The following two additional criterion are what makes a metric tensor a special type of bilinear form:

𝑔
(
®𝑣, ®𝑤

)
= 𝑣 𝑖𝑤 𝑗 𝑔𝑖 𝑗 = 𝑣 𝑖𝑤 𝑗 𝑔𝑗𝑖 = 𝑔

(
®𝑤, ®𝑣

)
𝑔
(
®𝑣, ®𝑣

)
= ∥𝑣∥2 ≥ 0

26

Chapter 11

Linear Maps are Vector-Covector Pairs

Recall the abstract definition of the tensor from earlier:

Definition 11.0.1: Tensors as a combination of vectors and convectors combined
using the tensor product

Best definition, but a bit abstract.

This implies that the (0, 2)-tensors (e.g. bilinear forms) and (1, 1)-tensors (e.g. linear maps) can be built
from just (0, 1) and (1, 0) tensors (covectors and contravariant tensors, respectively).

If you multiply a column vector with a row vector, you get scalar. However, if you multiply a row vector
(i.e. covector) with a column vector (i.e. vector), you get a matrix (i.e. a linear map).[

3
−4

] [
2 1

]
=

[
6 3
−8 −4

]
If we try the reverse operation by breaking an arbitrary matrix into a row vector and column vector, then

we find that only some matrices can be broken down.
Pure matrices can be written as the product of column vector and row vector components while impure

matrices cannot.
But with pure matrices, the linear transformation just scales the input vector by a constant, which isn’t

very interesting.
𝐿𝑖
𝑗 = 𝑣 𝑖𝛼 𝑗[
4 400
8 800

]
So we need a different way of constructing a linear map since multiplying the column vector by a row vector

only allows us to create uninteresting linear transformations.
Consider the following products between basis and dual basis vectors.

®𝑒1𝜖1 =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]
®𝑒1𝜖2 =

[
1
0

] [
0 1

]
=

[
0 1
0 0

]
®𝑒2𝜖1 =

[
0
1

] [
1 0

]
=

[
0 0
1 0

]
®𝑒2𝜖2 =

[
0
1

] [
0 1

]
=

[
0 0
0 1

]

27

If we take a linear combination all these products, we can represent any matrix. So these products{
®𝑒1𝜖1 , ®𝑒2𝜖1 , ®𝑒2𝜖1 , ®𝑒2𝜖2

}
form a basis of all matrices that are linear maps from 𝑉 → 𝑉

𝑎

[
1 0
0 0

]
+ 𝑏

[
0 1
0 0

]
+ 𝑐

[
0 0
1 0

]
+ 𝑑

[
0 0
0 1

]
=

[
𝑎 𝑏
𝑐 𝑑

]
Any general linear map, 𝐿 can be written

𝐿 = 𝐿𝑖
𝑗
®𝑒𝑖𝜖 𝑗

Proof: Consider an input vector, ®𝑣, and output vector, ®𝑤

®𝑤 = 𝐿
(
®𝑣
)

®𝑤 = 𝐿𝑖
𝑗
®𝑒𝑖𝜖 𝑗

(
®𝑣
)
= 𝐿𝑖

𝑗
®𝑒𝑖𝜖 𝑗

(
𝑣𝑘 ®𝑒𝑘

)
®𝑤 = 𝐿𝑖

𝑗
®𝑒𝑖𝑣𝑘𝜖 𝑗

(
®𝑒𝑘
)

𝜖 𝑗
(
®𝑒𝑘
)
= 𝛿

𝑗

𝑘

=⇒ ®𝑤 = 𝐿𝑖
𝑗
®𝑒𝑖𝑣𝑘𝛿

𝑗

𝑘

®𝑤 = 𝐿𝑖
𝑗
®𝑒𝑖𝑣 𝑗

®𝑤 = 𝐿𝑖
𝑗𝑣

𝑗 ®𝑒𝑖
This is the same result as before where

𝑤 𝑖 = 𝐿𝑖
𝑗𝑣

𝑗

□

The basis we had before,
{
®𝑒1𝜖1 , ®𝑒2𝜖1 , ®𝑒2𝜖1 , ®𝑒2𝜖2

}
, is not the only basis we can have. We can have a different

basis that can form the set of all linear maps when we take a linear combination.
Additionally, the following term is a tensor product between a vector and covector:

®𝑒𝑖𝜖 𝑗

It can be written using the tensor product symbol, ⊗

®𝑒𝑖 ⊗ 𝜖 𝑗

28

Chapter 12

Bilinear Forms as Covector-Covector
Pairs

Note:-

Note on non-standard notation.
The tensor product between covector-covector pairs will be written as

𝜖𝑖𝜖 𝑗 = 𝜖𝑖 ⊗ 𝜖 𝑗

and the tensor product between vector-covector:

®𝑒𝑖𝜖 𝑗 = ®𝑒𝑖 ⊗ 𝜖 𝑗

12.1 Benefits of Tensor Product Definition for Linear Maps

One of the benefits of looking at tensors as a product between covectors and vectors is that we can rederive the
transformation rules easily for linear maps:

𝐿 = 𝐿𝑘
𝑙
®𝑒𝑘𝜖𝑙

𝐿 = 𝐿𝑘
𝑙

(
𝐵𝑖
𝑘
®̃𝑒𝑖
) (

𝐹 𝑙
𝑗𝜖

𝑗
)

𝐿 =

(
𝐵𝑖
𝑘
𝐿𝑘
𝑙
𝐹 𝑙
𝑗

)
®̃𝑒𝑖𝜖 𝑗

𝐿𝑖
𝑗
= 𝐵𝑖

𝑘
𝐿𝑘
𝑙
𝐹 𝑙
𝑗

We also showed that we derive the output vector components that result from a linear map:

®𝑤 = 𝐿
(
®𝑣
)

®𝑤 = 𝐿𝑖
𝑗
®𝑒𝑖𝜖 𝑗

(
𝑣𝑘 ®𝑒𝑘

)
®𝑤 = 𝐿𝑖

𝑗
®𝑒𝑖𝑣𝑘𝜖 𝑗

(
®𝑒𝑘
)

®𝑤 = 𝐿𝑖
𝑗𝑣

𝑘 ®𝑒𝑖𝛿 𝑗𝑘
®𝑤 = 𝐿𝑖

𝑗𝑣
𝑗 ®𝑒𝑖

Finally, a tensor product allows us to get the dimensions of ”array multiplication.” Previously we showed
that the product of a column vector and row vector forms a matrix/linear map:[

𝑣1

𝑣2

] [
𝛼1 𝛼2

]
=

[
𝑣1𝛼1 𝑣1𝛼2

𝑣2𝛼1 𝑣2𝛼2

]
29

But doing the tensor product gives us a different, but equivalent way of construcing the linear map:[
𝑣1

𝑣2

]
⊗

[
𝛼1 𝛼2

]
=

[[
𝑣1

𝑣2

]
𝛼1

[
𝑣1

𝑣2

]
𝛼2

]
=

[[
𝑣1𝛼1

𝑣2𝛼1

] [
𝑣1𝛼2

𝑣2𝛼2

]]
The result of the tensor product is a row vector of column vectors, which is basically a matrix.

12.2 Bilinear Forms as Covector-Covector Pairs

We will represent a bilinear form as a linear combination of covector-covector pairs:

ℬ = ℬ𝑖 𝑗𝜖
𝑖𝜖 𝑗 = ℬ𝑖 𝑗

(
𝜖𝑖 ⊗ 𝜖 𝑗

)
We choose covector-covector pairs since each covector takes in a vector input, so two covectors will take in

two inputs just like a bilinear form.
Let’s confirm the transformation rules for this new representation of a bilinear form as a linear combination

of covector-covector pairs:
ℬ = ℬ𝑘𝑙𝜖

𝑘𝜖𝑙

ℬ = ℬ𝑙𝑘

(
𝐹𝑘
𝑖 𝜖

𝑖
) (

𝐹 𝑙
𝑗𝜖

𝑗
)

ℬ =

(
𝐹𝑘
𝑖 𝐹

𝑙
𝑗ℬ𝑙𝑘

)
︸ ︷︷ ︸

ℬ̃𝑖 𝑗

𝜖𝑖𝜖 𝑗

ℬ̃𝑖 𝑗 = 𝐹𝑘
𝑖 𝐹

𝑙
𝑗ℬ𝑙𝑘

We can also rederive the formula for computing the bilinear form on two input vectors:

ℬ = ℬ𝑖 𝑗𝜖
𝑖𝜖 𝑗

𝑠 = ℬ
(
®𝑣, ®𝑤

)
= ℬ𝑖 𝑗𝜖

𝑖𝜖 𝑗
(
®𝑣, ®𝑤

)
= ℬ𝑖 𝑗𝜖

𝑖𝜖 𝑗
(
𝑣𝑘 ®𝑒𝑘 , 𝑤 𝑙 ®𝑒𝑙

)
𝑠 = ℬ𝑖 𝑗𝜖

𝑖
(
𝑣𝑘 ®𝑒𝑘

)
𝜖 𝑗

(
𝑤 𝑙 ®𝑒𝑙

)
𝑠 = ℬ𝑖 𝑗𝑣

𝑘𝑤 𝑙𝛿𝑖
𝑘
𝛿𝑘
𝑙
= ℬ𝑖 𝑗𝑣

𝑖𝑤𝑘

Doing the tensor product between two covectors gives us the ”shape” of the bilinear form:[
𝛼1 𝛼2

]
⊗

[
𝛽1 𝛽2

]
=

[[
𝛼1 𝛼2

]
𝛽1

[
𝛼1 𝛼2

]
𝛽2

]
=

[[
𝛼1𝛽1 𝛼2𝛽1

] [
𝛼1𝛽2 𝛼2𝛽2

]]
The tensor product between two covectors gives a row of rows. This might contradict what we got earlier

for a bilinear form, which was a matrix. But recall that we had to write the two vector inputs in an awkward
manner by writing one of the vector inputs as a row vector, when usually we wrote vectors as column vectors:

ℬ
(
®𝑣, ®𝑤

)
=

[
𝑣1 𝑣2

] [
ℬ11 ℬ12

ℬ21 ℬ22

] [
𝑤1

𝑤2

]
but this alternative representation of bilinear forms as a row of rows allows us to write both vector inputs

as column vectors:

ℬ
(
®𝑣, ®𝑤

)
=

[[
ℬ11 ℬ12

] [
ℬ21 ℬ22

]] [
𝑣1

𝑣2

] [
𝑤1

𝑤2

]
=

([
ℬ11 ℬ12

]
𝑣1 +

[
ℬ21 ℬ22

]
𝑣2

) [
𝑤1

𝑤2

]
30

=
[(
ℬ11𝑣

1 + ℬ21𝑣
2
) (

ℬ12𝑣
1 + ℬ22𝑣

2
)] [

𝑤1

𝑤2

]
=

(
ℬ11𝑣

1 + ℬ21𝑣
2
)
𝑤1 +

(
ℬ12𝑣

1 + ℬ22𝑣
2
)
𝑤2

= 𝑤1ℬ11𝑣
1 + 𝑤1ℬ21𝑣

2 + 𝑤2ℬ12𝑣
1 + 𝑤2ℬ22𝑣

2

= 𝐵𝑖 𝑗𝑣
𝑖𝑤 𝑗

31

Chapter 13

Tensor Product vs. Kronecker Product

Both the tensor product and kronecker product are denoted with ⊗

13.1 Definition of Tensor Product

Basis for vector space, 𝑉
®𝑒1 , ®𝑒2 ∈ 𝑉

Basis for dual vector space, 𝑉∗
𝜖1 , 𝜖2 ∈ 𝑉

𝜖𝑖
(
®𝑒 𝑗
)
= 𝛿𝑖 𝑗

The tensor product takes two tensors and produces a new tensor.

®𝑒𝑖 ⊗ 𝜖 𝑗

In the above case the tensor product takes a vector and covector to produce a linear map:

Proof: (
®𝑒𝑖 ⊗ 𝜖 𝑗

) (
®𝑣
)

= ®𝑒𝑖 ⊗
(
𝜖 𝑗

(
®𝑣
))

= ®𝑒𝑖 ⊗
(
𝜖 𝑗

(
𝑣𝑘 ®𝑒𝑘

))
= ®𝑒𝑖𝑣𝑘 ⊗

(
𝜖 𝑗

(
®𝑒𝑘
))

= ®𝑒𝑖𝑣𝑘𝛿
𝑗

𝑘

= ®𝑒𝑖𝑣 𝑗

Thus the tensor product between ®𝑒𝑖 and 𝜖 𝑗 is a linear map since it can take vector input and produces a
vector output

□

32

13.2 Kronecker Product

The kronecker product operates on two arrays/matrices, in this case a column vector and row vector:[
𝑣1

𝑣2

]
⊗

[
𝛼1 𝛼2

]
=

[[
𝑣1

𝑣2

]
𝛼1

[
𝑣1

𝑣2

]
𝛼2

]
=

[[
𝑣1𝛼1

𝑣2𝛼1

] [
𝑣1𝛼2

𝑣2𝛼2

]]
The kronecker product between the above and a column vector, ®𝑤:

=

[[
𝑣1𝛼1

𝑣2𝛼1

] [
𝑣1𝛼2

𝑣2𝛼2

]]
⊗

[
𝑤1

𝑤2

]

=





𝑣1𝛼1

𝑣2𝛼1



𝑣1𝛼2

𝑣2𝛼2



𝑤1



𝑣1𝛼1

𝑣2𝛼1



𝑣1𝛼2

𝑣2𝛼2



𝑤2



=





𝑤1𝑣1𝛼1

𝑤1𝑣2𝛼1



𝑤1𝑣1𝛼2

𝑤1𝑣2𝛼2





𝑤2𝑣1𝛼1

𝑤2𝑣2𝛼1



𝑤2𝑣1𝛼2

𝑤2𝑣2𝛼2





13.3 Relation between Tensor Product and Kronecker Product

Tensor Products act on abstract, algebraic tensors while the kronecker product acts on arrays (which in turn
might represent tensors).

Tensor product:

®𝑣 ⊗ 𝛼 =

(
𝑣 𝑖 ®𝑒𝑖

)
⊗

(
𝛼 𝑗𝜖

𝑗
)

= 𝑣 𝑖𝛼 𝑗

(
®𝑒𝑖 ⊗ ®𝑒 𝑗

)
Remember that the quantity, ®𝑒𝑖 ⊗ ®𝑒 𝑗 represents a sort of unit linear map, so the scalar quantity, 𝑣 𝑖𝛼 𝑗

represents the entries of some matrix.
Doing the kronecker product gives: [

𝑣1

𝑣2

]
⊗

[
𝛼1 𝛼2

]
=

[[
𝑣1𝛼1

𝑣2𝛼1

] [
𝑣1𝛼2

𝑣2𝛼2

]]
the kronecker product basically gives an array of arrays which is basically a matrix. We see that components,

𝑣 𝑖𝛼 𝑗 are the entries that the kronecker product gives. Thus the tensor product and kronecker product are similar,
but one acts on the abstract tensor while the other operates on the arrays.

33

Chapter 14

Tensors as General Vector/Covector
Combinations

14.1 Review of Tensors Written using Tensor Product

Linear Maps
𝐿 = 𝐿𝑖

𝑗
®𝑒𝑖𝜖 𝑗 = 𝐿𝑖

𝑗
®𝑒𝑖 ⊗ 𝜖 𝑗

Bilinear Forms:
ℬ = ℬ𝑖 𝑗𝜖

𝑖𝜖 𝑗 = ℬ𝑖 𝑗𝜖
𝑖 ⊗ 𝜖 𝑗

From these definitions, we can rederive the transformation rules, multiplication formulas, and array shapes.

14.2 New Tensors

Let’s define some new tensors:
𝐷 = 𝐷𝑎𝑏 ®𝑒𝑎 ®𝑒𝑏 (2, 0) − tensor

𝑄 = 𝑄 𝑖
𝑗𝑘
®𝑒𝑖𝜖 𝑗𝜖𝑘 (1, 2) − tensor

14.2.1 What are the transformation rules?

For the 𝐷 tensor
𝐷 = 𝐷𝑎𝑏 ®𝑒𝑎 ®𝑒𝑏

𝐷 = 𝐷𝑎𝑏
(
𝐵𝑖
𝑎 ®̃𝑒𝑖

) (
𝐵
𝑗

𝑏
®̃𝑒 𝑗
)

𝐷 =

(
𝐷𝑎𝑏𝐵𝑖

𝑎𝐵
𝑗

𝑏

)
®̃𝑒𝑖 ®̃𝑒 𝑗

𝐷̃ 𝑖 𝑗 = 𝐷𝑎𝑏𝐵𝑖
𝑎𝐵

𝑗

𝑏

Similarly,

𝐷𝑎𝑏 = 𝐷̃ 𝑖 𝑗𝐹𝑎
𝑖 𝐹

𝑏
𝑗

For the 𝑄 tensor
𝑄 = 𝑄𝑎

𝑏𝑐
®𝑒𝑎𝜖𝑏𝜖𝑐

𝑄 = 𝑄𝑎
𝑏𝑐

(
𝐵𝑖
𝑎 ®̃𝑒𝑖

) (
𝐹𝑏
𝑗 𝜖

𝑗
) (

𝐹𝑐
𝑘
𝜖𝑘

)
𝑄 =

(
𝑄𝑎

𝑏𝑐
𝐵𝑖
𝑎𝐹

𝑏
𝑗 𝐹

𝑐
𝑘

)
®̃𝑒𝑖𝜖 𝑗𝜖𝑘

𝑄 𝑖
𝑗𝑘
= 𝑄𝑎

𝑏𝑐
𝐵𝑖
𝑎𝐹

𝑏
𝑗 𝐹

𝑐
𝑘

Similarly,

𝑄𝑎
𝑏𝑐

= 𝑄 𝑖
𝑗𝑘
𝐹𝑎
𝑖 𝐵

𝑗

𝑏
𝐵𝑘
𝑐

34

14.2.2 What is the Multiplication Rule for 𝑄(𝐷)
Writing 𝑄(𝐷) is ambiguous, since there are many ways of applying the covectors to the input vectors:

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
®𝑒𝑖𝜖 𝑗𝜖𝑘

(
𝐷𝑎𝑏 ®𝑒𝑎 ®𝑒𝑏

)
Let the output of 𝑄(𝐷) be a vector, ®𝑤 :

®𝑤 = 𝑄(𝐷) = 𝑤 𝑖 ®𝑒𝑖

Case 𝑤 𝑖 = 𝑄 𝑖
𝑗𝑘
𝐷 𝑗𝑘:

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
𝐷𝑎𝑏 ®𝑒𝑖 𝜖 𝑗

(
®𝑒𝑎
)
𝜖𝑘

(
®𝑒𝑏
)

= 𝑄 𝑖
𝑗𝑘
𝐷𝑎𝑏 ®𝑒𝑖𝛿 𝑗𝑎𝛿𝑘𝑏

= 𝑄 𝑖
𝑗𝑘
𝐷 𝑗𝑘 ®𝑒𝑖

Case 𝑤 𝑖 = 𝑄 𝑖
𝑗𝑘
𝐷𝑘 𝑗:

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
𝐷𝑎𝑏 ®𝑒𝑖 𝜖 𝑗

(
®𝑒𝑏
)
𝜖𝑘

(
®𝑒𝑎
)

= 𝑄 𝑖
𝑗𝑘
𝐷𝑎𝑏 ®𝑒𝑖𝛿 𝑗𝑏𝛿

𝑘
𝑎

= 𝑄 𝑖
𝑗𝑘
𝐷𝑘 𝑗 ®𝑒𝑖

Case 𝑤 𝑖 = 𝑄 𝑖
𝑗𝑘
𝐷𝑘𝑏 ®𝑒𝑏𝜖 𝑗:

Apply only one of the covectors to one of the input vectors:

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
𝐷𝑎𝑏 ®𝑒𝑖𝜖 𝑗 ®𝑒𝑏 𝜖𝑘

(
®𝑒𝑎
)

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
𝐷𝑎𝑏 ®𝑒𝑖𝜖 𝑗 ®𝑒𝑏𝛿𝑘𝑎

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
𝐷𝑘𝑏 ®𝑒𝑖𝜖 𝑗 ®𝑒𝑏

Case 𝑤 𝑖 = 𝑄 𝑖
𝑗𝑘
𝐷𝑎 𝑗 ®𝑒𝑎𝜖𝑘:

Apply only one of the covectors to one of the input vectors:

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
𝐷𝑎𝑏 ®𝑒𝑖𝜖𝑘 ®𝑒𝑎 𝜖 𝑗

(
®𝑒𝑏
)

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
𝐷𝑎𝑏 ®𝑒𝑖𝜖𝑘 ®𝑒𝑎𝛿 𝑗𝑏

𝑄(𝐷) = 𝑄 𝑖
𝑗𝑘
𝐷𝑎 𝑗 ®𝑒𝑖𝜖𝑘 ®𝑒𝑎

There are still more valid ways to do 𝑄(𝐷) as well. Note that in the case of the linear map, there was only
one covector acting on one vector input, so there was only one way to write out the multiplication, but this is not
the case with 𝑄(𝐷).

35

14.2.3 What are the array shapes for 𝐷 and 𝑄

Shape of Q [
𝑣1

𝑣1

]
⊗

[
𝛼1 𝛼2

]
⊗

[
𝛽1 𝛽2

]
=

[[
𝑣1𝛼1

𝑣2𝛼1

] [
𝑣1𝛼2

𝑣2𝛼2

]]
⊗

[
𝛽1 𝛽2

]
=

[
𝛽1

[[
𝑣1𝛼1

𝑣2𝛼1

] [
𝑣1𝛼2

𝑣2𝛼2

]]
𝛽2

[[
𝑣1𝛼1

𝑣2𝛼1

] [
𝑣1𝛼2

𝑣2𝛼2

]]]
=

[[[
𝛽1𝑣1𝛼1

𝛽1𝑣2𝛼1

] [
𝛽1𝑣1𝛼2

𝛽1𝑣2𝛼2

]] [[
𝛽2𝑣1𝛼1

𝛽2𝑣2𝛼1

] [
𝛽2𝑣1𝛼2

𝛽2𝑣2𝛼2

]]]
®𝑒𝑖𝜖 𝑗𝜖𝑘

This is a row of row of column vectors. This can be visualized as a 3d cube, but this causes us to lose
information about what type of tensor we have. Since we have 2 row aspects and 1 column aspect, we have a
(2, 0)-tensor

Shape of D(Q)

As shown previously, there is not just one way to interpret 𝐷(𝑄), so there isn’t a general way to find the shape
of 𝐷(𝑄) with array multiplication. With higher types of tensors, array definition is less useful and it’s better to
just use einstein notation.

36

Chapter 15

Tensor Product Spaces

Let 𝛼 and 𝛽 be covectors. The tensor product has the following rules:
Scaling:

𝑛
(
®𝑣𝛼

)
=

(
𝑛®𝑣𝛼

)
= ®𝑣 (𝑛𝛼)

Adding:
®𝑣 (𝛼 + 𝛽) = ®𝑣𝛼 + ®𝑣𝛽(
®𝑣 + ®𝑤

)
𝛼 = ®𝑣𝛼 + ®𝑤𝛼

Or for general tensor products between vectors, the above 3 rules can be written as:

𝑛
(
®𝑎®𝑏®𝑐®𝑑

)
= ®𝑎

(
𝑛®𝑏

)
®𝑐®𝑑 = ®𝑎®𝑏

(
𝑛®𝑐

) ®𝑑 = ®𝑎®𝑏®𝑐
(
𝑛®𝑑

)
®𝑎
(
®𝑏 + ®𝑐

)
= ®𝑎®𝑏 + ®𝑎®𝑐(

®𝑎 + ®𝑏
)
®𝑐 = ®𝑎®𝑐 + ®𝑏®𝑐

where ®𝑣 ®𝑤 = ®𝑣 ⊗ ®𝑤
Since we have these scaling and addition rules for tensors, this means that tensors form a vector space.
Review of vector spaces we know:

®𝑣, ®𝑤, ®𝑒1 , ®𝑒2 ∈ 𝑉

𝛼, 𝛽, 𝜖1 , 𝜖2 ∈ 𝑉∗

This implies that
®𝑣𝛼, ®𝑤𝛽, 𝐿𝑖

𝑗
®𝑒𝑖𝜖 𝑗 ∈ 𝑉 ⊗ 𝑉∗

®𝑎®𝑏®𝑐 ∈ 𝑉 ⊗ 𝑉 ⊗ 𝑉

Note that this symbol, ⊗, is different that the kronecker product and the tensor product between vectors.
The above use of ⊗ is the tensor product of Vector Spaces and not ordinary vectors/covectors.

Table 15.1: Types of tensor elements that are an element of 𝑉 ⊗ 𝑉∗

𝐿𝑖
𝑗
®𝑒𝑖𝜖 𝑗 ∈ 𝑉 ⊗ 𝑉∗ (1, 1)-Tensors

𝐿𝑖
𝑗
𝑣 𝑗 = 𝑤 𝑖 𝑉 → 𝑉

𝐿𝑖
𝑗
𝛼𝑖 = 𝛽 𝑗 𝑉∗ → 𝑉∗

𝐿𝑖
𝑗
𝑣 𝑗𝛼𝑖 = 𝑠 𝑉 ×𝑉∗ → ℝ

𝐿𝑖
𝑗
𝛼𝑖𝑣

𝑗 = 𝑠 𝑉∗ ×𝑉 → ℝ

37

Table 15.2: Types of tensor elements that are an element of 𝑉∗ ⊗ 𝑉∗. Note that the last two entries will have
different vector spaces, 𝑉, for the input and different dual spaces, 𝑉∗ since they sum over different indices.

ℬ𝑖 𝑗𝜖𝑖𝜖𝑖 ∈ 𝑉∗ ⊗ 𝑉∗ (0, 2)-Tensors

ℬ𝑖 𝑗𝑣
𝑖𝑤 𝑖 = 𝑠 𝑉 ×𝑉 → ℝ

ℬ𝑖 𝑗𝑣
𝑖 = 𝛼 𝑗 𝑉 → 𝑉∗

ℬ𝑖 𝑗𝑣
𝑗 = 𝛽𝑖 𝑉 → 𝑉∗

Table 15.3: Types of tensor elements that are an element of 𝑉∗ ⊗ 𝑉 ⊗ 𝑉∗ ⊗ 𝑉∗. 𝑇 is a Multilinear Map

𝑇 ∈ 𝑉∗ ⊗ 𝑉 ⊗ 𝑉∗ ⊗ 𝑉∗ 𝑇 = 𝑇
𝑗

𝑖 𝑘𝑙
𝑣 𝑖𝛼 𝑗𝑤

𝑘𝑢 𝑙

𝑇 = 𝑇
𝑗

𝑖 𝑘𝑙
𝑣 𝑖𝛼 𝑗𝑤

𝑘𝑢 𝑙 𝑉 ×𝑉∗ ×𝑉 ×𝑉 → ℝ

𝑇 = 𝑇
𝑗

𝑖 𝑘𝑙
𝑈 𝑖𝑘𝑙𝛽 𝑗 (𝑉 ⊗ 𝑉 ⊗ 𝑉) ×𝑉∗ → ℝ

𝑇 = 𝑇
𝑗

𝑖 𝑘𝑙
𝛼 𝑗𝐷

𝑘𝑙 𝑉∗ × (𝑉 ⊗ 𝑉) → 𝑉∗

𝑇 = 𝑇
𝑗

𝑖 𝑘𝑙
𝐿𝑖
𝑗

(𝑉 ⊗ 𝑉∗) → (𝑉∗ ⊗ 𝑉∗)

Definition 15.0.1: Multilinear Map

A function that is linear when all inputs except one are held constant. All tensors are multilinear maps.

𝑇 (𝑥1 , 𝑥2 , . . . , 𝑛𝑥𝑖 , . . . , 𝑥𝑛) = 𝑛𝑇 (𝑥1 , 𝑥2 , . . . , 𝑥𝑖 , . . . , 𝑥𝑛)
𝑇 (𝑥1 , 𝑥2 , . . . , 𝑥𝑖 + 𝑦𝑖 , . . . , 𝑥𝑛) = 𝑇 (𝑥1 , 𝑥2 , . . . , 𝑥𝑖 , . . . , 𝑥𝑛) + 𝑇 (𝑥1 , 𝑥2 , . . . , 𝑦𝑖 , . . . , 𝑥𝑛)

38

Chapter 16

Raising/Lowering Indexes

We want a way to raise or lower indexes:

𝑇𝑖 ↔ 𝑇 𝑖

We want a correspondance between vectors in 𝑉 and 𝑉∗ (homomorphism). At first we might pair ®𝑒𝑖 with
𝜖𝑖

®𝑣 = 𝑣1 ®𝑒1 + 𝑣2 ®𝑒2 . . .
𝛼 = 𝑣1𝜖1 + 𝑣2𝜖2 . . .

However, this doesn’t work when we do a change in basis. When we scale the basis vector by a constant, the
covector basis scales in the opposite way, because basis vectors are covariant while basis covectors are contravariant.

Introducing a basis was what made this not work, so the correct solution will not use a basis. We can take
the dot product between a vector in 𝑉 and another vector to get an element of 𝑉∗

®𝑣 · ∈ 𝑉∗

This is true since the above expression takes in one vector and outputs a scalar, just like a covector. The
dot product is also linear:

®𝑣 ·
(
𝑛®𝑎

)
= 𝑛(®𝑣 · ®𝑎)

®𝑣 ·
(
®𝑎 + ®𝑏

)
= ®𝑣 · ®𝑎 + ®𝑣 · ®𝑏

If ®𝑣 · ∈ 𝑉∗, then we can represent it as a linear combination of dual basis vectors:

®𝑣 · = 𝑥𝑖𝜖
𝑖

Remember that
®𝑣 · ®𝑤 = 𝑔(®𝑣, ®𝑤) = 𝑔𝑖 𝑗𝑣

𝑖𝑤 𝑖

Similarly,

®𝑣 · = 𝑔(®𝑣,) = 𝑔𝑖𝑘𝜖
𝑖𝜖𝑘

(
𝑣 𝑗 ®𝑒 𝑗

)
= 𝑔𝑖𝑘𝑣

𝑗𝜖𝑖𝛿𝑘𝑗 = 𝑔𝑖 𝑗𝑣
𝑗𝜖𝑖

This means
𝑥𝑖 = 𝑔𝑖 𝑗𝑣

𝑗

Note that the above equation allows us to convert between subscripts and superscripts using the metric tensor.

Summary

®𝑣 = 𝑣 𝑗 ®𝑒 𝑗 = 𝑣 𝑗 ®̃𝑒 𝑗 ∈ 𝑉

®𝑣 · = 𝑥𝑖𝜖
𝑖 = 𝑥𝑖𝜖𝑖 ∈ 𝑉∗

39

𝑥𝑖 = 𝑔𝑖 𝑗𝑣
𝑗 𝑥𝑖 = 𝑔̃𝑖 𝑗𝑣 𝑗

𝑣 𝑖 ≠ 𝑥𝑖 in general. They are only equal when 𝑔𝑖 𝑗 = 𝛿𝑖 𝑗 , which is when we have an orthonormal coordinate
system.

We usually think of the metric tensor as 𝑔 : 𝑉 ×𝑉 → ℝ, but we have used it here as 𝑔 : 𝑉 → 𝑉∗. Now we
need to do the reverse and go from a covector to a vector.

𝑔 ∈ 𝑉∗ ⊗ 𝑉∗

𝔤 ∈ 𝑉 ⊗ 𝑉

We can use the ”inverse” metric tensor, 𝔤 : 𝑉∗ → 𝑉, to find a homomorphism between a covector and a
vector.

𝔤𝑘𝑖 𝑔𝑖 𝑗 = 𝛿𝑘𝑗

𝑥𝑖 = 𝑔𝑖 𝑗𝑣
𝑗

𝔤𝑘𝑖𝑥𝑖 = 𝔤𝑘𝑖 𝑔𝑖 𝑗𝑣
𝑗

𝔤𝑘𝑖𝑥𝑖 = 𝛿𝑘𝑗 𝑣
𝑗

𝔤𝑘𝑖𝑥𝑖 = 𝑣𝑘

We can use the metric tensor (sometimes called the covariant metric tensor) to lower indexes, while the
inverse metric tensor (contravariant metric tensor) can be used to lower raise indexes.

Example 16.0.1 (Raising/Lowering)

𝑄 ∈ 𝑉 ⊗ 𝑉∗ ⊗ 𝑉∗

𝑄 = 𝑄 𝑖
𝑗𝑘
®𝑒𝑖𝜖 𝑗𝜖𝑘

𝑄′ = 𝑄 𝑖
𝑗𝑘
𝔤𝑗𝑥 ®𝑒𝑖𝜖 𝑗𝜖𝑘 = 𝑄 𝑖𝑥

𝑘
®𝑒𝑖𝜖𝑥𝜖𝑘

𝑄′ ∈ 𝑉 ⊗ 𝑉 ⊗ 𝑉∗

When we convert between a vector, ®𝑣, to a covector, 𝑥 we have

𝑥 = 𝑔(®𝑣,)

𝑥𝑖 = 𝑔𝑖 𝑗𝑣
𝑗

We can also use a different notation, ♭:
𝑥 = 𝑔(®𝑣,) = ♭®𝑣

Conversely, converting from a covector to a vector requires:

®𝑣 = 𝔤 (𝑥)

𝑣𝑘 = 𝔤𝑘𝑖𝑥𝑖

®𝑣 = 𝔤 (𝑥) = ♯𝑥

40

	Contents
	0 Tensor Definitions
	1 Forward and Backwards Transformations
	1.1 Forward Transformation
	1.2 Backwards Transformation
	1.3 Generalizing to N-Dimensions

	2 Vector Definition
	3 Vector Transformation Rules
	3.1 Generalization to n-dimensions
	3.2 Notation

	4 What are covectors?
	4.1 Visualizing Covectors

	5 Covector Components
	6 Convector Transformation Rules
	7 Linear Maps
	8 Linear Map Transformation Rules
	9 The Metric Tensor
	9.1 Lengths using the Metric Tensor
	9.2 Angles using the Metric Tensor
	9.3 How Metric Tensor Components Transform with a Change in Coordinates
	9.4 Confirming Length Stays Constant
	9.5 Summary
	9.6 Revisiting the Coordinate Tensor Definition

	10 Bilinear Forms
	10.1 Metric Tensor Review
	10.2 Bilinear Forms
	10.3 Properties of the Metric Tensor

	11 Linear Maps are Vector-Covector Pairs
	12 Bilinear Forms as Covector-Covector Pairs
	12.1 Benefits of Tensor Product Definition for Linear Maps
	12.2 Bilinear Forms as Covector-Covector Pairs

	13 Tensor Product vs. Kronecker Product
	13.1 Definition of Tensor Product
	13.2 Kronecker Product
	13.3 Relation between Tensor Product and Kronecker Product

	14 Tensors as General Vector/Covector Combinations
	14.1 Review of Tensors Written using Tensor Product
	14.2 New Tensors
	14.2.1 What are the transformation rules?
	14.2.2 What is the Multiplication Rule for Q(D)
	14.2.3 What are the array shapes for D and Q

	15 Tensor Product Spaces
	16 Raising/Lowering Indexes

