{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Python kernel backed by Pyodide\n", "\n", "![](https://raw.githubusercontent.com/pyodide/pyodide/master/docs/_static/img/pyodide-logo.png)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pyodide_kernel\n", "\n", "pyodide_kernel.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Display" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from IPython.display import Markdown, HTML, JSON, Latex" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## HTML" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Before display\")\n", "\n", "s = \"

HTML Title

\"\n", "display(HTML(s))\n", "\n", "print(\"After display\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Markdown" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Markdown(\n", " \"\"\"\n", "# Title\n", "\n", "**in bold**\n", "\n", "~~Strikthrough~~\n", "\"\"\"\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Latex" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Latex(\n", " r\"\"\"\\begin{eqnarray}\n", "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n", "\\end{eqnarray}\"\"\"\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Matplotlib\n", "\n", "Basic static plotting (temp patch)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "x = np.linspace(0, 10, 1000)\n", "plt.plot(x, np.sin(x))\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pandas DataFrame" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from string import ascii_uppercase as letters\n", "\n", "df = pd.DataFrame(np.random.randint(0, 100, size=(100, len(letters))), columns=list(letters))\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show the same DataFrame" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Network requests and JSON" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "from js import fetch" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "res = await fetch(\"https://httpbin.org/get\")\n", "text = await res.text()\n", "obj = json.loads(text)\n", "JSON(obj)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sympy" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sympy import Integral, sqrt, symbols, init_printing\n", "\n", "init_printing()\n", "\n", "x = symbols(\"x\")\n", "\n", "Integral(sqrt(1 / x), x)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }