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1 Executive Summary
With resources running low, Gotham City needs predictions of new cases for the next ten days in each
burrough so it can strategically allocate aid. COVID-19 cases in the fifth burrough of Gotham City are
expected to remain high. A differencing model (Specified by a first difference and a lag 7 difference) with
ARMA(2,1)x(0,2)[7] noise was used to forecast cases. It appears the recent wave has already peaked and
flattened.

2 Exploratory Data Analysis
The data on COVID-19 cases started in April 2020. It shows a overall upward trend that has flattened out.
It also has two major waves peaking in late July and late January as demonstrated in the left panel of Figure
1. There is a strong weekly seasonal pattern as demonstrated in the right panel of Figure 1. This is likely
reflective of testing practices rather than the actual spread of the virus. Also of note is that the data is
heteroscedastic with variance linked to mean.
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Figure 1: Daily COVID-19 Cases. In the right panel, red and blue circles denote Mondays and Thursdays
respectively

When looking closer, there are also a few peculiar days in the dataset. Some days have 0 cases and the
following day has a massive spike in cases. It can be assumed that this is due to a failure to report cases on
those particular days and the number of cases is the result of both date’s COVID-19 cases being combined.
This requires imputation of those values for two reasons: To use a variance stabilizing transformation and
to create a better model that more accurately reflects reality. The imputation on these dates was done as
follows:
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p :=

(
casest−7

casest−7+casest−7+1
+ casest+7

casest+7+casest+7+1

)
2

cases′t = p · casest+1, cases
′
t+1 = (1− p) · casest+1

This imputation was made with a few assumptions. That 0 cases on day t indicate there were no tests
reported that day rather than having exactly 0 cases. Cases that would have appeared on day t are counted
on day t + 1, so the total cases on day t + 1 should be preserved and spread between the two days. The
proportion of cases between t and t+ 1 is similar to the proportions of nearby weeks.

A final observation to note is that there appears to be a drop in the number of cases reported on holidays
and the day following a holiday relative to what we may normally expect on those days. Both the imputed
values and holidays have been marked in Figure 2.

For the analysis, a log transform is used to stabilize the data. The variance seems much more stable on the
log scale as shown in Figure 2.
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Figure 2: COVID-19 Case date on log scale with Imputed Values (Blue Circles) and Holidays (Orange
Circles)

3 Models Considered
To model the natural signal in this data, both a parametric model and a differencing approach are used.
Both of these models of the signal will be complimented with ARMA models for the remaining noise.

3.1 Parametric Signal Model
First, a parametric model is considered. For the base model, a degree 2 polynomial was used based on time.
The waves that in the data are approximately represented by a 6 month period, so we created a sinusoid
with that period and interacted that feature. To capture the weekly seasonality, indicators for each week
day were used in this model. Finally indicator variables for whether the date was a holiday or a following
day were added to the linear model. This is deterministic signal model is detailed in Equation (1) below,
where Xt is the additive noise term.
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log(casest) =β0 + β1t+ β2t
2 +

6∑
j=1

β2+jtIweekdayjt

+ β9tIholidayt
+ β10tIday after holidayt

+ β11t cos
(

2πt
6 ∗ 30.5

)
+ β12t sin

(
2πt

6 ∗ 30.5

)
+Xt (1)
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Figure 3: The parametric signal model. Left shows of fitted parametric model (orange), observed values
(grey), and predicted values (blue) and the right panel shows the residuals of the model.

Figure 3 presents the fit as well as the residuals, which appear to be reasonably stationary. It also includes
the predicted trend for 10 days to verify that the result is a reasonable trend.

3.1.1 Parametric Signal with AR(1)

The autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for the parametric
model residuals are shown in Figure 4. The PACF plot appears to have 1 significant value at lag 1. Further-
more, the ACF of appears to follow an exponential decrease with significant values only in the beginning.
This immediately suggests an AR model. These two observations lead to proposing p = 1 as a potential fit.
In Figure 4, marked with orange circles, we see the theoretical ACF of the fitted AR(1) model. It decays
very quickly, however it is not an unreasonable match.

3.1.2 Parametric Signal with AR(3)

In the PACF plot of 4, there is a significant value at lag 1 and the lags at 2 and 3 are possibly not significant.
They are also close enough to significance that to warrant investigation. These observations suggest an AR
model with p = 3 as a different potential fit. The theoretical ACF values of this model are marked by purple
circles. It is a much better match with values closer to sample ACF and PACF. The tradeoff is that it is a
more complicated model.

3.2 Differencing
As previously addressed, there is a locally linear trend of cases and weekly seasonality. While there are
two waves of COVID-19 cases, it also appears to be locally linear. To address both of these things, a first
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Figure 4: ACF/PACF of parametric model residuals with theoretical values of fitted AR(1) and AR(3)
models. Sample ACF and PACF are shown with black lines.

difference and lag-7 difference are used. This is written as ∇7∇Cases. The implied model is shown in the
left panel of Figure 5. The right panel shows the time series of the differences, which appear stationary.
Again, to address heteroscedasticity, a log-transform was preformed.
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Figure 5: Diagnostics for differencing model. The left panel shows data in black and the fitted values in
orange. The right plot shows the differenced time series.

3.2.1 Differencing with ARMA(2,1)x(0,2)[7]

The Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for the differenced
model are shown in Figure 6. In the ACF plot, we can see significant values in multiples of 7, suggesting
a seasonal ARMA model with S=7. There are no clear cutoffs values for these seasonal ACF and PACF
values suggesting a multiplicative SARMA model is necessary and the cutoff rules for determining parameters
cannot be used.
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Significant values at every seventh lag of the PACF plot and 2 seasonal significant value in the ACF plot
suggest that Q=2 and S=7. Following these peaks, there is a decaying PACF which suggests an positive
value of q. There is also two significant values in the PACF, which suggests a p=2. With experimentation, a
plausible model with p=2, q=1, Q=2 with S=7. The theoretical values of this fitted MSARMA(2,1)x(0,2)[7]
the ACF and PACF are shown in figure 6 marked by orange circles.

3.2.2 Differencing with ARMA(2,2)x(3,1)[7]

In an alternative interpretation a significant value at 7 in the ACF plot and 3 possible seasonal significant
values in the PACF plot suggest that P=3, Q=1, and S=7. Following these peaks, there is a decaying PACF
which suggests an positive value of q. There is also two significant values in the PACF, which suggests a p=2.
Together, with expirimentation, this gives us p=2, q=2, P=3, Q=1 with S=7. The theoretical ACF/PACF
of the fitted model is demonstrated in figure 6. The purple circles fit the peaks significant values in the
sample ACF/PACF.
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Figure 6: ACF/PACF of differencing model residuals with theoretical values of fitted ARMA models

4 Model Comparison and Selection
These four model options are compared through time series cross validation on the log-transformed data
set. The nonoverlapping testing sets rolled through the last 100 days in the data, 10/17/2020 through
01/24/2021, in 10 day segments. Thus there will be 100 forecasted points over these 10 windows. The
training sets consist of all data that occur before the appropriate testing set. The models’ forecasting
performances will be compared through root-mean-square prediction error (RMSPE). The model with the
lowest RMSPE will be chosen as the model for predicting COVID-19 cases over the next 10 days.

Table 1 shows that the differenced model with ARMA(2,1)x(0,2)[7] has the lowest cross-validated prediction
error with ARMA(2,2)x(3,1)[7] as a close second. Thus the differenced ARMA(2,1)x(0,2)[7] is chosen as the
forecasting model.

5 Results
To forecast cases in the next 10 days (01/25/21 to 02/03/21), a model with differences at lag 7 and lag 1
will be used for the signal and augmented with an ARMA(2,1)x(0,2)[7] process for the noise. Let Casest
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Table 1: Cross-validated root mean squared prediction error for the four models under consideration.

RMSPE
Parametric Model + AR(1) 127836.06
Parametric Model + AR(3) 127836.06
Daily Differencing + Weekly Differencing + ARMA(2,1)x(0,2)[7] 38535.15
Daily Differencing + Weekly Differencing + ARMA(2,2)x(3,1)[7] 40549.25

be the number of cases at day t with an noise term Xt. Xt is a stationary process with 0 mean de-
fined by ARMA(2,1)X(0,2)[7], Wt is white noise with variance σ2

W . This can be compactly written as
ARIMA(2,1,1)x(0,1,2)[7]. The model can be represented as in Equation (2). φi,Θi, θi are all estimated in
the next Appendix 1 Table 2. Note that Θ1 and θ1 have large magnitude with a negative with very tight
bounds for the standard error. This suggests that Xt is highly dependent on the white noise term Wt−7 and
Wt−1.

log(Casest) = log(Casest−1) + log(Casest−7)− log(Casest−8) +Xt

Xt =φXt−1 + φ2Xt−2 +Wt + θ1Wt−1 + Θ1Wt−7 + θ1Θ1Wt−8 + Θ2Wt−14 + θ1Θ2Wt−15 (2)

5.1 Prediction
Figure 7 shows the forecasted values of COVID-19 cases for the next ten days. It appears the recent wave
has already peaked and flattened. Notably, the prediction for upcoming cases have high variance is cause
for concern. This indicates that a rise in cases is not the expected outcome, but it is not probable.
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Figure 7: Forecasts of COVID-19 Cases in the fifth burrough of Gotham City from 01/25/21 to 02/03/21.
The grey bands indicate the ±2 standard errors.
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6 Appendix 1 - Table of Parameter Estimates for ARIMA(2,1,0)x(1,1,2)[7]
Table 2: Estimates of the forecasting model parameters in Equation (2) with their standard errors (SE).
Note that this model includes a seasonal difference at lag 7 and a first difference.

Parameter Estimate SE
φ1 0.2591 0.0874
φ2 -0.0167 0.0720
θ1 -0.7672 0.0695
Θ1 -0.7805 0.0672
Θ2 -0.0546 0.0695
σ2

W 0.060

7


	Executive Summary
	Exploratory Data Analysis
	Models Considered
	Parametric Signal Model
	Parametric Signal with AR(1)
	Parametric Signal with AR(3)

	Differencing
	Differencing with ARMA(2,1)x(0,2)[7]
	Differencing with ARMA(2,2)x(3,1)[7]


	Model Comparison and Selection
	Results
	Prediction

	Appendix 1 - Table of Parameter Estimates for ARIMA(2,1,0)x(1,1,2)[7]

