

Table of Contents
Preface. 1

A note on contributions:. 1

Cover image. 1

1. Introduction. 2

1.1. A guide to Rust from a node.js developer’s perspective.. 2

1.2. Wait, why does anyone need to learn anything but JavaScript? . 2

1.3. Why Rust?. 2

1.4. How to use this book . 2

2. Installing rust with rustup . 4

2.1. rust-toolchain.toml . 6

2.2. Next steps . 6

3. From npm to cargo. 7

3.1. Introduction . 7

3.2. npm to cargo mapping . 7

3.3. Wrap-up . 10

4. Setting up Visual Studio Code . 12

4.1. Introduction. 12

4.2. Core language setup. 12

4.3. Additional extensions . 14

4.4. Wrap-up . 16

5. Hello World (and your first two WTFs). 17

5.1. Introduction. 17

5.2. Strings WTF #1 . 18

5.3. Strings WTF #2 . 19

5.4. Wrap-up . 20

6. Borrowing & Ownership. 21

6.1. Introduction. 21

6.2. Wrap-up . 28

7. Strings, Part 1 . 29

7.1. Introduction. 29

7.2. Additional links. 30

7.3. Rust strings in a nutshell . 30

7.4. Wrap-up . 34

8. Language Part 1: Syntax & Differences. 35

8.1. Introduction. 35

8.2. Wrap-up . 38

9. From objects and classes to HashMaps and structs . 40

9.1. Introduction. 40

9.2. From Map to HashMap . 41
9.3. From objects and classes to structs . 43

9.4. Wrap-up . 46

10. Enums and Methods . 47

10.1. Introduction. 47

10.2. Wrap-up . 58

11. From Mixins to Traits . 59

11.1. Introduction. 59

11.2. Wrap-up . 65

12. The Module System . 66

12.1. Introduction. 66

12.2. "How do I import a file in Rust?" . 66

12.3. "How do I import functions from other modules?" . 66

12.4. The pieces of the Rust Module System . 67

12.5. Wrap-up . 70

13. Strings, Part 2 . 71

13.1. Introduction. 71

13.2. Should I use &str or String for my function arguments? . 71

13.3. Wrap-up . 74

14. Demystifying Results & Options . 75

14.1. Introduction. 75

14.2. Option recap . 75

14.3. Result. 76

14.4. The problem with .unwrap() . 77

14.5. Wrap-up . 82

15. Managing Errors . 83

15.1. Introduction. 83

15.2. Wrap-up . 93

16. Closures . 94

16.1. Introduction. 94

16.2. Closure syntax comparison . 94

16.3. Wrap-up . 99

17. Lifetimes, References, and 'static . 100

17.1. Introduction. 100

17.2. Lifetimes vs lifetime annotations. 100

17.3. Lifetime elision . 101

17.4. The 'static lifetime. 101

17.5. Wrap-up . 105

18. Arrays, Loops, and Iterators . 106

18.1. Introduction. 106

18.2. Recap: vec![], Vec, and VecDeque . 106

18.3. Loops . 106

18.4. Labels, break, continue. 110

18.5. break & loop expressions . 110

18.6. Intro to Rust Iterators . 111

18.7. Translating Array.prototype methods . 113

18.8. Wrap-up . 117

19. Async in Rust. 118

19.1. Introduction. 118

19.2. Wrap-up . 123

20. Tests and Project Structure . 124

20.1. Introduction. 124

20.2. Creating your workspace . 124

20.3. Starting a library . 124

20.4. Creating a CLI that uses your library . 128

20.5. Running your CLI from your workspace . 129

20.6. Additional reading . 130

20.7. Wrap-up . 130

21. CLI Arguments and Logging . 131

21.1. Introduction. 131

21.2. Adding debug logs . 131

21.3. Adding CLI Arguments . 133

21.4. Putting it all together. 136

21.5. Additional reading . 136

21.6. Wrap-up . 136

22. Building and Running WebAssembly . 137

22.1. Introduction. 137

22.2. Building a WebAssembly module. 137

22.3. Additional reading . 145

22.4. Wrap-up . 145

23. Handling JSON . 146

23.1. Introduction. 146

23.2. Enter serde . 146

23.3. Extending our CLI . 147

23.4. Representing arbitrary JSON. 148

23.5. Additional reading . 151

23.6. Wrap-up . 151

24. Cheating The Borrow Checker . 152

24.1. Introduction. 152

24.2. Mutex & RwLock . 156

24.3. Async . 157

24.4. Additional reading . 158

24.5. Wrap-up . 158

25. Crates & Valuable Tools . 159

25.1. Introduction. 159

25.2. Crates. 159

25.3. Additional reading . 160

25.4. Wrap-up . 160

Preface
This book started as a series of posts on vino.dev’s blog during December 2021. The series generated
more interest than we ever expected and it started to take on a life of its own. Since then we’ve had
numerous publishers and volunteers looking to extend this series and its reach. We converted the
blog posts to asciidoc and put together the scaffolding necessary to turn it into an e-book. The
book’s source files and all the project’s source code are open source under Creative Commons
licenses. You are welcome and encouraged to submit contributions, fixed, translations, or new
chapters as you see fit.

Thank you everyone who contributed, provided feedback, and otherwise helped make the effort
worthwhile. Special thanks go to my wife Kate Lane and my children Finn, Norah, and Elliot who
tolerated me writing all day, every day over the 2021 holidays.

A note on contributions:
The spirit of this book and its original posts can be summed up as "Get to the point. Fast." The
JavaScript and node.js community is top-notch when it comes to practical examples and working
example code. I missed that when I started working with Rust. I began the original series to help
those coming down this same path and I’d like to maintain that spirit as much as possible. If the
book is outright wrong, then please contribute fixes. Otherwise, please err on the side of "gets the
point across" vs 100% technical accuracy.

Cover image
Photo by Jay Heike on Unsplash

1

https://vino.dev/blog
https://unsplash.com/@jayrheike?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/rust?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

1. Introduction

1.1. A guide to Rust from a node.js developer’s
perspective.
Each chapter will take concepts you know in JavaScript and node.js and translate them to their Rust
counterparts. The first chapters start with the basics, like getting set up with Rust via a tool similar
to nvm (rustup), using the package manager (cargo), and setting up VS Code. Later chapters go over
language gotchas, how to perform common JavaScript tasks in Rust, and we’ll finish up by touching
on solid dependencies to start adding to your projectss.

1.2. Wait, why does anyone need to learn anything but
JavaScript?
I love JavaScript. I’ve been coding JavaScript it since I first saw it in Netscape. I’ve written more
lines of JavaScript than any other language. I’m a fan, but I know where the language falls short. It’s
fast, but not that fast. It’s easy to write, but easy to screw up. Large projects become unwieldy fast.
TypeScript helps scale JavaScript but it adds its own complexity and still doesn’t make anything
faster. Server-side JavaScript relies on node.js which is common but not ubiquitous. If you want to
distribute something self-contained, there aren’t great answers.

When you start stretching passed what JavaScript is best at, it’s helpful to have another language to
turn to.

1.3. Why Rust?
You could use C, C++, C#, Go, Java, Kotlin, Haskell or a hundred others. Rust is notoriously difficult
even for system programmers to get into. Why bother with Rust? Think about your languages as
tools in your toolbox. When you fill your toolbox, you don’t want 10 tools that solve similar
problems. You want tools that complement each other and give you the ability to fix everything an
anything. You already have JavaScript, a developer super-tool. It’s a high level language that’s good
enough to run just about everything everywhere. If you’re picking up a new language, you might as
well go to the extreme and pick a no-compromise, low-level powerhouse.

Also, WebAssembly.

Rust’s tooling and support for WebAssembly is better than everything else out there. You can
rewrite CPU-heavy JavaScript logic into Rust and run it as WebAssembly. Which basically makes
you a superhero. With JavaScript and Rust, there’s nothing you can’t handle.

1.4. How to use this book
This book is not a deep, comprehensive Rust tutorial. It’s meant to bootstrap experienced
programmers into Rust. We’ll take common node.js workflows and idiomatic JavaScript and
TypeScript and map them to their Rust counterparts. This book balances technical accuracy with

2

readability. It errs on the side of "gets the point across" vs being 100% correct. When something is
glossed over, we’ll add links for those looking to dive deeper.

3

2. Installing rust with rustup
nvm (or nvm-windows) are indispensible tools. They manage seamlessly installing and switching
between versions of node.js on the same system.

The equivalent in Rust’s world is rustup.

Rustup manages your Rust installation as well as additonal targets (like WebAssembly) and core
tools like cargo (Rust’s npm), clippy (Rust’s eslint), rustfmt (Rust’s prettier).

After installing rustup, run it without any subcommands and explore what it has to offer.

4

https://github.com/nvm-sh/nvm
https://github.com/coreybutler/nvm-windows
https://rustup.rs/

$ rustup
rustup 1.24.3 (ce5817a94 2021-05-31)
The Rust toolchain installer

USAGE:
 rustup [FLAGS] [+toolchain] <SUBCOMMAND>

FLAGS:
 -v, --verbose Enable verbose output
 -q, --quiet Disable progress output
 -h, --help Prints help information
 -V, --version Prints version information

ARGS:
 <+toolchain> release channel (e.g. +stable) or custom toolchain to set override

SUBCOMMANDS:
 show Show the active and installed toolchains or profiles
 update Update Rust toolchains and rustup
 check Check for updates to Rust toolchains and rustup
 default Set the default toolchain
 toolchain Modify or query the installed toolchains
 target Modify a toolchain's supported targets
 component Modify a toolchain's installed components
 override Modify directory toolchain overrides
 run Run a command with an environment configured for a given toolchain
 which Display which binary will be run for a given command
 doc Open the documentation for the current toolchain
 man View the man page for a given command
 self Modify the rustup installation
 set Alter rustup settings
 completions Generate tab-completion scripts for your shell
 help Prints this message or the help of the given subcommand(s)

DISCUSSION:
 Rustup installs The Rust Programming Language from the official
 release channels, enabling you to easily switch between stable,
 beta, and nightly compilers and keep them updated. It makes
 cross-compiling simpler with binary builds of the standard library
 for common platforms.

 If you are new to Rust consider running `rustup doc --book` to
 learn Rust.

rustup show will show you what is currently installed.

rustup completions will help you enable CLI autocompletion for tools like rustup and cargo.

rustup component lets you add additonal components.

5

rustup update will update you to the latest version.

rustup install stable|nightly|1.57 will install a specific version or the latest stable/nightly
versions.

By default, rustup will install the latest version of rust and cargo and you should be ready to go
right away. Give it a shot with.

$ rustc --version
rustc 1.57.0 (59eed8a2a 2021-11-01)

$ cargo --version
cargo 1.56.0 (4ed5d137b 2021-10-04)

If it doesn’t work, you may need to restart your shell to update your PATH.

2.1. rust-toolchain.toml
Specifying your toolchain with rustup is easy enough. As you get deeper, you may get into
configurations where different projects require different toolchains or Rust versions. That’s where
rust-toolchain.toml comes into play. Specify your project’s required toolchain, targets, and
supporting tools here so that cargo and rustup can work automagically, e.g.

`toml {title = "rust-toolchain.toml"}

channel = "1.56.0" components = ["rustfmt", "clippy"] `

2.2. Next steps
Next up we’ll take a look at cargo, Rust’s npm and the additional tools that will help reach parity with
common workflows: Chapter 2: From npm to cargo.

6

./chapter-2-cargo.adoc

3. From npm to cargo

3.1. Introduction
cargo is Rust’s package manager and operates similarly to npm from node’s universe. Cargo
downloads dependiencs from crates.io by default. You can register an account and publish modules
just as you would on npmjs.com. With some minor mapping you can translate almost everything
you’re used to in node to Rust.

3.2. npm to cargo mapping

Project settings file

In node.js you have package.json. In Rust you have Cargo.toml.

Cargo’s manifest format is toml rather than the JSON you’re used to with npm’s package.json. Cargo
uses the Cargo.toml file to know what dependencies to download, how to run tests, and how to build
your projects (among other things).

Bootstrapping new projects

In node.js it’s npm init. In Rust you have cargo init and cargo new

cargo init will initialize the current directory. cargo new initializes projects in a new directory.

Installing dependencies

In node.js it’s npm install [dep]. In Rust you can use cargo add [dep] if you install cargo-edit first.
Note: not cargo-add, just in case you come across it.

$ cargo install cargo-edit

This gives you four new commands: add, rm, upgrade, and set-version

Installing tools globally

In node.js it’s npm install --global. In Rust you have cargo install.

Downloading, building, and placing executables in cargo’s bin directory is handled with cargo
install. If you installed rust via rustup then these are placed in a local user directory (usually
~/.cargo/bin). You don’t need to sudo cargo install anything.

Running tests

In node.js it’s npm test. In Rust you have cargo test.

Cargo automates the running of unit tests, integration tests, and document tests through the cargo
test command. There’s a lot to Rust testing that we’ll get to in later chapters.

7

https://crates.io
https://npmjs.com
https://toml.io/en/
https://doc.rust-lang.org/cargo/reference/manifest.html
https://github.com/killercup/cargo-edit

Publishing modules

In node.js it’s npm publish. In Rust you have cargo publish.

Easy peasy. You’ll need to have an account on crates.io and set up the authentication details but
cargo will help you there.

Running tasks

In node.js it’s npm run xxx. In Rust, it depends… You have commands for common tasks but the rest
is up to you.

In node.js you might use npm run start to run your server or executable. In Rust you would use
cargo run. You can even use cargo run --example xxx to automatically run example code.

In node.js you might use npm run benchmarks to profile your code. In Rust you have cargo bench.

In node.js you might use npm run build to run webpack, tsc, or whatever. In Rust you have cargo
build.

In node.js you might use npm run clean to remove temporary or generated files. In Rust you have
cargo clean which will wipe away your build folder (target, by default).

In node.js you might use npm run docs to generate documentation. In Rust you have cargo doc.

For code generation or pre-build steps, cargo supports build scripts which run before the main
build.

A lot of your use cases are covered by default, but for anything else you have to fend for yourself.

npm's built-in task runner is one of the reasons why you rarely see Makefiles in JavaScript projects.
In the Rust ecosystem, you’re not as lucky. Makefiles are still common but just is an attractive
option that is gaining adoption. It irons out a lot of the wonkiness of Makefiles while keeping a
similar syntax.

Install just via

$ cargo install just

Other alternatives include cargo-make and cargo-cmd. I liked cargo make at first but its builtin tasks
became just as annoying as make's. I’ve become skilled writing Makefiles but I wish I spent that time
learning just so take a lesson from me and start there. If you do go the Makefile route, check out
isaacs’s tutorial and read Your makefiles are wrong.

3.2.1. Workspaces & monorepos

Both package managers use a workspace concept to help you work with multiple small modules in
a large project. In Rust, you create a Cargo.toml file in the root directory with a [workspace] entry
that describes what’s included and excluded in the workspace. It could be as simple as

8

https://crates.io
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://github.com/casey/just
https://gist.github.com/isaacs/62a2d1825d04437c6f08
https://tech.davis-hansson.com/p/make/

[workspace]
members = [
 "crates/*"
]

Workspace members that depend on each other can then just point to the local directory as their
dependency, e.g.

[dependencies]
other-project = { path = "../other-project" }

Check cargo-workspaces in the next section for a tool to help manage cargo workspaces.

3.2.2. Additional tools

cargo-edit

If you skimmed the above portion, make sure you don’t miss out on cargo-edit which adds cargo
add and cargo rm (among others) to help manage dependencies on the command line.

Install cargo-edit via

$ cargo install cargo-edit

cargo-workspaces

cargo workspaces (or cargo ws) simplifies creating and managing workspaces and their members. It
was inspired by node’s lerna and picks up where cargo leaves off. One of its most valuable features
is automating the publish of a workspace’s members, replacing local dependencies with the
published versions.

Install cargo-workspaces via

$ cargo install cargo-workspaces

note: workspaces is plural. Don’t install cargo-workspace expecting the same functionality.

cargo-expand

Macros in Rust are so common that 100% of the logic in your first Hello World app will be wrapped
up into one. They’re great at hand waving away code you don’t want to write repeatedly but they
can make code hard to follow and troubleshoot. cargo expand helps pull back the curtain.

cargo-expand needs a nightly toolchain installed which you can get by running

9

rustup install nightly

Install cargo-expand via

$ cargo install cargo-expand

Once installed, you can run cargo expand [item] to print out the fully generated source that rustc
compiles.

NOTE

cargo expand takes a named item, not a file path. Running cargo expand main doesn’t
expand src/main.rs, it expands the main() function in your project’s root. With a
common layout, to expand a module found in a file like src/some_module/another.rs,
you’d run cargo expand some_module::another. Don’t worry, we’ll go over the module
system in a few days.

If you ran the cargo new command above to test it out, this is what your src/main.rs probably looks
like.

fn main() {
 println!("Hello, world!");
}

println!() is a macro. Use cargo expand to see what code it generates.

$ cargo expand main
fn main() {
 {
 ::std::io::_print(::core::fmt::Arguments::new_v1(
 &["Hello, world!\n"],
 &match () {
 () => [],
 },
));
 };
}

tomlq

While not a cargo xxx command, it’s useful for querying data in .toml files like Cargo.toml. It’s a less
featureful sibling to the amazing jq. It’s not critical, but it’s worth knowing about.

3.3. Wrap-up
The npm → cargo mapping is straightforward when you add cargo-edit and accept the lack of a
standard task runner. In the next chapter we’ll go over how to get your environment working with

10

Visual Studio Code: Chapter 3: Setting up VS Code.

11

./chapter-3-vscode.adoc

4. Setting up Visual Studio Code

4.1. Introduction
Visual Studio Code dominated the JavaScript ecosystem almost on arrival. If you haven’t yet given it
a shot, you should. You won’t find the breadth of plugins with Rust as you do with JavaScript, but
it’s growing rapidly. The most important pieces are there with features like:

• code completion/intellisense

• inline warnings

• debugger

• automatic refactor actions

• automatic documentation tooltips

• jump to definition, implementation, type, et al

4.2. Core language setup
There are two primary plugins, rust (rust-lang.rust) and rust-analyzer (matklad.rust-analyzer).
They promise similar features but I could never get the rust plugin to work reliably. Rust-analyzer
has been great from day one.

WARNING
The rust (rust-lang.rust) and rust-analyzer (matklad.rust-analyzer) plugins
don’t work well together. If you are exploring both, make sure you disable one
to get a fair view of the other.

To install rust-analyzer, search for it in the extensions pane or press Ctrl+Shift+P then enter:

ext install matklad.rust-analyzer

Once you’re installed and rust-analyzer has downloaded everything it needs, you should be good to
go. Note: you must be in a properly structured Rust project for rust-analyzer to work. You can’t
open just any .rs file and expect full IDE functionality, which brings us to…

4.2.1. If things don’t feel like they’re working…

If you create a new file in a Rust project, e.g. my_module.rs, you’ll notice that VS Code & rust-analyzer
do something but seem to be broken. They do complain about incorrect syntax, but they don’t
autocomplete anything and don’t issue warnings about obviously incorrect code. That’s because
Rust projects ('crates') rely on a formal structure stemming from the root. That is to say, files can’t
get checked unless they are imported all the way down to a root source file (e.g. a main.rs or lib.rs).
We’ll get into the module system in a later chapter. You can alleviate this now by including your
module via a line like mod my_module.

12

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer

4.2.2. Notable rust-analyzer settings

You can edit your settings via a UI or as JSON by opening the command palette with Ctrl+Shift+P,
typing settings and selecting which you want. See the VS Code documentation for more info.

The UI is a great way to explore settings, while JSON is more convenient for rapid editing and
sharing. The settings below assume JSON.

Additional linting

By default, rust-analyzer runs cargo check on save to gather project errors and warnings. cargo
check essentially just compiles your project looking for errors. If you want more, then you’re
looking for clippy. Clippy is like the ESlint of the Rust universe. Get clippy via rustup component add
clippy (you may notice you have it already).

You can run cargo clippy yourself or set rust-analyzer to run clippy on save to get loads of
additional warnings and lints. Keep in mind that this takes additional resources and can be a bit
slower, but it’s worth it. I found clippy indispensible when learning Rust. It frequently highlights
patterns that could be better replaced with more idiomatic or performant Rust.

{
 "rust-analyzer.checkOnSave.command": "clippy"
}

Inlay hints can be disabled

For me, rust-analyzer’s inlay hints add too much noise. I turn them off.

It’s a matter of preference. Just know that it’s configurable if you look at your source and think
"whoa, what is going on." The first setting here disables everything, but you can disable individual

13

https://code.visualstudio.com/docs/getstarted/settings

hints with lines that follow.

{
 "rust-analyzer.inlayHints.enable": false,
 "rust-analyzer.inlayHints.chainingHints": false,
 "rust-analyzer.inlayHints.parameterHints": false
}

Prompt before downloading updates

Rust-analyzer keeps itself up to date automatically, but I like controlling that behavior in my
applications. Sometimes I’m on a flight’s WiFi, a mobile hotspot, or some other shaky internet and
it’s nice to have the control. You can control this by changing the setting below.

{
 "rust-analyzer.updates.askBeforeDownload": true
}

4.3. Additional extensions

4.3.1. vscode-lldb

You’ll need to install vadimcn.vscode-lldb before you can meaningfully debug Rust applications.

14

https://marketplace.visualstudio.com/items?itemName=vadimcn.vscode-lldb
https://marketplace.visualstudio.com/items?itemName=vadimcn.vscode-lldb

Install with Ctrl+Shift+P then:

ext install vadimcn.vscode-lldb

4.3.2. better-toml

bungcip.better-toml adds syntax highlighting for TOML files

Install with Ctrl+Shift+P then:

ext install bungcip.better-toml

4.3.3. crates

serayuzgur.crates shows you the latest versions of your dependencies and gives you quick access to
update them.

image./images/blog/node-to-rust/vs-code-crates.gif[Inline crate versions]

Install with Ctrl+Shift+P then:

ext install serayuzgur.crates

15

https://marketplace.visualstudio.com/items?itemName=bungcip.better-toml
https://marketplace.visualstudio.com/items?itemName=bungcip.better-toml
https://marketplace.visualstudio.com/items?itemName=serayuzgur.crates
https://marketplace.visualstudio.com/items?itemName=serayuzgur.crates

4.3.4. search-crates-io

belfz.search-crates-io attempts to autocomplete dependencies as you write them in your Cargo.toml.
I say "attempt" because it doesn’t always work, though when it does I appreciate it.

Install with Ctrl+Shift+P then:

ext install belfz.search-crates-io

4.4. Wrap-up
Programming is more than text and an IDE should be more than a text editor. Your IDE should help
you stay in flow as much as possible and put exactly what you need at your fingertips. If you have
any other tips for how to make VS Code more Rust-friendly, please share them!

16

https://marketplace.visualstudio.com/items?itemName=belfz.search-crates-io
https://marketplace.visualstudio.com/items?itemName=belfz.search-crates-io

5. Hello World (and your first two WTFs)

5.1. Introduction
If you’ve never worked with a language that compiles down to native binaries, you’re going to have
fun with Rust. Yeah, it’s easy to distribute executables within your chosen community, no matter if
its node.js, Python, Ruby, PHP, Java, or something else. It gets crusty fast when you have to explain
to outsiders. Think about the last time you enjoyed installing the latest version of Java to run a jar
or had to deal with Python’s virtual environments to run some random tool you wish was in
JavaScript.

With Rust, you can distribute executable binaries like the big kids. Sure you may need to cross-
compile it for other architectures and operating systems, but Rust has got you there, too.

5.1.1. Code

The code generated by the commands in this chapter can be found at vinodotdev/node-to-rust

5.1.2. Hello world

Start your first executable project by using cargo new with the name of your project like this

cargo new my-app

By default, cargo new uses a template for binary applications. That’s what we want today, but keep
in mind you can also do cargo new --lib to bootstrap a library.

After you execute the command, you’ll have the following directory structure:

my-app/
├── .git
├── .gitignore
├── Cargo.toml
└── src
 └── main.rs

NOTE

if you had a version of Rust installed before recently, the edition key in Cargo.toml is
probably set to 2018. 2021 has since gone stable and is what this book assumes.
Editions are kind of like ECMAScript versions. The differences between 2018 and
2021 aren’t huge, but it’s worth calling out.

Even before you take a look at the source, run your new project with cargo run.

17

https://rust-lang.github.io/rustup/cross-compilation.html
https://github.com/vinodotdev/node-to-rust

» cargo run
 Compiling my-app v0.1.0 (./my-app)
 Finished dev [unoptimized + debuginfo] target(s) in 0.89s
 Running `target/debug/my-app`
Hello, world!

cargo run builds your app with cargo build and executes the specified (or default, in this case)
binary. After running this, your binary’s already made and you can find it at ./target/debug/my-app.
Go, run it directly. It feels good.

If you want to build your app without running it, use cargo build. Cargo builds with the dev (debug)
profile by default which is usually faster. It will retain debug information at the expense of file size
and performance. When you are ready to release, you’d build with cargo build --release and you’d
find your binary in ./target/release/my-app.

5.1.3. Now to the Rust

Take a look at src/main.rs and mentally process this wild new language:

fn main() {
 println!("Hello, world!");
}

Well that’s not so bad, right?

The main() function is required in standalone executables. It’s the entrypoint to your CLI app.

println!() is a macro that generates code to print your arguments to STDOUT. If you’ve never dealt
with macros before, they’re like inline transpilers that generate code during compilation. We’ll get
to macros later.

"Hello, world!" is a string slice which is where things start getting real rusty. Strings are the first
major hurdle for new Rust users and we’ll tackle those in a later chapter, but let’s walk through
some of the first WTFs here to set the stage.

5.2. Strings WTF #1
First, assign "Hello, world!" to a variable using let and try to print it. Yep, Rust uses let and const
keywords just like JavaScript, though where you want to use const just about everywhere in
JavaScript, you want to use let in most Rust.

fn main() {
 let greeting = "Hello, world!";
 println!(greeting);
}

18

If you set up VS Code like we did in an earlier day, you’ll already see an error. Run it anyway with
cargo run.

$ cargo run
 Compiling day-4-strings-wtf-1 v0.0.0 (/path/node-to-rust/crates/day-4/strings-wtf-
1)
error: format argument must be a string literal
 --> crates/day-4/strings-wtf-1/src/main.rs:3:12
 |
3 | println!(greeting);
 | ^^^^^^^^
 |
help: you might be missing a string literal to format with
 |
3 | println!("{}", greeting);
 | +++++

error: could not compile `day-4-strings-wtf-1` due to previous error

If you expected this to work, you’d be normal. In most languages a string is a string is a string. Not
in Rust. Do pay attention to the error message though. Rust’s error messages are leagues beyond the
error messages you’re probably used to. This message not only describes the problem, but shows
you exactly where it occurs AND tells you exactly what you need to do to fix it. println!() requires
a string literal as the first argument and supports a formatting syntax for replacing portions with
variables. Change your program to the following to get back on track.

fn main() {
 let greeting = "Hello, world!";
 println!("{}", greeting);
}

5.3. Strings WTF #2
As a seasoned programmer, you know how write reusable code and are probably itching to abstract
this complex logic into a reusable function. Take your newfound knowledge of println!()
formatting syntax and write this beauty below.

fn main() {
 greet("World");
}

fn greet(target: String) {
 println!("Hello, {}", target);
}

Intuitively, this looks fine. But when you run it…

19

$ cargo run
 Compiling day-4-strings-wtf-2 v0.0.0 (/path/node-to-rust/crates/day-4/strings-wtf-
2)
error[E0308]: mismatched types
 --> crates/day-4/strings-wtf-2/src/main.rs:2:9
 |
2 | greet("World");
 | ^^^^^^^- help: try using a conversion method: .to_string()
 | |
 | expected struct `String`, found `&str`

For more information about this error, try `rustc --explain E0308`.
error: could not compile `day-4-strings-wtf-2` due to previous error

While rustc's error messages do hint at how to get you back up and running, it does little to explain
WTF is really going on…

5.4. Wrap-up
Wrapping your head around strings in Rust is important. I know it’s a tease to go through stuff like
this without an immediate answer, but we’ll get to it ASAP. First though, we need to talk about what
"ownership" means in Rust in Chapter 5: Borrowing & Ownership.

These questions are why I started this book. Now would be a good time to start searching the web
for answers on Rust strings so you have some perspective on things when you come back. If you
need a starter, check these out

• Strings in the Rust docs

• Why Are There Two Types of Strings In Rust?

• How do I convert a &str to a String in Rust?

• Rust String vs str slices

• Rust: str vs String

• String vs &str in Rust

20

./chapter-5-ownership.adoc
https://doc.rust-lang.org/stable/rust-by-example/std/str.html
https://www.justanotherdot.com/posts/why-are-there-two-types-of-strings-in-Rust.html
https://blog.mgattozzi.dev/how-do-i-str-string/
https://www.youtube.com/watch?v=ClPrjjHmo2Y
https://www.ameyalokare.com/rust/2017/10/12/rust-str-vs-String.html
https://blog.thoughtram.io/string-vs-str-in-rust/

6. Borrowing & Ownership

6.1. Introduction
Before we get into strings, we need to talk about ownership. Ownership in Rust is where things
start to get complicated. Not because it’s hard to understand, but because Rust’s rules force you to
rethink logic and structure that would work fine elsewhere.

Rust gained popularity and respect because it promised memory safety without a garbage collector.
Languages like JavaScript, Go, and many others use garbage collection to manage memory. They
keep track of all references to objects (borrowed data) and only release memory when the
reference count drops to zero. Garbage collectors make life easy for developers at the expense of
resources and performance. Often times it’s good enough. When it’s not, you’re usually out of luck.
Troubleshooting and optimizing garbage collection is its own brand of dark magic. When you abide
by Rust’s rules, you’ll achieve memory safety without the overhead of a garbage collector. You get
all those resources back for free.

Memory safety is more than just making sure your programs don’t crash. It closes the door to a
whole class of security vulnerabilities. You’ve heard of SQL injection, right? If you haven’t, it’s a
vulnerability that stems from database clients that create SQL statements by concatenating
unsanitized user input. Adversaries exploit this vulnerability by passing cleverly crafted input that
alters the final query and runs new instructions. Luckily, the attack surface is manageable and it’s
100% preventable. Even still, it remains the most common vulnerability in web applications today.
Memory unsafe code is like having harder to find SQL injection vulnerabilities that can pop up
anywhere. Memory safety bugs account for the majority of serious vulnerabilities. Eliminating
them altogether with no performance impact is an attractive notion.

6.1.1. Required reading

This guide won’t duplicate existing content when possible. It’s meant to clarify concepts that you
have already encountered. Check out these chapters in the Rust book if you’re skimming here and
aren’t following along.

• Rust book Ch.3: Common Programming Concepts

• Rust book Ch.4: Understanding Ownership

• Rust by Example: Variable Bindings

• Rust by Example: Primitives

• Rust by Example: Flow control

• Rust by Example: Functions

6.1.2. Quick sidebar

Variable assignments & mutability

JavaScript assignments fall into two camps, let for variables that can be reassigned and const for
those that can’t. While Rust also has let and const, ignore const for now.

21

https://bobby-tables.com
https://doc.rust-lang.org/book/ch03-00-common-programming-concepts.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/rust-by-example/variable_bindings.html
https://doc.rust-lang.org/rust-by-example/primitives.html
https://doc.rust-lang.org/rust-by-example/flow_control.html
https://doc.rust-lang.org/rust-by-example/fn.html

Where you want const in JavaScript, you want let in Rust. Where you’d use let in JavaScript, you’d
use let mut in Rust. The keyword mut is required to declare a variable as mutable (changeable).
That’s right, everything in Rust is immutable (unchangeable) by default. This is a good thing, I
promise you. You’ll wish this was true in JavaScript by the time you’re done here.

In JavaScript you’d write:

let one = 1;
console.log({ one });
one = 3;
console.log({ one });

The Rust counterpart is:

fn main() {
 let mut mutable = 1;
 println!("{}", mutable);
 mutable = 3;
 println!("{}", mutable);
}

One major difference with Rust is that you can only reassign a variable with a value of the same
type. This won’t work:

fn main() {
 let mut mutable = 1;
 println!("{}", mutable);

 mutable = "3"; // Notice this isn't a number.

 println!("{}", mutable);
}

That said, you can assign a different type to a variable with the same name by using another let
statement

fn main() {
 let myvar = 1;
 println!("{}", myvar);
 let myvar = "3";
 println!("{}", myvar);
}

22

6.1.3. Rust’s Borrow Checker

Rust guarantees memory safety by enforcing some basic — albeit strict — rules for how you pass
data around, how you "borrow" data and who "owns" data.

Rule #1: Ownership

When you pass a value, the calling code can no longer access that data. It’s given up ownership.
Take a look at the code below and the error that occurs when you try to run it

use std::{collections::HashMap, fs::read_to_string};

fn main() {
 let source = read_to_string("./README.md").unwrap();
 let mut files = HashMap::new();
 files.insert("README", source);
 files.insert("README2", source);
}

IMPORTANT

You’ll see .unwrap() a lot in example code but it’s not something you should
use frequently in production code. We’ll go over it in the Result & Option
section but the gist is: .unwrap() assumes a successful operation and panics
(dies) otherwise. It’s OK in examples. It’s not OK in your applications unless
you are sure an operation can’t fail.

In your IDE or when you try to run this, notice the error message use of moved value: source. You’ll
see that a lot and it’s important to embed its meaning in your brain now.

error[E0382]: use of moved value: `source`
 |
4 | let source = read_to_string("./README.md").unwrap();
 | ------ move occurs because `source` has type `String`, which does not
implement the `Copy` trait
5 | let mut files = HashMap::new();
6 | files.insert("README", source);
 | ------ value moved here
7 | files.insert("README2", source);
 | ^^^^^^ value used here after move

For more information about this error, try `rustc --explain E0382`.

When we inserted source into the HashMap the first time, we gave up ownership. If we want to
make the above code compile, we have to clone source the first time we give it away.

23

use std::{collections::HashMap, fs::read_to_string};

fn main() {
 let source = read_to_string("./README.md").unwrap();
 let mut files = HashMap::new();
 files.insert("README", source.clone());
 files.insert("README2", source);
}

NOTE

You’ll see notes in these error messages when your value "does not implement the
Copy trait". We’ll get to traits later but the gist of Copy vs Clone is that Copy is for data
that can be reliably, trivially copied. Rust will copy those values automatically for
you. Clone is for potentially expensive copies and you have to do that yourself.

Rule #2: Borrowing

When borrowing data — when you take a reference to data — you can do it immutably an infinite
number of times or mutably only once. Typically, you’ll take a reference by prefixing a value with
an ampersand (&). This gives you the ability to pass potentially large chunks of data around without
cloning them every time.

use std::{collections::HashMap, fs::read_to_string};

fn main() {
 let source = read_to_string("./README.md").unwrap();
 let mut files = HashMap::new();
 files.insert("README", source.clone());
 files.insert("README2", source);

 let files_ref = &files;
 let files_ref2 = &files;

 print_borrowed_map(files_ref);
 print_borrowed_map(files_ref2);
}

fn print_borrowed_map(map: &HashMap<&str, String>) {
 println!("{:?}", map)
}

NOTE
The {:?} syntax in println! is the Debug formatter. It’s a handy way of outputting
data that doesn’t necessarily have a human-readable format.

If we needed to take a mutable reference of our map, we would write it as let files_ref = &mut
files;.

24

use std::{collections::HashMap, fs::read_to_string};

fn main() {
 let source = read_to_string("./README.md").unwrap();
 let mut files = HashMap::new();
 files.insert("README", source.clone());
 files.insert("README2", source);

 let files_ref = &mut files;
 let files_ref2 = &mut files;

 needs_mutable_ref(files_ref);
 needs_mutable_ref(files_ref2);
}

fn needs_mutable_ref(map: &mut HashMap<&str, String>) {}

You’ll encounter the following error when you compile the above code.

error[E0499]: cannot borrow `files` as mutable more than once at a time
 |
9 | let files_ref = &mut files;
 | ---------- first mutable borrow occurs here
10 | let files_ref2 = &mut files;
 | ^^^^^^^^^^ second mutable borrow occurs here
11 |
12 | needs_mutable_ref(files_ref);
 | --------- first borrow later used here

For more information about this error, try `rustc --explain E0499`.

The Rust compiler is smart and getting smarter every release, though. If you reorder your borrows
so that it can see that one reference will be finished before you use the other, you’ll be OK.

25

use std::{collections::HashMap, fs::read_to_string};

fn main() {
 let source = read_to_string("./README.md").unwrap();
 let mut files = HashMap::new();
 files.insert("README", source.clone());
 files.insert("README2", source);

 let files_ref = &mut files;

 needs_mutable_ref(files_ref);

 let files_ref2 = &mut files;

 needs_mutable_ref(files_ref2);
}

fn needs_mutable_ref(map: &mut HashMap<&str, String>) {}

As you’re starting with Rust, you may find many of your errors can be solved by just switching
around around the order of your code. Give it a shot before ripping your hair out.

6.1.4. References support session

If you’ve spent most of your life in JavaScript or had horrible experiences with languages like C,
you may be thinking: "References? Whatever. I don’t like references and I don’t need references." I
need to let you in on a secret. You use references literally all the time in JavaScript. Every object is a
reference. That’s how you can pass an object to a function, edit a property, and have that change be
reflected after the function finishes. Take this code for example

26

function actOnString(string) {
 string += " What a nice day.";
 console.log(`String in function: ${string}`);
}

const stringValue = "Hello!";
console.log(`String before function: ${stringValue}`);
actOnString(stringValue);
console.log(`String after function: ${stringValue}\n`);

function actOnNumber(number) {
 number++;
 console.log(`Number in function: ${number}`);
}

const numberValue = 2000;
console.log(`Number before function: ${numberValue}`);
actOnNumber(numberValue);
console.log(`Number after function: ${numberValue}\n`);

function actOnObject(object) {
 object.firstName = "Samuel";
 object.lastName = "Clemens";
 console.log(`Object in function: ${objectValue}`);
}

const objectValue = {
 firstName: "Jane",
 lastName: "Doe",
};
objectValue.toString = function () {
 return `${this.firstName} ${this.lastName}`;
};
console.log(`Object before function: ${objectValue}`);
actOnObject(objectValue);
console.log(`Object after function: ${objectValue}`);

When you run it you get:

27

String before function: Hello!
String in function: Hello! What a nice day.
String after function: Hello!

Number before function: 2000
Number in function: 2001
Number after function: 2000

Object before function: Jane Doe
Object in function: Samuel Clemens
Object after function: Samuel Clemens

Not using references would be like making a deep copy of every Object every time you pass it to any
function. That would be ridiculous, right? Of course it would.

NOTE

Programmers coming to JavaScript look at this behavior as their own "WTF."
They’re the type of people who interview candidates with questions like "Is
JavaScript a pass by value or pass by reference language" while JavaScript
programmers hear that question and think "Why are you talking about references
and not asking me about React?"

Interview tip: the answer is "JavaScript is pass by value, except for all Objects where
the value is a reference."

6.2. Wrap-up
Ownership is a core, recurring topic in Rust. We needed to dive into it at a high level before we deal
with Strings Chapter 6: Strings, part 1.

28

./chapter-6-strings-part1.adoc

7. Strings, Part 1

7.1. Introduction
The first hurdle with Rust and strings comes from misaligned expectations. A string literal ("Hi!")
isn’t an instance of a String in Rust. You don’t need to fully understand the code below yet, just
know that it outputs the types of the values sent to print_type_of.

fn main() {
 print_type_of(&"Hi!");
 print_type_of(&String::new());
}

fn print_type_of<T>(_: &T) {
 println!("Type is: {}", std::any::type_name::<T>())
}

$ cargo run
Type is: &str
Type is: alloc::string::String

Fun fact: JavaScript string literals aren’t JavaScript Strings either.

"Hi!" === "Hi!";
// > true

"Hi!" === new String("Hi!");
// > false

Wait, there’s more.

29

typeof "Hi!";
// > "string"

typeof new String("Hi!");
// > "object"

typeof String("Hi!");
// > "string"

"Hi!" === String("Hi!");
// > true

String("Hi!") === new String("Hi!");
// > false

That last part is just to point out that if you can learn to love JavaScript, you can learn to love Rust.

JavaScript hand waves away the difference between string primitives and String instances. It
automatically does what you want, when you want it, without incurring the overhead of creating
an Object for every string. When you call a method on a primitive string, JavaScript interpreters
magically translate it to a method on the String prototype.

Rust has similar magic, it just doesn’t always do it for you.

7.2. Additional links
There is a lot written about Strings. Don’t miss the official docs and other great posts out there.

• Strings in the Rust docs

• Why Are There Two Types of Strings In Rust?

• How do I convert a &str to a String in Rust?

• Rust String vs str slices

• Rust: str vs String

• String vs &str in Rust

7.3. Rust strings in a nutshell

7.3.1. &str

String literals are borrowed string slices. That is to say: they are pointers to a substring in other
string data. The Rust compiler puts all of our literal strings in a bucket somewhere and replaces the
values with pointers. This lets Rust optimize away duplicate strings and is why you have a pointer
to a string slice, vs a pointer to a single String.

You can verify the optimizations are real, if you don’t believe me. Copy-paste the print line below a
gazillion times (or less) and see that it only has a minor impact on the executable size.

30

https://doc.rust-lang.org/stable/rust-by-example/std/str.html
https://www.justanotherdot.com/posts/why-are-there-two-types-of-strings-in-Rust.html
https://blog.mgattozzi.dev/how-do-i-str-string/
https://www.youtube.com/watch?v=ClPrjjHmo2Y
https://www.ameyalokare.com/rust/2017/10/12/rust-str-vs-String.html
https://blog.thoughtram.io/string-vs-str-in-rust/

fn main() {
 print("TESTING:12345678901234567890123456789012345678901234567890");
}

fn print(msg: &str) {
 println!("{}", msg);
}

You can also run the (not-rust-specific) strings command to output all the string data in a binary.

$ strings target/release/200-prints | grep TESTING
TESTING:12345678901234567890123456789012345678901234567890

If you run that command on the 200-unique-prints binary in the node-to-rust repo, you’ll get much
more output.

7.3.2. String

Strings are the strings that you know and love. You can change them, cut them up, shrink them,
expand them, all sorts of great stuff. All that brings along additional cost though. Maybe you don’t
care, maybe you do. It’s in your hands now.

7.3.3. How do you make a &str a String?

In short: use the .to_owned() method on a &str (a "borrowed" string slice) to turn it into an "owned"
String, e.g.

let my_real_string = "string literal!".to_owned();

For what its worth, this method calls the code below under the hood.

String::from_utf8_unchecked(self.as_bytes().to_owned())

NOTE self is Rust’s this.

This is why we had to go over ownership before we got into strings. String literals start off
borrowed. If you need an owned String, you have to convert it (copy it, essentially).

7.3.4. You’re telling me I need to write .to_owned() everywhere?

Yes. And no. Sort of. For now, accept "yes" until we get into Traits and generics.

31

github.com/vinodotdev/node-to-rust

7.3.5. What about .to_string(), .into(), String::from(), or format!()?

All these options also turn a &str into a String. If this is your first foray into Rust from node.js, don’t
worry about this section. This is for developers who have read all the other opinions out there and
are wondering why other methods aren’t the "one true way."

NOTE
A Rust trait is sharable behavior. We haven’t gotten to them yet, but think of a trait
like a mixin if you’ve ever used the mixin pattern in JavaScript.

Why not .to_string()?

fn main() {
 let real_string: String = "string literal".to_string();

needs_a_string("string literal".to_string());
}

fn needs_a_string(argument: String) {}

something.to_string() converts something into a string. It’s commonly implemeted as part of the
Display trait. You’ll see a lot of posts that recommend .to_string() and a lot that don’t.

The nuances in the recommendation stem from how much you want the compiler to help you. As
your applications grow — especially when you start to deal with generics — you’ll inevitably
refactor some types into other types. A value that was initially a &str might end up being refactored
into something else. If the new value still implements Display, then it has a .to_string() method.
The compiler won’t complain.t

In contrast, .to_owned() turns something borrowed into something owned, often by cloning.
Turning a borrowed `not-string` into an owned `not-string` gives the compiler the context
necessary to raise an error. If you’re OK with the difference, it’s easy to change a .to_owned() into a
.to_string(). If you weren’t expecting it, then you highlighted an issue before it became a problem.

If you use .to_string(), the world won’t explode. If you are telling someone they shouldn’t use
.to_string(), you have to be able to explain why. Just like you would if you used the word
[octopodes](https://www.dailymotion.com/video/x2voh0q).

NOTE
Clippy has a lint that will alert you if you use .to_string() on a &str:
[clippy::str_to_string](https://rust-lang.github.io/rust-clippy/master/#str_to_string)

7.3.6. Why not something.into()?

For example:

32

https://javascript.info/mixins
https://www.dailymotion.com/video/x2voh0q
https://rust-lang.github.io/rust-clippy/master/#str_to_string

fn main() {
 let real_string: String = "string literal".into();

 needs_a_string("string literal".into());
}

fn needs_a_string(argument: String) {}

something.into() will (attempt) to turn something into a destination type by calling
[dest_type]::from(), e.g. String::from(something). If the destination type is a String and your
something is a &str then you’ll get the behavior you’re looking for. The concerns are similar to those
above. Are you really trying to turn something into something else, or are you trying to turn a &str
into a String? If it’s the former, then .into() works fine, if it’s the latter then there are better ways
to do it.

Why not String::from()?

fn main() {
 let real_string: String = String::from("string literal");

needs_a_string(String::from("string literal"));
}

fn needs_a_string(argument: String) {}

String::from(something) is more specific than .into(). You are explicitly stating your destination
type, but it has the same issues as .to_string(). All it expresses is that you want a string but you
don’t care from where.

7.3.7. Why not format!()?

fn main() {
 let real_string: String = format!("string literal");

 needs_a_string(format!("string literal"));
}

fn needs_a_string(argument: String) {}

format!() is for formatting. This is the only one you should definitely not use for simply creating a
String.

NOTE Clippy also has a lint for this one: clippy::useless_format

33

https://rust-lang.github.io/rust-clippy/master/#useless_format

7.3.8. Implementation details

The path to this "one, true answer" is mapped out here. At the end of the road, everything points to
.to_owned().

.to_owned()

Implemented here

Calls String::from_utf8_unchecked(self.as_bytes().to_owned())

String::from()

Implemented here

Calls .to_owned()

.to_string()

Implemented here

Calls String::from()

.into()

Implemented here

Calls String::from()

format!()

Implemented here[here]

Calls Display::fmt for str here

7.4. Wrap-up
Turning &str into String is the first half of the string issue. The second is which to use in function
arguments when you want to create an easy-to-use API that takes either string literals (&str) or
String instances.

34

https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/alloc/src/str.rs#L219
https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/alloc/src/string.rs#L2511
https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/alloc/src/string.rs#L2460
https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/core/src/convert/mod.rs#L541
https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/alloc/src/macros.rs#L109
https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/core/src/fmt/mod.rs#L2155

8. Language Part 1: Syntax & Differences

8.1. Introduction
All languages have a productivity baseline. That point where you know enough to be confident.
After you reach the baseline, mastery is a matter of learning best practices, remembering what’s in
standard libraries, and expanding your bag of tricks with experience.

Python has a low productivity baseline. The language is easy to grasp and it’s a popular one to learn
because of it. JavaScript’s baseline is a little higher because of the async hurdle. Typed languages
start higher by default due to their additional context.

Rust’s productivity baseline is more of a productivity roller coaster. Once you think you’ve figured
it out, you peel back the curtain and realize you actually know nothing.

We’re still well below the first baseline but congrats to you for getting this far. This section will fill
in some of the blanks and skirt you passed some hair pulling episodes where you scream things like
"I just want to make an array!!@!"

8.1.1. Notable differences in Rust

Rust programming style

The Rust style differs from JavaScript only slightly.

Variables, functions, and modules are in snake case (e.g. time_in_millis) vs camel case (e.g.
timeInMillis) as in JavaScript.

Structs (a cross between JavaScript objects and classes) are in Pascal case (e.g. CpuModel) just like
similar structures would be in JavaScript.

Constants are similarly in capital snake case (e.g. GLOBAL_TIMEOUT).

Unambiguous parantheses are optional

if (x > y) { /* */ }

while (x > y) { /* */ }

Can be written as

if x > y { /* */ }

while x > y { /* */ }

This style is preferred and linters will warn you of it.

35

Almost everything is an expression

Almost everything complete chunk of code returns a value. Obviously 4 * 2 returns a value (8), but
so does if true { 1 } else { 0 } which returns 1.

That means you can assign the result of blocks of code to variables or use them as return values,
e.g.

fn main() {
 let apples = 6;
 let message = if apples > 10 {
 "Lots of apples"
 } else if apples > 4 {
 "A few apples"
 } else {
 "Not many apples at all"
 };

 println!("{}", message) // prints "A few apples"
}

Notice how the lines with the strings don’t end in a semi-colon. What happens if you add one? What
happens if you add a semi-colon to all three?

Spoiler alert: both questions lead to code that won’t compile for different reasons. They produce
error messages you’ll come across frequently. Don’t rob yourself the joy of seeing them first hand.
It’s exhilirating. Or just read on.

The unit type (())

Rust has no concept of null or undefined like JavaScript. That sounds great but it’s not like those
existed for no reason. They mean something. They mean nothing, albeit different kinds of nothing.
As such, Rust still needs types that can represent nothing.

Try adding a semi-colon the first string above so the if {} else if {} else {} looks like this:

let message = if apples > 10 {
 "Lots of apples"; // ⬅ Notice the rogue semi-colon
} else if apples > 4 {
 "A few apples"
} else {
 "Not many apples at all"
};

Rust won’t compile, giving you the error "if and else have incompatible types." The full output is
below.

36

error[E0308]: `if` and `else` have incompatible types
 --> crates/day-7/syntax/src/main.rs:13:12
 |
11 | let message = if apples > 10 {
 | ___________________-
12 | | "Lots of apples";
 | | -----------------
 | | | |
 | | | help: consider removing this semicolon
 | | expected because of this
13 | | } else if apples > 4 {
 | |____________^
14 | || "A few apples"
15 | || } else {
16 | || "Not many apples at all"
17 | || };
 | || ^
 | ||_____|
 | |______`if` and `else` have incompatible types
 | expected `()`, found `&str`

The helper text tells you that rust "expected (), found &str." It also mentions (helpfully) that you
might consider removing the semicolon. That’ll work, but what’s going on and what is ()?

() is called the unit type. It essentially means "no value." An expression that ends with a semi-colon
returns no value, or (). Rust sees that the if {} part of the conditional returns nothing — or
() — and expects every other part of the conditional to return a value of the same type, or (). When
we leave off the semi-colon, the result of that first block is the return value of the expression "Lots
of apples" which is (naturally) "Lots of apples".

This brings us to…

Implicit returns

We saw how a block can return a value above. Functions are no different. The last line of execution
(the "tail") will be used as the return value for a function. You’ll frequently see functions that don’t
have explicit return statements, e.g.

fn add_numbers(left: i64, right: i64) -> i64 {
 left + right // ⬅ Notice no semi-colon
}

Which is equivalent to:

fn add_numbers(left: i64, right: i64) -> i64 {
 return left + right;
}

37

https://doc.rust-lang.org/std/primitive.unit.html

If you specify a return type (the -> i64 above) and accidentally use a semi-colon on your last line,
you’ll see an error like we saw in the section above:

 |
5 | fn add_numbers(left: i64, right: i64) -> i64 {
 | ----------- ^^^ expected `i64`, found `()`
 | |
 | implicitly returns `()` as its body has no tail or `return` expression
6 | left + right;
 | - help: consider removing this semicolon

It will take some getting used to, but you do get used to it. Whenever you see an error complaining
about (), it’s often because you either need to add or remove a semi-colon (or return type)
somewhere.

Arrays

Rust has arrays. If you use them like you want to however, you’re going to have an experience just
like you did with strings. I won’t go into arrays and slices because there is plenty written on the
subject (e.g. Rust Book: Ch 4.3 and Rust by Example: Ch 2.3).

The short of Rust arrays is: they must have a known length with all elements initialized.

This won’t work.

let mut numbers = [1, 2, 3, 4, 5];
numbers.push(7);
println!("{:?}", numbers);

The reason it’s not worth going into is because you’re probably not looking for arrays.

What you’re looking for is Vec or VecDeque. Vec is to JavaScript arrays what String is to JavaScript
strings. Vec's can grow and shrink at the end. VecDeque can grow or shrink from either direction.

NOTE VecDeque is pronounced vec-deck. Deque stands for "Double ended queue."

Arrays and iterators will have their own section in this guide, but know that there’s an easy-to-use
macro that gives you a Vec with similar syntax you’re used to.

let mut numbers = vec![1, 2, 3, 4, 5]; // ⬅ Notice the vec! macro
numbers.push(7);
println!("{:?}", numbers);

8.2. Wrap-up
There is no end to what can trip you up when you try and jump into another language. If you

38

https://doc.rust-lang.org/book/ch04-03-slices.html
https://doc.rust-lang.org/rust-by-example/primitives/array.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html

haven’t read The Rust Book, you are going to start having trouble if you haven’t already. If you have
read The Rust Book, read it again. Every time you turn a corner in Rust, you’ll start to see things
more clearly. Documentation will look different. What didn’t land right the first time will start to
make sense now.

Next up we’ll dive into the basic types and start on Structs. Stay tuned!

39

https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/

9. From objects and classes to HashMaps and
structs

9.1. Introduction
In the last chapter we went over some basic differences between JavaScript and Rust and finished
with Vectors, the Rust counterpart to JavaScript’s arrays. Arrays are a core structure in JavaScript
but pale in comparison to the almighty Object. The JavaScript Object is a beast. It takes a hundred
concepts and wraps them into one. It could be a map, a dictionary, a tree, a base class, an instance, a
bucket for utility functions, and even a serialization format. The next couple sections will unpack
the typical use cases of the JavaScript Object and translate them to Rust.

NOTE

As we move forward, this guide will start to use more TypeScript than JavaScript.
You’ll need to have ts-node installed (npm install -g ts-node) to run the examples. If
you want a TypeScript playground, check out my boilerplate project at
jsoverson/typescript-boilerplate.

9.1.1. Maps vs Objects

Before ECMAScript 6, JavaScript didn’t even have Map. It was Objects all the way down. That led a
whole generation down the path of treating Objects as Maps and persists today. That’s not
necessarily a bad thing, but the theme of this guide is: you don’t get to magic away the details
anymore.

First we need to clarify the difference between a JavaScript Map and an Object.

A JavaScript Map is essentially a key/value store. You store a value under a key (be it a string or
anything at all) and retrieve that value with the same key.

A JavaScript object is a data structure that has properties (a.k.a. keys) which hold values. You set
values via a property (a.k.a key) and retrieve values the same way. While not a term used in
JavaScript, an object is a "dictionary." Dictionaries are described as:

NOTE
A dictionary is also called a hash, a map, a hashmap in different programming
languages (and an Object in JavaScript). They’re all the same thing: a key-value store.

I’m glad I could clear things up for you. I’m kidding, but it’s to prove a point so bear with me. In
JavaScript, the reason to choose a certain type isn’t always clear. You can use Map and Object
interchangeably for many purposes. It’s not like that in Rust. We need to separate our use cases
before moving on. In short:

When you want a keyed collection of values that all have the same type, you want a Map type.

When you want an object that has a known set of properties, you want a more structured data type.

A "Map" is a concept and languages usually have many implementations. We’ll talk about the
HashMap type below. The structured data use case usually falls under the category of a language

40

https://github.com/jsoverson/typescript-boilerplate/
https://en.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Fundamentals_of_data_structures/Dictionaries

feature. In Rust’s case it’s called a struct.

9.2. From Map to HashMap
To store arbitrary values by key, we’re going to want a HashMap. While there are alternatives, don’t
worry about them yet.

This is how you’d create a Map in TypeScript. JavaScript would be identical minus the <string,
string>.

const map = new Map<string, string>();

map.set("key1", "value1");
map.set("key2", "value2");

console.log(map.get("key1"));
console.log(map.get("key2"));

In Rust, you would write:

use std::collections::HashMap;

fn main() {
 let mut map = HashMap::new();
 map.insert("key1", "value1");
 map.insert("key2", "value2");

 println!("{:?}", map.get("key1"));
 println!("{:?}", map.get("key2"));
}

This looks nearly identical but I’d be dishonest if I moved on quickly. When you run the Rust code,
the output is:

Some("value1")
Some("value2")

Which is kind of what we wanted.

9.2.1. Some(), None, and Option

Take a look at that Some() craziness. What in the world was that about? Some is a variant of the
Option enum. Options are another way of representing nothing like we talked in Chapter 7:
Language Part 1: Syntax & Differences.

41

https://doc.rust-lang.org/beta/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/index.html#use-a-btreemap-when
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
./chapter-7-syntax-and-language.adoc
./chapter-7-syntax-and-language.adoc

NOTE
An enum (short for enumeration) is a bound list of possible values, or variants.
JavaScript doesn’t have them, but TypeScript does. Rust enums are cooler, though.

We’ll get to enums in time, but think of Option as a value that can hold either something or nothing.
If we pass a key that doesn’t exist in our map, get() needs to return nothing but we don’t have
undefined in Rust. We could return the unit type (()) but we can’t write a function that returns
string | undefined like we could in TypeScript. Instead, Rust has enums. That’s where Option comes
in. The Option enum has two variants, it’s either Some() or None.

NOTE
You can test an Option with .is_some(), or .is_none(). You can "unwrap" it with
.unwrap() which will panic if it’s None. You can unwrap it safely with
.unwrap_or(default_value). See the Rust docs on Option for more.

We can rewrite the above to clean up the output.

use std::collections::HashMap;

fn main() {
 let mut map = HashMap::new();
 map.insert("key1", "value1");
 map.insert("key2", "value2");

 println!("{}", map.get("key1").unwrap_or(&""));
 println!("{}", map.get("key2").unwrap_or(&""));
}

NOTE
We know that our map contains values for the keys we specify, so we could have
used .unwrap() without worrying. If we did however, we wouldn’t be able to use it
for the example below. Such is the life of example code.

Notice how we’re using .unwrap_or(&"") above, instead of .unwrap_or(""). Why? What happens if we
write it that way?

error[E0308]: mismatched types
 --> crates/day-8/maps/src/main.rs:9:44
 |
9 | println!("{}", map.get("key2").unwrap_or(""));
 | ^^ expected `&str`, found `str`
 |
 = note: expected reference `&&str`
 found reference `&'static str`

For more information about this error, try `rustc --explain E0308`.

These types of errors can be very confusing. The helper text says rust expected a &str but found a
str and then proceeds to note that it actually expected a &&str yet found &'static str. I already told

42

https://www.typescriptlang.org/docs/handbook/enums.html
https://doc.rust-lang.org/std/option/enum.Option.html

you that string literals are the type &str, not str and never mentioned anything about 'static. What
gives?

Let’s break it down.

• First, note that we used string literals for both our HashMap’s keys and values. Rust inferred the
HashMap’s type to be HashMap<&str, &str>.

• Second, .get() doesn’t return an owned value, it returns a borrowed value. That makes sense,
right? If it returned an owned value it would either need to give up its ownership (which would
mean removing the value from the map) or it would need to clone it. Cloning means extra cycles
and memory which is something Rust will never do for you automatically. So you get a reference
to your value, which was already a reference. A reference to a &str has a type of &&str.

• Third, .unwrap_or() needs to produce the exact same type as the Option's type. In this case, the
option’s type is Option<&&str>. That is to say, the Option can either be a Some(&&str) (the return
type of .get()) or None. So we need our .unwrap_or() to return a &&str which means we need to
pass it a &&str, or &"".

• Finally, We haven’t talked about lifetimes yet but the 'static is a lifetime. It means that a
reference points to data that will last as long as the program does. String literals will last forever
(they have a static lifetime) because Rust ensures it. Don’t worry about it yet, just know that a
&'static str means that Rust is probably talking about a string literal.

NOTE
So what’s that helper text talking about then? I don’t know. It looks wrong. I hadn’t
thought about it much until you asked. You ask great questions.

9.3. From objects and classes to structs
Rust’s structs are as ubiquitous as JavaScript’s objects. They are a cross between plain old objects,
TypeScript interfaces, and JavaScript classes. While you frequently use a Rust struct with methods
(e.g. some_object.to_string()) which make them feel like normal class instances, it’s more helpful to
think of structs as pure data to start. Behavior comes later.

An interface you could write as TypeScript like…

interface TrafficLight {
 color: string;
}

…would be written as a struct in Rust like this.

struct TrafficLight {
 color: String,
}

Instantiating is similar, too:

43

const light: TrafficLight = {
 color: "red",
};

let light = TrafficLight {
 color: "red".to_owned(), // Note we want an owned String
};

But you probably wouldn’t write an interface for this in TypeScript. You’d write a class so it can be
instantiated with defaults and have methods, right? Something like:

class TrafficLight {
 color: string;

 constructor() {
 this.color = "red";
 }
}

const light = new TrafficLight();

To do this in Rust, you’d add an implementation to your struct.

9.3.1. Adding behavior

To add behavior we add an impl.

struct TrafficLight {
 color: String,
}

impl TrafficLight {
 pub fn new() -> Self {
 Self {
 color: "red".to_owned(),
 }
 }
}

This adds a public function called new() that you can execute to get a new TrafficLight. Self refers
to TrafficLight here and you could replace one with the other with no change in behavior. There’s
nothing special about new or how you call it. It’s not a keyword like in JavaScript. It’s convention.
Call it via TrafficLight::new(), e.g.

44

fn main() {
 let light = TrafficLight::new();
}

This works but we can’t really verify it. You could try printing it but — spoiler alert: it won’t
compile. You can’t even use the debug syntax I mentioned in an earlier chapter.

fn main() {
 let light = TrafficLight::new();
 println!("{}", light);
 println!("{:?}", light);
}

Both the display formatter (used by {}) and the debug formatter (used by {:?}) rely on traits that we
don’t implement.

Traits are like mixins in JavaScript. They are another way of attaching behavior to data. Traits are a
big topic that deserve a whole section, but we can add some simple ones today.

impl std::fmt::Display for TrafficLight {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Traffic light is {}", self.color)
 }
}

This implements a trait (Display found at std::fmt::Display) for our TrafficLight. Now we can print
our traffic light via println!()!

Traffic light is red

Traits can also have default, derivable implementations. This allows you to generalize behavior and
reduce boilerplate. If all the fields in your struct implement the Debug trait, you can derive it with a
single line (#[derive(Debug)]) and gain debug output for free.

#[derive(Debug)]
struct TrafficLight {
 color: String,
}

The full source now looks like this:

45

fn main() {
 let light = TrafficLight::new();
 println!("{}", light);
 println!("{:?}", light);
}

impl std::fmt::Display for TrafficLight {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Traffic light is {}", self.color)
 }
}

#[derive(Debug)]
struct TrafficLight {
 color: String,
}

impl TrafficLight {
 pub fn new() -> Self {
 Self {
 color: "red".to_owned(),
 }
 }
}

When you run it, you’ll see both our display line and the debug line printed to STDOUT.

[snipped]
Traffic light is red
TrafficLight { color: "red" }

9.4. Wrap-up
HashMaps are the key to storing and accessing data with a key/value relationship. We’ll touch on
them more in an upcoming section on Arrays and Iterators.

Structs are how you bring some of the class behavior to Rust. Simple usage of JavaScript and
TypeScript classes is easily portable. Tightly coupled relationships and object-oriented patterns
aren’t. It’ll take some time to get used to traits but the benefits of how you structure your code and
logic will transfer back to JavaScript.

Traits are powerful and are what give structs their life. The separation of data and behavior is
important and takes some practice getting used to it. We’ll go over adding methods and more to our
structs in the next chapter.

46

10. Enums and Methods

10.1. Introduction
In this chapter we’ll translate method syntax, TypeScript enums, and show how to use Rust’s match
expressions.

NOTE
We’ve started using more TypeScript than JavaScript. To run examples, install ts-
node with npm install -g ts-node. If you want a TypeScript playground, check out
this typescript-boilerplate.

10.1.1. Adding methods to our struct

NOTE

Depending on who you talk to and the time of day you’ll get different definitions for
words like "function," "method," "procedure," et al. When I use "method" and
"function" here, I’m differentiating between a callable subroutine meant to be
executed within the context of instantiated data (a method) and one that isn’t (a
function).

The new function we added in the last chapter is like a static function in a TypeScript class. You can
call it by name without instantiating a TrafficLight first.

impl TrafficLight {
 pub fn new() -> Self {
 Self {
 color: "red".to_owned(),
 }
 }
}
// let light = TrafficLight::new()

Adding methods to Rust structs is straightforward. Mostly.

Consider how you’d add a method like getState() in TypeScript:

47

https://github.com/jsoverson/typescript-boilerplate/

class TrafficLight {
 color: string;

 constructor() {
 this.color = "red";
 }

 getState(): string {
 return this.color;
 }
}

const light = new TrafficLight();
console.log(light.getState());

By default, every method you add to a TypeScript class is public and is added to the prototype to
make it available to all instances.

In Rust, every function in an impl defaults to private and is just an everyday function. To make
something a method, you specify the first argument to be self. You won’t frequently need to specify
the type of self. If you write &self, the type defaults to a borrowed Self (i.e. &Self). When you write
self, the type is Self. You will see libraries that specify more exotic types for self, but that’s for
another time.

NOTE

You may find yourself in a state where you have an instance of something and you
know there’s a method, but you just can’t call it. It could be two things. 1) You’re
trying to call a trait method that hasn’t been imported. You need to import the trait
(i.e. use [...]::[...]::Trait;) for it to be callable. 2) Your instance needs to be
wrapped with a specific type. If you see a function like fn work(self: Arc<Self>),
then you can only call .work() on an instance that is wrapped with an Arc.

To implement our getState() method in Rust, we write:

pub fn get_state(&self) -> &String {
 &self.color
}

This method borrows self, has a return type of &String, and returns a reference to its internal
property color. The full code looks like this:

48

fn main() {
 let mut light = TrafficLight::new();
 println!("{:?}", light);
}

impl std::fmt::Display for TrafficLight {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Traffic light is {}", self.color)
 }
}

#[derive(Debug)]
struct TrafficLight {
 color: String,
}

impl TrafficLight {
 pub fn new() -> Self {
 Self {
 color: "red".to_owned(),
 }
 }

 pub fn get_state(&self) -> &str {
 &self.color
 }
}

&self vs self

I made the point of calling out that the method above borrows self. The natural corollary is that
there must exist methods that don’t borrow self, methods that take ownership of self. If a method
requires an owned self then that must mean the calling code gives up ownership when it calls the
method.

To re-iterate: the calling code loses the instance when it calls the method.

Don’t believe me? Let’s see what happens when we change the method to this:

pub fn get_state(self) -> String {
 self.color
}

And call it twice like:

49

fn main() {
 let light = TrafficLight::new();
 light.get_state();
 light.get_state();
}

This won’t compile. Rust will give you an error message you’ll get very used to: "use of moved
value."

error[E0382]: use of moved value: `light`
 --> crates/day-9/structs/src/main.rs:4:18
 |
2 | let light = TrafficLight::new();
 | ----- move occurs because `light` has type `TrafficLight`, which does not
implement the `Copy` trait
3 | println!("{}", light.get_state());
 | ----------- `light` moved due to this method call
4 | println!("{}", light.get_state());
 | ^^^^^ value used here after move
 |
note: this function takes ownership of the receiver `self`, which moves `light`
 --> crates/day-9/structs/src/main.rs:25:20
 |
25 | pub fn get_state(self) -> String {
 | ^^^^

For more information about this error, try `rustc --explain E0382`.

Losing a value (having it moved) when you call a method might be hard to wrap your head around
at first. You never deal with such a concept in JavaScript. However, you do write code where it
would make sense. Scenarios like:

• In conversions: When you take some data and convert it to another. In Rust you literally take
(take ownership of) some data and return (give away ownership to) new data.

• In cleanup code. When an object gets destroyed or otherwise cleaned up, the calling code is
usually done with the instance.

• In builder patterns or chainable APIs. You can take an owned self, mutate it, and return it so
the calling code can chain on another method.

There are other use cases and even more that require different ways of thinking about self. You’ll
get there in time.

10.1.2. Mutating state

Things are going swimmingly but our TrafficLight isn’t very useful. It never changes color.
Everything in Rust is immutable by default. Even our own self. We need to mark this method as
one that can needs a mutable self. If we wrote our method like this…

50

pub fn turn_green(&self) {
 self.color = "green".to_owned()
}

…Rust would yell at us

error[E0594]: cannot assign to `self.color`, which is behind a `&` reference
 --> crates/day-8/structs/src/main.rs:32:5
 |
31 | pub fn turn_green(&self) {
 | ----- help: consider changing this to be a mutable reference:
`&mut self`
32 | self.color = "green".to_owned()
 | ^^^^^^^^^^ `self` is a `&` reference, so the data it refers to cannot be
written

For more information about this error, try `rustc --explain E0594`.

What we need is a mutable reference (see Chapter 5: Borrowing & Ownership).

We need &mut self.

pub fn turn_green(&mut self) {
 self.color = "green".to_owned()
}

We also need to mark our instance of TrafficLight as mutable in the calling code. Otherwise Rust
will yell at us again.

In main(), change let light = ... to let mut light =

let mut light = TrafficLight::new();

Our code now looks like this

51

./chapter-5-ownership.adoc

fn main() {
 let mut light = TrafficLight::new();
 println!("{:?}", light);
 light.turn_green();
 println!("{:?}", light);
}

impl std::fmt::Display for TrafficLight {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Traffic light is {}", self.color)
 }
}

#[derive(Debug)]
struct TrafficLight {
 color: String,
}

impl TrafficLight {
 pub fn new() -> Self {
 Self {
 color: "red".to_owned(),
 }
 }

 pub fn get_state(&self) -> &str {
 &self.color
 }

 pub fn turn_green(&mut self) {
 self.color = "green".to_owned()
 }
}

And it’s output is

[snipped]
TrafficLight { color: "red" }
TrafficLight { color: "green" }

10.1.3. Enums

If you’re like me, you were getting itchy seeing "red" and "green" written out as strings. Using data
types like strings or numbers to represent a finite set of possibilities (i.e. red, green, and yellow)
leaves too much opportunity for failure. This is what enums are for.

To migrate our string to an enum in TypeScript, you’d write this:

52

class TrafficLight {
 color: TrafficLightColor;

constructor() {
 this.color = TrafficLightColor.Red;
 }

getState(): TrafficLightColor {
 return this.color;
 }

turnGreen() {
 this.color = TrafficLightColor.Green;
 }
}

enum TrafficLightColor {
 Red,
 Yellow,
 Green,
}

const light = new TrafficLight();
console.log(light.getState());
light.turnGreen();
console.log(light.getState());

This prints

0
2

TypeScript’s default enum value representation is a number but you can change it to a string via:

enum TrafficLightColor {
 Red = "red",
 Yellow = "yellow",
 Green = "green",
}

In Rust, enums are similarly straightforward:

53

enum TrafficLightColor {
 Red,
 Yellow,
 Green,
}

With our struct and implementation changing as such:

struct TrafficLight {
 color: TrafficLightColor,
}

impl TrafficLight {
 pub fn new() -> Self {
 Self {
 color: TrafficLightColor::Red,
 }
 }

 pub fn get_state(&self) -> &TrafficLightColor {
 &self.color
 }

 pub fn turn_green(&mut self) {
 self.color = TrafficLightColor::Green
 }
}

enum TrafficLightColor {
 Red,
 Yellow,
 Green,
}

Now though, we’re bitten by the the traits we implemented and derived. VS Code and rust-analyzer
are probably already yelling at you because we just made our TrafficLight unprintable and
undebuggable because TrafficLightColor is both unprintable and undebuggable.

We need to derive Debug and implement Display for TrafficLightColor just as we did with
TrafficLight. We can derive on an enum exactly the same way we did with our struct.

Add #[derive(Debug)] just before the enum definition.

54

#[derive(Debug)]
enum TrafficLightColor {
 Red,
 Yellow,
 Green,
}

That took care of one problem. Now we have to implement Display. That’ll be a little different this
time. We want to write out a different string for every variant. To do that we use a match
expression. match is similar to a switch/case except better in every way.

First things first, let’s making writing this stuff easier. Write out the impl for Display like this:

impl Display for TrafficLightColor {}

If your code follows along with ours, VS Code will complain at Display, saying "cannot find trait
`Display in this scope"`. Place your cursor on display and press Ctrl+. (or hover and press "Quick
fix"). If rust-analyzer has any suggestions, you’ll see them in a drop down menu.

Select Import Display and select std::fmt::Display from the next drop down. VS Code will take care
of adding the use std::fmt::Display; line at the top of your file. Nice! Free code!

But now we have an even longer squiggly red line.

Do the Ctrl+. shuffle once again, select Implement missing members and voila! You’ve got the
boilerplate out of the way.

55

https://doc.rust-lang.org/reference/expressions/match-expr.html

impl Display for TrafficLightColor {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 todo!()
 }
}

Get used to using this, it’s a life saver.

NOTE the todo! macro panics. It’s a useful, temporary placeholder.

A match expression allows us to match the result of an expression against a pattern. The following
code matches the possible values of TrafficLightColor against its self to produce an appropriate
display string.

impl Display for TrafficLightColor {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 let color_string = match self {
 TrafficLightColor::Green => "green",
 TrafficLightColor::Red => "red",
 TrafficLightColor::Yellow => "yellow",
 };
 write!(f, "{}", color_string)
 }
}

NOTE
write! is another macro. It takes a formatter + formatting arguments and returns a
Result. A Result is like an Option and we’ll get to it soon. Just think of write! as the
print! you use when implementing Display.

Our final code looks like this:

use std::fmt::Display;

fn main() {
 let mut light = TrafficLight::new();
 println!("{}", light);
 println!("{:?}", light);
 light.turn_green();
 println!("{:?}", light);
}

impl std::fmt::Display for TrafficLight {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Traffic light is {}", self.color)
 }
}

56

https://doc.rust-lang.org/std/macro.todo.html
https://doc.rust-lang.org/std/macro.write.html

#[derive(Debug)]
struct TrafficLight {
 color: TrafficLightColor,
}

impl TrafficLight {
 pub fn new() -> Self {
 Self {
 color: TrafficLightColor::Red,
 }
 }

 pub fn get_state(&self) -> &TrafficLightColor {
 &self.color
 }

 pub fn turn_green(&mut self) {
 self.color = TrafficLightColor::Green
 }
}

#[derive(Debug)]
enum TrafficLightColor {
 Red,
 Yellow,
 Green,
}

impl Display for TrafficLightColor {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 let color_string = match self {
 TrafficLightColor::Green => "green",
 TrafficLightColor::Red => "red",
 TrafficLightColor::Yellow => "yellow",
 };
 write!(f, "{}", color_string)
 }
}

And outputs

[snipped]
Traffic light is red
TrafficLight { color: Red }
TrafficLight { color: Green }

57

10.2. Wrap-up
Structs and enums are the most important structures you will deal with in Rust. Rust enums
encapsulate common usage like above but are also Rust’s answer to union types. They can
represent much more complex values than TypeScript. Similarly, match expressions are also much
more powerful than we let on above. You’ll frequently use enums and match expressions hand in
hand. Don’t ignore them or push off learning more about them. You’ll regret it because it changes
the way you think about code in Rust.

It’s important to take our time going through these sections. It’s easier to highlight the nuance and
the error messages when there’s a natural flow of code progression. Some sections take this route,
others are more direct mapping of TypeScript/JavaScript to Rust. If you have comments on what
you like better about one style or the other, drop me a line!

58

https://doc.rust-lang.org/reference/types/struct.html
https://doc.rust-lang.org/reference/items/enumerations.html

11. From Mixins to Traits

11.1. Introduction
Traits are Rust’s answer to reusable behavior. They’re similar to JavaScript mixins and the mixin
pattern. If you’re not familiar with JavaScript mixins, it’s no more than adding a collection of
methods to arbitrary objects. It "mixes in" properties from one object into another, often using
Object.assign(). e.g.

const utilityMixin = {
 prettyPrint() {
 console.log(JSON.stringify(this, null, 2));
 },
};

class Person {
 constructor(first, last) {
 this.firstName = first;
 this.lastName = last;
 }
}

function mixin(base, mixer) {
 Object.assign(base.prototype, mixer);
}

mixin(Person, utilityMixin);

const author = new Person("Jarrod", "Overson");
author.prettyPrint();

The above declares a class named Person and a plain ol' JavaScript object called utilityMixin. The
mixin() function uses Object.assign() to add all the properties from utilityMixin to Person's
prototype, thus making them available to every instance of Person. It’s a useful pattern. It’s an
option that sidesteps long prototype chains or general-purpose classes.

The above is JavaScript. You can use mixins in TypeScript, but it’s more complicated. It highlights
how being "Just JavaScript, with types" starts to break down.

Rust’s traits are very similar to JavaScript’s mixins. They’re a collection of methods (or method
signatures). A lot of documentation compares structs and traits to object oriented paradigms and
inheritance. Ignore all of that. It only makes traits harder to understand.

Traits are just a collection of methods.

11.1.1. Stretching our TrafficLight example

In the previous days, we added a get_state() method to our TrafficLight struct. We’re rapidly

59

https://www.typescriptlang.org/docs/handbook/mixins.html

becoming experts in lighting management. It’s a perferct time to start adding functionality for
every light we have. The first light to add is a simple household bulb. It doesn’t do much. It’s either
on or off.

There should be no surprises in the implementation.

#[derive(Debug)]
struct HouseLight {
 on: bool,
}

impl Display for HouseLight {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Houselight is {}", if self.on { "on" } else { "off" })
 }
}

impl HouseLight {
 pub fn new() -> Self {
 Self { on: false }
 }
 pub fn get_state(&self) -> bool {
 self.on
 }
}

Now let’s make a generic print_state() function. We want a function that prints the state of any
light we pass to it.

fn print_state(light: ???) {
}

But what do we take in? We can’t take in an arbitrary list of types like we can in TypeScript. We
can’t write

function print(light: TrafficLight | HouseLight) {...}

In the last chapter I talked about enums as one way Rust deals with the lack of union types. Another
way is with traits. The difference is what we’re looking for, the type or a subset of the behavior.

In this example, we don’t actually care what kind of light we take in. We only want to query for its
name and state. We only want a subset of behavior.

That’s where traits come in.

60

11.1.2. Traits

Trait definitions start with the trait keyword and are structured similarly to impls. They consist of
methods that look almost identical to what we’d write in an actual impl. The one major difference is
that you can write trait methods that are missing a body.

NOTE
Trait methods can include a method body which acts as a default implementation.
Implementers can choose to override the default implementation.

Let’s call this trait Light and started filling it out with a get_name() method.

trait Light {
 fn get_name(&self) -> &str;
}

To implement a trait we use impl block like we did for our struct. This time though, we write impl
[trait] for [struct] and we’re limited to the methods available on the trait.

impl Light for HouseLight {
 fn get_name(&self) -> &str {
 "House light"
 }
}

impl Light for TrafficLight {
 fn get_name(&self) -> &str {
 "Traffic light"
 }
}

Now we can start to implement a print_state() function. To accept an argument that implements a
trait you write impl [trait].

fn print_state(light: &impl Light) {
 println!("{}", light.get_name());
}

When we try to migrate our get_state() methods over to the trait, we run into a snag. Each of the
light’s state has different types. Since we are printing them with the debug formatter right now,
your first thought might be to translate what we just did like this:

trait Light {
 fn get_name(&self) -> &str;
 fn get_state(&self) -> impl std::fmt::Debug;
}

61

But that won’t work. Rust complains with the error impl `Trait not allowed outside of function and
method return types`.

error[E0562]: `impl Trait` not allowed outside of function and method return types
 --> crates/day-10/traits/src/main.rs:17:27
 |
17 | fn get_state(&self) -> impl std::fmt::Debug;
 | ^^^^^^^^^^^^^^^^^^^^

For more information about this error, try `rustc --explain E0562`.

But… we are trying to use it as a method return type… What gives?

11.1.3. impl vs dyn

To use traits here we need to use dyn [trait]. Using dyn [trait] vs impl [trait] is a matter of
whether or not Rust needs or is able to know a value’s concrete type at compile time. We can’t use
impl std::fmt::Debug here because every implementation might return a different actual type.
Using dyn is like crossing a barrier where you trade optimizations for flexibility. Once a value
crosses the dyn barrier, it loses its type information and is essentially just a blob of data and a
pointer to the methods on a trait.

So we change our signature and implementations to:

trait Light {
 fn get_name(&self) -> &str;
 fn get_state(&self) -> &dyn std::fmt::Debug;
}

impl Light for HouseLight {
 fn get_name(&self) -> &str {
 "House light"
 }

 fn get_state(&self) -> &dyn std::fmt::Debug {
 &self.on
 }
}

impl Light for TrafficLight {
 fn get_name(&self) -> &str {
 "Traffic light"
 }

 fn get_state(&self) -> &dyn std::fmt::Debug {
 &self.color
 }
}

62

NOTE

Rust must know the size of everything at compile time. It can’t do that with dyn
[trait] values because they don’t have a concrete type. With no known size, it’s
"unsized." What is sized is a reference. A reference to a dyn [trait], i.e. &dyn [trait]
is OK.

Our full code now looks like this:

use std::fmt::Display;

fn main() {
 let traffic_light = TrafficLight::new();
 let house_light = HouseLight::new();

 print_state(&traffic_light);
 print_state(&house_light);
}

fn print_state(light: &impl Light) {
 println!("{}'s state is : {:?}", light.get_name(), light.get_state());
}

trait Light {
 fn get_name(&self) -> &str;
 fn get_state(&self) -> &dyn std::fmt::Debug;
}

impl Light for HouseLight {
 fn get_name(&self) -> &str {
 "House light"
 }

 fn get_state(&self) -> &dyn std::fmt::Debug {
 &self.on
 }
}

impl Light for TrafficLight {
 fn get_name(&self) -> &str {
 "Traffic light"
 }

 fn get_state(&self) -> &dyn std::fmt::Debug {
 &self.color
 }
}

impl std::fmt::Display for TrafficLight {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Traffic light is {}", self.color)
 }

63

}

#[derive(Debug)]
struct TrafficLight {
 color: TrafficLightColor,
}

impl TrafficLight {
 pub fn new() -> Self {
 Self {
 color: TrafficLightColor::Red,
 }
 }

 pub fn turn_green(&mut self) {
 self.color = TrafficLightColor::Green
 }
}

#[derive(Debug)]
enum TrafficLightColor {
 Red,
 Yellow,
 Green,
}

impl Display for TrafficLightColor {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 let color_string = match self {
 TrafficLightColor::Green => "green",
 TrafficLightColor::Red => "red",
 TrafficLightColor::Yellow => "yellow",
 };
 write!(f, "{}", color_string)
 }
}

#[derive(Debug)]
struct HouseLight {
 on: bool,
}

impl Display for HouseLight {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Houselight is {}", if self.on { "on" } else { "off" })
 }
}

impl HouseLight {
 pub fn new() -> Self {
 Self { on: false }

64

 }
}

Which outputs

[snipped]
Traffic light's state is : Red
House light's state is : false

The output isn’t stellar but we can work on that another time. Our code is getting pretty big to sit in
one file now. It’s time to start cutting it up.

11.1.4. Additional reading

• The Rust Book: ch 10.02

• Rust by Example: Traits

• Common Rust Traits

• The Rust Reference: Traits

11.2. Wrap-up
Traits are everywhere in Rust and it’s worth reading Rust code on Github or in the standard library.
Some languages (Go, notably) are very straightforward and clear. There is generally one "right" way
to do something. Rust is anything but that. There are 800 different ways to do everything and its
important to read existing code rather than work in a vacuum.

NOTE
Having 800 ways to do any one thing makes Rust the spiritual successor to perl.
Don’t say that out loud though. You won’t make any friends.

The next chapter goes over Rust’s module system. It’s straightforward once you "get it," but you’re
coming from node.js. Node has the simplest module system that I’ve ever used. Once you get over
the first few Rust module WTFs, it won’t stand in your way again.

65

https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/rust-by-example/trait.html
https://stevedonovan.github.io/rustifications/2018/09/08/common-rust-traits.html
https://doc.rust-lang.org/reference/items/traits.html

12. The Module System

12.1. Introduction
When released, one of node.js’s outstanding features was how simple it was to use. Want to run a
JavaScript file? Just use node file.js. Want to include a local module? Then require("./module.js").
If your require() wasn’t a relative or absolute path, then node looked in the node_modules folder. It
was a beautiful time. If you’ve gotten into node.js within the last few years, you probably have a
different view of how simple it is or isn’t. It was simple, once upon a time. I swear.

Rust’s module system is a bit more nuanced. Once you "get it," it won’t stand in your way. Until then
you might be left wondering "WTF" more than once.

12.2. "How do I import a file in Rust?"
The quick answer is, you don’t. You don’t import files in Rust. You declare modules. If you declare a
module with an empty body, then Rust will look for it on the file system according to its resolution
algorithm. That resolution algorithm is highly dependent on the project’s module structure.

You declare modules with the mod keyword. If you write mod my_module; then Rust will look for a
module named my_module which may be found in a file named my_module.rs. But it may not.

There isn’t a relative file path relationship like you’d have in node.

12.3. "How do I import functions from other
modules?"
The use statement brings items from a module into scope of the current module so you can use
them without qualifying them. This works with both external dependencies and local modules.

These two are largely the same:

some_module::some_function();

and

use some_module::some_function;
some_function()

Use {} to import multiple items, e.g.

use std::io::{Read, Write};

Use super to import items from a parent module, e.g.

66

fn work() {}

mod test {
 use super::work;
}

Use crate to import items starting from the crate root, e.g.

use crate::some_module::some_function

12.4. The pieces of the Rust Module System

12.4.1. Crates and the crate root

A Rust project is called a crate. The crate root is the source file that the Rust compiler starts with.
In node that’s commonly called index.js and you would define it by setting the "main" field in your
package.json. In Rust the root is typically main.rs for standalone executables and lib.rs for
libraries. It’s configurable in your Cargo.toml.

The crate root dictates the root path where Rust will start its search for imported modules.

12.4.2. What is a module?

It’s easiest if you start with the understanding that Rust modules have nothing to do with file names
or paths. You’ll see documentation that says otherwise and projects that make this appear to be the
case, but it’s a lie. Modules are purely a concept within Rust’s brain.

A module is like a namespace where you bucket similar things. Modules are barriers for visibility,
i.e. public, private, etc. You can have many modules in one file. Even nesting them in a single file is
allowed.

fn main() {
 my_module::print(my_module::submodule::MSG);
}

mod my_module {
 pub fn print(msg: &str) {
 println!("{}", msg);
 }

 pub mod submodule {
 pub const MSG: &str = "Hello world!";
 }
}

Separating logic into different files is important for humans. Not Rust. Luckily Rust has support for

67

automatically looking up modules on the local filesystem.

Let’s say we want to extract my_module into another file. We cut and paste its code into a file called
my_module.rs and keep an empty mod my_module; in our main.js. The result looks like this:

fn main() {
 my_module::print(my_module::submodule::MSG);
}

mod my_module;

pub fn print(msg: &str) {
 println!("{}", msg);
}

pub mod submodule {
 pub const MSG: &str = "Hello world!";
}

Our main.js shows we’re declaring a module called my_module, but it’s empty. Rust needs to find it.

12.4.3. How Rust finds files

The resolution algorithm in a nutshell is:

1. Start in a directory with the same path parts as the current module. For example, if you’re in the
crate root, the path is ./. If you’re in the module one::two::three, then start in ./one/two/three.

2. Look for a file with the name of the imported module (e.g. mod my_module would look for
my_module.rs)

3. Look for a file named mod.rs in a directory with the name of the imported module (e.g.
my_module/mod.rs)

4. If none are found, complain. If both are found, complain. If one is found, use that one.

Note: The mod.rs part is technical baggage. It used to be the only way. It’s not recommended anymore
but you’ll still see it on some projects so it’s worth knowing about.

What this means is that well-organized projects seem like their modules mirror a file system with
relative imports. This can bite you if you assume that’s always true. The appearance is due to a
project being well-organized. It’s not a structure Rust imposes.

Take a lone main.rs with the code below for example

68

fn main() {}

mod module_a;

mod one {
 mod two {
 mod module_b;
 }
}

Both mod module_a and mod module_b statements are in the same file. Where does Rust look for the
modules on disk?

Rust looks for module_a in ./module_a.rs or ./module_a/mod.rs.

Rust looks for module_b in ./one/two/module_b.rs or ./one/two/module_b/mod.rs. mod module_b is
declared in one::two, so it’s namespace parts are one::two::module_b and that’s what dictates the
lookup.

12.4.4. Visibility

By default everything you define is private. BUT — and this is a big BUT — visibility is at the module
barrier, not an item’s definition. That means everything in a module can access everything else in
the same module. If you take the pubs off of everything in our traffic light example, it will still work.
Sorry to trick you.

NOTE

Everything is private by default except for trait methods and enum variants. All
trait methods and enum variants are public by default. In practical terms, that
means they have the same visibility as the trait or enum they’re defined on. It
wouldn’t make much sense to have them be anything else.

Visibility also only works up and out. Modules defined closer to the root can’t see anything defined
deeper unless you change its visibility. You change visibility with the pub keyword.

pub makes something completely public, but only if it’s reachable via the visibility chain. That is,
everything leading up to the pub item must also be pub.

You can tailor the visibility with modifiers on pub, e.g.

• pub(crate) - public within the crate, i.e. not externally visible.

• pub(super) - public to the parent module only.

There are other modifiers, but they’re less common. You can learn about them in the [Additional
reading section][].

12.4.5. Traffic light exercise

The traffic light example from the past few days has grown pretty large. It’s due for some

69

refactoring. Try to do it yourself. See what hurdles you run into before referring to the code
repository to see how I’ve done it.

Tips:

• Copy/paste is your friend. This won’t need to refactor code structure or names.

• You must declare modules from their root module file, they can’t all be declared from main.rs

• After moving code around, you’ll need to adjust visibility to still use the items in main().

• You’ll likely need to update or add use statements in all the files you create.

• Visual Studio Code and rust-analyzer is your friend. Use the hover tips and "Quick code" fixes
liberally.

12.4.6. Additional reading

• The Rust Book: ch 7

• Rust by Example: Modules

• Rust by Example: Crates

• The Rust Reference: Modules

12.5. Wrap-up
Repeat after me: mod is not import. Again, for those in the back: mod is not import. Once you get passed
that misconception (and the mod.rs wonkiness), the module system is easy to manage. We’ve finally
gone through enough to circle back around to the second part of our Strings guide. We’ll get to that
immediately in the next chapter.

70

https://github.com/vinodotdev/node-to-rust/tree/master/src/crates/day-11/traffic-light
https://github.com/vinodotdev/node-to-rust/tree/master/src/crates/day-11/traffic-light
https://doc.rust-lang.org/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html
https://doc.rust-lang.org/rust-by-example/mod.html
https://doc.rust-lang.org/rust-by-example/crates.html
https://doc.rust-lang.org/reference/items/modules.html

13. Strings, Part 2

13.1. Introduction
Now that you’re getting confident, you are probably itching to start your own projects. You know
how to write some basic Rust. You know how to structure code. You’re done with contrived
examples with traffic lights. As you play around and start writing your API, you’ll inevitably write
some function that needs an owned String. That’s easy. We’ve done that before. Then it hits you…

Your API, dotted with functions like below:

fn my_beautiful_function(arg1: String, arg2: String, arg3: String) {
 /* ... */
}

forces your users to write code like this

my_beautiful_function(
 "first".to_owned(),
 "second".to_owned(),
 "third".to_owned()
);

It’s so ugly. I just couldn’t believe it at first. All I wanted was to create a satisfying API that could
take a String as well as string literals. I didn’t want to make my users do things like add .to_owned()
all over the place. It’s madness. It’s hideous.

I spent a long time tracking down what to do. This is my story.

13.2. Should I use &str or String for my function
arguments?
The first question you need to ask is: "Do I need to own or borrow the passed value?"

For those of you still wrapping your head around owning and borrowing, think of this question as:
"Do I need my own version of this value or do I just need to look at its data and move on?"

13.2.1. When you’re borrowing the value

If you don’t need your own version, then accept a reference. The main question then becomes
"Should I use &str or &String" and the answer is almost always &str. Why? Well look at the function
below.

71

fn print_str(msg: &str) {
 println!("{}", msg);
}

You can pass a string literal directly, a &str assigned to a variable, and you can pass a reference to a
&String which works automagically.

fn main() {
 let string_slice = "String slice assigned to variable";
 let real_string = "Genuine String".to_owned();
 print_str(string_slice);
 print_str("Literal slice");
 print_str(&real_string);
}

Why? Because the trait Borrow<str> is implemented for String. Anywhere you need a borrowed str,
you can use a borrowed String without any hassle. The reverse is not true. If you change the
function signature to accept a &String and try to pass a &str, you’ll get a compile error.

13.2.2. When you need an owned value

If you need an owned value then you need a String but there are a couple things to consider.

1. It is cumbersome to manually convert loads of &strs to String. This is a genuine problem when
you want to expose a satisfying, easy to use API. The example in the introduction is contrived
but it is exactly what you’ll deal with frequently.

2. You should let the users of your API decide how to create owned values for you. In other words,
you shouldn’t simply accept &strs everywhere and convert them yourself. The user may have
better ways of getting you the data.

Here’s where you want to think about your API. Are you looking to own a string that comes from
wherever? Or do you expect your functions to be called with a mix of string literals and/or Strings?

If it’s the former, then you’re not really looking for a &str or a String. You’re looking for something
that has a .to_string() method. That is, you’re looking for something that implements ToString.
Types that implement ToString are common, you get it for free by implementing Display.

If it’s the latter, then you’re looking for the common ground between a String and &str, which we
found clues to in the section above.

For functions that accept potentially generated strings

For a function that accepts arbitrary strings from anywhere — generated or non — you can accept
arguments that implement ToString.

72

https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/alloc/src/str.rs#L198
https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/alloc/src/str.rs#L198
https://github.com/Rust-lang/Rust/blob/88e5ae2dd3cf4a0bbb5af69ef70e80d5dc7b462c/library/alloc/src/str.rs#L198

use std::str::FromStr; // Imported to use Ipv4Addr::from_str

fn main() {
 let ip_address = std::net::Ipv4Addr::from_str("127.0.0.1").unwrap();
 let string_proper = "String proper".to_owned();
 let string_slice = "string slice";
 needs_string(string_slice);
 needs_string("Literal string");
 needs_string(string_proper);
 needs_string(ip_address);
}

fn needs_string<T: ToString>(almost_string: T) {
 let real_string = almost_string.to_string();
 println!("{}", real_string);
}

We talked about impl [trait] vs dyn [trait] in the last chapter but now I through in new syntax
above. This is Rust’s generic syntax. The function needs_string above could have been written like
this:

fn needs_string(almost_string: impl ToString) {
 let real_string = almost_string.to_string();
 println!("{}", real_string);
}

Nothing would need to change in the code. What’s the difference? Very little. impl [trait] in
argument position is less powerful than generic syntax. Rust also has a where keyword which you
can use to make the same thing yet another way:

fn needs_string<T>(string: T)
where
 T: ToString,
{
 println!("{}", string);
}

There’s zero difference between the where syntax and the <T: ToString> syntax. Adding the separate
where clause is for readability.

For functions that expect a mix of string literals and Strings

If you didn’t read this section, you wouldn’t lose much. Using the ToString method covers a lot of
cases. You do however open your users up to the same concerns we described with using
.to_string() to convert &str to String in Chapter 6: Strings, Part 1. Many structs implement Display.
A user could pass a lot of objects to the function above without the compiler complaining.
Additionally, implementations of .to_string() may not always be cheap. Your users don’t

73

./chapter-6-strings-part1.adoc

necessarily know the internals of your code. You might be doing a lot of extra work for no good
reason.

Since we already learned that a &String can take the place of a &str, we can generalize our inputs to
anything that can be borrowed like a str.

You could use anything that implements Borrow<str> and the below would work. However, you
should accept anything that implements AsRef<str> instead. What’s the difference? Borrow assumes
more and can fail, AsRef<str> assumes little and explicitly must not fail. There are more
differences but they don’t matter for our usage here.

The below is extremely similar to the above but notice that our ip_address is no longer a valid
argument. Just because it has a printable string form doesn’t mean it can be trivially taken as a str
reference.

use std::str::FromStr; // Imported to use Ipv4Addr::from_str

fn main() {
 let ip_address = std::net::Ipv4Addr::from_str("127.0.0.1").unwrap();
 let string_slice = "string slice";
 let string_proper = "String proper".to_owned();
 needs_string(string_slice);
 needs_string("Literal string");
 needs_string(string_proper);
 // needs_string(ip_address); // Fails now
}

fn needs_string<T: AsRef<str>>(almost_string: T) {
 let real_string = almost_string.as_ref().to_owned();
 println!("{}", real_string);
}

13.2.3. Additional reading

• The Rust Book: ch 10

• Rust by Example: Generics

• The Rust Reference: Generic Parameters

13.3. Wrap-up
Strings used to seem so simple. We were so naive. I bet every time you dive back into node.js your
eyes are going to tear up with joy. Eventually you’ll have the same feeling with Rust. You’ll
appreciate how protective Rust is and how fast everything runs. Rust and JavaScript truly are a
beautiful pair.

Next up we’ll dive into error handling, the Option enum, and the Result enum.

74

https://doc.rust-lang.org/book/ch10-00-generics.html
https://doc.rust-lang.org/rust-by-example/generics.html
https://doc.rust-lang.org/reference/items/generics.html

14. Demystifying Results & Options

14.1. Introduction
I briefly touched on the Option enum on in Chapter 8 when we were using HashMap methods to look
up keys. There’s no way for the HashMap to guarantee that a key will exist, so its API needs to account
for returning something as well as nothing. Rust has no concept of undefined or null, like JavaScript.
It needs to represent nothingness safely. That’s where the Option comes in.

Nothingness is like an expected error case for functions that can return either something or
nothing. try/catch statements in JavaScript are another way to deal with reasonable error cases. In
those cases the answer is either your result or uh oh, something went wrong. That’s what a Result is.
Result and Option go hand in hand. They are treated similarly and can be converted from one to
another when necessary.

14.2. Option recap
If you’ve gotten this far without exploring enums, you are going to need to brush up quickly with
the links in the additional reading section.

Rust enums differ from many other language implementations. They can represent rich and varied
values and carry around behavior just like any struct. The Option enum is defined in just a few lines
here:

pub enum Option<T> {
 /// No value
 None,
 /// Some value `T`
 Some(T),
}

That’s it. It’s either Option::None and contains no value, or Option::Some(T) which contains a T. We
touched on generic functions briefly in the previous chapter and you can find more information in
that day’s additional reading section. This is how generic types look on data structures. Option
doesn’t care what T is, there are no constraints.

Creating and returning an Option is as easy as it gets in Rust.

75

https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/src/core/option.rs.html#514-523

fn main() {
 let some = returns_some();
 println!("{:?}", some);

 let none = returns_none();
 println!("{:?}", none);
}

fn returns_some() -> Option<String> {
 Some("my string".to_owned())
}

fn returns_none() -> Option<String> {
 None
}

[snipped]
Some("my string")
None

NOTE We still need to specify the value of T in the Option<T> even if we return a None.

NOTE
We can use Some & None rather than Option::Some() and Option::None because they
are pre-imported by Rust’s prelude (the common set of imports that you can always
rely on). Read up on the std::prelude here.

14.3. Result
Result is very similar to Option except its failure case also contains a value. The value in the
Result::Err variant usually follows some conventions, but you can see by its implementation it has
no constraints.

pub enum Result<T, E> {
 Ok(T),
 Err(E),
}

You can return your Ok() or Err() freely. There’s nothing special about how they are created.

76

https://doc.rust-lang.org/std/prelude/index.html
https://doc.rust-lang.org/std/prelude/index.html

fn main() {
 let value = returns_ok();
 println!("{:?}", value);

 let value = returns_err();
 println!("{:?}", value);
}

fn returns_ok() -> Result<String, MyError> {
 Ok("This turned out great!".to_owned())
}

fn returns_err() -> Result<String, MyError> {
 Err(MyError("This failed horribly.".to_owned()))
}

#[derive(Debug)]
struct MyError(String);

[snipped]
Ok("This turned out great!")
Err(MyError("This failed horribly."))

NOTE
I used a custom struct to highlight that an Err can contain anything. A basic struct,
your struct, a String, someone else’s error, a HashMap, whatever.

14.4. The problem with .unwrap()
Option and Result seem pretty straightforward, don’t they?

The confusion comes from how you actually get your damn value out. You’ve seen the .unwrap()
method in this guide and you’ve undoubtedly seen it all over Rust examples. You have probably
also seen the warnings against using it. The warning comes for good reason. If you .unwrap() a None
or Err, your code will panic and your application will probably die. That’s no good.

If we wanted random application deaths due to failure cases we’d just write JavaScript. I’m kidding
but also I’m not. With Rust, you can be 99% sure your application will be bullet-proof, as long as
you respect its warnings. You’re not here to write working code fast, you’re here to write fast code
that always works.

Unfortunately, respecting Rust’s warnings can be tedious and repetitive. That’s why you see
shortcuts like .unwrap() in examples. Example code is to get you up and running. It’s not there to
show you how to handle every possible error case.

77

https://twitter.com/markdalgleish/status/1246715512660193287

14.4.1. So how do I get my value out?

Here are your options:

.unwrap()

So now that you know you shouldn’t use .unwrap(), here’s how you use .unwrap().

Use .unwrap() when you’re sure you have a Some() or an Ok(). Look back at our IP address example
from the last chapter:

let ip_address = std::net::Ipv4Addr::from_str("127.0.0.1").unwrap();

I know that "127.0.0.1" is a valid IPv4 address and will be parsed successfully. This is example code
but it’s also OK in production. from_str() needs to return a Result because there are an infinite
number of strings that won’t parse into an IPv4 address. I’m not passing it any of those.

The IP example relies on my knowledge of IP addresses. You can programmatically generate the
confidence necessary to use .unwrap() as well. You can use a HashMaps's .contains_key() method to
ensure there is a key. Then you’re free to .unwrap() the resulting .get() without fear.

That said, it’s valuable to always err on the side of caution. Rust won’t alert you if a refactor
sidesteps your expectations.

.unwrap_or(value)

Link to documentation

.unwrap_or() is for providing a custom default value in the event of a failure message. The value
needs to be the same type (T) as Ok(T) or Some(T).

let default_string = "Default value".to_owned();

let unwrap_or = returns_none().unwrap_or(default_string);

println!("returns_none().unwrap_or(...): {:?}", unwrap_or);

.unwrap_or_else(|| {})

Link to documentation

.unwrap_or_else() is nearly identical to .unwrap_or except it takes a function. The return value of the
function is used when the Option or Result is None or Err. You’d use this in situations where the
default value might be expensive to compute and there’s no value computing it in advance.

As with .unwrap_or(), the return type needs to be the same type of T.

78

https://doc.rust-lang.org/beta/std/collections/struct.HashMap.html#method.contains_key
https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else

let unwrap_or_else = returns_none()
 .unwrap_or_else(|| format!("Default value from a function at time {:?}", Instant
::now()));

println!(
 "returns_none().unwrap_or_else(|| {{...}}): {:?}",
 unwrap_or_else
);

NOTE

The || ... syntax is Rust’s closure syntax.

In JavaScript/TypeScript, you’d have (arg1: number) => arg1 + 2. In Rust it is
`|arg1: i64| arg1 + 2 `. Curly braces are optional when there’s a single expression,
just like in JavaScript. We’ll go over closures in more detail in a later section.

.unwrap_or_default()

Link to documentation

.unwrap_or_default() defers to a type’s Default value if none exists. Default is a trait like Debug or
Display. It has one method, default and takes no arguments. A type that implements Default can be
instantiated with [Type]::default(). In other languages, you might consider this an implementation
of the Null object pattern. It’s what you can resort to when you need a neutral value of a type.

In TypeScript, you might do something like:

let my_string = maybe_undefined || "";

In Rust, it would be:

let my_string = maybe_none.unwrap_or_default(); // Assuming `T` is `String`.

NOTE You can implement Default like this:

impl Default for MyStruct {
 fn default() -> Self {
 // Return whatever is suitable as a default.
 }
}

Pattern matching

We can use the match expression to match the enum’s variants and return the inner value or a
suitable default.

79

https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_default
https://en.wikipedia.org/wiki/Null_object_pattern

let match_value = match returns_some() {
 Some(val) => val,
 None => "My default value".to_owned(),
};

println!("match {{...}}: {:?}", match_value);

if let expressions

You can enter a block conditionally based off an enum’s variant. It’s easier to explain with an
example:

if let Some(val) = returns_some() {
 println!("if let : {:?}", val);
}

If the Option returned by returns_some() is Some() then its inner value will be bound to the identifier
val. It’s strange syntax to get used to, but it’s useful.

Automagic unwrapping with ?

Short circuiting, or returning early, is a common way of dealing with error cases. When you get an
error or a None, return right away and let the caller deal with it. Rust embodies this concept into the
? operator.

The code below shows a few new tricks.

use std::fs::read_to_string;

fn main() -> Result<(), std::io::Error> {
 let html = render_markdown("./README.md")?;
 println!("{}", html);
 Ok(())
}

fn render_markdown(file: &str) -> Result<String, std::io::Error> {
 let source = read_to_string(file)?;
 Ok(markdown::to_html(&source))
}

• First, we’ve changed our main() to return a Result by using -> Result<(), std::io::Error> on
line 3. Remember, () is the unit type. It’s another way of saying nothing. You can read a return
value like -> Result<(), ...> as "Returns nothing, but may fail".

• Second, we’re using std::fs::read_to_string() on line 10. It takes a path and returns a
Result<String, std::io::Error>. That is, it returns either the contents of a file as a String, or it
returns an error of the type std::io::Error.

80

• Third, We automagically unwrap the result into the variable source with the ? operator on line
10. If the result is an error, the ? returns the result back to the caller, in this case main().

• Fourth, We automatically unwrap the result from render_markdown in main() with another ? on
line 4. Since there’s no caller above main(), an error here will kill our program.

• Fifth, We finish our main() with Ok(()) because our return type is Result<(), ...>. We don’t care
about the value we return, but we have to return Ok() regardless.

? vs try!

You may see references to the try! macro in some older posts. try! was the precursor to ?. While
try! is deprecated in favor of ?, it’s still a great way to understand what’s happening. The
implementation is here and below.

try! is a macro and uses macro syntax which will look foreign at first. Macros are beyond the scope
of this guide but you’re a smart cookie. I bet you can get the gist of what’s going on here:

macro_rules! r#try {
 ($expr:expr $(,)?) => {
 match $expr {
 $crate::result::Result::Ok(val) => val,
 $crate::result::Result::Err(err) => {
 return $crate::result::Result::Err($crate::convert::From::from(err));
 }
 }
 };
}

The try! macro takes an expression and uses that expression in a match statement. If the expression
is Ok it returns the inner value. If it’s an error, it returns early and converts the error into the
returning Result's Error type. That last part is an important one. Let’s see what happens if we
change our example to take our file path from an environment variable rather than a hardcoded
string.

use std::fs::read_to_string;

fn main() -> Result<(), std::io::Error> {
 let html = render_markdown()?;
 println!("{}", html);
 Ok(())
}

fn render_markdown() -> Result<String, std::io::Error> {
 let file = std::env::var("MARKDOWN")?;
 let source = read_to_string(file)?;
 Ok(markdown::to_html(&source))
}

81

https://doc.rust-lang.org/src/core/macros/mod.rs.html#396-405

We’ve added one line to get the value of an environment variable named "MARKDOWN". That function
will fail if no such variable exists. We use another question mark (?) to short circuit but now we
have a compilation error: `? could not convert the error to std::io::Error`…

That error leaves us at another Rust WTF-juncture. A WTFuncture. A Rust-T-F. You understand
Options and Results. They’re not that scary, but how the heck do you deal with all the different
errors? We’ll get to that in the next chapter.

14.4.2. Additional reading

• The Rust Book: ch 06 - Enums

• Rust by Example: Enums

• The Rust Reference: Enumerations

• Rust by Example: match

• Rust by Example: if let

• Rust docs: Result

• Rust docs: Option

14.5. Wrap-up
Options and Results are everywhere in Rust. You should try thinking in terms of them right away.
Enums themselves are everywhere, for that matter. You will often find its better to return or accept
values in terms of enums instead of magic values like strings or numbers and booleans that mean
more than just true or false.

This section was all lead-in to the next part of the guide where we go over how to deal with the Err
side of the Result.

82

https://doc.rust-lang.org/book/ch06-00-enums.html
https://doc.rust-lang.org/rust-by-example/custom_types/enum.html
https://doc.rust-lang.org/reference/items/enumerations.html
https://doc.rust-lang.org/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/rust-by-example/flow_control/if_let.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/option/enum.Option.html

15. Managing Errors

15.1. Introduction
So much of Rust’s documentation is explanation-heavy vs JavaScript’s example-oriented culture.
The examples that do exist often involve unrelated concepts that add no value to the topic in
question. I still aim to submit a PR to fix this example for read_to_string. That example inexplicably
relies on the contents of a file to be a valid socket address to complete successfully. Maybe I expect
too much, but I’m old and unlikely to change. I learn from example, from trial and error. I could sit
through an explaination about how combustion is an exothermic chemical reaction and that a
humans' epidermis starts getting damaged at temperatures above 118 degrees Fahrenheit. Or I
could touch a stove once.

I’ve read a lot of Rust while I learned. I kept trying to figure out the "right way" to do things. Judging
from a lot of the code in public projects, I’m not the only one who wasn’t able to get comfortable
with Rust right away. I’ve seen many crates I thought must be examples of good, practical code only
to learn that the authors were on the same journey I was. It’s difficult to write good Rust when real
world code is a mess of people trying to figure things out and documentation amounts to a pile of
Lego without instructions.

Error handling is a good example of this problem turned up to 11. The gap from "This is what a
Result is and how ? works" to being useful is massive. It’s not something you can ignore, either. It’s
a major hurdle to being productive.

15.1.1. Error handling in Rust

The one thing you need to know right now is that you must start caring more about errors than you
probably ever have before.

When you start a project, the first thing you think about needs to be "How do I manage errors?"

15.1.2. Dealing with multiple error types

Let’s take a look at the markdown renderer that wouldn’t compile from the last chapter.

83

https://doc.rust-lang.org/std/fs/fn.read_to_string.html#examples

use std::fs::read_to_string;

fn main() -> Result<(), std::io::Error> {
 let html = render_markdown()?;
 println!("{}", html);
 Ok(())
}

fn render_markdown() -> Result<String, std::io::Error> {
 let file = std::env::var("MARKDOWN")?;
 let source = read_to_string(file)?;
 Ok(markdown::to_html(&source))
}

The problem with this code stems from mismatched types. We return a Result with an error type of
io::Error but we’re using ? in two places, one of which returns a different kind of error.
read_to_string returns a Result<String, io::Error> which is great, but env::var() returns a
Result<String, env::VarError>.

We need a general type that matches multiple errors. If you’ve been following along day-by-day,
then you know this means one of two things: traits or enums.

Option 1: Box<dyn Error>

NOTE
This option is a good learning exercise. It’s not code you should write in any
meaningful project.

Boxing your errors relies on those errors implementing the Error trait.

What’s a Box?

Rust must know the size of everything at compile time. Since a dyn [trait] value has lost its
concrete type (see: Chapter 10: From Mixins to Traits), Rust can’t know its size. It’s "unsized." A
reference, on the other hand, does have a concrete size. It’s the size of a pointer. On a 32-bit
machine its 32 bits. A 64-bit machine, it’s 64 bits. I know, lin./images/blog/whoa.gif[whoa].

But we can’t simply return a reference willy nilly. Referenced data has to live somewhere. If it lives
in (is owned by) our function then Rust won’t let us return a reference at all. The value’s lifetime
will be too short. We’ve dealt with lifetimes all over this guide, they’ve just been hidden. We haven’t
had to tackle them directly but we’re getting closer.

Think of Box-ing something as taking a value, putting it somewhere where it’ll live for a long time,
and holding a pointer to that location. It’s how we get around wanting or needing to return a
reference for a value that we would normally drop.

The code to make this work is below:

84

https://doc.rust-lang.org/std/error/trait.Error.html
https://doc.rust-lang.org/std/error/trait.Error.html
./chapter-10-traits.adoc
https://www.merriam-webster.com/dictionary/willy-nilly
https://doc.rust-lang.org/nomicon/lifetime-elision.html

use std::{error::Error, fs::read_to_string};

fn main() -> Result<(), Box<dyn Error>> {
 let html = render_markdown()?;
 println!("{}", html);
 Ok(())
}

fn render_markdown() -> Result<String, Box<dyn Error>> {
 let file = std::env::var("MARKDOWN")?;
 let source = read_to_string(file)?;
 Ok(markdown::to_html(&source))
}

This often works, but if you remember from Chapter 13: Results & Options, the Result type doesn’t
constrain the error’s type. You will eventually encounter errors that do not implement the Error
trait and this method falls flat.

Option 2: Create your own custom Error type

Using dyn [trait] crosses the dyn barrier which results in lost type information (as you remember).
It’s a handy way of getting code running but it’s not a longterm solution.

Creating your own error type gives you more control over what you want to expose externally or
handle explicitly. Error types can be structs or enums. Custom errors that account for multiple
errors will frequently be an enum or involve an enum internally (often called ErrorKind).

enum MyError {}

A good Rust citizen produces errors that implement the Error trait, which you can start by writing:

impl std::error::Error for MyError {}

Have you committed VS Code’s Quick fix we talked about it in Chapter 9 to muscle memory yet?

If so then that red squiggly line might have triggered you to go ahead and run the Implement default
members action.

85

./chapter-13-result-and-option.adoc
/blog/node-to-rust-day-10-traits/#impl-vs-dyn
https://code.visualstudio.com/docs/editor/refactoring#_code-actions-quick-fixes-and-refactorings
./chapter-9-structs-and-behavior.adoc

Yikes. Good news, though: you can delete it. We don’t need it. Those defaults are fine. The red
squiggly line was actually because the Error trait has two supertraits, Display and Debug, that need
to be implemented.

NOTE
A supertrait refers to a trait that is a "superset" of another trait. Supertraits
confused me at first for two reasons.

1. Super [anything] invokes imagery of something out of the ordinary, something special. They’re
not.

2. In programming, super is frequently coupled with inheritance which Rust tells you time and
time again it doesn’t have.

The important thing to remember is that a supertrait is an additional, required trait. You must
implement the supertraits in addition to the desired trait. We declare a trait with supertraits when
we want to be able to use the supertrait’s methods from within our trait.

Implementing Debug and Display is straightforward and similar to what we’ve seen before:

86

https://doc.rust-lang.org/beta/src/std/error.rs.html#55
https://www.google.com/search?q=super+hero&tbm=isch&ved=2ahUKEwiM1YKGgeT0AhXnA1kFHW85C6sQ2-cCegQIABAA&oq=super+hero&gs_lcp=CgNpbWcQAzIICAAQgAQQsQMyCAgAEIAEELEDMgUIABCABDIICAAQgAQQsQMyCAgAEIAEELEDMgUIABCABDIFCAAQgAQyBQgAEIAEMgUIABCABDIFCAAQgAQ6BAgAEEM6BwgAELEDEENQoAVY7gpguQ9oAHAAeACAATSIAfoBkgEBNpgBAKABAaoBC2d3cy13aXotaW1nwAEB&sclient=img&ei=Ne64YczmAeeH5NoP7_Ks2Ao&bih=966&biw=1885&hl=en

#[derive(Debug)]
enum MyError {}

impl std::error::Error for MyError {}

impl std::fmt::Display for MyError {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Error!") // We have nothing useful to display yet.
 }
}

NOTE
In this guide I frequently prefix items with their full namespace, i.e.
std::fmt::Display vs Display. That’s not necessary. I do it as a compromise between
clarity and terseness.

After changing all of our Results to return MyError, our code now looks like this:

use std::fs::read_to_string;

fn main() -> Result<(), MyError> {
 let html = render_markdown()?;
 println!("{}", html);
 Ok(())
}

fn render_markdown() -> Result<String, MyError> {
 let file = std::env::var("MARKDOWN")?;
 let source = read_to_string(file)?;
 Ok(markdown::to_html(&source))
}

#[derive(Debug)]
enum MyError {}

impl std::error::Error for MyError {}

impl std::fmt::Display for MyError {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "Error!")
 }
}

This code doesn’t yet compile though. Rust outputs two errors, both of which are the same: ?
coudn’t convert the error to `MyError`

87

[snipped]
error[E0277]: `?` couldn't convert the error to `MyError`
 --> crates/day-14/custom-error-type/src/main.rs:10:39
 |
9 | fn render_markdown() -> Result<String, MyError> {
 | ----------------------- expected `MyError` because of
this
10 | let file = std::env::var("MARKDOWN")?;
 | ^ the trait `From<VarError>` is not
implemented for `MyError`
 |
 = note: the question mark operation (`?`) implicitly performs a conversion on the
error value using the `From` trait
 = note: required because of the requirements on the impl of
`FromResidual<Result<Infallible, VarError>>` for `Result<String, MyError>`
note: required by `from_residual`
[snipped]

Just because we have a custom error type doesn’t mean that Rust knows how to convert other
errors into it. The helper text shows us just what we need to do, though. We need to implement
From<env::VarError> and From<io::Error> for MyError.

The From, Into, TryFrom, and TryInto traits

The From, Into, TryFrom, and TryInto traits are the root of many magical conversions. Whenever you
see .into(), you’re (usually) seeing the result of implementing one or several of these traits.

Implementing From gives you the inverse Into for free. TryFrom does the same for TryInto. The Try*
traits are for conversions that can fail. They return a Result.

The implementations for MyError are below. Notice that we’re adding variants to MyError to denote
the error kind and also that our IOError variant wraps the original std::io::Error.

88

#[derive(Debug)]
enum MyError {
 EnvironmentVariableNotFound,
 IOError(std::io::Error),
}

impl From<std::env::VarError> for MyError {
 fn from(_: std::env::VarError) -> Self {
 Self::EnvironmentVariableNotFound
 }
}

impl From<std::io::Error> for MyError {
 fn from(value: std::io::Error) -> Self {
 Self::IOError(value)
 }
}

The complete implementation is below. Take note that we fleshed out the Display implementation
now that we have variants to distinguish from:

89

use std::fs::read_to_string;

fn main() -> Result<(), MyError> {
 let html = render_markdown()?;
 println!("{}", html);
 Ok(())
}

fn render_markdown() -> Result<String, MyError> {
 let file = std::env::var("MARKDOWN")?;
 let source = read_to_string(file)?;
 Ok(markdown::to_html(&source))
}

#[derive(Debug)]
enum MyError {
 EnvironmentVariableNotFound,
 IOError(std::io::Error),
}

impl From<std::env::VarError> for MyError {
 fn from(_: std::env::VarError) -> Self {
 Self::EnvironmentVariableNotFound
 }
}

impl From<std::io::Error> for MyError {
 fn from(value: std::io::Error) -> Self {
 Self::IOError(value)
 }
}

impl std::error::Error for MyError {}

impl std::fmt::Display for MyError {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 match self {
 MyError::EnvironmentVariableNotFound => write!(f, "Environment variable not
found"),
 MyError::IOError(err) => write!(f, "IO Error: {}", err.to_string()),
 }
 }
}

It’s a lot of code just to use a question mark that’s supposed to make our lives easier…

Option 3: Use a crate

Every Rust programmer deals with errors and there’s loads of precedent out there. There’s no need
to reinvent the wheel at this stage of your Rust journey. It’s much easier to leave it to a crate.

90

thiserror

thiserror (crates.io) gives you all of Option 2 with less headache and more functionality. The code
below is a complete implementation that mimics the behavior in our custom error example.

use std::fs::read_to_string;

fn main() -> Result<(), MyError> {
 let html = render_markdown()?;
 println!("{}", html);
 Ok(())
}

fn render_markdown() -> Result<String, MyError> {
 let file = std::env::var("MARKDOWN")?;
 let source = read_to_string(file)?;
 Ok(markdown::to_html(&source))
}

#[derive(thiserror::Error, Debug)]
enum MyError {
 #[error("Environment variable not found")]
 EnvironmentVariableNotFound(#[from] std::env::VarError),
 #[error(transparent)]
 IOError(#[from] std::io::Error),
}

error-chain

NOTE

error-chain is no longer maintained and is marked as deprecated. It’s still heavily
relied upon and works fine the cases where I’ve used it. It makes basic error
handling so simple that I think it is still worth mentioning. Getting passed the early
frustration with error handling is more important than finding the perfect crate
right away.

Another great option is error-chain (crates.io). error-chain gives you a lot more options and makes
creating errors as easy as:

error_chain::error_chain!{}

Really, that’s it. You get an Error struct, an ErrorKind enum, a custom Result type aliased to return
your Error, and more.

Below is a sample implementation for our example program.

91

https://docs.rs/thiserror/latest/thiserror/
https://crates.io/crates/thiserror
https://docs.rs/error-chain/0.12.4/error_chain/index.html
https://crates.io/crates/error-chain

use std::fs::read_to_string;

error_chain::error_chain! {
 foreign_links {
 EnvironmentVariableNotFound(::std::env::VarError);
 IOError(::std::io::Error);
 }
}

fn main() -> Result<()> {
 let html = render_markdown()?;
 println!("{}", html);
 Ok(())
}

fn render_markdown() -> Result<String> {
 let file = std::env::var("MARKDOWN")?;
 let source = read_to_string(file)?;
 Ok(markdown::to_html(&source))
}

Honorable mention: anyhow

The author of thiserror also publishes another popular error crate called anyhow. His words on the
difference between anyhow and thiserror:

NOTE

Use thiserror if you care about designing your own dedicated error type(s) so that
the caller receives exactly the information that you choose in the event of failure.
This most often applies to library-like code. Use Anyhow if you don’t care what
error type your functions return, you just want it to be easy. This is common in
application-like code._

I’ve used anyhow frequently and agree with the distinction above. anyhow is great for building
command line utilities and other projects that won’t be used like a library.

15.1.3. Additional reading

• The Rust Book: ch 9.02 - Recoverable Errors with Result

• Rust by Example: Multiple Error Types

Other crates

There are many other popular crates that make error handling less cumbersome. I haven’t used
any of these in large projects and can’t give an opinion.

• Snafu (crates.io.)

• quick-error (crates.io)

• failure (crates.io)

92

https://github.com/dtolnay/
https://github.com/dtolnay/anyhow
https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html
https://doc.rust-lang.org/rust-by-example/error/multiple_error_types.html
https://docs.rs/snafu/0.6.10/snafu/index.html
https://crates.io/crates/snafu
https://docs.rs/quick-error/latest/quick_error/
https://crates.io/crates/quick-error
https://docs.rs/failure/latest/failure/
https://crates.io/crates/failure

• err-derive (crates.io)

15.2. Wrap-up
Rust makes errors a priority. Once you start respecting them the way Rust forces you too, you’ll
understand why. Robust error handling is one of the most valuable things you can take back to your
JavaScript projects. You’ll learn how to isolate code that can fail and generate more meaningful
error messages and fallbacks.

You can’t go wrong with using thiserror or error-chain for libraries. I use anyhow in my tests and for
CLI projects frequently. They are all quality options and will turn error handling into one of the
most frustrating parts of Rust into one of the things you love most.

93

https://docs.rs/err-derive/0.3.0/err_derive/
https://crates.io/crates/err-derive

16. Closures

16.1. Introduction
Closures are a natural part of JavaScript. It’s hard to imagine what programming is like without
them. Luckily, you don’t have to. The behavior of Rust’s closures is similar enough to JavaScript’s
that you will be able to retain most of what you’re comfortable with.

NOTE
Closures are defined as functions that retain references to (enclose) its surrounding
state. I use the term "closure" here as a general term to mean an anonymous
function, regardless of whether or not it references external variables.

16.2. Closure syntax comparison

NOTE
If you haven’t been following along with the code repository, now is a good time to
start. This day’s code is available in Chapter 15 of the project on github.

This section maps JavaScript/TypeScript closures to the equivalent Rust syntax without much
explanation. If you get lost, please reach out. Your perspective on what is confusing will help make
this book better. Don’t hesitate to submit issues or pull requests!

16.2.1. Basic closure syntax

This closure prints Hi! I’m in a closure.

let closure = () \=> {
 console.log("Hi! I'm in a closure");
};
closure();

let closure = || {
 println!("Hi! I'm in a closure");
};
closure();

Hi! I'm in a closure

NOTE
Rust uses pipes instead of parentheses for arguments and does not have a separator
between the arguments and the body.

16.2.2. Closures with a single expression body

These closures show how you can omit the curly braces {} for closures that consist of a single

94

https://github.com/vinodotdev/node-to-rust/

expression.

let double = (num: number) \=> num + num;
let num = 4;
console.log(`+${num} + ${num} = ${double(num)}+`);

let double = |num: i64| num + num;
let num = 4;
println!("{} + {} = {}", num, num, double(num));

4 + 4 = 8

NOTE
Both JavaScript and Rust can omit the curly braces if the body consists of a single
expression.

16.2.3. Closures referencing external variables

A proper closure references variables from its parent’s scope. That’s no problem in Rust.

let name = "Rebecca";
closure = () \=> {
 console.log(`+Hi, ${name}.+`);
};
closure();

let name = "Rebecca";
let closure = || {
 println!("Hi, {}.", name);
};
closure();

Hi, Rebecca.

NOTE
Mutable variables need a mutable closure! The state of your closure is part of the
closure. If you mutate a variable in a closure then the closure itself must be made
mutable.

These closures increment a counter when executed.

95

let counter = 0;
closure = () \=> {
 counter += 1;
 console.log(`+This closure has a counter. I've been run ${counter} times.+`);
};
closure();
closure();
closure();
console.log(`+The closure was called a total of ${counter} times+`);

let mut counter = 0;

let mut closure = || {
 counter += 1;
 println!(
 "This closure has a counter. I've been run {} times.",
 counter
);
};
closure();
closure();
closure();
println!("The closure was called a total of {} times", counter);

This closure has a counter. I've been run 1 times.
This closure has a counter. I've been run 2 times.
This closure has a counter. I've been run 3 times.
The closure was called a total of 3 times

16.2.4. Returning a closure

Generating closures dynamically is straightforward once you get over the nuances in the different
traits. The make-adder functions take in an addend and generate a closure that takes in a second
number and sums the enclosed value with the passed value.

function makeAdder(left: number): (left: number) \=> number {
 return (right: number) \=> {
 console.log(`+${left} + ${right} is ${left + right}+`);
 return left + right;
 };
}

let plusTwo = makeAdder(2);
plusTwo(23);

96

fn make_adder(left: i32) -> impl Fn(i32) -> i32 {
 move |right: i32| {
 println!("{} + {} is {}", left, right, left + right);
 left + right
 }
}

let plus_two = make_adder(2);
plus_two(23);

2 + 23 is 25

The Fn, FnMut, and FnOnce traits

Functions come in three flavors.

• Fn: a function that immutably borrows any variables it closes over.

• FnMut: a function that mutably borrows variables it closes over.

• FnOnce: a function that consumes (loses ownership of) of its values and thus can only be run
once, e.g.

let name = "Dwayne".to_owned();
let consuming_closure = || name.into_bytes();
let bytes = consuming_closure();
let bytes = consuming_closure(); // This is a compilation error

The move keyword

The move keyword tells Rust that the following block or closure takes ownership of any variables it
references. It’s necessary above because we’re returning a closure that references left which
would normally be dropped when the function ends. When we move it into the closure, we can
return the closure without issue.

16.2.5. Composing functions

The compose function takes two functions and returns a closure that runs both and pipes the output
of one into the other.

Each input closure takes one argument of the generic type T and returns a value also of type T. The
first of the two closures is the plus_two closure from above. The second closure, times_two,
multiplies its input by two.

The generated closure, double_plus_two, composes the original two into one.

97

function compose<T>(f: (left: T) \=> T, g: (left: T) \=> T): (left: T) \=> T { return
(right: T) \=> f(g(right)); }

let plusTwo = makeAdder(2); // ← makeAdder from above
let timesTwo = (i: number) \=> i * 2;
let doublePlusTwo = compose(plusTwo, timesTwo);
console.log(`+${10} * 2 + 2 = ${doublePlusTwo(10)}+`);

fn compose<T>(f: impl Fn(T) -> T, g: impl Fn(T) -> T) -> impl Fn(T) -> T {
 move |i: T| f(g(i))
}

let plus_two = make_adder(2); // ← make_adder from above
let times_two = |i: i32| i * 2;
let double_plus_two = compose(plus_two, times_two);
println!("{} * 2 + 2 = {}", 10, double_plus_two(10));

10 * 2 + 2 = 22

16.2.6. Regular function references

This section shows how you can treat any function as a first-class citizen in Rust.

function regularFunction() {
 console.log("I'm a regular function");
}

let fnRef = regularFunction;
fnRef();

fn regular_function() {
 println!("I'm a regular function");
}

let fn_ref = regular_function;
fn_ref();

I'm a regular function

16.2.7. Storing closures in a struct

Storing functions can be a little trickier due to the different Fn* traits and the dyn [trait] behavior.

98

This code creates a class or struct that you instantiate with a closure. You can then call .run() from
the resulting instance to execute the stored closure.

class DynamicBehavior<T>{ closure: (num: T) \=> T; constructor(closure: (num: T) \=>
T) { this.closure = closure; } run(arg: T): T { return this.closure(arg); } }

let square = new DynamicBehavior((num: number) \=> num * num);
console.log(`+${5} squared is ${square.run(5)}+`);

struct DynamicBehavior<T> {
 closure: Box<dyn Fn(T) -> T>,
}

impl<T> DynamicBehavior<T> {
 fn new(closure: Box<dyn Fn(T) -> T>) -> Self {
 Self { closure }
 }
 fn run(&self, arg: T) -> T {
 (self.closure)(arg)
 }
}

let square = DynamicBehavior::new(Box::new(|num: i64| num * num));
println!("{} squared is {}", 5, square.run(5))

NOTE

Remember we can’t use impl [trait] outside of a function’s parameters or return
value, so to store a closure we need to store it as a dyn [trait]. Also remember that
dyn [trait] is unsized and Rust doesn’t like that. We can Box it to move passed Rust’s
complaints (see Chapter 14 : What’s a box?).

16.2.8. Additional reading

• The Rust Book: ch 13.01 - Closures

• The Rust Book: ch 19.05 - Advanced Functions and Closures

• Rust by Example: Closures

• Rust Reference: Closure expressions

16.3. Wrap-up
Rust’s closures are not as terrifying as some people make them out to be. You will eventually get to
some gotchas and hairy parts, but we’ll tackle those when we deal with async. First though, we’ve
put off lifetimes for long enough. We’ll get deeper into Rust’s borrow checker in the next chapter
before moving on to Arrays, iterators, async, and more.

99

https://doc.rust-lang.org/book/ch13-01-closures.html
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html
https://doc.rust-lang.org/rust-by-example/fn/closures.html
https://doc.rust-lang.org/reference/expressions/closure-expr.html

17. Lifetimes, References, and 'static

17.1. Introduction
Lifetimes are Rust’s way of avoiding dangling references, pointers to memory that has been
deallocated. To a user, this might look like a failed operation or a crashed program. To a malicious
actor, it’s an opening. Accessing the memory behind a dangling reference produces undefined
behavior. That is another way of saying it produces behavior that is open for others to define.

NOTE

Bugs like dangling references account for the vast majority of major software
vulnerabilities. An analysis from the Chromium team showed that 70% of high
severity issues were due to memory safety bugs. If this sort of thing interests you,
the phrase you need to search for is "use after free" or UAF vulnerabilities. This is a
good introduction to how they’re exploited in browsers. It’s fascinating.

This might sound a little nutty if you’ve never used a language like C where you manage your own
memory. Languages like JavaScript and Java manage memory for you and use garbage collectors to
avoid dangling references. Garbage collectors track every time you take a reference to data. They
keep that memory allocated as long as the reference count is greater than zero.

Garbage collection was a revolutionary invention 63 years ago. But it comes with a cost. In extreme
cases, garbage collection can freeze your application for full seconds. Garbage-minded applications
rarely see that high of an impact, but the GC always looms in the background. Like a vampire.

Rust doesn’t use a garbage collector yet still avoids dangling references. You get the raw power of a
language like C with the safety of a garbage collected language like JavaScript.

NOTE
There are dozens, if not hundreds, of excellent articles written about Rust lifetimes.
This chapter will address some of the confusion that arises once you’re in the
weeds. The additional reading in this section should be considered a prerequisite.

17.2. Lifetimes vs lifetime annotations
You will frequently come across posts, questions, and answers where the phrase "lifetime
annotations" is shortened to "lifetimes" which only adds confusion.

A lifetime is a construct within Rust’s borrow checker. Every value has a point where its created
and a point where its dropped. That’s its lifetime.

A lifetime annotation is Rust syntax you can add to a reference to give its lifetime a named tag.
You must use lifetime annotations in situations where there are multiple references and Rust can’t
disambiguate them on its own.

Every time you read a sentence like "you must specify a lifetime" or "give the reference a lifetime,"
it’s referring to a lifetime annotation. You can’t give a value a new lifetime.

100

https://en.wikipedia.org/wiki/Dangling_pointer#Security_holes_involving_dangling_pointers
https://www.chromium.org/Home/chromium-security/memory-safety
https://pure.security/introduction-to-use-after-free-vulnerabilities/
https://pure.security/introduction-to-use-after-free-vulnerabilities/

17.3. Lifetime elision
Every reference has a lifetime, even if you don’t see annotations. Just because you’re not writing
annotations on your references doesn’t mean you’re avoiding them.

This function:

fn omits_annotations(list: &[String]) -> Option<&String> {
 list.get(0)
}

is equivalent to this function:

fn has_annotations<'a>(list: &'a [String]) -> Option<&'a String> {
 list.get(1)
}

Both compile and act like you’d expect.

fn main() {
 let authors = vec!["Samuel Clemens".to_owned(), "Jane Austen".to_owned()];
 let value = omits_annotations(&authors).unwrap();
 println!("The first author is '{}'", value);
 let value = has_annotations(&authors).unwrap();
 println!("The second author is '{}'", value);
}

The first author is 'Samuel Clemens'
The second author is 'Jane Austen'

The reason Rust can do this for you is that there is one reference in the arguments and one
reference in the return value. The lifetime of the returned reference therefore must be the same as
the lifetime in the passed reference.

This is Rust trying to be helpful. It handles the lifetime annotations for simple cases. The problem is:
if Rust handles the trivial cases, the first ones you have to deal with are — by definition — non-
trivial. It can feel daunting. Don’t stress about it. You’ve got this. The best way to go forward is to go
backward. Write out by hand what Rust was doing for you. It’ll give you a feel for what is expected.

17.4. The 'static lifetime
'static is described in great detail in every corner of Rust’s community. The time spent explaining
'static makes it seem more complex than it is. I’ll try to be as succinct as possible.

There are two ways you’ll typically see 'static used.

101

1. As the explicit lifetime annotation on a reference, e.g.:

fn main() {
 let mark_twain = "Samuel Clemens";
 print_author(mark_twain);
}
fn print_author(author: &'static str) {
 println!("{}", author);
}

1. Or as the lifetime bounds on generic type parameters, e.g.:

fn print<T: Display + 'static>(message: &T) {
 println!("{}", message);
}

&'static means this reference is valid for the rest of the program. The data it’s pointing to will not
move nor change. It will always be available. This is why string literals are &'static. The data is
baked into the program and will never be dropped.

NOTE
&'static says nothing about the lifetime of the variable holding the reference,
however. The program below exemplifies this behavior.

The get_memory_location() function returns the pointer and length of a literal string, a &'static str,
that it immediately drops. The get_str_at_location() function takes a pointer plus a length and
attempts to read that memory location back as a &str. This works just fine, though we’re using
dangerous functions and have to mark them as such with the unsafe keyword.

Uncomment the final line in main() to see why they are unsafe.

102

use std::{slice::from_raw_parts, str::from_utf8_unchecked};

fn get_memory_location() -> (usize, usize) {
 let string = "Hello World!";
 let pointer = string.as_ptr() as usize;
 let length = string.len();
 (pointer, length)
 // `string` is dropped here.
 // It's no longer accessible, but the data lives on.
}

fn get_str_at_location(pointer: usize, length: usize) -> &'static str {
 // Notice the `unsafe {}` block. We can't do things like this without
 // acknowledging to Rust that we know this is dangerous.
 unsafe { from_utf8_unchecked(from_raw_parts(pointer as *const u8, length)) }
}

fn main() {
 let (pointer, length) = get_memory_location();
 let message = get_str_at_location(pointer, length);
 println!(
 "The {} bytes at 0x{:X} stored: {}",
 length, pointer, message
);
 // If you want to see why dealing with raw pointers is dangerous,
 // uncomment this line.
 // let message = get_str_at_location(1000, 10);
}

The 12 bytes at 0x562037200057 stored: Hello World!

On the other hand, adding 'static as a bound is like telling Rust "I want a type that could last
forever, if I needed it to." It’s not telling Rust you only want data that does live forever.

In friendly terms: &'static !== T: 'static

The code below illustrates how a type like String in the second block can satisfy a 'static constraint
for the static_bound() function yet not retain the same properties as the &'static references in the
first block.

103

use std::fmt::Display;

fn main() {
 let r1;
 let r2;
 {
 static STATIC_EXAMPLE: i32 = 42;
 r1 = &STATIC_EXAMPLE;
 let x = "&'static str";
 r2 = x;
 }
 println!("&'static i32: {}", r1);
 println!("&'static str: {}", r2);

let r3;

{
 let string = "String".to_owned();

 static_bound(&string); // This is *not* an error
 r3 = &string; // *This* is } println!("{}", r3); }

fn static_bound<T: Display + 'static>(t: &T) {
 println!("{}", t);
}

error[E0597]: `string` does not live long enough
 --> crates/day-16/static/src/main.rs:21:10
 |
21 | r3 = &string;
 | ^^^^^^^ borrowed value does not live long enough
22 | }
 | - `string` dropped here while still borrowed
23 | println!("{}", r3);
 | -- borrow later used here

For more information about this error, try `rustc --explain E0597`.

NOTE
The project day-16-static-bounds in the code repository further illustrates the
differences between &'static and T: 'static.

While the two usages are related, the spirit behind each is different.

As a rule: if you need to add a &'static to make things work, you might want to rethink things. If
you need to add a 'static bound to make Rust happy (e.g. T: 'static or + 'static), it’s probably OK.

104

NOTE
Because I was curious: Rust’s standard library has 48 instances of &'static (minus
&'static str) and 112 instances of 'static as a constraint.

17.4.1. Additional reading

• The Rust Book: ch 10.03 - Validating References with Lifetimes

• Rust by Example: Lifetimes

• Rust Reference: Trait and lifetime bounds

• Rust Reference: Lifetime elision

• Rustonomicon: Lifetimes

• Common Rust Lifetime Misconceptions

• rustviz: Rust lifetime visualizer

• Understanding lifetimes in Rust

17.5. Wrap-up
This chapter went through five iterations before ending with this version. One of the biggest source
of headaches with generic types, lifetimes, and references is how you use them with popular third
party libraries and async code. We haven’t yet hit those topics yet. We’ll circle back around to
common errors and issues when we move into more complex code.

105

https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/rust-by-example/scope/lifetime.html
https://doc.rust-lang.org/reference/trait-bounds.html
https://doc.rust-lang.org/reference/lifetime-elision.html
https://doc.rust-lang.org/nomicon/lifetimes.html
https://github.com/pretzelhammer/rust-blog/blob/master/posts/common-rust-lifetime-misconceptions.md
https://github.com/rustviz/rustviz
https://blog.logrocket.com/understanding-lifetimes-in-rust/

18. Arrays, Loops, and Iterators

18.1. Introduction
Translating common JavaScript use cases for Arrays and loops requires learning some new
concepts and data types. You’ll also need to get comfortable reading and writing more code than
you’re used to. In some ways, Rust is more succinct than JavaScript. In others, what could have
been a one-liner in JavaScript may be ten times more code in Rust.

We touched on Vec and VecDeque in Chapter 7 which will be your go-to list structures. The next
hurdle is wrapping your head around Iterators. Many of the Array methods you’re used to using in
JavaScript exist in Rust, but they are wrapped in a lazy Iterator construct.

18.2. Recap: vec![], Vec, and VecDeque
Actual Rust arrays must have a known length with all elements initialized. You can mutate the
internal elements, but you can’t grow or shrink them.

This won’t work.

let mut numbers = [1, 2, 3, 4, 5];
numbers.push(7); // no method named `push` found for array `[{integer}; 5]`
println!("{:?}", numbers);

To get the flexible lists you’re used to, you need a Vec or VecDeque. Vec is to JavaScript arrays what
String is to JavaScript strings. Vec's can only grow and shrink at the end. VecDeque can grow or
shrink from either direction.

Creating a Vec is easy with the vec![] macro. Add it to your cheatsheet. You’ll use it frequently.

let mut numbers = vec![1, 2, 3, 4, 5]; // ⬅ Notice the vec! macro
numbers.push(7);
println!("", numbers);

18.3. Loops

18.3.1. for (… ; … ; …)

Rust does not have a for loop like this for good reason. It’s cumbersome syntax for a general loop
that mostly gets used one way:

1. We initialize a single variable (e.g. i) and assign it the minimum value in a range (e.g. 0).

2. We test if the variable is greater than the maximum value in the range (e.g. i < max).

3. Every loop we increment the variable by 1.

106

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html

Rust generalizes this use case into its for…in expression combined with the [range
operator](https://doc.rust-lang.org/std/ops/struct.Range.html) (e.g. 0..10).

let max = 4;
for (let i = 0; i < max; i++) {
 console.log(i);
}

let max = 4;
for i in 0..max {
 println!("{}", i);
}

1
2
3

18.3.2. for…in

Rust doesn’t have the same kinds of Object types that JavaScript has. There’s no real way of
iterating over the properties of arbitrary objects. Rust does have Map types like HashMap though (see
Chapter 8). You can use the .keys() method to get an iterator over the map’s keys.

NOTE .keys() visits keys in arbitrary order. You don’t get a say in this.

let obj: any = {
 key1: "value1",
 key2: "value2",
};
for (let prop in obj) {
 console.log(`+${prop}: ${obj[prop]}+`);
}

let obj = HashMap::from([
 ("key1", "value1"),
 ("key2", "value2")
]);
for prop in obj.keys() {
 println!("{}: {}", prop, obj.get(prop).unwrap());
}

107

https://doc.rust-lang.org/std/ops/struct.Range.html
./chapter-8-types-hashmaps-and-structs.adoc

key1: value1
key2: value2

18.3.3. for…of

JavaScript’s for…of translates almost 1-to-1 with Rust’s for…in

let numbers = [1, 2, 3, 4, 5];
for (let number of numbers) {
 console.log(number);
}

let numbers = [1, 2, 3, 4, 5];
for number in numbers {
 println!("{}", number);
}

1
2
3
4
5

18.3.4. while loops

While loops are straightforward to understand, but there are common cases that Rust handles
better than a straight translation.

while (!done)…

One such case is using a while to loop until something is "done," whatever done might mean.

let obj = {
 data: ["a", "b", "c"],
 doWork() {
 return this.data.pop();
 },
};

let data;
while ((data = obj.doWork())) {
 console.log(data);
}

108

https://doc.rust-lang.org/stable/rust-by-example/flow_control/while.html

The Rust counterpart uses while let syntax to match against the return value and conditonally
continue the loop. The loop continues as long as .doWork() returns a Some(). You can do this
similarly with Result`s and `Ok and any other type.

struct Worker {
 data: Vec<&'static str>,
}
impl Worker {
 fn doWork(&mut self) -> Option<&'static str> {
 self.data.pop()
 }
}
let mut obj = Worker {
 data: vec!["a", "b", "c"],
};

while let Some(data) = obj.doWork() {
 println!("{}", data);
}

c
b
a

18.3.5. do … while

Rust has no do…while loop. You can get similar behavior with loop described next.

while (true) …

Rust’s loop expression simply loops forever. It’s handier than you might think at first glance, and
much more intuitive than while (true).

let n = 0;

while (true) {
 n{pp};
 if (n > 3) break;
 else console.log(n);
}

109

let mut n = 0;
loop {
 n += 1;
 if n > 3 {
 break;
 }
}
println!("Finished. n={}", n);

Finished. n=4

18.4. Labels, break, continue
In Rust, labels work the same way as they do in JavaScript, with the only difference being Rust
labels are prefixed with an apostrophe.

outer: while (true) {
 while (true) {
 break outer;
 }
}

'outer: loop {
 loop {
 break 'outer;
 }
}

18.5. break & loop expressions
loop blocks are expressions themselves and can return values. This is a better alternative than
initializing a variable outside a loop just so you can update it internally.

let value = loop {
 if true {
 break "A";
 } else {
 break "B";
 }
};
println!("Loop value is: {}", value);

110

Loop value is: A

18.6. Intro to Rust Iterators
Iterators are how Rust deals with operations on a sequence. Iterators can be chained to produce
more iterators. Unlike JavaScript’s iteration methods, Rust iterators are lazy. They don’t execute
until you call a method that needs a value.

All iterators implement the Iterator trait which gives each a similar interface. This trait is different
than some of the more basic Rust traits. It has an associated type named Item and is a placeholder
for the type of the elements being iterated over. You don’t need to worry about it much until you
start trying to build your own iterators or return them from functions.

NOTE
Associated types in traits are similar to generics. They are a placeholder for a type
that the implementer will define. To learn more about how they’re different, read
The Rust Book, ch 19.03: Advanced Traits

18.6.1. How to get and use iterators

Because a Vec isn’t an iterator itself, we have to call a method to make it one. And because Iterators
are lazy, we have to call a method to get any value at all out of them. This means we have to add
two method calls every time we want to iterate and return a value. It’s a lot of noise:

let list = vec![1, 2, 3];
let doubled: Vec<_> = list
 .iter()
 .map(|num| num * 2)
 .collect();
println!("{:?}", doubled);

[2, 4, 6]

The .iter() method on many structures returns an Iterator, while the Iterator method .collect()
consumes the rest of an iterator and returns a single value.

To get a single value out of an iterator, you’d use the .next() method.

NOTE error[E0282]: type annotations needed

When you start using .collect() you will probably run into the error : error[E0282]: type
annotations needed right away.

let list = vec![1, 2, 3];
let doubled = list.iter().map(|num| num * 2).collect();

111

https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html

error[E0282]: type annotations needed
 --> crates/day-17/iterators/src/main.rs:13:7
 |
13 | let doubled = list.iter().map(|num| num * 2).collect();
 | ^^^^^^^ consider giving `doubled` a type

For more information about this error, try `rustc --explain E0282`.

When I started, I couldn’t figure out why I needed to annotate my types. Rust knew the types going
into map() and knew the types coming out. Why do I need to annotate them like this?

let list = vec![1, 2, 3];
let doubled: Vec<i32>= list.iter().map(|num| num * 2).collect();

Well, you don’t. It turns out that Rust does indeed know the type of its elements, but it has no
knowledge of what its new wrapper should be. It’s not the i32 part of the type that Rust needs
annotated, it’s the Vec<> part. Just because we started with a Vec doesn’t mean we will always want
one when we’re done.

When Rust knows one type but not another, you can omit it with an underscore (), e.g Vec<>,

let doubled: Vec<_>= list.iter().map(|num| num * 2).collect();

NOTE error[E0596]: cannot borrow … as mutable, as it is behind a & reference

let list = vec!["garbage".to_owned(), "data".to_owned()];
list.iter().for_each(|garbage| garbage.clear()); // .clear() mutates its self

error[E0596]: cannot borrow `*garbage` as mutable, as it is behind a `&` reference
 --> crates/day-17/iterators/src/main.rs:11:34
 |
11 | list.iter().for_each(|garbage| garbage.clear());
 | ------- ^^^^^^^^^^^^^^^
 | `garbage` is a `&` reference, so the data it
 | refers to cannot be borrowed as mutable
 | |
 | help: consider changing this to be a mutable reference:
`&mut String`

For more information about this error, try `rustc --explain E0596`.

But you can’t change garbage to garbage: &mut String, it causes a different compile error. This time
Rust complains of a signature mismatch on the closure passed for_each().

112

So what do you do? Instead of .iter() you use .iter_mut().

.iter() immutably borrows elements, .iter_mut() mutably borrows them. When you are
confronted with this error in an API you don’t control, look for *_mut() methods that complement
the ones you’re already using.

18.7. Translating Array.prototype methods

18.7.1. .filter()

Iterator’s .filter() method produces another iterator and has some tricky behavior explained in
the note below.

let numbers = [1, 2, 3, 4, 5];
let even = numbers.filter((x) \=> x % 2 === 0);
console.log(even);

let numbers = [1, 2, 3, 4, 5];
let even: Vec<_> = numbers.iter().filter(|x| *x % 2 == 0).collect();
println!("{:?}", even);

[2, 4]

NOTE

Did you notice the asterisk (*) in front of the x in the filter body? That’s because
.filter() takes a reference and most iterators iterate over references so we have to
dereference the double reference to get a reference to our integer. Yuck, but that’s
life. It’s documented on Iterator but it’s not an uncommon to find elsewhere.

18.7.2. .find()

.find(predicate) is essentially a .filter(predicate).next(). It consumes the iterator until your
predicate returns true and returns that value.

let numbers = [1, 2, 3, 4, 5];
let firstEven = numbers.find((x) \=> x % 2 === 0);
console.log(firstEven);

let numbers = [1, 2, 3, 4, 5];
let first_even = numbers.iter().find(|x| *x % 2 == 0);
println!("{:?}", first_even.unwrap());

113

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter

2

NOTE
You can store the iterator and call .find() multiple times. You can’t do that in
JavaScript.

let numbers = [1, 2, 3, 4, 5];
let mut iter = numbers.iter(); // Note, our iter is mut
let first_even = iter.find(|x| *x % 2 == 0);
println!("{:?}", first_even.unwrap());
let second_even = iter.find(|x| *x % 2 == 0);
println!("{:?}", second_even.unwrap());

2
4

18.7.3. .forEach()

.for_each() consumes the iterator immediately. You’de use it at the end of an iterator chain to
operate on each element. Using a plain loop is usually a more readable option.

let numbers = [1, 2, 3];
numbers.forEach((x) \=> console.log(x));

let numbers = [1, 2, 3];
numbers.iter().for_each(|x| println!("{}", x));

1
2
3

18.7.4. .join()

.join() works on arrays and Vecs without needing an iterator.

let names = ["Sam", "Janet", "Hunter"];
let csv = names.join(", ");
console.log(csv);

114

let names = ["Sam", "Janet", "Hunter"];
let csv = names.join(", ");
println!("{}", csv);

Sam, Janet, Hunter

18.7.5. .map()

.map() is another Iterator method that returns an Iterator.

let list = [1, 2, 3];
let doubled = list.map((x) \=> x * 2);
console.log(doubled);

let list = vec![1, 2, 3];
let doubled: Vec<_> = list.iter().map(|num| num * 2).collect();
println!("{:?}", doubled)

[2, 4, 6]

18.7.6. .push() and .pop()

While you can use .iter() on regular arrays, .push() and .pop() are only available on Vec types.

let list = [1, 2];
list.push(3);
console.log(list.pop());
console.log(list.pop());
console.log(list.pop());
console.log(list.pop());

3
2
1
undefined

115

let mut list = vec![1, 2];
list.push(3);
println!("", list.pop());
println!("", list.pop());
println!("", list.pop());
println!("", list.pop());

Some(3)
Some(2)
Some(1)
None

NOTE If you use a VecDeque, .push()/.pop() become .push_back() and .pop_back()

18.7.7. .shift() & .unshift()

You can’t get the same behavior as .shift() and .unshift() with a Vec. Vecs only grow from the
back. You need a VecDeque (Double Ended QUEue) to push/pop from the front of a list.

let list = [1, 2];
list.unshift(0);
console.log(list.shift());
console.log(list.shift());
console.log(list.shift());
console.log(list.shift());

0
1
2
undefined

let mut list = VecDeque::from([1, 2]);
list.push_front(0);
println!("", list.pop_front());
println!("", list.pop_front());
println!("", list.pop_front());
println!("", list.pop_front());

Some(0)
Some(1)
Some(2)
None

116

18.7.8. How to return an Iterator

It’s bad form to use .collect() to return a specific data structure when you could return the
iterator itself. Returning an iterator keeps things flexible and retains the lazy evaluation Rust
programmers expect. Since the basic Iterator is a trait, we can return it the same way we’ve
returned closures and other values in previous guides.

The data structure below is part of the day-17-names(day-17-names example project. It holds its
own Vec of names and provides a method to search the list.

Rather than returning a Vec<&String>, it returns an Iterator of borrowed Strings.

struct Names {
 names: Vec<String>, }

impl Names {
 fn search<T: AsRef<str>>(&self, re: T) -> impl Iterator<Item = &String> {
 let regex = regex::Regex::new(re.as_ref()).unwrap();
 self.names.iter().filter(move |name| regex.is_match(name))
 }
}

NOTE Confused about AsRef<str>? Head back to Chapter 12: Strings, Part 2 to brush up.

18.7.9. Additional reading

• The Rust Book: ch 13.02 - Iterators

• Rust by Example: Flow control

• Rust by Example: Vectors

• Rust by Example: Iterators

• Rust docs: Vec

• Rust docs: VecDeque

• Rust docs: Iterator

18.8. Wrap-up
Porting over our mental model of how lists and iteration works is important. If you subscribe to the
functional programming style in JavaScript, you’re going to have a great time in Rust. While Rust is
not a purely functional language, its default behavior for things like Iterators will net you greater
rewards for little effort. Iterators and eventually streams give you more control over how much
processing is done and when.

117

https://github.com/vinodotdev/node-to-rust/tree/master/src/crates/day-17/names)
./chapter-12-strings-part2.adoc
https://doc.rust-lang.org/book/ch13-02-iterators.html
https://doc.rust-lang.org/rust-by-example/flow_control.html
https://doc.rust-lang.org/rust-by-example/std/vec.html
https://doc.rust-lang.org/rust-by-example/trait/iter.html?highlight=iterator#iterators
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/vec_deque/struct.VecDeque.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html

19. Async in Rust

19.1. Introduction
Rust’s async story has its good parts and bad parts. Futures (Rust’s promises) are a core part of Rust.
Actually being able to use them is not. That’s weird, let’s break it down.

Rust’s standard library defines what an asynchronous task needs to look like with the Future trait.
But implementing Future isn’t enough to be "async" on its own. You need something that will
manage them. You need a futures bucket that checks which futures are done and notifies what’s
waiting on them. You need an executor and a reactor, kind of like node.js’s event loop. You don’t get
that with Rust. The Rust team left it to the community to decide how best to flesh out the async
ecosystem. It may seem nuts, but did you know there was a time where JavaScript didn’t have
promises? JavaScript had this problem in reverse. It had the executor and reactor but no way to
represent a task. The community had to define what a Promise was. We were left polyfilling them
until they landed in ES6.

In Rust, you have to polyfill async. Maybe it’ll exist in Rust core someday, but that’s not relevant.
The important part is figuring out which polyfills exist now and how to get started ASAP.

19.1.1. Rust async libraries

• Tokio (repo) (crates.io) (docs.rs)

• Async-std (repo) (crates.io) (docs.rs)

• Smol (repo) (crates.io) (docs.rs)

There are more, but this is already enough. Every library has their audience and there’s little point
debating which one is "best." What’s important right now is which will be the easiest to deal with.
That’s Tokio. There are libraries that depend on Tokio’s behavior which means you can’t (easily)
use them without also using Tokio’s executor. It’s a bit of a hostage situation. Tokio’s not bad
though. It has documentation, loads of community contributions, and there’s a lot of code to learn
from. It’s just a weird situation to be in when you’re used to async JavaScript and node.js.

NOTE

Did you know that there used to be many other server-side JavaScript
implementations before node.js? Some of them were even single-threaded and
required you to deal with blocking logic by forking. Tokio is kind of like node.js. It’s
an async implementation with a core set of async methods you can rely on. Smol is
kind of like deno. It’s newer, has an answer for interoperability, but promises to be
faster and better.

19.1.2. Quickstart

Add Tokio as a dependency in your Cargo.toml with the full feature flag.

118

https://doc.rust-lang.org/std/future/trait.Future.html
https://tokio.rs
https://github.com/tokio-rs/tokio
https://crates.io/crates/tokio
https://docs.rs/tokio
https://async.rs
https://github.com/async-rs
https://crates.io/crates/async-std
https://docs.rs/async-std
https://github.com/smol-rs/smol
https://crates.io/crates/smol
https://docs.rs/smol

[dependencies]
tokio = { version = "1", features = ["full"] }

NOTE

Feature flags expose conditional compilation to users of a library. All tags are
arbitrary, "full" doesn’t mean anything special. In some libraries feature flags are
used to turn on or off platform-specific code. In others like Tokio, it’s used to
conditionally require what amounts to sub-crates. Tokio used to be split up into
many small modules. Community feedback changed that course and now we use
feature flags.

When you get more comfortable, you can read up on the feature flags and trim it down to what you
need.

You must starting an executor before running your futures. Tokio gives you a handy macro that sets
everything up behind the scenes. You add it to main() and voila, you get a fully async Rust.

#[tokio::main]
async fn main() { // Notice we write async main() now
}

19.1.3. async/.await

Rust has an async/await style syntax like JavaScript. Adding async turns a function’s return value
from T into impl Future<Output = T>, e.g.

fn regular_fn() -> String {
 "I'm a regular function".to_owned()
}

async fn async_fn() -> String { // actually impl Future<Output = String>
 "I'm an async function".to_owned()
}

Unlike JavaScript, the await syntax must be appended to an actual future. It isn’t prepended nor can
it be used on arbitrary values. It looks like this.

#[tokio::main]
async fn main() {
 let msg = async_fn().await;
}

Also unlike JavaScript, your futures don’t run until you await them.

119

#[tokio::main]
async fn main() {
 println!("One");
 let future = prints_two();
 println!("Three");
 // Uncomment and move the following line around to see how the behavior changes.
 // future.await;
}

async fn prints_two() {
 println!("Two")
}

One
Three

Uncommenting the line above produces

One
Three
Two

19.1.4. async blocks

Asynchronous behavior and closures are part of every developer’s toolbox. You will inevitable get
to a point where you try to return a closure that’s also async and you run into this error:

error[E0658]: async closures are unstable
 --> src/send-sync.rs:6:15
 |
6 | let fut = async || {};
 | ^^^^^
 |
 = note: see issue #62290 <https://github.com/rust-lang/rust/issues/62290> for more
information
 = help: to use an async block, remove the `||`: `async {`

Async closures are unstable but the helper text advises you to use async blocks. Async blocks?

That’s right, any old block of code in Rust can be async all on its own. They implement Future and
can be returned from functions just like any other value:

120

https://github.com/rust-lang/rust/issues/62290

#[tokio::main]
async fn main() {
 let msg = "Hello world".to_owned();

 let async_block = || async {
 println!("{}", msg);
 };
 async_block().await; }

You can get all the parts of an async closure you need by making a closure that returns an async
block!

#[tokio::main]
async fn main() {
 let msg = "Hello world".to_owned();

 let closure = || async {
 println!("{}", msg);
 };
 closure().await;
}

19.1.5. Send + Sync

Using threads and futures combined with traits will rapidly get you into a situation where you start
seeing Rust complain about Send and Sync, frequently combined with the error future cannot be
sent between threads safely.

The code below won’t compile. It demonstrates a scenario that produces the error.

use std::fmt::Display;
use tokio::task::JoinHandle;

#[tokio::main]
async fn main() {
 let mark_twain = "Samuel Clemens".to_owned();

 async_print(mark_twain).await;
}

fn async_print<T: Display>(msg: T) -> JoinHandle<()> {
 tokio::task::spawn(async move {
 println!("{}", msg);
 })
}

121

error: future cannot be sent between threads safely
 --> src/send-sync.rs:12:5
 |
12 | tokio::task::spawn(async move {
 | ^^^^^^^^^^^^^^^^^^ future created by async block is not `Send`
 |
note: captured value is not `Send`
 --> src/send-sync.rs:13:24
 |
13 | println!("{}", msg);
 | ^^^ has type `T` which is not `Send`
note: required by a bound in `tokio::spawn`
 --> /.../tokio-1.15.0/src/task/spawn.rs:127:21
 |
127 | T: Future + Send + 'static,
 | ^^^^ required by this bound in `tokio::spawn`
help: consider further restricting this bound
 |
11 | fn async_print<T: Display + std::marker::Send>(msg: T) -> JoinHandle<()> {
 | +++++++++++++++++++

Send and Sync are core to how Rust can promise "fearless concurrency". They are automatic traits.
That is, Rust automatically adds Send or Sync to a type if all of its constituent types are also Send or
Sync. These traits indicate whether a type can be sent safely across threads or safely accessed by
multiple threads. Without these constructs, you could fall into situations where separate threads
clobber each other’s data or any number of other problems stemming from multi-threaded
programming.

Lucky for you though, many Rust types are already Sync and Send. You just need to know how to get
rid of the error. It’s as simple as adding + Send, + Sync, or + Sync + Send to your trait:

fn async_print<T: Display + Send>(msg: T) -> JoinHandle<()> {
 tokio::task::spawn(async move {
 println!("{}", msg);
 })
}

But now we’re presented with another error…

122

error[E0310]: the parameter type `T` may not live long enough
 --> src/send-sync.rs:12:5
 |
11 | fn async_print<T: Display + Send>(msg: T) -> JoinHandle<()> {
 | -- help: consider adding an explicit lifetime bound...: `T:
'static +`
12 | tokio::task::spawn(async move {
 | ^^^^^^^^^^^^^^^^^^ ...so that the type `impl Future` will meet its required
lifetime bounds...
 |

We went over 'static in Chapter 16: Lifetimes, references, and 'static which is perfect. We now
know that we shouldn’t fear it. Rust knows that it doesn’t know when our async code will run. It’s
telling us that our type (parameter type `T`) may not live long enough. That wording is important.
We just need to let Rust know that the type can last forever. Using 'static here is not saying that it
will last forever.

fn async_print<T: Display + Send + 'static>(msg: T) -> JoinHandle<()> {
 tokio::task::spawn(async move {
 println!("{}", msg);
 })
}

There’s a lot more to Send & Sync but we’ll deal with that another time.

19.1.6. Additional reading

• Rust docs: Future

• Rust docs: async

• Asynchronous Programming in Rust book

• Rustonomicon: Send & Sync

19.2. Wrap-up
Async Rust is beautiful. There’s enough to write a whole book on it alone (and people have). Rust’s
memory guarantees mean you can write multi-threaded, asynchronous code and be confident it
won’t explode in your face. This is where you start to turn up the heat and leave JavaScript behind.
Yes, you can use threads in node.js and there are web workers but it’s a weird middle ground. It’s a
compromise. With Rust, we don’t have to compromise.

123

./chapter-16-lifetimes-and-references.adoc
./chapter-16-lifetimes-and-references.adoc
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/keyword.async.html
https://doc.rust-lang.org/std/keyword.async.html
https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/nomicon/send-and-sync.html

20. Tests and Project Structure

20.1. Introduction
Over the last 18 days we got our environment set up with rustup, VS Code, and rust-analyzer. We
pushed through the tough parts of being a newbie Rust developer and just started learning which
crates we should start depending on.

Now it’s time to set up a real project.

20.2. Creating your workspace
You don’t need to use Cargo’s workspaces, but I recommend it. Rust — like node.js — is much easier
to manage when you cut your application logic into small modules. Workspaces makes that
tolerable. We’re going to start an executable project which is best set up as a library first with the
CLI as a wrapper over the library. This structure is easier to test and easier for you and your users
to extend.

First, create a new workspace by starting in an empty directory and making a Cargo.toml with the
following contents

[workspace]
members = ["crates/*"]

The members entry lists all the crates in your workspace. We configured our workspace to include
everything in the crates subdirectory (which doesn’t exist yet).

20.3. Starting a library
Create a new library crate with cargo new:

$ cargo new --lib crates/my-lib

The difference between a binary crate and a library is minimal. By default, binary crates have a
main.rs. Libraries use lib.rs. The cargo new template for libraries also adds Cargo.lock to the
.gitignore.

NOTE
The Cargo book advises that you check in your Cargo.lock for end-products
(binaries, servers, microservices, etc) and omit it for libraries.

The default lib.rs template is pretty basic but gives us a new topic to talk about:

124

./chapter-1-rustup.adoc
./chapter-3-vscode.adoc
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html

#[cfg(test)]
mod tests {
 #[test]
 fn it_works() {
 let result = 2 + 2;
 assert_eq!(result, 4);
 }
}

Unit tests! That’s right, Rust has unit testing built in. No more configuring the test framework du
jour when you start a new project. No more figuring out how to run tests in new projects. It’s all the
same.

NOTE

Yes, this means that many tests live in your source files. No, there’s not really any
other way. Rust does have integration tests which can live in a separate tests folder
alongside src, but those only have access to your public APIs. If you want to test
small chunks of private code, you have to do it like this.

NOTE
Really? Yes, really. There are crates that extend Rust’s testing functionality, but most
of them hinge around this same harness and structure.

20.3.1. Unit tests in Rust

The library template introduces two new attributes, [cfg()] and [test].

[cfg()] is for conditional compilation. By specifying [cfg(test)] before an entire module like
below, we tell Rust to skip compiling the module unless the test flag is on.

#[cfg(test)]
mod tests {
}

The [#test] attribute marks the annotated function as a unit test. Rust’s test harness runs each of
these separately and reports the results when you run cargo test, e.g.

125

$ cargo test
running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished
in 0.00s

 Doc-tests my-lib

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished
in 0.00s

Rust’s included assertions are pretty basic. You can assert something is true with assert!(), equality
with assert_eq!(), or inequality with assert_ne!().

20.3.2. Writing unit tests

Writing your tests first is a good way to figure out what your API should look like. "Test first" is the
core philosophy behind Test Driven Development. Strict TDD is a bit extreme, but writing tests that
flex major API points before writing the API methods will force your brain to think about usage
before implementation.

What should our API look like? Well I hear WebAssembly is pretty hot so let’s build a wasm runner.
Let’s change our lib.rs to look like this:

#[cfg(test)]
mod tests {
 use super::*;
 #[test]
 fn loads_wasm_file() {
 let result = Module::from_path("./tests/test.wasm");
 assert!(result.is_ok());
 }
}

Adding use super::* to the tests module on line 3 makes it easier to use everything in the parent
module without prefixes.

The Module struct doesn’t exist yet but it seems like a reasonable name for the construct that will
wrap a loaded WebAssembly module. I don’t know all the methods it will need, but I bet we’ll want
a function that loads a module from a local file path. Finally, loading from a file path might fail so
the return value should be a Result. I don’t know exactly what’ll be in the Result but I know I’ll
want it to be Ok if I’m pointing to a valid wasm file.

126

https://en.wikipedia.org/wiki/Test-driven_development

NOTE

Test-driven development may sound strange if you’re not used to it. Strict TDD
means going back and forth between tests and code repeatedly. Write a small test,
then write the code that makes it pass. I find strict TDD cumbersome and excessive,
but the time I spent committed to it taught me a lot about writing testable code.

You can probably recognize what running cargo test will do. It will give us a compilation error
because we reference structures and functions that don’t yet exist.

error[E0433]: failed to resolve: use of undeclared type `Module`
 --> crates/wasm-runner/src/lib.rs:6:22
 |
6 | let result = Module::from_file("./tests/test.wasm");
 | ^^^^^^ use of undeclared type `Module`
For more information about this error, try `rustc --explain E0433`.

We need to add our Module struct, then our from_file function. We passed the function a &str in our
test, but we probably want to be anything that can be represented as a Path. This sounds familiar to
when we wanted to flexibly represent Strings in Chapter 12: Strings, Part 2 and — guess
what? — we can do the same thing with Paths:

use std::path::Path;
struct Module {}

impl Module {
 fn from_file<T: AsRef<Path>>(path: T) -> Result<Self, ???> {
 Ok(Self{})
 }
}

But now we need to figure out what kind of error we’re going to return. Since we’re loading from a
file system and those methods return an io::Error we can do that for now. If you don’t need to
wrap an error, don’t. Let your user deal with it.

Now we have code that runs! It doesn’t do anything useful but we’re getting there. This is our lib.rs
now:

127

./chapter-12-strings-part2.adoc

use std::path::Path;
struct Module {}

impl Module {
 fn from_file<T: AsRef<Path>>(path: T) \-> Result<Self, std::io::Error> {
 Ok(Self {})
 }
}

#[cfg(test)]
mod tests {
 use super::*;
 #[test]
 fn executes_wasm_file() {
 let result = Module::from_file("./tests/test.wasm");
 assert!(result.is_ok());
 }
}

20.4. Creating a CLI that uses your library
Run cargo new crates/[your cli name] in your workspace. Naming is hard. It’s best to leave
important names 'til the very end. This is a good place to put a codename if you’re creative, or use
cli if you’re not.

$ cargo new crates/cli

Add the library we just created as a dependency in our Cargo.toml.

[dependencies]
my-lib = { path = "../my-lib" }

Now we can use our library by importing from the my_lib namespace.

IMPORTANT
Rust has the unfortunate policy of allowing hyphens in crate names but
disallowing them as Rust identifiers. If you have a crate with a hyphen, Rust
requires that you reference it with the hyphens replaced with underscores.

use my_lib::Module;

When you add this you’ll already see VS Code complaining.

128

Our Module was not explicitly made public so we can’t import it. This is one of the many reasons
why it’s a good idea to set up your projects this way. You get a first-hand view of what it’s like to
actually use your library. Add pub to struct Module and fn from_file in the impl as well. We know
we’ll need it right away.

pub struct Module {}

impl Module {
 pub fn from_file<T: AsRef<Path>>(path: T) \-> Result<Self, std::io::Error> { Ok
(Self {}) } }

Now we can import Module and use Module::from_file in our CLI.

use my_lib::Module;

fn main() {
 match Module::from_file("./module.wasm") {
 Ok(_) => {
 println!("Module loaded");
 }
 Err(e) => {
 println!("Module failed to load: {}", e);
 }
 }
}

We’ll get to the implementations soon, but we’re putting together a solid structure for any Rust
project right now.

20.5. Running your CLI from your workspace
You can run your CLI from the ./crates/cli directory with cargo run, but cargo can also run

129

commands in any sub-crate with the -p flag. In your project’s root, run cargo run -p cli to run the
default binary in the cli crate.

$ cargo run -p cli
Module loaded

Perfect! We have much more to do, but we have a foundation to build off of now.

20.6. Additional reading
• Rust by Example: Unit testing

• Rust Book, 11.01: How to Write Tests

• Rust Book, 14.03: Cargo Workspaces

• How to Structure Unit Tests in Rust

20.7. Wrap-up
Setting up a solid foundation is important. You’ll frequently look at Rust and think "Really? This is
the way I’m supposed to do this?" It can shake your confidence and that’s what we’re here for.
When you come across those moments, I’d love to hear them! We’ve all gone through it, but it’s
hard to remember how alien everything felt at first now that Rust is a part of our daily lives.

130

https://doc.rust-lang.org/rust-by-example/testing/unit_testing.html
https://doc.rust-lang.org/book/ch11-01-writing-tests.html
https://doc.rust-lang.org/book/ch14-03-cargo-workspaces.html
https://betterprogramming.pub/how-to-structure-unit-tests-in-rust-cc4945536a32

21. CLI Arguments and Logging

21.1. Introduction
Today marks the second day of our real Rust project, a command line utility that runs
WebAssembly. So far we’ve hard-coded our file path and we are using println!() as basic logging.
It’s pretty rigid. We need to add flexibility to our foundation before we add more logic.

Rust has you covered with great solutions for CLI args and basic logging. structopt makes CLI
arguments even easier to manage than any package I’ve used from npm. log + env_logger will give
you flexible logging across executables and libraries.

21.2. Adding debug logs
Many node.js libraries depend on the the debug npm package for per-library debug logging
controlled by an environment variable. Rust has a similar, richer solution. Many Rust crates use the
log crate for logging and the env_logger crate for quick STDOUT output. Having the logging and the
output decoupled means that you can freely log from your libraries without caring about the
output. The output will only be handled by the end user or product.

This is huge. It gives library developers the confidence to log whatever they want without worrying
if it meshes with other output.

21.2.1. The log crate

Let’s add the log crate as a dependency to both of our workspace crates:

[dependencies]
log = "0.4"

Our CLI project should already have our library already listed as dependency and now looks like
this:

[dependencies]
my-lib = { path = "../my-lib" }
log = "0.4"

The log crate gives us the trace!(),debug!(),warn!(),info!(), and error!() macros. You can use each
exactly like you use println!(), i.e. you use a string with formatting syntax as the first argument
and values that implement Display or Debug et al. Each of the macros logs your message with the
relevant log level. This gives your choice of logger better control over what to log where or what to
output.

Let’s add some log messages to see how this works. In the lib.rs for our my-lib crate, add a debug!()
line right at the start of from_file().

131

https://docs.rs/structopt/0.3.25/structopt/index.html
https://docs.rs/log/latest/log/
https://docs.rs/env_logger/0.9.0/env_logger/

pub fn from_file<T: AsRef<Path>>(path: T) \-> Result<Self, std::io::Error> { debug!
("Loading wasm file from {:?}", path.as_ref()); Ok(Self {}) }

Now in main.rs of our cli, change our println!() methods to something more appropriate.

match Module::from_file("./module.wasm") {
 Ok(_) => {
 info!("Module loaded");
 }
 Err(e) => {
 error!("Module failed to load: {}", e);
 }
}

Now when we run our cli we see… nothing at all.

$ cargo run -p cli
$

Which is exactly right! We can freely add log messages anywhere and not worry about clobbering
output!

21.2.2. Printing our logs with env_logger

The env_logger crate is a simple way to turn those log commands into useful output.

Add env_logger to you cli project only. You don’t want the library printing anything. Log output is
strictly for the end product.

[dependencies]
my-lib = { path = "../my-lib" }
log = "0.4"
env_logger = "0.9"

Now we need to initialize our logger as the first thing we do in our main(). I added a debug!() log
following the initialization to make sure we see something:

fn main() {
 env_logger::init();
 debug!("Initialized logger");

// ...
}

Now when we run our cli we see… nothing at all.

132

$ cargo run -p cli
$

Which is exactly right, again! env_logger doesn’t output anything by default. It needs to be enabled.
You can do this programmatically or via an environment variable named RUST_LOG by default.

$ RUST_LOG=debug cargo run -p cli
[2021-12-21T02:33:24Z DEBUG cli] Initialized logger
[2021-12-21T02:33:24Z DEBUG my_lib] Loading wasm file from "./module.wasm"
[2021-12-21T02:33:24Z INFO cli] Module loaded

Notice how we see logs from both our CLI and our library crates. You can control the level per-
module or globally. If we specify RUST_LOG=info we’ll only see the info messages.

$ RUST_LOG=info cargo run -p cli
[2021-12-21T02:33:24Z INFO cli] Module loaded

We can use [package]=[level] syntax to filter the level per-module, e.g.

» RUST_LOG=cli=debug cargo run -p cli
[2021-12-21T02:35:30Z DEBUG cli] Initialized logger
[2021-12-21T02:35:30Z INFO cli] Module loaded

NOTE
Check out env_logger for more documentation on how to control output via the
RUST_LOG variable.

21.3. Adding CLI Arguments
Now that we can see what’s going on in our app, we need it to start pulling in configuration from
the command line. clap is an amazing library for configuring CLI arguments and structopt makes
using clap trivial. structopt has many options. All of it feels like magic.

Add structopt to your CLI’s dependencies:

[dependencies]
my-lib = { path = "../my-lib" }
log = "0.4"
env_logger = "0.9"
structopt = "0.3"

Using structopt revolves around creating a struct that derives the StructOpt trait:

133

https://docs.rs/env_logger/0.9.0/env_logger/index.html#enabling-logging
https://docs.rs/clap/2.34.0/clap/index.html
https://docs.rs/structopt/0.3.25/structopt/index.html

use structopt::StructOpt;

#[derive(StructOpt)]
struct CliOptions {
}

Configuring StructOpt happens at two levels, globally and per-argument. Global configuration
happens with the structopt attribute on the struct itself. The code below gives our application a
name, a description, and uses clap’s AppSettings to give our tool’s help fancy colors.

use structopt::{clap::AppSettings, StructOpt};

#[derive(StructOpt)]
#[structopt(
 name = "wasm-runner",
 about = "Sample project",
 global_settings(&[
 AppSettings::ColoredHelp
]),
)]
struct CliOptions {}

Give it a try!

cargo run -p cli -- --help
wasm-runner 0.1.0
Sample project

USAGE:
 cli

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

Adding CLI arguments is as easy as adding fields to our struct. Any rustdoc comments (comments
starting with three slashes (///)) turn into descriptions in your help. The #[structopt] attribute
takes arguments that control the default value, how its parsed, its environment variable fallback,
the short and long form, and much more. If you don’t specify a short or long configuration, then
your field is considered a required positional argument.

This code adds one required argument named file_path. I could have used a String type and used it
as a file path, but structopt can also preprocess argument values into a more appropriate type by
using parse() like below:

134

struct CliOptions {
 /// The WebAssembly file to load.
 #[structopt(parse(from_os_str))]
 pub(crate) file_path: PathBuf,
}

Generating this structure from actual command line options is a one-line chore. The StructOpt traits
adds a from_args function to your struct and you get a fully-hydrated struct as simple as this:

let options = CliOptions::from_args();

After adding the above line (line 5) and changing our hard-coded path to use the new file_path
field in our CliOptions struct (line 7), our full main() now looks like the code below.

fn main() {
 env_logger::init();
 debug!("Initialized logger");

 let options = CliOptions::from_args();

 match Module::from_file(&options.file_path) {
 Ok(_) => {
 info!("Module loaded");
 }
 Err(e) => {
 error!("Module failed to load: {}", e);
 }
 }
}

Our CLI behavior and help output update with no effort:

$ cargo run -p cli -- --help
wasm-runner 0.1.0
Sample project

USAGE:
 cli <file-path>

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

ARGS:
 <file-path> The WebAssembly file to load

135

I’ve been using the cargo run syntax which requires that we pass our binary’s flags after --. If you
run the binary directly then you pass them without the separator, e.g.

./target/debug/cli --help

21.4. Putting it all together.
Because of our debug logging, we can see our command line argument propagate through our
simple app by setting RUST_LOG, e.g.

RUST_LOG=debug ./target/debug/cli ./test_file.wasm
[2021-12-21T03:08:09Z DEBUG cli] Initialized logger
[2021-12-21T03:08:09Z DEBUG my_lib] Loading wasm file from "./test_file.wasm"
[2021-12-21T03:08:09Z INFO cli] Module loaded

NOTE
./test_file.wasm doesn’t exist, it’s just an arbitrary path. Try omitting it and see
what happens.

Now we’re up and running! Next up we need to figure out this whole WebAssembly thing…

21.5. Additional reading
• env_logger

• log

• structopt

• clap

21.6. Wrap-up
This is a solid foundation for many small to medium sized Rust projects. Simple debug logging will
last you a while. Eventually you may want to log output to rotated files or pipe them to log
aggregators and you can scale up to that.

The next topic we tackle will be WebAssembly. More specifically, how to run it and build with it.

136

https://docs.rs/env_logger/0.9.0/env_logger/
https://docs.rs/log/latest/log/
https://docs.rs/structopt/0.3.25/structopt/index.html
https://docs.rs/clap/2.34.0/clap/index.html

22. Building and Running WebAssembly

22.1. Introduction
WebAssembly is the most exciting technology I’ve come across since, well, node.js. Server-side
JavaScript had been around for ages, but node.js made it attractive. It was a real development
platform, not just a scripting host. A lot of people — myself included — thought JavaScript could be
the universal compilation target. Write once, run anywhere. But for real, this time. We even had
terms like "Univeral JavaScript" and "Isomorphic JavaScript." We had UMD, the universal module
definition to share modules across any platform.

We got close, but we didn’t get all the way. Part of the problem is that a lot of important applications
depend on serious CPU work. JavaScript just isn’t cut out for that no matter how hard we try. We
can’t always rely on extending the web platform for every use case.

WebAssembly was built for the web but has since gained traction as a universal bytecode format to
run code everywhere from the cloud to the blockchain to the internet of things. WebAssembly
offers no standard library and can only compute. WebAssembly modules can’t even access the
filesystem on their own. Many see these as shortcomings, but more are starting to consider them
features. Since you have to compile foreign standard libraries in your WebAssembly modules, it
means every module reliably runs on its own. They’re like docker containers for code. Add WASI,
the WebAssembly System Interface and the you get granular permissions for expanded capabilities
like filesystem or network access.

Oh yeah, you can use WebAssembly in web browsers. That’s cool, too.

NOTE
This project builds off the previous two days. It’s not critical that you have the
foundation to make use of the code here, but it helps.

22.2. Building a WebAssembly module
Compiling down into WebAssembly is easy. What’s hard is making it do anything useful.
WebAssembly can still only talk in numbers (mostly). You can only pass numbers into
WebAssembly and WebAssembly can only return numbers. That makes WebAssembly sound like its
only good at math, but you could say the same thing about computers. We’re skilled at making
automatic math machines (a.k.a. "computers") good at everything.

WebAssembly will eventually get to a point where it’s easier to pass arbitrary data types. Until we
get those standards, we have to define our own.

22.2.1. Building applications with waPC

The waPC project, or WebAssembly Procedure Calls, defines a protocol for communicating in and
out of WebAssembly. It’s like a plugin framework with WebAssembly as the plugin format. In waPC
terms, the implementer is a "host" and a WebAssembly module is a "guest."

You can build waPC guests in Rust, TinyGo, and AssemblyScript and you can build waPC hosts in

137

https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Isomorphic_JavaScript
https://github.com/umdjs/umd
https://wasi.dev
https://wasi.dev
https://wapc.io

Rust, JavaScript/node.js, Go, Zig, and Swift.

22.2.2. waPC redux

We’ve written three guides on how to get started on waPC. The second helps you build
WebAssembly modules in Rust and the third shows you how to run them in node.js.

• Building WebAssembly platforms with waPC

• Getting Started with waPC & WebAssembly

• Building a waPC Host in Node.js

This guide will go through how to make a waPC host in Rust to run the same modules.

22.2.3. Our test module

We’ve pre-built a test module as part of this book. It has one exposed operation, hello that takes a
string and returns a string.

22.2.4. Building a waPC host

We started off building our project with tests in my_lib. Our one test runs a stub function
Module::from_file. Now we need to finish things up.

Reading files in Rust

You can perform basic reads with std::fs::read and std::fs::read_to_string. Since we’re loading
binary data we’ll need to use fs::read to get a list of bytes, a Vec<u8>.

pub fn from_file<T: AsRef<Path>>(path: T) \-> Result<Self, std::io::Error> { debug!
("Loading wasm file from {:?}", path.as_ref()); let bytes = fs::read(path.as_ref())?;
// \... }

Now that we have bytes, what are we going to do with them? It makes sense that our Module might
have a constructor function, a new(), that takes bytes. Let’s finish this function up like so:

pub fn from_file<T: AsRef<Path>>(path: T) -> Result<Self, std::io::Error> {
 debug!("Loading wasm file from {:?}", path.as_ref());
 let bytes = fs::read(path.as_ref())?;
 Self::new(&bytes)
}
pub fn new(bytes: &[u8]) -> Result<Self, ???> {
 // ...
}

But now we have a problem. It’s the same type of problem we had in Chapter 14: Managing Errors.
I know that new() will need to return a Result because loading any old list of bytes as WebAssembly
may fail a thousand ways. None of those ways will be an io::Error like the one from_file returns.

138

https://vino.dev/blog/building-webassembly-platforms-with-wapc/
https://vino.dev/blog/getting-started-with-wapc-and-webassembly/
https://vino.dev/blog/building-a-wapc-host-in-nodejs/
https://github.com/vinodotdev/node-to-rust/blob/master/crates/day-21/wapc-guest/build/wapc_guest.wasm
./chapter-14-managing-errors.adoc

We need a general error that can capture multiple kinds.

Time for a custom error.

Add thiserror as a dependency in my-lib's Cargo.toml:

[dependencies]
log = "0.4"
thiserror = "1.0"

Make a new file named error.rs and start our Error enum. We only know that we’ll need an error
to manage a load failure but that’s a fine start.

use std::path::PathBuf;

#[derive(thiserror::Error, Debug)]
pub enum Error {
 #[error("Could not read file {0}: {1}")]
 FileNotReadable(PathBuf, String),
}

Rather than wrap the io::Error and be done, we added a custom message and multiple arguments
so we can customize the error message.

To use our Error, first declare the error module in lib.rs and import our Error with:

pub mod error;
use error::Error;

Now we can change the Result type to return our error and use .map_err() on the read() call to map
the io::Error to our Error:

pub fn from_file<T: AsRef<Path>>(path: T) \-> Result<Self, Error> { debug!("Loading
wasm file from {:?}", path.as_ref()); let bytes = fs::read(path.as_ref()) .map_err(|e|
Error::FileNotReadable(path.as_ref().to_path_buf(), e.to_string()))?; Self::new(&
bytes) }

.map_err() is a common way of converting error types, especially when combined with the question
mark (?) operator. We didn’t add an implementation of From<io::Error> because we wanted to have
more control over our error message. We have to manually map it ourselves before using ?.

22.2.5. Using the wapc and wasmtime-provider crates

The wapc crate is home to the WapcHost struct and the WebAssemblyEngineProvider trait.
WebAssemblyEngineProvider`s allow us to swap multiple WebAssembly engines in and out easily.
We’re going to use with the wasmtime engine but you can just as easily use wasm3 or implement a

139

new `WebAssemblyEngineProvider for any new engine on the scene.

Add wapc and wasmtime-provider to your Cargo.toml.

[dependencies]
log = "0.4"
thiserror = "1.0"
wapc = "0.10.1"
wasmtime-provider = "0.0.7"

Before we make a WapcHost, we need to initialize the engine.

let engine = wasmtime_provider::WasmtimeEngineProvider::new(bytes, None);

The second parameter is our WASI configuration, which we’re omitting for now.

The WapcHost constructor takes two parameters. One is a Boxed engine. The second is the function
that runs when a WebAssembly guest calls back into our host. We don’t have any interesting
implementations for host calls yet, so we’re just going to log it and return an error for now.

let host = WapcHost::new(Box::new(engine), |_id, binding, ns, operation, payload| {
 trace!(
 "Guest called: binding={}, namespace={}, operation={}, payload={:?}",
 binding,
 ns,
 operation,
 payload
);
 Err("Not implemented".into())
})

The constructor returns a Result with a new error so we need to add another error kind to our
Error enum.

#[derive(thiserror::Error, Debug)]
pub enum Error {
 #[error(transparent)]
 WapcError(#[from] wapc::errors::Error),
 #[error("Could not read file \{0}: \{1}")]
 FileNotReadable(PathBuf, String),
}

We also need to store the host as part of our Module so we can run it later.

140

pub struct Module {
 host: WapcHost,
}

The final code looks like this:

impl Module {
 pub fn from_file<T: AsRef<Path>>(path: T) -> Result<Self, Error> {
 debug!("Loading wasm file from {:?}", path.as_ref());
 let bytes = fs::read(path.as_ref())
 .map_err(|e| Error::FileNotReadable(path.as_ref().to_path_buf(), e
.to_string()))?;
 Self::new(&bytes)
 }
 pub fn new(bytes: &[u8]) -> Result<Self, Error> {
 let engine = wasmtime_provider::WasmtimeEngineProvider::new(bytes, None);

 let host = WapcHost::new(Box::new(engine), |_id, binding, ns, operation, payload|
{
 trace!(
 "Guest called: binding={}, namespace={}, operation={}, payload={:?}",
 binding,
 ns,
 operation,
 payload
);
 Err("Not implemented".into())
 })?;
 Ok(Module { host })
 }
}

We now have a from_file that reads a file and instantiates a new Module. If we run cargo test, it
should pass.

$ cargo test
[snipped]
 Running unittests (target/debug/deps/my_lib-afb9e0792e0763e4)

running 1 test
test tests::loads_wasm_file ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished
in 0.84s
[snipped]

Now we need to actually run our wasm!

141

22.2.6. Calling an operation in WebAssembly

Transferring data in and out of WebAssembly means serializing and deserializing. While waPC does
not require any particular serialization format, it’s default code generators use MessagePack. That’s
what we’re going to use too but you’re free to change it up later.

Add rmp-serde to a new dev-dependencies section in our Cargo.toml so we can use it in our tests.

[dev-dependencies]
rmp-serde = "0.15"

Writing our test

Like before, we’re going to write a test before our implementation. Our test module contains one
exposed operation named hello that returns a string like "Hello, World." when passed a name like
"World".

The test will run that operation and assert the output is what we expect.

#[cfg(test)]
mod tests {
 // ...snipped
 #[test]
 fn runs_operation() \-> Result<(), Error> {
 let module = Module::from_file("./tests/test.wasm")?;

 let bytes = rmp_serde::to_vec("World").unwrap();
 let payload = module.run("hello", &bytes)?;
 let unpacked: String = rmp_serde::decode::from_read_ref(&payload).unwrap();
 assert_eq!(unpacked, "Hello, World.");
 Ok(())
 }
}

Line-by-line, the test above:

• loads our test module on line 6

• encodes "World" into MessagePack bytes on line 8

• calls an as-of-yet-unimplemented function .run() on line 9 with an operation named hello and
the MessagePacked bytes as the payload.

• decodes the resulting payload as a String on line 10

• asserts the string is equal to "Hello, World."

When you run the test it won’t get passed compilation. We don’t have a .run() method and we need
to implement it first.

Our .run() function needs to use the WapcHost we created to call into WebAssembly and return the

142

result.

You call a guest function from a WapcHost by using the .call() function with the operation (function)
name and the payload as parameters.

pub fn run(&self, operation: &str, payload: &[u8]) -> Result<Vec<u8>, Error> {
 debug!("Invoking {}", operation);
 let result = self.host.call(operation, payload)?;
 Ok(result)
}

If we run our tests again, we’ll see our new test passes too!

$ cargo test
[snipped]
 Running unittests (target/debug/deps/my_lib-afb9e0792e0763e4)

running 2 tests
test tests::runs_operation ... ok
test tests::loads_wasm_file ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished
in 0.84s
[snipped]

22.2.7. Improving our CLI

Now that our library loads and runs WebAssembly, we need to expose that with our command line
utility.

We have two new arguments that need a place in our CliOptions, the operation name and the data
to pass.

struct CliOptions {
 /// The WebAssembly file to load.
 #[structopt(parse(from_os_str))]
 pub(crate) file_path: PathBuf,

 /// The operation to invoke in the WASM file.
 #[structopt()]
 pub(crate) operation: String,

 /// The data to pass to the operation
 #[structopt()]
 pub(crate) data: String,
}

143

We started by putting everything into our main() function but that leaves us little room to manage
errors nicely. If we bail from main() we get a pretty ugly error message and it looks unprofessional.

The setup below extracts business logic to a run() function that produces a Result that we can test
in main(). If we get an error, we print it and then exit the process with a non-zero error code to
represent failure.

fn main() {
 env_logger::init();
 debug!("Initialized logger");

....
let options = CliOptions::from_args();

match run(options) {
 Ok(output) => {
 println!("{}", output);
 info!("Done");
 }
 Err(e) => {
 error!("Module failed to load: {}", e);
 std::process::exit(1);
 }
}; }
....

fn run(options: CliOptions) \-> anyhow::Result<String>{ //\... }

Notice how we’re also using anyhow here. If you remember from [Chapter 14: Managing
Errors](./chapter-14-managing-errors.adoc), anyhow is a great crate for when you are the end user. It
generalizes over most errors and gives you the ability to get things done faster.

Along with anyhow, we’ll also need to add rmp-serde to our production dependencies because we’ll be
serializing our argument data before sending it to WebAssembly.

[dependencies]
my-lib = { path = "../my-lib" }
log = "0.4"
env_logger = "0.9"
structopt = "0.3"
rmp-serde = "0.15"
anyhow = "1.0"

Our .run() looks very similar to our test, except the data comes from our CliOptions vs hard coded
strings.

144

fn run(options: CliOptions) -> anyhow::Result<String> {
 let module = Module::from_file(&options.file_path)?;
 info!("Module loaded");

 let bytes = rmp_serde::to_vec(&options.data)?;
 let result = module.run(&options.operation, &bytes)?;
 let unpacked: String = rmp_serde::from_read_ref(&result)?;

 Ok(unpacked)
}

Now we can use our CLI utility to run our test wasm itself!

» cargo run -p cli -- crates/my-lib/tests/test.wasm hello "Potter"
[snipped]
Hello, Potter.

This is a great start to a flexible WebAssembly platform! Congrats! Unfortunately it’s limited to only
passing and returning strings for now.

We can do much better…

22.3. Additional reading
• wapc.io

• wapc crate

• wasmtime

• anyhow

22.4. Wrap-up
This chapter was a big one, I hope you were able to follow along! Developers are using
WebAssembly in many different ways. waPC is only one of them. Wasm-bindgen is also popular and
more tailored to browser usage of WebAssembly. No matter what route you take, you’ll inevitably
need to forge your own path through hazardous terrain. WebAssembly is very capable, but it hasn’t
hit mainstream development yet. As such, best practices are hard to come by.

Next up we’ll make our CLI more flexible by allowing it to take and receive arbitrary JSON so you
can run any sort of (waPC-compliant) WASM module.

145

https://wapc.io/
https://docs.rs/wapc/latest/wapc/
https://wasmtime.dev
https://docs.rs/anyhow/latest/anyhow/
https://rustwasm.github.io/docs/wasm-bindgen/

23. Handling JSON

23.1. Introduction
JavaScript without JSON is unthinkable. JSON is the famous, loosely structured data format
that — at its core — is just a JavaScript object. It’s easy to create, serialize to, and deserialize from.
It’s so simple that JavaScript developers (myself included) frequently don’t even bother associating
JSON with a formal structure. We test for undefined values or nonexistent keys like it’s normal.

Well for Rust and other typed languages, it’s not normal. They need structure. You can represent
JSON as the types represented in the spec, but that turns JSON into the worst of every world. It lacks
meaningful types that play well in typed languages, and it’s neither simple nor satisfying to use.

What we need is a way to translate JSON into something like a JavaScript object, except in Rust. We
need to translate JSON to a struct.

23.2. Enter serde
serde (short for Serialization/Deserialization) is a magical crate. With a single line of code, you can
serialize your data structures to and from dozens of formats. Serde itself provides the Serialize and
Deserialize traits that let you define how a data structure should be serialized. It doesn’t actually
serialize anything. That’s what other crates are for. We’ve already used one such crate, rmp-serde, to
encode data into the MessagePack format. We didn’t need to know anything about serde because we
were serializing common structures. If we want to make anything new, then we must implement
the traits.

Luckily, serde makes this easy with its derive feature. You can get away with serializing most things
automatically by deriving Serialize and/or Deserialize like this:

use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize)]
struct Author {
 first: String,
 last: String,
}

Once you’ve implemented one or both traits, you get automagic support for any format in the serde
ecosystem.

The code below derives serde's Deserialize and Serialize traits and uses serde_json & rmp-serde to
transform a structure to and from JSON and MessagePack.

NOTE
Notice how we explicitly specify the types we deserialize into on lines 20 & 22. This
is the only way the deserializer will know what to output.

146

https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://serde.rs/

use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]
struct Author {
 first: String,
 last: String,
}

fn main() {
 let mark_twain = Author {
 first: "Samuel".to_owned(),
 last: "Clemens".to_owned(),
 };

 let serialized_json = serde_json::to_string(&mark_twain).unwrap();
 println!("Serialized as JSON: {}", serialized_json);
 let serialized_mp = rmp_serde::to_vec(&mark_twain).unwrap();
 println!("Serialized as MessagePack: {:?}", serialized_mp);

 let deserialized_json: Author = serde_json::from_str(&serialized_json).unwrap();
 println!("Deserialized from JSON: {:?}", deserialized_json);
 let deserialized_mp: Author = rmp_serde::from_read_ref(&serialized_mp).unwrap();
 println!("Deserialized from MessagePack: {:?}", deserialized_mp);
}

$ cargo run -p day-22-serde
[snipped]
Serialized as JSON: {"first":"Samuel","last":"Clemens"}
Serialized as MessagePack: [146, 166, 83, 97, 109, 117, 101, 108, 167, 67, 108, 101,
109, 101, 110, 115]
Deserialized from JSON: Author { first: "Samuel", last: "Clemens" }
Deserialized from MessagePack: Author { first: "Samuel", last: "Clemens" }

23.3. Extending our CLI

NOTE
This project builds off the previous three days. It’s not critical that you have the
foundation to make use of the code here, but it helps.

The last chapter’s CLI executed waPC WebAssembly modules that had a very strict signature. Today
we’re going to extend it to accept arbitrary input and output values represented as JSON.

Add serde_json to our CLI’s Cargo.toml. We don’t need serde here. I’ll go over why below.

147

[dependencies]
my-lib = { path = "../my-lib" }
log = "0.4"
env_logger = "0.9"
structopt = "0.3"
rmp-serde = "0.15"
anyhow = "1.0"
serde_json = "1.0"

23.4. Representing arbitrary JSON
Using custom structs is fine when we know what we’re representing, but sometimes we don’t.
Sometimes we need to pass along or translate data structures as an intermediary broker. In that
case we need more generic representations. serde_json’s internal representation of JSON is
captured in the `serde_json::Value enum. Rather than create a new struct that derives Serialize
and Deserialize and represents JSON’s circular type structure, we can use serde_json::Value. This
keeps the structure of the JSON in a generic, intermediary format that we can pass along or
translate to other formats.

Before we do that though, let’s change our CLI argument from passed JSON data to a file path where
we can find the JSON.

struct CliOptions {
 /// The WebAssembly file to load.
 #[structopt(parse(from_os_str))]
 pub(crate) file_path: PathBuf,

 /// The operation to invoke in the WASM file.
 #[structopt()]
 pub(crate) operation: String,

 /// The path to the JSON data to use as input.
 #[structopt(parse(from_os_str))]
 pub(crate) json_path: PathBuf,
}

Now that we have a file, we need to read it. We used fs::read to read our WASM file in as bytes, we
can use fs::read_to_string to read a file in as a String.

fn run(options: CliOptions) -> anyhow::Result<String>{
 // snipped

 let json = fs::read_to_string(options.json_path)?;

 // snipped
}

148

We use serde_json::from_str to parse the JSON into a serde_json::Value:

fn run(options: CliOptions) -> anyhow::Result<String> {
 // snipped

 let json = fs::read_to_string(options.json_path)?;
 let data: serde_json::Value = serde_json::from_str(&json)?;
 debug!("Data: {:?}", data);

 // snipped
}

Lastly, we change our return type and the deserialization type to serde_json::Value so we can
represent the output as JSON in turn.

fn run(options: CliOptions) -> anyhow::Result<serde_json::Value> {
 let module = Module::from_file(&options.file_path)?;
 info!("Module loaded");

 let json = fs::read_to_string(options.json_path)?;
 let data: serde_json::Value = serde_json::from_str(&json)?;
 debug!("Data: {:?}", data);

 let bytes = rmp_serde::to_vec(&data)?;

 debug!("Running {} with payload: {:?}", options.operation, bytes);
 let result = module.run(&options.operation, &bytes)?;
 let unpacked: serde_json::Value = rmp_serde::from_read_ref(&result)?;

 Ok(unpacked)
}

And we’re done! We can run our test file from the last chapter after putting the input into a JSON
file:

cargo run -p cli -- crates/my-lib/tests/test.wasm hello hello.json
[snipped]
"Hello, Potter."

But now you can run arbitrary, waPC-compliant WebAssembly modules and parse the output as
JSON. Today’s project includes a module that produces HTML output from a handlebars template
and a Blog-style type that includes a title, author, and body.

149

$ cargo run -p cli -- ./blog.wasm render ./blog.json
[snipped]
"<html><head><title>The Adventures of Tom Sawyer</title></head><body><h1>The
Adventures of Tom Sawyer</h1><h2>By Mark Twain</h2><p>“TOM!”\n\nNo
answer.\n\n“TOM!”\n\nNo answer.\n\n“What’s gone with that boy, I wonder? You
TOM!”\n\nNo answer.</p></body></html>"

Our CLI is getting useful. It’s about time we name it something better than cli. The binary takes on
the name of the crate unless overridden. Change it to something appropriate like wapc-runner in
Cargo.toml.

[package]
name = "wapc-runner"

We’ve also been running our debug builds up to now. Try building the binary in release mode to see
what your end product looks like.

WARNING
Building in release mode may take a lot longer, depending on the machine you
are building on.

$ cargo build --release
[snipped]
 Finished release [optimized] target(s) in 6m 08s
$ cp ./target/release/wapc-runner .
$./wapc-runner ./blog.wasm render ./blog.json
"<html><head><title>The Adventures of Tom Sawyer</title></head><body><h1>The
Adventures of Tom Sawyer</h1><h2>By Mark Twain</h2><p>“TOM!”\n\nNo answer.\n\n
“TOM!”\n\nNo answer.\n\n“What’s gone with that boy, I wonder? You TOM!”\n\nNo
answer.</p></body></html>"

NOTE
Note, wasmtime performance is great with already-loaded modules, but the startup
time is noticeable. You can reduce this substantially by using its cache feature which
caches an intermediary representation for speedier startup.

And now we have a portable WebAssembly executor that runs waPC modules on the command line.
That’s pretty awesome.

If you’re looking for ideas on where to go next:

1. Take JSON data from STDIN when the file argument is missing so you can cat JSON to your
binary. (Hint, the atty crate will help you determine if your process is being piped to or is
interactive)

2. Decouple the template from the JSON for the blog module and take an optional template from a
file. A .hbs file is included in the project repo. (Hint: An optional file path argument should
probably be Option<PathBuf>)

150

23.5. Additional reading
• serde

• serde_json

• rmp-serde

• handlebars

• The Adventures of Tom Sawyer

23.6. Wrap-up
We just built a pretty heavy CLI application in surprisingly little code. Well, I hope you’re surprised.
Once you get passed some of the early hurdles and find ways to mitigate the verbosity of Rust’s
quirks, you can deliver a big impact just as easy as if you were writing JavaScript. StructOpt and
serde are only a few of the amazing crates you can find on crates.io. There are many others and
opportunities for many more. All Rust needs are some motivated new developers who come from a
rich ecosystem of small modules. Hint hint…

151

https://serde.rs
https://docs.serde.rs/serde_json/
https://docs.rs/rmp-serde/latest/rmp_serde/
https://docs.rs/handlebars/4.1.6/handlebars/index.html
https://www.gutenberg.org/files/74/74-h/74-h.htm

24. Cheating The Borrow Checker

24.1. Introduction
Over the last twenty-two days you’ve gotten comfortable with the basics of Rust. You know that Rust
values can only have one owner, you kind of get lifetimes, and you’ve come to terms with
mutability. It’s all a bit strange but you accept it. People are making big things with Rust and you
trust the momentum. You’re ready.

Then you start a project. It goes well at first. You get into a groove and then — all of a
sudden — you’re stopped dead in your tracks. You can’t figure out how to satisfy Rust. You’ve
already bent over backwards. You’re drowning in references and lifetime annotations. Rust is
yelling about Sync, Send, lifetimes, moved values, what have you. You just want more than one
owner or multiple mutable borrows. You’re about to give up.

That’s where Rc, Arc, Mutex, and RwLock come in.

NOTE Yeah, it’s not "cheating the borrow checker," but it feels like it.

24.1.1. Reference counting in Rust with Rc & Arc

Rc and Arc are Rust’s reference counted types. That’s right. After all the talk about how garbage
collectors manage memory by counting references and how Rust uses lifetimes and doesn’t need a
garbage collector; you can manage memory by counting references.

NOTE

I don’t know about you, but my journey through Rust was an emotional tug-of-war.
The heavy focus on Rust’s lifetimes and borrow checker made it seem like I was
wrong when I ran up against it. I felt like I was trying to cheat and kept getting
caught. I would refactor and refactor but always end up in the same place.

Turns out I was wrong, but not in the way I thought. My interpretation of Rust docs and articles
gave me tunnel vision. I had myself convinced that reference counting was bad so I never looked
for it. When I saw it, I assumed it was in a negative context and I skimmed passed. This was only
reinforced by seeing recurring references to how you should avoid things like Rc<RefCell>. I lost a
lot of time. I hope you don’t.

Consider a situation where you have an value that multiple other structs need to point to. Maybe
you’re building a game about space pirates that have high-tech treasure maps that always point to a
treasure’s actual location. Our maps will need a reference to the Treasure at all times. Creating
these objects might look like this.

let booty = Treasure { dubloons: 1000 };

let my_map = TreasureMap::new(&booty);
let your_map = my_map.clone();

152

Our Treasure struct is straightforward:

#[derive(Debug)]
struct Treasure {
 dubloons: u32,
}

But our TreasureMap struct holds a reference and Rust starts yelling about lifetime parameters. A
budding Rust developer might accept what they’re told to get things compiling. After all: if it
compiles, it works. Right?

#[derive(Clone, Debug)]
struct TreasureMap<'a> {
 treasure: &'a Treasure,
}

impl<'a> TreasureMap<'a> {
 fn new(treasure: &'a Treasure) -> Self {
 TreasureMap { treasure }
 }
}

It works! Our code grew a bit and for questionable value, but it works.

153

fn main() {
 let booty = Treasure { dubloons: 1000 };

 let my_map = TreasureMap::new(&booty);
 let your_map = my_map.clone();
 println!("{:?}", my_map);
 println!("{:?}", your_map);
}

#[derive(Debug)]
struct Treasure {
 dubloons: u32,
}

#[derive(Clone, Debug)]
struct TreasureMap<'a> {
 treasure: &'a Treasure,
}

impl<'a> TreasureMap<'a> {
 fn new(treasure: &'a Treasure) -> Self {
 TreasureMap { treasure }
 }
}

$ cargo run -p day-23-rc-arc --bin references
[snipped]
TreasureMap { treasure: Treasure { dubloons: 1000 } }
TreasureMap { treasure: Treasure { dubloons: 1000 } }

But now everything that uses a TreasureMap needs to deal with lifetime parameters…

struct SpacePirate<'a> {
 treasure_maps: Vec<TreasureMap<'a>>,
}
impl<'a> SpacePirate<'a> {}

struct SpaceGuild<'a> {
 pirates: Vec<SpacePirate<'a>>,
}
impl<'a> SpaceGuild<'a> {}

If you keep going, you’re rewarded with more pain and no perceivable gain.

It’s time for Rc.

Remember how Box essentially gives you an owned reference (see: Chapter 14 : What’s a box?)? Rc

154

is like a shared Box. You can .clone() them all day long with every version pointing to the same
underlying value. Rust’s borrow checker cleans up the memory when the last reference’s lifetime
ends. It’s like a mini garbage collector.

You use Rc just as you would Box, e.g.

use std::rc::Rc;

fn main() {
 let booty = Rc::new(Treasure { dubloons: 1000 });

 let my_map = TreasureMap::new(booty);
 let your_map = my_map.clone();
 println!("{:?}", my_map);
 println!("{:?}", your_map); }

#[derive(Debug)]
struct Treasure {
 dubloons: u32,
}

#[derive(Clone, Debug)]
struct TreasureMap {
 treasure: Rc<Treasure>, }

impl TreasureMap {
 fn new(treasure: Rc<Treasure>) \-> Self { TreasureMap { treasure } } }

Rc does not work across threads. That is, Rc is !Send (See: [Chapter 18: Send + Sync](/blog/node-to-
rust-day-18-async/#send-sync)). If we try to run code that sends a TreasureMap to another thread,
Rust will yell at us.

fn main() {
 let booty = Rc::new(Treasure { dubloons: 1000 });

 let my_map = TreasureMap::new(booty);

 let your_map = my_map.clone();
 let sender = std::thread::spawn(move || {
 println!("Map in thread {:?}", your_map);
 });
 println!("{:?}", my_map);

 sender.join();
}

155

[snipped]
error[E0277]: `Rc<Treasure>` cannot be sent between threads safely
 --> crates/day-23/rc-arc/./src/rc.rs:9:18
 |
9 | let sender = std::thread::spawn(move || {
 | __________________^^^^^^^^^^^^^^^^^^_-
 | | |
 | | `Rc<Treasure>` cannot be sent between threads safely
10 | | println!("Map in thread {:?}", your_map);
11 | | });
 | |_____- within this `[closure@crates/day-23/rc-arc/./src/rc.rs:9:37: 11:6]`
[snipped]

Arc is the Send version of Rc. It stands for "Atomically Reference Counted" and all you need to know
is that it handles what Rc can’t, with slightly greater overhead.

NOTE
When Rust documentation refers to "additional overhead" for a feature you need,
just take it. You come from JavaScript, don’t fret about "overhead."

Arc is a drop-in replacement for Rc in read-only situations. If you need to alter the held value, that’s
a different story. Mutating values across threads requires a lock. Attempting to mutate an Arc will
give you errors like:

error[E0596]: cannot borrow data in an `Arc` as mutable

or

error[E0594]: cannot assign to data in an `Arc`

24.2. Mutex & RwLock
If Arc is the answer to you needing Send. Mutex and RwLock are your answers to needing Sync.

Mutex (Mutual Exclusion) provides a lock on an object that guarantees only one access to read or
write at a time. RwLock allows for many reads but at most one write at a time. Mutexes are cheaper
than RwLocks, but are more restrictive.

With an Arc<Mutex> or Arc<RwLock>, you can mutate data safely across threads. Before we start going
into Mutex and RwLock usage, it’s worth talking about parking_lot.

24.2.1. parking_lot

The parking_lot crate offers several replacements for Rust’s own sync types. It promises faster
performance and smaller size but the most important feature in my opinion is they doesn’t require
managing a Result. Rust’s Mutex and RwLock return a Result which is unwelcome noise if we can
avoid it.

156

https://docs.rs/parking_lot/latest/parking_lot/index.html

24.2.2. Locks and guards

When you lock a Mutex or RwLock you take ownership of a guard value. You treat the guard like your
inner type, and when you drop the guard you drop the lock. You can drop a guard explictly via
drop(guard) or let it drop naturally when it goes out of scope. When dealing with locks you should
get into the practice of dropping them ASAP, lest you run into a deadlock situation where two
threads hold locks the other is waiting on.

Rust’s blocks make it easy to limit a guard’s scope and have them drop automatically when you are
done with them. The code sample below uses a block to scope the guard from treasure.write() so
that it automatically drops at the end of the block (line 8)

fn main() {
 let treasure = RwLock::new(Treasure { dubloons: 1000 });

{
 let mut lock = treasure.write();
 lock.dubloons = 0;
 println!("Treasure emptied!");
 }

println!("Treasure: {:?}", treasure);
}

24.3. Async
Async Rust and futures add another wrench into the lock and guard problem. It’s easy to write code
that holds a guard across an async boundary, e.g.

#[tokio::main]
async fn main() {
 let treasure = RwLock::new(Treasure { dubloons: 100 });
 tokio::task::spawn(empty_treasure_and_party(&treasure)).await;
}

async fn empty_treasure_and_party(treasure: &RwLock<Treasure>) {
 let mut lock = treasure.write();
 lock.dubloons = 0;

 // Await an async function
 pirate_party().await;

} // lock goes out of scope here

async fn pirate_party() {}

The best solution is to not do this. Drop your lock before you await. If you can’t avoid this situation,

157

tokio does have its own sync types. Use them as a last resort. It’s not about performance (though
there is that "overhead" again), it’s a matter of adding complexity and cycles for a situation you can
(or should) get out of.

24.4. Additional reading
• std::rc

• std::rc::Rc

• std::sync::Arc

• std::sync::Mutex

• std::sync::RwLock

• parking_lot

• Tokio Sync

24.5. Wrap-up
RwLock and Mutex (along with types like RefCell) give you the flexibility to mutate inner fields of a
immutable struct safely, even across threads. Arc and Rc were major keys to me understanding how
to use real Rust. I overused each of these types when I started using them. I don’t regret it one bit. If
you take away only one thing from this book, let it be that you need to do what works for you. If
you keep trying you can always improve, but you won’t get anywhere if you’re so frustrated you
give up.

158

https://docs.rs/tokio/1.15.0/tokio/sync/index.html
https://doc.rust-lang.org/std/rc/index.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://docs.rs/parking_lot/latest/parking_lot/index.html
https://docs.rs/tokio/1.15.0/tokio/sync/index.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html

25. Crates & Valuable Tools

25.1. Introduction
Hopefully you’ve become comfortable enough with Rust that you want to continue your journey.
Rust is hard to get into but it’s worth it. I’ve found that I can build massive projects with a fraction
of the unit tests I’m used to writing. Rust handles so many error cases at the compilation stage.
Writing Rust is like pair programming with a grumpy old developer who catches everything.

Now you need to start building up your suite of core dependencies, the crates you rely on
repeatedly and become part of your personal toolbox. These are a few of the crates in mine.

25.2. Crates

25.2.1. Data

• serde - Data serialization ecosystem.

• serde_json - JSON parsing and stringification.

• parking_lot - Better Rust Mutex and RwLock.

• once_cell - When you think you want global variables.

25.2.2. Error handling

• thiserror - Easy custom errors.

• anyhow - Easy generic errors.

25.2.3. Logging

• log - Logging facade that abstracts logging usage away from the logger implementation.

• env_logger - Easy console logging controlled by an environment variable.

• test-log - Get env_logger-style output in your tests without worrying about initializing a logger.

• pretty-env-logger - env_logger, but prettier.

• tracing - a drop-in replacement for log and env_logger with expanded capabilities and first-class
async support.

25.2.4. CLI

• structopt - CLI arguments from configuration.

• clap - CLI arguments from code.

25.2.5. Async/concurrency

• tokio - Async runtime.

159

https://serde.rs
https://docs.serde.rs/serde_json/
https://docs.rs/parking_lot/latest/parking_lot/index.html
https://docs.rs/once_cell/latest/once_cell/index.html
https://docs.rs/thiserror/latest/thiserror/
https://docs.rs/anyhow/latest/anyhow/
https://docs.rs/log/latest/log/
https://docs.rs/env_logger/latest/env_logger/
https://docs.rs/test-log/latest/test_log/
https://github.com/seanmonstar/pretty-env-logger
https://github.com/tokio-rs/tracing
https://docs.rs/structopt/latest/structopt/
https://docs.rs/clap/latest/clap/
https://docs.rs/tokio/latest/tokio/

• tokio-stream - Stream utilities for Tokio.

• async-trait - For when you try to make traits with async methods.

• crossbeam - bidirectional communication channels and more.

25.2.6. Web

• rocket - An HTTP server with a great developer experience.

• reqwest - an easy-to-use HTTP client.

• hyper - a fast and correct HTTP implementation.

25.2.7. Functionality you expected in the standard library

• rand - random number generator and related tools.

• regex - Regular expressions.

• base64 - Base64 implementation.

• http - A general purpose library of common HTTP types.

25.2.8. Misc & tools

• uuid - UUID implementation.

• itertools - Additional iterator functions and macros.

• maplit - hashmap!{} macro like vec![]

• cfg-if - Macros to simplify mutually exclusive conditional compilation #[cfg] attributes.

• just - a better make.

25.3. Additional reading
• Rust Language Cheatsheet

• Awesome Rust list

• Rust Design Patterns

• Rust Quiz

25.4. Wrap-up
During this book I learned that Rust has a curse. Once you learn "The Rust Way" of doing things,
you get amnesia. You forget how to program any other way. This curse leads to documentation and
examples that naturally skirt around problems 99% of new developers will experience in practice. I
found myself unable to replicate several errors that were major roadblocks in my early Rust
journey.

The Rust curse is why it’s critical that you are part of the Rust community. You are the only one that
can help. You have a fresh perspective and run into real new-user problems. When you get stuck,

160

https://docs.rs/tokio-stream/latest/tokio_stream/
https://docs.rs/async-trait/latest/async_trait/
https://docs.rs/crossbeam/latest/crossbeam/
https://rocket.rs
https://github.com/seanmonstar/reqwest
https://github.com/hyperium/hyper
https://docs.rs/rand/latest/rand/
https://docs.rs/regex/latest/regex/
https://docs.rs/base64/latest/base64/
https://docs.rs/http/latest/http/
https://docs.rs/uuid/latest/uuid/
https://docs.rs/itertools/latest/itertools/
https://docs.rs/maplit/latest/maplit/
https://docs.rs/cfg-if/latest/cfg_if/
https://github.com/casey/just
https://cheats.rs
https://github.com/rust-unofficial/awesome-rust
https://rust-unofficial.github.io/patterns/
https://dtolnay.github.io/rust-quiz/

reduce your code down to a minimally reproducible example and save it. When you eventually fix
it, write about what you changed! If you don’t like writing, can’t figure something out, or are
unsure about your fix, send it to me. I would be honored to take your experience and write about it.

161

mailto:jarrod@vino.dev

	Go From JavaScript to Rust
	Table of Contents
	Preface
	A note on contributions:
	Cover image

	1. Introduction
	1.1. A guide to Rust from a node.js developer’s perspective.
	1.2. Wait, why does anyone need to learn anything but JavaScript?
	1.3. Why Rust?
	1.4. How to use this book

	2. Installing rust with rustup
	2.1. rust-toolchain.toml
	2.2. Next steps

	3. From npm to cargo
	3.1. Introduction
	3.2. npm to cargo mapping
	3.3. Wrap-up

	4. Setting up Visual Studio Code
	4.1. Introduction
	4.2. Core language setup
	4.3. Additional extensions
	4.4. Wrap-up

	5. Hello World (and your first two WTFs)
	5.1. Introduction
	5.2. Strings WTF #1
	5.3. Strings WTF #2
	5.4. Wrap-up

	6. Borrowing & Ownership
	6.1. Introduction
	6.2. Wrap-up

	7. Strings, Part 1
	7.1. Introduction
	7.2. Additional links
	7.3. Rust strings in a nutshell
	7.4. Wrap-up

	8. Language Part 1: Syntax & Differences
	8.1. Introduction
	8.2. Wrap-up

	9. From objects and classes to HashMaps and structs
	9.1. Introduction
	9.2. From Map to HashMap
	9.3. From objects and classes to structs
	9.4. Wrap-up

	10. Enums and Methods
	10.1. Introduction
	10.2. Wrap-up

	11. From Mixins to Traits
	11.1. Introduction
	11.2. Wrap-up

	12. The Module System
	12.1. Introduction
	12.2. "How do I import a file in Rust?"
	12.3. "How do I import functions from other modules?"
	12.4. The pieces of the Rust Module System
	12.5. Wrap-up

	13. Strings, Part 2
	13.1. Introduction
	13.2. Should I use &str or String for my function arguments?
	13.3. Wrap-up

	14. Demystifying Results & Options
	14.1. Introduction
	14.2. Option recap
	14.3. Result
	14.4. The problem with .unwrap()
	14.5. Wrap-up

	15. Managing Errors
	15.1. Introduction
	15.2. Wrap-up

	16. Closures
	16.1. Introduction
	16.2. Closure syntax comparison
	16.3. Wrap-up

	17. Lifetimes, References, and 'static
	17.1. Introduction
	17.2. Lifetimes vs lifetime annotations
	17.3. Lifetime elision
	17.4. The 'static lifetime
	17.5. Wrap-up

	18. Arrays, Loops, and Iterators
	18.1. Introduction
	18.2. Recap: vec![], Vec, and VecDeque
	18.3. Loops
	18.4. Labels, break, continue
	18.5. break & loop expressions
	18.6. Intro to Rust Iterators
	18.7. Translating Array.prototype methods
	18.8. Wrap-up

	19. Async in Rust
	19.1. Introduction
	19.2. Wrap-up

	20. Tests and Project Structure
	20.1. Introduction
	20.2. Creating your workspace
	20.3. Starting a library
	20.4. Creating a CLI that uses your library
	20.5. Running your CLI from your workspace
	20.6. Additional reading
	20.7. Wrap-up

	21. CLI Arguments and Logging
	21.1. Introduction
	21.2. Adding debug logs
	21.3. Adding CLI Arguments
	21.4. Putting it all together.
	21.5. Additional reading
	21.6. Wrap-up

	22. Building and Running WebAssembly
	22.1. Introduction
	22.2. Building a WebAssembly module
	22.3. Additional reading
	22.4. Wrap-up

	23. Handling JSON
	23.1. Introduction
	23.2. Enter serde
	23.3. Extending our CLI
	23.4. Representing arbitrary JSON
	23.5. Additional reading
	23.6. Wrap-up

	24. Cheating The Borrow Checker
	24.1. Introduction
	24.2. Mutex & RwLock
	24.3. Async
	24.4. Additional reading
	24.5. Wrap-up

	25. Crates & Valuable Tools
	25.1. Introduction
	25.2. Crates
	25.3. Additional reading
	25.4. Wrap-up

