{
"cells": [
{
"cell_type": "markdown",
"id": "b4fbf4da",
"metadata": {
"papermill": {
"duration": 0.073094,
"end_time": "2022-01-23T20:23:35.216134",
"exception": false,
"start_time": "2022-01-23T20:23:35.143040",
"status": "completed"
},
"tags": []
},
"source": [
"## Kaggle Titanic Dataset - Prediction of Survival"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2c390dde",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:35.368467Z",
"iopub.status.busy": "2022-01-23T20:23:35.367848Z",
"iopub.status.idle": "2022-01-23T20:23:36.318496Z",
"shell.execute_reply": "2022-01-23T20:23:36.318937Z",
"shell.execute_reply.started": "2022-01-23T20:21:24.528617Z"
},
"papermill": {
"duration": 1.033407,
"end_time": "2022-01-23T20:23:36.319267",
"exception": false,
"start_time": "2022-01-23T20:23:35.285860",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"id": "7bfd8b6e",
"metadata": {
"papermill": {
"duration": 0.067688,
"end_time": "2022-01-23T20:23:36.453753",
"exception": false,
"start_time": "2022-01-23T20:23:36.386065",
"status": "completed"
},
"tags": []
},
"source": [
"### Read Data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1cabca22",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:36.592363Z",
"iopub.status.busy": "2022-01-23T20:23:36.591709Z",
"iopub.status.idle": "2022-01-23T20:23:36.628567Z",
"shell.execute_reply": "2022-01-23T20:23:36.628091Z",
"shell.execute_reply.started": "2022-01-23T20:21:24.537862Z"
},
"papermill": {
"duration": 0.108169,
"end_time": "2022-01-23T20:23:36.628689",
"exception": false,
"start_time": "2022-01-23T20:23:36.520520",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PassengerId | \n",
" Survived | \n",
" Pclass | \n",
" Name | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Ticket | \n",
" Fare | \n",
" Cabin | \n",
" Embarked | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 3 | \n",
" Braund, Mr. Owen Harris | \n",
" male | \n",
" 22.0 | \n",
" 1 | \n",
" 0 | \n",
" A/5 21171 | \n",
" 7.2500 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 1 | \n",
" 1 | \n",
" Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
" female | \n",
" 38.0 | \n",
" 1 | \n",
" 0 | \n",
" PC 17599 | \n",
" 71.2833 | \n",
" C85 | \n",
" C | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 1 | \n",
" 3 | \n",
" Heikkinen, Miss. Laina | \n",
" female | \n",
" 26.0 | \n",
" 0 | \n",
" 0 | \n",
" STON/O2. 3101282 | \n",
" 7.9250 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 1 | \n",
" 1 | \n",
" Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
" female | \n",
" 35.0 | \n",
" 1 | \n",
" 0 | \n",
" 113803 | \n",
" 53.1000 | \n",
" C123 | \n",
" S | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 0 | \n",
" 3 | \n",
" Allen, Mr. William Henry | \n",
" male | \n",
" 35.0 | \n",
" 0 | \n",
" 0 | \n",
" 373450 | \n",
" 8.0500 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PassengerId Survived Pclass \\\n",
"0 1 0 3 \n",
"1 2 1 1 \n",
"2 3 1 3 \n",
"3 4 1 1 \n",
"4 5 0 3 \n",
"\n",
" Name Sex Age SibSp \\\n",
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
"4 Allen, Mr. William Henry male 35.0 0 \n",
"\n",
" Parch Ticket Fare Cabin Embarked \n",
"0 0 A/5 21171 7.2500 NaN S \n",
"1 0 PC 17599 71.2833 C85 C \n",
"2 0 STON/O2. 3101282 7.9250 NaN S \n",
"3 0 113803 53.1000 C123 S \n",
"4 0 373450 8.0500 NaN S "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfTR = pd.read_csv('./Data/train.csv')\n",
"dfTR.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "300ce6a2",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 18,
"id": "76688ea8",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:36.783711Z",
"iopub.status.busy": "2022-01-23T20:23:36.782953Z",
"iopub.status.idle": "2022-01-23T20:23:36.787836Z",
"shell.execute_reply": "2022-01-23T20:23:36.787060Z",
"shell.execute_reply.started": "2022-01-23T20:21:24.589046Z"
},
"papermill": {
"duration": 0.091923,
"end_time": "2022-01-23T20:23:36.788030",
"exception": false,
"start_time": "2022-01-23T20:23:36.696107",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 891 entries, 0 to 890\n",
"Data columns (total 12 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 PassengerId 891 non-null int64 \n",
" 1 Survived 891 non-null int64 \n",
" 2 Pclass 891 non-null int64 \n",
" 3 Name 891 non-null object \n",
" 4 Sex 891 non-null object \n",
" 5 Age 714 non-null float64\n",
" 6 SibSp 891 non-null int64 \n",
" 7 Parch 891 non-null int64 \n",
" 8 Ticket 891 non-null object \n",
" 9 Fare 891 non-null float64\n",
" 10 Cabin 204 non-null object \n",
" 11 Embarked 889 non-null object \n",
"dtypes: float64(2), int64(5), object(5)\n",
"memory usage: 83.7+ KB\n"
]
}
],
"source": [
"## Show dataframe info\n",
"dfTR.info()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "1465df14",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:36.934356Z",
"iopub.status.busy": "2022-01-23T20:23:36.933727Z",
"iopub.status.idle": "2022-01-23T20:23:36.957917Z",
"shell.execute_reply": "2022-01-23T20:23:36.958453Z",
"shell.execute_reply.started": "2022-01-23T20:21:24.614343Z"
},
"papermill": {
"duration": 0.101529,
"end_time": "2022-01-23T20:23:36.958616",
"exception": false,
"start_time": "2022-01-23T20:23:36.857087",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PassengerId | \n",
" Survived | \n",
" Pclass | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Fare | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 891.000000 | \n",
" 891.000000 | \n",
" 891.000000 | \n",
" 714.000000 | \n",
" 891.000000 | \n",
" 891.000000 | \n",
" 891.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 446.000000 | \n",
" 0.383838 | \n",
" 2.308642 | \n",
" 29.699118 | \n",
" 0.523008 | \n",
" 0.381594 | \n",
" 32.204208 | \n",
"
\n",
" \n",
" std | \n",
" 257.353842 | \n",
" 0.486592 | \n",
" 0.836071 | \n",
" 14.526497 | \n",
" 1.102743 | \n",
" 0.806057 | \n",
" 49.693429 | \n",
"
\n",
" \n",
" min | \n",
" 1.000000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
" 0.420000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 25% | \n",
" 223.500000 | \n",
" 0.000000 | \n",
" 2.000000 | \n",
" 20.125000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 7.910400 | \n",
"
\n",
" \n",
" 50% | \n",
" 446.000000 | \n",
" 0.000000 | \n",
" 3.000000 | \n",
" 28.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 14.454200 | \n",
"
\n",
" \n",
" 75% | \n",
" 668.500000 | \n",
" 1.000000 | \n",
" 3.000000 | \n",
" 38.000000 | \n",
" 1.000000 | \n",
" 0.000000 | \n",
" 31.000000 | \n",
"
\n",
" \n",
" max | \n",
" 891.000000 | \n",
" 1.000000 | \n",
" 3.000000 | \n",
" 80.000000 | \n",
" 8.000000 | \n",
" 6.000000 | \n",
" 512.329200 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PassengerId Survived Pclass Age SibSp \\\n",
"count 891.000000 891.000000 891.000000 714.000000 891.000000 \n",
"mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n",
"std 257.353842 0.486592 0.836071 14.526497 1.102743 \n",
"min 1.000000 0.000000 1.000000 0.420000 0.000000 \n",
"25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n",
"50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n",
"75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n",
"max 891.000000 1.000000 3.000000 80.000000 8.000000 \n",
"\n",
" Parch Fare \n",
"count 891.000000 891.000000 \n",
"mean 0.381594 32.204208 \n",
"std 0.806057 49.693429 \n",
"min 0.000000 0.000000 \n",
"25% 0.000000 7.910400 \n",
"50% 0.000000 14.454200 \n",
"75% 0.000000 31.000000 \n",
"max 6.000000 512.329200 "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Show dataframe description\n",
"dfTR.describe()"
]
},
{
"cell_type": "markdown",
"id": "febef6d7",
"metadata": {
"papermill": {
"duration": 0.067961,
"end_time": "2022-01-23T20:23:37.778277",
"exception": false,
"start_time": "2022-01-23T20:23:37.710316",
"status": "completed"
},
"tags": []
},
"source": [
"### Clean Data"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "1ecb5dc5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PassengerId 0\n",
"Survived 0\n",
"Pclass 0\n",
"Name 0\n",
"Sex 0\n",
"Age 177\n",
"SibSp 0\n",
"Parch 0\n",
"Ticket 0\n",
"Fare 0\n",
"Cabin 687\n",
"Embarked 2\n",
"dtype: int64"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Show dataframe null counts\n",
"dfTR.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "54c9c2f0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',\n",
" 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],\n",
" dtype='object')"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfTR.columns"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "d8071979",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PassengerId | \n",
" Survived | \n",
" Pclass | \n",
" Name | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Ticket | \n",
" Fare | \n",
" Cabin | \n",
" Embarked | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 3 | \n",
" Braund, Mr. Owen Harris | \n",
" male | \n",
" 22.0 | \n",
" 1 | \n",
" 0 | \n",
" A/5 21171 | \n",
" 7.2500 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 1 | \n",
" 1 | \n",
" Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
" female | \n",
" 38.0 | \n",
" 1 | \n",
" 0 | \n",
" PC 17599 | \n",
" 71.2833 | \n",
" C85 | \n",
" C | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 1 | \n",
" 3 | \n",
" Heikkinen, Miss. Laina | \n",
" female | \n",
" 26.0 | \n",
" 0 | \n",
" 0 | \n",
" STON/O2. 3101282 | \n",
" 7.9250 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 1 | \n",
" 1 | \n",
" Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
" female | \n",
" 35.0 | \n",
" 1 | \n",
" 0 | \n",
" 113803 | \n",
" 53.1000 | \n",
" C123 | \n",
" S | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 0 | \n",
" 3 | \n",
" Allen, Mr. William Henry | \n",
" male | \n",
" 35.0 | \n",
" 0 | \n",
" 0 | \n",
" 373450 | \n",
" 8.0500 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PassengerId Survived Pclass \\\n",
"0 1 0 3 \n",
"1 2 1 1 \n",
"2 3 1 3 \n",
"3 4 1 1 \n",
"4 5 0 3 \n",
"\n",
" Name Sex Age SibSp \\\n",
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
"4 Allen, Mr. William Henry male 35.0 0 \n",
"\n",
" Parch Ticket Fare Cabin Embarked \n",
"0 0 A/5 21171 7.2500 NaN S \n",
"1 0 PC 17599 71.2833 C85 C \n",
"2 0 STON/O2. 3101282 7.9250 NaN S \n",
"3 0 113803 53.1000 C123 S \n",
"4 0 373450 8.0500 NaN S "
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfTR.head()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "ec040176",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Survived | \n",
" Pclass | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Fare | \n",
" Embarked | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" male | \n",
" 22.0 | \n",
" 1 | \n",
" 0 | \n",
" 7.2500 | \n",
" S | \n",
"
\n",
" \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" female | \n",
" 38.0 | \n",
" 1 | \n",
" 0 | \n",
" 71.2833 | \n",
" C | \n",
"
\n",
" \n",
" 2 | \n",
" 1 | \n",
" 3 | \n",
" female | \n",
" 26.0 | \n",
" 0 | \n",
" 0 | \n",
" 7.9250 | \n",
" S | \n",
"
\n",
" \n",
" 3 | \n",
" 1 | \n",
" 1 | \n",
" female | \n",
" 35.0 | \n",
" 1 | \n",
" 0 | \n",
" 53.1000 | \n",
" S | \n",
"
\n",
" \n",
" 4 | \n",
" 0 | \n",
" 3 | \n",
" male | \n",
" 35.0 | \n",
" 0 | \n",
" 0 | \n",
" 8.0500 | \n",
" S | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Survived Pclass Sex Age SibSp Parch Fare Embarked\n",
"0 0 3 male 22.0 1 0 7.2500 S\n",
"1 1 1 female 38.0 1 0 71.2833 C\n",
"2 1 3 female 26.0 0 0 7.9250 S\n",
"3 1 1 female 35.0 1 0 53.1000 S\n",
"4 0 3 male 35.0 0 0 8.0500 S"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Select columns\n",
"SEL_COLS = ['Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\n",
"dfTR = dfTR[SEL_COLS]\n",
"dfTR.head()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "9027e143",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(712, 8)"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Drop NAs\n",
"dfTR = dfTR.dropna()\n",
"dfTR.shape"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "54b1d303",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Pclass | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Fare | \n",
" Embarked | \n",
"
\n",
" \n",
" Survived | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 424 | \n",
" 424 | \n",
" 424 | \n",
" 424 | \n",
" 424 | \n",
" 424 | \n",
" 424 | \n",
"
\n",
" \n",
" 1 | \n",
" 288 | \n",
" 288 | \n",
" 288 | \n",
" 288 | \n",
" 288 | \n",
" 288 | \n",
" 288 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Pclass Sex Age SibSp Parch Fare Embarked\n",
"Survived \n",
"0 424 424 424 424 424 424 424\n",
"1 288 288 288 288 288 288 288"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## View distributions\n",
"SEL_VAR = SEL_COLS[0] ## Change index for other variables\n",
"dfTR.groupby(SEL_VAR).count()"
]
},
{
"cell_type": "markdown",
"id": "40f4df45",
"metadata": {
"papermill": {
"duration": 0.067961,
"end_time": "2022-01-23T20:23:37.778277",
"exception": false,
"start_time": "2022-01-23T20:23:37.710316",
"status": "completed"
},
"tags": []
},
"source": [
"### Visualize Data"
]
},
{
"cell_type": "markdown",
"id": "05add9c6",
"metadata": {
"papermill": {
"duration": 0.074725,
"end_time": "2022-01-23T20:23:39.393811",
"exception": false,
"start_time": "2022-01-23T20:23:39.319086",
"status": "completed"
},
"tags": []
},
"source": [
" #### Survival counts"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "76379c89",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:38.059072Z",
"iopub.status.busy": "2022-01-23T20:23:38.058400Z",
"iopub.status.idle": "2022-01-23T20:23:38.223899Z",
"shell.execute_reply": "2022-01-23T20:23:38.224572Z",
"shell.execute_reply.started": "2022-01-23T20:21:24.939241Z"
},
"papermill": {
"duration": 0.240324,
"end_time": "2022-01-23T20:23:38.224750",
"exception": false,
"start_time": "2022-01-23T20:23:37.984426",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATsklEQVR4nO3df7BcZX3H8ff1GgOR6JXhgiGJDWr8TgNqrJRa+aMUpINTNGhLGhRJS4byRxSZoXUAZ5SWyZSZIpaxwIhKDVYN8QclZShRYymlFQI4CCTwrYxEvCYSfl0Ro9Fsbv/Yk4eV3B8bNmf3mn2/ZjJ7zrPPs/td5rCfe549PwbGxsaQJAngJb0uQJI0fRgKkqTCUJAkFYaCJKkwFCRJxUt7XUAndu/ePdZoePSUJO2LGTMGnwSGx3vutzoUGo0xRkd39LoMSfqtMjw8+4cTPef0kSSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKn4rT6jeX845BUHcfDMGb0uQ9PML3b+muee/WWvy5C6ru9D4eCZM3jr317f6zI0zdz7j2fxHIaC+o/TR5KkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUlH7IakRMQjcA/w4M0+NiEOBG4AFwBZgaWY+U/W9CFgBNIDzMnN93fVJkp7XjT2FDwMPtaxfCGzIzIXAhmqdiFgELAOOBk4Brq4CRZLUJbWGQkTMA/4U+GxL8xJgdbW8GjitpX1NZu7MzEeBR4Dj6qxPkvSb6p4++ifgI8DslrYjMnMbQGZui4jDq/a5wJ0t/UaqtgkNDg4wNDRr/1UrtXDbUj+qLRQi4lRge2beGxEntDFkYJy2sckGNBpjjI7ueDHlFcPDs6fupL7U6bYlTVeTfe/VOX10PPDuiNgCrAFOjIh/BR6PiDkA1eP2qv8IML9l/Dxga431SZJeoLZQyMyLMnNeZi6g+QPytzPzTGAdsLzqthy4qVpeByyLiJkRcRSwENhYV32SpL314jyFy4CTI+L7wMnVOpm5CVgLbAZuBVZmZqMH9UlS3+rKpbMz8zbgtmr5KeCkCfqtAlZ1oyZJ0t48o1mSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSitpushMRBwG3AzOr9/lqZn48Ii4BzgGeqLpenJm3VGMuAlYADeC8zFxfV32SpL3Veee1ncCJmflcRMwA7oiI/6ie+2RmXt7aOSIW0byX89HAkcC3IuIN3pJTkrqntlDIzDHguWp1RvVvbJIhS4A1mbkTeDQiHgGOA75TV42SpN9U6z2aI2IQuBd4PXBVZt4VEe8EPhgRZwH3ABdk5jPAXODOluEjVduEBgcHGBqaVU/x6ntuW+pHtYZCNfWzOCKGgBsj4hjgGuBSmnsNlwKfAM4GBsZ5icn2LGg0xhgd3dFRjcPDszsarwNXp9uWNF1N9r3XlaOPMnMUuA04JTMfz8xGZu4GPkNzigiaewbzW4bNA7Z2oz5JUlNtoRARw9UeAhFxMPAO4OGImNPS7T3Ag9XyOmBZRMyMiKOAhcDGuuqTJO2tzumjOcDq6neFlwBrM/PmiPhCRCymOTW0BTgXIDM3RcRaYDOwC1jpkUeS1F11Hn10P/CWcdo/MMmYVcCqumqSJE3OM5olSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVtd1PISIOAm4HZlbv89XM/HhEHArcACygeZOdpZn5TDXmImAF0ADOy8z1ddUnSdpbnXsKO4ETM/PNwGLglIh4G3AhsCEzFwIbqnUiYhGwDDgaOAW4urprmySpS2oLhcwcy8znqtUZ1b8xYAmwumpfDZxWLS8B1mTmzsx8FHgEOK6u+iRJe6vzHs1Uf+nfC7weuCoz74qIIzJzG0BmbouIw6vuc4E7W4aPVG0TGhwcYGhoVg2VS7htqS/VGgqZ2QAWR8QQcGNEHDNJ94Fx2sYme/1GY4zR0R0dVAjDw7M7Gq8DV6fbljRdTfa915WjjzJzFLiN5m8Fj0fEHIDqcXvVbQSY3zJsHrC1G/VJkppqC4WIGK72EIiIg4F3AA8D64DlVbflwE3V8jpgWUTMjIijgIXAxrrqkyTtrc49hTnAf0bE/cDdwDcz82bgMuDkiPg+cHK1TmZuAtYCm4FbgZXV9JMkqUtq+00hM+8H3jJO+1PASROMWQWsqqsmSdLkav2hWdKLd+grZzD4soN6XYammcavfsnTP/11ba9vKEjT1ODLDuKxv39jr8vQNPOajz0A1BcKXvtIklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSpqu3R2RMwHrgdeDewGrs3MKyPiEuAc4Imq68WZeUs15iJgBdAAzsvM9XXVJ0naW533U9gFXJCZ342I2cC9EfHN6rlPZublrZ0jYhGwDDgaOBL4VkS8wVtySlL31DZ9lJnbMvO71fLPgIeAuZMMWQKsycydmfko8AhwXF31SZL21pU7r0XEApr3a74LOB74YEScBdxDc2/iGZqBcWfLsBEmDxEGBwcYGppVS82S25amqzq3zdpDISIOAb4GnJ+Zz0bENcClwFj1+AngbGBgnOFjk712ozHG6OiOjuobHp7d0XgduDrdtjrltqmJ1Pm919b0UURsaKdtnD4zaAbCFzPz6wCZ+XhmNjJzN/AZnp8iGgHmtwyfB2xtpz5J0v4x6Z5CRBwEzAIOi4hX8fxf86+g+WPwZGMHgM8BD2XmFS3tczJzW7X6HuDBankd8KWIuKJ67YXAxn37OJKkTkw1fXQucD7NL+l7eT4UngWummLs8cAHgAci4r6q7WLgjIhYTHNqaEv1HmTmpohYC2ymeeTSSo88kqTumjQUMvNK4MqI+FBmfmpfXjgz72D83wlumWTMKmDVvryPJGn/aeuH5sz8VES8HVjQOiYzr6+pLklSD7QVChHxBeB1wH00zzaG5vSPoSBJB5B2D0k9FliUmZMeIipJ+u3W7hnND9K8hpEk6QDW7p7CYcDmiNgI7NzTmJnvrqUqSVJPtBsKl9RZhCRpemj36KP/qrsQSVLvtXv00c94/jpELwNmAD/PzFfUVZgkqfva3VP4jasnRcRpeFlrSTrgvKj7KWTmvwEn7t9SJEm91u700XtbVl9C87wFz1mQpANMu0cfvatleRfNC9kt2e/VSJJ6qt3fFP6q7kIkSb3X7vTRPOBTNC+HPQbcAXw4M0dqrE2S1GXt/tD8LzRvgnMkzfsm/3vVJkk6gLT7m8JwZraGwOcj4vzJBkTEfJpXUX01sBu4NjOvjIhDgRtoXoZ7C7A0M5+pxlwErKB5JdbzMnN9+x9FktSpdvcUnoyIMyNisPp3JvDUFGN2ARdk5u8CbwNWRsQi4EJgQ2YuBDZU61TPLQOOBk4Bro6IwX3/SJKkF6vdUDgbWAr8BNgG/Dkw6Y/PmbktM79bLf8MeIjm1NMSYHXVbTVwWrW8BFiTmTsz81HgETxBTpK6qt3po0uB5S3TPIcCl9MMiylFxALgLcBdwBGZuQ2awRERh1fd5gJ3tgwbqdomNDg4wNDQrDY/grRv3LY0XdW5bbYbCm/aEwgAmfl0RLylnYERcQjwNeD8zHw2IibqOt79nCc9Qa7RGGN0dEc7ZUxoeHj21J3UlzrdtjrltqmJ1Pm91+700Usi4lV7Vqo9hSkDJSJm0AyEL2bm16vmxyNiTvX8HGB71T4CzG8ZPg/Y2mZ9kqT9oN09hU8A/xsRX6X51/tSYNVkAyJiAPgc8FBmXtHy1DpgOXBZ9XhTS/uXIuIKmoe+LgQ2tlmfJGk/aPeM5usj4h6aF8EbAN6bmZunGHY88AHggYi4r2q7mGYYrI2IFcBjwOnVe2yKiLXAZppHLq3MzMY+fh5JUgfa3VOgCoGpgqC1/x2M/zsBwEkTjFnFFHsgkqT6vKhLZ0uSDkyGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUtH0/hX0VEdcBpwLbM/OYqu0S4BzgiarbxZl5S/XcRcAKoAGcl5nr66pNkjS+2kIB+Dzwz8D1L2j/ZGZe3toQEYuAZcDRNG/F+a2IeIN3XpOk7qpt+igzbweebrP7EmBNZu7MzEeBR4Dj6qpNkjS+Xvym8MGIuD8irouIV1Vtc4EftfQZqdokSV1U5/TReK4BLgXGqsdPAGcz/r2cx6Z6scHBAYaGZu3XAqU93LY0XdW5bXY1FDLz8T3LEfEZ4OZqdQSY39J1HrB1qtdrNMYYHd3RUU3Dw7M7Gq8DV6fbVqfcNjWROr/3ujp9FBFzWlbfAzxYLa8DlkXEzIg4ClgIbOxmbZKkeg9J/TJwAnBYRIwAHwdOiIjFNKeGtgDnAmTmpohYC2wGdgErPfJIkrqvtlDIzDPGaf7cJP1XAavqqkeSNDXPaJYkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkos47r10HnApsz8xjqrZDgRuABTTvvLY0M5+pnrsIWAE0gPMyc31dtUmSxlfnnsLngVNe0HYhsCEzFwIbqnUiYhGwDDi6GnN1RAzWWJskaRy1hUJm3g48/YLmJcDqank1cFpL+5rM3JmZjwKPAMfVVZskaXy1TR9N4IjM3AaQmdsi4vCqfS5wZ0u/kaptUoODAwwNzdr/VUrgtqVpq85ts9uhMJGBcdrGphrUaIwxOrqjozceHp7d0XgduDrdtjrltqmJ1Pm91+2jjx6PiDkA1eP2qn0EmN/Sbx6wtcu1SVLf63YorAOWV8vLgZta2pdFxMyIOApYCGzscm2S1PfqPCT1y8AJwGERMQJ8HLgMWBsRK4DHgNMBMnNTRKwFNgO7gJWZ2airNknS+GoLhcw8Y4KnTpqg/ypgVV31SJKm5hnNkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSip7cozkitgA/AxrArsw8NiIOBW4AFgBbgKWZ+Uwv6pOkftXLPYU/zszFmXlstX4hsCEzFwIbqnVJUhdNp+mjJcDqank1cFrvSpGk/tST6SNgDPhGRIwBn87Ma4EjMnMbQGZui4jDp3qRwcEBhoZm1Vyq+pXblqarOrfNXoXC8Zm5tfri/2ZEPPxiXqTRGGN0dEdHhQwPz+5ovA5cnW5bnXLb1ETq/N7ryfRRZm6tHrcDNwLHAY9HxByA6nF7L2qTpH7W9VCIiJdHxOw9y8CfAA8C64DlVbflwE3drk2S+l0vpo+OAG6MiD3v/6XMvDUi7gbWRsQK4DHg9B7UJkl9reuhkJk/AN48TvtTwEndrkeS9LzpdEiqJKnHDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJElFL+68NqmIOAW4EhgEPpuZl/W4JEnqG9NqTyEiBoGrgHcCi4AzImJRb6uSpP4xrUIBOA54JDN/kJm/AtYAS3pckyT1jek2fTQX+FHL+gjwBxN1njFj8Mnh4dk/7PRN7/3Hszp9CR2Ahodn97oEXvOxB3pdgqah/bBt/s5ET0y3UBgYp21skv7DdRUiSf1ouk0fjQDzW9bnAVt7VIsk9Z3ptqdwN7AwIo4CfgwsA97X25IkqX9Mqz2FzNwFfBBYDzwErM3MTb2tSpL6x8DY2GRT9pKkfjKt9hQkSb1lKEiSiun2Q7N6wEuLaLqKiOuAU4HtmXlMr+vpB+4p9DkvLaJp7vPAKb0uop8YCvLSIpq2MvN24Ole19FPDAWNd2mRuT2qRVKPGQra10uLSDqAGQry0iKSCo8+kpcWkVS4p9DnvLSIprOI+DLwneZijETEil7XdKDzMheSpMI9BUlSYShIkgpDQZJUGAqSpMJQkCQVnqcgARHxUZrnZzSA3cC5mXlXh6/5bmDR/rjqbEQ8l5mHdPo60lQMBfW9iPhDmpdn/r3M3BkRhwEva3PsS6tzPfaSmeuAdfuvUql+hoIEc4AnM3MnQGY+CRARW4BjM/PJiDgWuDwzT4iIS4AjgQXAkxHxOuDsPSf9RcRtwAXAG4FjgY8C3wNem5m7I2IWkMBrgdfQvHT5MLADOCczH67OMP8Szf9Hb639v4BU8TcFCb4BzI+I/4uIqyPij9oY81ZgSWa+j+blxpcCRMQc4MjMvHdPx8z8Kc1Q2PO67wLWZ+avgWuBD2XmW4G/Aa6u+lwJXJOZvw/8pONPKLXJUFDfy8znaH7J/zXwBHBDRPzlFMPWZeYvquW1wOnV8lLgK+P0vwH4i2p5WfUehwBvB74SEfcBn6a51wJwPPDlavkL+/J5pE44fSQBmdkAbgNui4gHgOXALp7/w+mgFwz5ecvYH0fEUxHxJppf/OeO8xbrgH+IiENpBtC3gZcDo5m5eIKyvAaNus49BfW9aFrY0rQY+CGwheYXOMCfTfEya4CPAK/MzAde+GS1N7KR5rTQzZnZyMxngUcj4vSqjoGIeHM15H9o7lEAvH+fP5T0IhkKEhwCrI6IzRFxP817VV8C/B1wZUT8N81DVSfzVZpf4msn6XMDcGb1uMf7gRUR8T1gE8/fCvXDwMqIuBt45b59HOnF8yqpkqTCPQVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJxf8DMXFdfmtDKacAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(data = dfTR, x='Survived')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "115df154",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:38.514026Z",
"iopub.status.busy": "2022-01-23T20:23:38.513415Z",
"iopub.status.idle": "2022-01-23T20:23:38.697027Z",
"shell.execute_reply": "2022-01-23T20:23:38.697463Z",
"shell.execute_reply.started": "2022-01-23T20:21:25.121588Z"
},
"papermill": {
"duration": 0.25888,
"end_time": "2022-01-23T20:23:38.697629",
"exception": false,
"start_time": "2022-01-23T20:23:38.438749",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZrUlEQVR4nO3de5RcZZnv8W+ncmkSAh0mDSQQSALh8XARhBB1WHNkZHQxs1TUGThBR/AQkeUKoMgBMR4BhcgtXBWUWyAgkARGNCIHRDyMchTQoHJ/lEtgQmK4JUJICOlKnT+qsmlIp+kkXV2d7u9nrayu/dZ+dz1VK12/fvfl3U2VSgVJkgAGNLoASVLvYShIkgqGgiSpYChIkgqGgiSpMLDRBWyKNWvWVMplz56SpA0xaFDpJaC1o+c261AolyssW7ai0WVI0maltXX4s+t7zt1HkqSCoSBJKhgKkqTCZn1MQZLWKpfbWLr0Rdra3mx0Kb3GwIGDGTGilVKp61/1hoKkPmHp0hdpbh7KsGHb09TU1OhyGq5SqfD666+ydOmLjBw5qsv93H0kqU9oa3uTYcO2MhBqmpqaGDZsqw0eORkKkvoMA+HtNubzMBQkSQWPKUjSBpo162ruuutOSqUBNDUN4KSTprHHHns2uqxu0e9DYcutmtliyKBGl9ErrFy1muWvvtHoMqRe7ZFHHuI3v7mXmTN/yODBg1m2bBltbasbXVa36fehsMWQQex30nWNLqNXmH/eESzHUJA68/LLL7H11i0MHjwYgJaWFgCeeOJxvve9C1mxYgUtLS1Mm3Y6zc3NHH30EZxzzgXstNNYTjttGvvttz+f+MSnGvgOOle3UIiIZuBXwJDa69ySmadFxOnA0cCLtVWnZebttT5fB6YAZeD4zLyzXvVJ0sbYf/8PcM01VzF58qeZOHESBx30Efbaa28uuug8zjrrfEaMGMHdd/+cK664lGnTTuOrXz2Z6dO/xaGHTua1117r1YEA9R0prAI+nJnLI2IQcG9E/J/acxdm5oz2K0fE7sBkYA9gNPCLiNgtM8t1rFGSNsjQoUO5+urr+dOf/sAf/jCf006bxpFHHsXTTz/FCSdMBWDNmjJ/93cjgWqI/PKXd3PBBedy7bU3NrL0LqlbKGRmBVheWxxU+9fZPNeHALMzcxXwTEQ8CUwCfluvGiVpY5RKJfbddyL77juR8eN34Uc/uplx48Zz+eXXrLPumjVrePbZZxgyZAivvvoq2267XQMq7rq6HlOIiBIwH9gVuDQz74+IfwaOjYgjgN8DJ2bmUmAH4L523RfW2tarVGqipWVofYrvp/w8tblasqSJUqn+Z9k/++wCBgwYwJgxOwHw1FN/Ydy48dx//2957LGH2WuvvWlrW81zzz3H+PG7MGfODYwbN44vfelYzj7721x55bUMHNhzJ7c0NW3Y92RdQ6G262efiGgBbo2IPYHvA2dQHTWcAZwPHAV0dJVFp3fQ6Y77KbS2Dt+k/n2N96fQ5qpSqVAur6n76yxf/joXXXQey5e/RqlUYocdxnDyyd/g4x//JBddNIPly5dTLpc57LDDaWoawLx5t3LllbMYOnQYe+/9PmbOvIopU46pe51rVSrrfk929r3XI2cfZeayiLgHOLj9sYSIuBK4rba4EBjTrtuOwKKeqE+Suuo97/lv/OAHM9dpb2lp4dJLr1yn/YYbbikeH3fcV+taW3eo21grIlprIwQiYgvgn4AnIqL9zEyfAh6pPZ4HTI6IIRExDpgAPFCv+iRJ66rnSGEUMKt2XGEAMDczb4uI6yNiH6q7hhYAxwBk5qMRMRd4DGgDpnrmkST1rHqeffQQ8L4O2j/XSZ/pwPR61SRJ6pwT4kmSCoaCJKlgKEiSCv1+QjxJfVN3z4Bc71mEH3zw98ye/UPOPfeiur1GVxgKkvqk7p4Bub/MImwoSFI3Wbx4ESeeeBzvfe8+PProw+y66278y798nJkzL2fp0qWceuoZAFxyyQWsWvUGQ4Y0M23aqey009i3bWflypVceOG5PP30U5TLbRx11Bf5h384sEfeg8cUJKkbPf/8Qg499HBmzZrNs88u4K677uCyy65m6tQvc/3117DzzmP53veu4JprbmTKlGO4/PJL19nGddfNZL/99ueqq67jkksu59JLL2HlypU9Ur8jBUnqRqNGjWaXXXYFYNy48UycOImmpibGj9+VxYsXs3z5cs4883QWLnyOpqYm2tra1tnGAw/cx733/ic33fRDAN58cxVLlvyVsWPH1b1+Q0GSutGgQW8d3B4wYECxPGDAAMrlNq666gfsu+9EzjprBosXL+K449adHK9SqTB9+rnr7FbqCe4+kqQetHz5clpbWwG4/fafdrjO+9//QW65ZQ6VSnWi6D//+Ykeq8+RgqQ+aeWq1cw/74hu3V53+Oxnj+DMM09nzpwb2Hff/Ttc5/Ofn8LFF5/PkUdOplKpMGrU6B47VbVpbRJtjlavLle6434K3Xna2uZs/nlH8OKLrzW6DGmj/PWvz7L99js3uoxep6PPpbV1+HxgYkfru/tIklQwFCRJBUNBklQwFCRJBUNBklQwFCRJBa9TkNQnbbP1IEqDm7tte+U33+CVv3V+rcLNN8/mxz++hd12ew+nnXZmt732WldffTlbbDGUz3xmvXc13mSGgqQ+qTS4mee+vVe3bW+nUx8GOg+FW2+9mRkzLmH06B267XV7Wt1CISKagV8BQ2qvc0tmnhYR2wBzgLHAAuCwzFxa6/N1YApQBo7PzDvrVZ8kdafzzvsOixY9zymnfJWDDvoozz+/cJ2pr2+//af8+tf3UC6v4ZlnnmLy5M+yevVq7rzzdgYNGsyMGRez1VZbM2/ercybdyurV69mxx135JvfPIPm5rePep5/fiHnn38Oy5Ytpbm5ma997X+z885jN/l91POYwirgw5m5N7APcHBEfAA4Bbg7MycAd9eWiYjdgcnAHsDBwGURUapjfZLUbU46aRojR7ZyySWX88Ybb6x36uunn36K008/kyuumMUVV1xGc3Mz11xzI3vuuRd33PEzAD70oX/kqquuY9asm9h553HcdtuP13m9c8+dzgknnMTMmT9k6tSvcP75Z3fL+6jbSCEzK8Dy2uKg2r8KcAhwYK19FnAP8LVa++zMXAU8ExFPApOA39arRkmqh/VNfQ2w774TGTp0GEOHDmPYsC054ID/DsD48bvy1FNPAtXguPLK77N8+WusXLmSSZM+8Lbtr1ixgocffohvfvOUom316je7pfa6HlOo/aU/H9gVuDQz74+I7TJzMUBmLo6IbWur7wDc1677wlrbepVKTbS0DK1D5f2Xn6c2V0uWNFEq1feEyq5sv1RqAiqcddaMdXbnPPHEowwePLjYzoABA2huHkKpNICBA0usWVOmVBrAd77zLc455wImTNiNn/1sHg8+OJ9SaQADBjTV/sHw4cO5/vrZ71pPU9OGfU/WNRQyswzsExEtwK0RsWcnqzd10NbpbH3lcoXumBBPb9nUz1NqlEqlQrm8pq6v0ZXtl8sVJk36IHPn3sQJJ5xMU1MTf/7zE+y223tYs6ayTp3lcnW5/XMrVrzOiBHbsGrVm9xxx+20tm5brLNmTYXm5qGMGjWau+76OR/+8D9RqVR48sm/MGHCbuvUU6ms+z3Z2fdej5x9lJnLIuIeqscKlkTEqNooYRTwQm21hcCYdt12BBb1RH2S+p7ym2/Uzhjqvu111aZOff2FL3yJL37x82y33fbsssuurFix7h9rp556BjNmnM2sWVdTLrdx0EEf7TAUNlTdps6OiFZgdS0QtgB+DpwDfAh4OTPPjohTgG0y8+SI2AO4kepxhNFUD0JPqI02OuTU2d3LqbO1OXPq7I71pqmzRwH/NyIeAn4H3JWZtwFnAx+JiL8AH6ktk5mPAnOBx4A7gKmdBYIkqfvV8+yjh4D3ddD+MnDQevpMB6bXqyZJUuec+0hSn7E530myHjbm8zAUJPUJAwcO5vXXXzUYaiqVCq+//ioDBw7eoH7OfSSpTxgxopWlS19k+fJljS6l1xg4cDAjRrRuWJ861SJJPapUGsjIkaMaXcZmz91HkqSCoSBJKhgKkqSCoSBJKhgKkqSCoSBJKhgKkqSCoSBJKhgKkqSCoSBJKhgKkqSCoSBJKhgKkqSCoSBJKhgKkqSCoSBJKtTtJjsRMQa4DtgeWANckZkXR8TpwNHAi7VVp2Xm7bU+XwemAGXg+My8s171SZLWVc87r7UBJ2bmgxExHJgfEXfVnrswM2e0XzkidgcmA3sAo4FfRMRumVmuY42SpHbqtvsoMxdn5oO1x68BjwM7dNLlEGB2Zq7KzGeAJ4FJ9apPkrSuHrlHc0SMBd4H3A8cABwbEUcAv6c6mlhKNTDua9dtIZ2HCKVSEy0tQ+tSc3/l5yn1b3UPhYjYEvgP4CuZ+WpEfB84A6jUfp4PHAU0ddC90tm2y+UKy5at2KT6WluHb1L/vmZTP09JvV9n33t1DYWIGEQ1EG7IzB8BZOaSds9fCdxWW1wIjGnXfUdgUT3rkyS9Xd2OKUREE3A18HhmXtCufVS71T4FPFJ7PA+YHBFDImIcMAF4oF71SZLWVc+RwgHA54CHI+KPtbZpwOERsQ/VXUMLgGMAMvPRiJgLPEb1zKWpnnkkST2rbqGQmffS8XGC2zvpMx2YXq+aJEmd84pmSVLBUJAkFQwFSVLBUJAkFQwFSVLBUJAkFQwFSVLBUJAkFQwFSVLBUJAkFQwFSVLBUJAkFQwFSVLBUJAkFQwFSVLBUJAkFQwFSVLBUJAkFboUChFxd1faJEmbt07v0RwRzcBQYGREjOCtey5vBYyuc22SpB7WaSgAxwBfoRoA83krFF4FLu2sY0SMAa4DtgfWAFdk5sURsQ0wBxgLLAAOy8yltT5fB6YAZeD4zLxzg9+RJGmjdRoKmXkxcHFEHJeZ393AbbcBJ2bmgxExHJgfEXcBnwfuzsyzI+IU4BTgaxGxOzAZ2INqCP0iInbLzPIGvq4kaSO920gBgMz8bkT8PdW/7ge2a7+ukz6LgcW1x69FxOPADsAhwIG11WYB9wBfq7XPzsxVwDMR8SQwCfjtBr0jSdJG61IoRMT1wC7AH6nu2gGoUN091JX+Y4H3AfcD29UCg8xcHBHb1lbbAbivXbeFtbb1KpWaaGkZ2pUS1EV+nlL/1qVQACYCu2dmZUNfICK2BP4D+EpmvhoR61u1qYO2Tl+vXK6wbNmKDS3pbVpbh29S/75mUz9PSb1fZ997Xb1O4RGqB4w3SEQMohoIN2Tmj2rNSyJiVO35UcALtfaFwJh23XcEFm3oa0qSNl5XRwojgcci4gFg1drGzPzE+jpERBNwNfB4Zl7Q7ql5wJHA2bWfP2nXfmNEXED1QPME4IEu1iepD9tm60GUBjc3uoxeofzmG7zyt9V1235XQ+H0jdj2AcDngIcj4o+1tmlUw2BuREwBngMOBcjMRyNiLvAY1TOXpnrmkSSA0uBmnvv2Xo0uo1fY6dSHgQaHQmb+54ZuODPvpePjBAAHrafPdGD6hr6WJKl7dPXso9d466DvYGAQ8HpmblWvwiRJPa+rI4W3HaqOiE9SvYZAktSHbNQsqZn5Y+DD3VuKJKnRurr76NPtFgdQvW5hg69ZkCT1bl09++jj7R63UZ3I7pBur0aS1FBdPabwP+tdiCSp8bq6+2hH4LtUrz2oAPcCX87MhXWsTZLUw7p6oPkaqlccj6Y6Sd1Pa22SpD6kq8cUWjOzfQhcGxFfqUM9kqQG6moovBQR/w7cVFs+HHi5PiVJkhqlq7uPjgIOA/5K9cY5/wZ48FmS+piujhTOAI5sdy/lbYAZVMNCktRHdHWk8N61gQCQma9QvZOaJKkP6WooDIiIEWsXaiOFro4yJEmbia5+sZ8P/CYibqF6ncJhOMW1JPU5XRopZOZ1wL8CS4AXgU9n5vX1LEyS1PO6vAsoMx+jelc0SVIftVFTZ0uS+iZDQZJUqNsZRBExE/gY8EJm7llrOx04mupxCYBpmXl77bmvA1OAMnB8Zt5Zr9okSR2r52ml1wLfA657R/uFmTmjfUNE7A5MBvagOuneLyJit8ws17E+SdI71G33UWb+Cnili6sfAszOzFWZ+QzwJN4DWpJ6XCOOKRwbEQ9FxMx2F8TtAPxXu3UW1tokST2op69K/j7VeZQqtZ/nU50/qamDdd/1HtClUhMtLUO7tcD+zs9T6v3q+Xvao6GQmUvWPo6IK4HbaosLgTHtVt0RWPRu2yuXKyxbtmKTamptHb5J/fuaTf08pXrw9/Tt6vm916O7jyJiVLvFTwGP1B7PAyZHxJCIGAdMAB7oydokSfU9JfUm4EBgZEQsBE4DDoyIfajuGloAHAOQmY9GxFyqV0y3AVM980iSel7dQiEzD++g+epO1p+Ok+xJUkN5RbMkqWAoSJIKhoIkqWAoSJIKhoIkqWAoSJIKhoIkqWAoSJIKhoIkqWAoSJIKhoIkqWAoSJIKhoIkqWAoSJIKhoIkqWAoSJIKhoIkqWAoSJIKhoIkqWAoSJIKA+u14YiYCXwMeCEz96y1bQPMAcYCC4DDMnNp7bmvA1OAMnB8Zt5Zr9okSR2r50jhWuDgd7SdAtydmROAu2vLRMTuwGRgj1qfyyKiVMfaJEkdqFsoZOavgFfe0XwIMKv2eBbwyXbtszNzVWY+AzwJTKpXbZKkjtVt99F6bJeZiwEyc3FEbFtr3wG4r916C2ttnSqVmmhpGdr9VfZjfp5S71fP39OeDoX1aeqgrfJuncrlCsuWrdikF25tHb5J/fuaTf08pXrw9/Tt6vm919NnHy2JiFEAtZ8v1NoXAmParbcjsKiHa5Okfq+nQ2EecGTt8ZHAT9q1T46IIRExDpgAPNDDtUlSv1fPU1JvAg4ERkbEQuA04GxgbkRMAZ4DDgXIzEcjYi7wGNAGTM3Mcr1qkzYHW27VzBZDBjW6DPUzdQuFzDx8PU8dtJ71pwPT61WPtLnZYsgg9jvpukaX0SvMP++IRpfQb3hFsySpYChIkgqGgiSpYChIkgqGgiSpYChIkgqGgiSpYChIkgqGgiSpYChIkgqGgiSpYChIkgqGgiSpYChIkgqGgiSp0Fvu0axeoNK2ynvh1pTffINX/ra60WVIPc5QUKFp4BCe+/ZejS6jV9jp1IcBQ0H9j7uPJEkFQ0GSVDAUJEmFhhxTiIgFwGtAGWjLzIkRsQ0wBxgLLAAOy8yljahPkvqrRo4U/jEz98nMibXlU4C7M3MCcHdtWZLUg3rT7qNDgFm1x7OATzauFEnqnxp1SmoF+HlEVIDLM/MKYLvMXAyQmYsjYtt320ip1ERLy9A6l6r+yv9b6q3q+X+zUaFwQGYuqn3x3xURT2zMRsrlCsuWrdikQrxYS+uzqf+3NpX/N7U+9fzea8juo8xcVPv5AnArMAlYEhGjAGo/X2hEbZLUn/V4KETEsIgYvvYx8FHgEWAecGRttSOBn/R0bZLU3zVi99F2wK0Rsfb1b8zMOyLid8DciJgCPAcc2oDaJKlf6/FQyMyngb07aH8ZOKin65EkvaU3nZIqSWowQ0GSVDAUJEkFQ0GSVDAUJEkFQ0GSVDAUJEkFQ0GSVDAUJEkFQ0GSVDAUJEkFQ0GSVDAUJEkFQ0GSVDAUJEkFQ0GSVDAUJEkFQ0GSVDAUJEkFQ0GSVBjY6ALeKSIOBi4GSsBVmXl2g0uSpH6jV40UIqIEXAr8M7A7cHhE7N7YqiSp/+hVoQBMAp7MzKcz801gNnBIg2uSpH6jqVKpNLqGQkT8G3BwZn6htvw54P2Zeex6urwIPNtT9UlSH7Ez0NrRE73tmEJTB22dpVaHb0qStHF62+6jhcCYdss7AosaVIsk9Tu9baTwO2BCRIwDngcmA59pbEmS1H/0qpFCZrYBxwJ3Ao8DczPz0cZWJUn9R6860CxJaqxeNVKQJDWWoSBJKvS2A81qAKcWUW8VETOBjwEvZOaeja6nP3Ck0M85tYh6uWuBgxtdRH9iKMipRdRrZeavgFcaXUd/YihoB+C/2i0vrLVJ6ocMBW3o1CKS+jBDQU4tIqng2UdyahFJBUcK/ZxTi6g3i4ibgN9WH8bCiJjS6Jr6Oqe5kCQVHClIkgqGgiSpYChIkgqGgiSpYChIkgpepyABEfENqtdnlIE1wDGZef8mbvMTwO7dMetsRCzPzC03dTvSuzEU1O9FxAepTs+8b2auioiRwOAu9h1Yu9ZjHZk5D5jXfZVK9WcoSDAKeCkzVwFk5ksAEbEAmJiZL0XERGBGZh4YEacDo4GxwEsRsQtw1NqL/iLiHuBEYC9gIvAN4E/A+MxcExFDgQTGAztRnbq8FVgBHJ2ZT9SuML+R6u/oHXX/BKQajylI8HNgTET8OSIui4gPdaHPfsAhmfkZqtONHwYQEaOA0Zk5f+2Kmfk3qqGwdrsfB+7MzNXAFcBxmbkf8L+Ay2rrXAx8PzP3B/66ye9Q6iJDQf1eZi6n+iX/ReBFYE5EfP5dus3LzJW1x3OBQ2uPDwNu7mD9OcD/qD2eXHuNLYG/B26OiD8Cl1MdtQAcANxUe3z9hrwfaVO4+0gCMrMM3APcExEPA0cCbbz1h1PzO7q83q7v8xHxckS8l+oX/zEdvMQ84KyI2IZqAP0SGAYsy8x91lOWc9CoxzlSUL8XVRPaNe0DPAssoPoFDvCv77KZ2cDJwNaZ+fA7n6yNRh6gulvotswsZ+arwDMRcWitjqaI2LvW5f9RHVEAfHaD35S0kQwFCbYEZkXEYxHxENV7VZ8OfAu4OCJ+TfVU1c7cQvVLfG4n68wB/r32c63PAlMi4k/Ao7x1K9QvA1Mj4nfA1hv2dqSN5yypkqSCIwVJUsFQkCQVDAVJUsFQkCQVDAVJUsFQkCQVDAVJUuH/AzVuwHrBylzwAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(data=dfTR, x='Survived', hue='Sex')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "7532cae2",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:39.030170Z",
"iopub.status.busy": "2022-01-23T20:23:39.029196Z",
"iopub.status.idle": "2022-01-23T20:23:39.239533Z",
"shell.execute_reply": "2022-01-23T20:23:39.238714Z",
"shell.execute_reply.started": "2022-01-23T20:21:25.320915Z"
},
"papermill": {
"duration": 0.306993,
"end_time": "2022-01-23T20:23:39.239736",
"exception": false,
"start_time": "2022-01-23T20:23:38.932743",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXr0lEQVR4nO3dbVBU58HG8WtZQKwaFAxgkYfEETWNL3Faa/C1WYsIq4HBklYTNMSOE2pQQ8cKTWUap5oYp1bH1kTGfKAZG81QCtYVtTDxZewkzEQnaEZTTYcGHNm1vBg1ioD7fPDJ/WgUXGSXBfn/PsHhnPtcZCZenHPuPbfF7Xa7BQCApAB/BwAA9ByUAgDAoBQAAAalAAAwKAUAgBHo7wBdMXnyZEVHR/s7BgD0KufPn9fHH398z5/16lKIjo5WcXGxv2MAQK+SlpbW7s+4fQQAMCgFAIBBKQAAjF79TAEA/KWlpUW1tbW6fv26v6O0KyQkRMOHD1dQUJDHx1AKAPAAamtrNWjQID322GOyWCz+jnMXt9ut+vp61dbW6vHHH/f4OG4fAcADuH79usLDw3tkIUiSxWJReHh4p69kKAUAeEA9tRC+8SD5KAUAgMEzBQDwoieeeEKjRo1SW1ubRowYoQ0bNqh///733Hfr1q36zne+oyVLlnRzyvZxpQCfa25t9neETuuNmdEzhISEqLS0VHv37lVQUJB27drl70idwpUCfK5fYD9N3TrV3zE65Vj2MX9HwEPgBz/4gT7//HNJUklJid59911ZLBaNHj1aGzduvGPfDz74QLt371ZLS4tiY2P11ltvqX///iorK9Of/vQnBQQEaNCgQdq5c6fOnj2rvLw8tbS06ObNm9q6dasee+wxr2SmFADAB1pbW3XkyBFNnz5dZ8+e1dtvv633339fYWFhampqumv/hIQEPffcc5KkP/zhDyoqKlJGRoa2bdumd999V5GRkfrqq68kSbt27dKiRYv07LPP6saNG7p586bXclMKAOBF169fV0pKiqRbVwo/+clPtHv3bs2ZM0dhYWGSpMGDB9913NmzZ7V582ZdvnxZV69e1bRp0yRJEydOVG5urpKSkpSQkCBJeuqpp/TOO++orq5Os2fP9tpVgkQpAIBXffNM4XZut/u+x+Xm5mrbtm0aM2aMiouLVVlZKUlau3atPv30Ux06dEipqakqKSnRvHnzNGHCBB06dEhLlizR7373O8XHx3slPw+aAcDH4uPjtX//fjU2NkrSPW8fXb16VY8++qhaWlr097//3Wz/8ssvNWHCBK1YsUJDhgxRXV2dampqFBMTo0WLFslms5nnFt7AlQIA+FhcXJxefvllZWRkKCAgQN/73vf05ptv3rHPihUrlJ6erujoaI0aNUpXr16VJL311lv6z3/+I7fbraefflpjxoxRQUGB9uzZo8DAQA0dOlTLli3zWlaL25Prmh4qLS2NRXZ6CWYf4WFz+vRpPfHEE/6OcV/3ytnRv53cPgIAGJQCAMCgFAAABqUAADB8VgoXLlxQRkaGkpKSZLfbVVhYKOnWC6CmT5+ulJQUpaSk6PDhw+aY7du3KyEhQYmJiTp69KivogEA2uGzKalWq1W5ubl68skndeXKFc2fP19Tp96agfLiiy/e9VbAc+fOyeFwyOFwyOl0KjMzUwcOHJDVavVVRADAt/jsSiEiIkJPPvmkJGngwIEaMWKEnE5nu/tXVFTIbrcrODhYMTExio2NVVVVla/iAYBXNbe0dft4eXl5io+P19y5c7123m758Fptba1Onz6tCRMm6Pjx49q5c6dKSko0duxY5ebmKjQ0VE6nUxMmTDDHREZGdlgiANCT9Auy6vur/uy18T7ZuOi++6SlpemFF17Q6tWrvXZenz9ovnr1qpYvX65f//rXGjhwoBYsWKB//OMfKi0tVUREhPlU370+Q9fTl7oDAH+aNGmSQkNDvTqmT0uhpaVFy5cv17x58zR79mxJ0tChQ2W1WhUQEKD09HSdPHlSkhQVFaW6ujpzrNPpVEREhC/jAQC+xWel4Ha79dprr2nEiBHKzMw0210ul/m6vLxccXFxkiSbzSaHw6EbN26opqZG1dXVGj9+vK/iAQDuwWfPFD755BOVlpZq1KhR5t3iOTk52rt3r86cOSNJio6O1tq1ayXdemFUUlKSkpOTZbValZ+fz8wjAOhmPiuF25ehu93MmTPbPSYrK0tZWVm+igQAuA9enQ0AXtDc0ubRjKHOjNcvqOO7JTk5OaqsrFRjY6NmzJih7Oxspaend+m8lAIAeMH9/gH3xXibNm3y6jkl3n0EALgNpQAAMCgFAIBBKQAADEoBAGBQCgAAgympAOAF7tZmWQL7det4Fy5c0K9+9Sv997//VUBAgJ577jktXry4S+elFADACyyB/fTl2nFeG+9/8k/ed5/2FjMbOXLkA5+X20cA0Et1djEzT1AKAPAQuH0xs66gFACgl/v2YmZdQSkAQC92r8XMuoJSAIBeqr3FzLqC2UcA4AXu1maPZgx1Zrz7TUltbzGzjtatuR9KAQC8wJufUfB0vPYWM+sKbh8BAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGU1IBwAuaW5vVz4vTUu83XnNzs55//nnduHFDbW1tSkxM1PLly7t8XkoBALygX2A/Td061WvjHcs+1uHPg4ODVVhYqAEDBqilpUULFy7UjBkz9NRTT3XpvNw+AoBeyGKxaMCAAZKk1tZWtba2ymKxdHlcSgEAeqm2tjalpKRoypQpmjJlSpdfmy1RCgDQa1mtVpWWlurw4cOqqqrSv/71ry6PSSkAQC/3yCOPaPLkyTp69GiXx/JZKVy4cEEZGRlKSkqS3W5XYWGhJKmpqUmZmZmaPXu2MjMzdenSJXPM9u3blZCQoMTERK/8cgDwsGpoaNBXX30lSbp+/br++c9/asSIEV0e12ezj9pbULq4uFjx8fFaunSpCgoKVFBQoFWrVuncuXNyOBxyOBxyOp3KzMzUgQMHZLVafRURALymubX5vjOGOjteR1NSXS6XcnNz1dbWJrfbrTlz5uiZZ57p8nl9VgoRERGKiIiQdOeC0hUVFXrvvfckSampqcrIyNCqVatUUVEhu92u4OBgxcTEKDY2VlVVVZo4caKvIgKA13jzMwqejDdmzBiVlJR49ZxSNz1TuH1B6fr6elMWERERamhokCQ5nU5FRUWZYyIjI+V0OrsjHgDg//i8FDxdUNrtdt+1zRtzbgEAnvNpKdxrQenw8HC5XC5Jt+6JhYWFSZKioqJUV1dnjnU6neaKAgB6onv9MduTPEg+n5VCewtK22w2cx+spKREs2bNMtsdDodu3LihmpoaVVdXa/z48b6KBwBdEhISovr6+h5bDG63W/X19QoJCenUcT570NzegtJLly7VypUrVVRUpGHDhmnLli2SpLi4OCUlJSk5OVlWq1X5+fnMPALQYw0fPly1tbW6ePGiv6O0KyQkRMOHD+/UMT4rhY4WlP7mMwvflpWVpaysLF9FAgCvCQoK0uOPP+7vGF7HJ5oBAAalAAAwKAUAgEEpAAAMSgEAYFAKAACDUgAAGJQCAMCgFAAABqUAADAoBQCAQSkAAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgEEpAAAMj0ph8eLFHm0DAPRugR39sLm5WdeuXVNjY6MuXbokt9stSbpy5YpcLle3BAQAdJ8OS2HXrl0qLCyUy+VSWlqaKYWBAwfq+eef73DgvLw8HTp0SOHh4dq7d68kaevWrfrggw8UFhYmScrJydHMmTMlSdu3b1dRUZECAgL0m9/8RtOnT+/yLwcA6JwOS2Hx4sVavHix3nvvPWVkZHRq4LS0NL3wwgtavXr1HdtffPFFLVmy5I5t586dk8PhkMPhkNPpVGZmpg4cOCCr1dqpcwIAuqbDUvhGRkaGjh8/rvPnz6utrc1sT01NbfeYSZMmqba21qMQFRUVstvtCg4OVkxMjGJjY1VVVaWJEyd6dDwAwDs8KoVVq1appqZGY8aMMX+9WyyWDkuhPTt37lRJSYnGjh2r3NxchYaGyul0asKECWafyMhIOZ3OTo8NAOgaj0rh1KlT2rdvnywWS5dOtmDBAv3iF7+QxWLRli1b9Oabb+qNN94wzypu19VzAQA6z6MpqXFxcbp48WKXTzZ06FBZrVYFBAQoPT1dJ0+elCRFRUWprq7O7Od0OhUREdHl8wEAOsejK4XGxkbZ7XaNHz9eQUFBZvs777zTqZO5XC7zj315ebni4uIkSTabTb/85S+VmZkpp9Op6upqjR8/vlNjAwC6zqNSyM7O7vTAOTk5qqysVGNjo2bMmKHs7GxVVlbqzJkzkqTo6GitXbtW0q0rkaSkJCUnJ8tqtSo/P5+ZRwDgBx6Vwg9/+MNOD7xp06a7tqWnp7e7f1ZWlrKysjp9HgCA93hUChMnTjQPfltaWtTa2qr+/fvr+PHjPg0HAOheHpXCiRMn7vi+vLxcVVVVPgkEAPCfB3pL6o9//GN99NFH3s4CAPAzj64UDh48aL6+efOmTp06xecIAOAh5FEpfPjhh+Zrq9Wq6Ohobdu2zWehAAD+4VEpvPHGG77OAQDoATx6plBXV6dly5YpPj5eU6ZMUXZ29h2fQAYAPBw8KoW8vDzZbDYdPXpUR44c0TPPPKO8vDxfZwMAdDOPSqGhoUHz589XYGCgAgMDlZaWpoaGBl9nAwB0M49KYciQISotLVVbW5va2tpUWlqqwYMH+zgaAKC7eVQK69evV1lZmaZOnapp06bpwIEDPHwGgIeQR7OPtmzZog0bNig0NFSS1NTUpA0bNlAMAPCQ8ehK4fPPPzeFIEmDBw/W6dOnfRYKAOAfHpXCzZs3denSJfN9U1PTHWs1AwAeDh7dPnrppZf0s5/9TImJibJYLCorK9PLL7/s62wAgG7mUSmkpqZq7Nix+uijj+R2u/XHP/5RI0eO9HU2AEA386gUJGnkyJEUAQA85B7o1dkAfK+5pfc9t+uNmXEnj68UAHSvfkFWfX/Vn/0do1M+2bjI3xHQRVwpAAAMSgEAYFAKAACDUgAAGJQCAMCgFAAABqUAADAoBQCAQSkAAAxKAQBg+KwU8vLyFB8fr7lz55ptTU1NyszM1OzZs5WZmXnHGg3bt29XQkKCEhMTdfToUV/FAgB0wGelkJaWph07dtyxraCgQPHx8Tp48KDi4+NVUFAgSTp37pwcDoccDod27Nih119/nUV8AMAPfFYKkyZNumMJT0mqqKhQamqqpFtrNJSXl5vtdrtdwcHBiomJUWxsrKqqqnwVDQDQjm59plBfX6+IiAhJUkREhBoaGiRJTqdTUVFRZr/IyEg5nc7ujAYAUA950Ox2u+/aZrFY/JAEAPq2bi2F8PBwuVwuSZLL5VJYWJgkKSoqSnV1dWY/p9NprigAAN2nW0vBZrOppKREklRSUqJZs2aZ7Q6HQzdu3FBNTY2qq6s1fvz47owGAJAPV17LyclRZWWlGhsbNWPGDGVnZ2vp0qVauXKlioqKNGzYMG3ZskWSFBcXp6SkJCUnJ8tqtSo/P19Wq9VX0QAA7fBZKWzatOme2wsLC++5PSsrS1lZWb6KAwDwQI940AwA6BkoBQCAQSn0Qu7WZn9HAPCQ8tkzBfiOJbCfvlw7zt8xPPY/+Sf9HQGAh7hSAAAYlAIAwKAUAPRpzb3sGZ2v8/JMAYDXuFubZQns5+8YndIvsJ+mbp3q7xgeO5Z9zKfjUwoAvKa3TYKQmAjxbdw+AgAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgNHnS6G5pc3fEQCgx+jzr87uF2TV91f92d8xOuWTjYv8HQHAQ6rPXykAAP4fpQAAMCgFAIBBKQAADEoBAGD4ZfaRzWbTgAEDFBAQIKvVquLiYjU1NenVV1/V+fPnFR0drc2bNys0NNQf8QCgz/LblUJhYaFKS0tVXFwsSSooKFB8fLwOHjyo+Ph4FRQU+CsaAPRZPeb2UUVFhVJTUyVJqampKi8v928gAOiD/FYKS5YsUVpamnbv3i1Jqq+vV0REhCQpIiJCDQ0N/ooGAH2WX54pvP/++4qMjFR9fb0yMzM1YsQIf8QAAHyLX64UIiMjJUnh4eFKSEhQVVWVwsPD5XK5JEkul0thYWH+iAYAfVq3l8LXX3+tK1eumK+PHTumuLg42Ww2lZSUSJJKSko0a9as7o4GAH1et98+qq+v17JlyyRJbW1tmjt3rmbMmKFx48Zp5cqVKioq0rBhw7Rly5bujgYAfV63l0JMTIz27Nlz1/YhQ4aosLCwu+MAAG7TY6akAgD8j1IAABiUAgDAoBQAAAalAAAwKAUAgEEpAAAMSgEAYFAKAACDUgAAGJQCAMCgFAAABqUAADAoBQCAQSkAAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgNHjSuHIkSNKTExUQkKCCgoK/B0HAPqUHlUKbW1tWrt2rXbs2CGHw6G9e/fq3Llz/o4FAH1GjyqFqqoqxcbGKiYmRsHBwbLb7aqoqPB3LADoMyxut9vt7xDf2L9/v44ePap169ZJkkpKSlRVVaX8/Px77j958mRFR0d3Z0QA6PXOnz+vjz/++J4/C+zmLB26Vz9ZLJZ292/vlwIAPJgedfsoKipKdXV15nun06mIiAg/JgKAvqVHlcK4ceNUXV2tmpoa3bhxQw6HQzabzd+xAKDP6FG3jwIDA5Wfn6+f//znamtr0/z58xUXF+fvWADQZ/SoB80AAP/qUbePAAD+RSkAAAxKAbxaBD1WXl6e4uPjNXfuXH9H6TMohT6OV4ugJ0tLS9OOHTv8HaNPoRT6OF4tgp5s0qRJCg0N9XeMPoVS6OOcTqeioqLM95GRkXI6nX5MBMCfKIU+rrOvFgHwcKMU+jheLQLgdpRCH8erRQDcjk80Q4cPH9b69evNq0WysrL8HQmQJOXk5KiyslKNjY0KDw9Xdna20tPT/R3roUYpAAAMbh8BAAxKAQBgUAoAAINSAAAYlAIAwKAUAElvv/227Ha75s2bp5SUFH366addHrOiosJrb52dOHGiV8YB7qdHLccJ+MOJEyd06NAh/e1vf1NwcLAaGhrU0tLi0bGtra0KDLz3/0azZs3SrFmzvBkV8DmuFNDnXbx4UUOGDFFwcLAkKSwsTJGRkbLZbGpoaJAknTx5UhkZGZKkrVu3as2aNXrppZe0evVqpaen6+zZs2a8jIwMnTp1SsXFxVq7dq0uX74sm82mmzdvSpKuXbummTNnqqWlRV9++aWWLFmitLQ0LVy4UF988YUkqaamRj/96U81f/58bd68uRv/a6CvoxTQ502dOlUXLlxQYmKifvvb36qysvK+x3z22Wfatm2bfv/738tut6usrEyS5HK55HK5NHbsWLPvoEGDNHr0aDPuhx9+qGnTpikoKEhr1qzRmjVrVFxcrNWrV+v111+XJK1bt04LFizQX//6Vz366KM++K2Be6MU0OcNGDDA/FUfFhamV199VcXFxR0eY7PZFBISIklKSkrS/v37JUllZWWaM2fOXfsnJydr3759kiSHw6Hk5GRdvXpVJ06c0IoVK5SSkqL8/HxdvHhR0q1bWna7XZKUkpLitd8VuB+eKQCSrFarJk+erMmTJ2vUqFEqKSmR1Wo1rxZvbm6+Y//+/fubryMjIzV48GCdOXNGZWVl5q/929lsNm3atElNTU367LPP9PTTT+vatWt65JFHVFpaes9MvMIc/sCVAvq8f//736qurjbfnz59Wt/97ncVHR2tU6dOSZIOHjzY4Rh2u107duzQ5cuXNXr06Lt+PmDAAI0bN07r1q3Tj370I1mtVg0cOFDDhw83t57cbrfOnDkj6dZsI4fDIUnas2ePN35NwCOUAvq8r7/+Wrm5uUpOTta8efP0xRdf6JVXXtErr7yi9evXa+HChbJarR2OkZiYqH379ikpKandfZKTk7Vnzx4lJyebbRs3blRRUZGeffZZ2e12lZeXS5Jee+01/eUvf9H8+fN15coV7/yigAd4SyoAwOBKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIDxv/alBm6pR8PcAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.set_style('white')\n",
"sns.countplot(data=dfTR, x='Survived', hue='Pclass')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "7989a730",
"metadata": {
"papermill": {
"duration": 0.074725,
"end_time": "2022-01-23T20:23:39.393811",
"exception": false,
"start_time": "2022-01-23T20:23:39.319086",
"status": "completed"
},
"tags": []
},
"source": [
" #### Age of the passengers"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "6c69161d",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:39.549106Z",
"iopub.status.busy": "2022-01-23T20:23:39.548521Z",
"iopub.status.idle": "2022-01-23T20:23:39.813736Z",
"shell.execute_reply": "2022-01-23T20:23:39.813142Z",
"shell.execute_reply.started": "2022-01-23T20:21:25.536880Z"
},
"papermill": {
"duration": 0.344837,
"end_time": "2022-01-23T20:23:39.813861",
"exception": false,
"start_time": "2022-01-23T20:23:39.469024",
"status": "completed"
},
"scrolled": true,
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWdklEQVR4nO3de3BU5eH/8U8upDJEhI1sgoGxhELLhEtnWglLUUsiSzBQVy6t1unQYJtKqylEsAKFmToQ2o5jhekfZUutMGO9gLiMBGmaDRCGezGVUrDcqg0ZyA4JCSTktpvz/YMfz1d+At8I7DkL+37NOJN9Nms+WcTPeZ5zzrMJlmVZAgBAUqLTAQAAsYNSAAAYlAIAwKAUAAAGpQAAMJKdDnAzcnJylJmZ6XQMALit1NbWau/evVd97rYuhczMTG3YsMHpGABwW5k6deo1n2P5CABgRK0UFixYII/Ho8mTJ5uxxsZGFRYWyuv1qrCwUE1NTea5VatWacKECZo4caJ27NgRrVgAgOuIWilMnTpVq1evvmLM7/fL4/GovLxcHo9Hfr9fknT8+HGVlZWprKxMq1ev1q9+9StFIpFoRQMAXEPUSuGBBx7QPffcc8VYMBiUz+eTJPl8PlVUVJjxgoICpaSkaODAgbr//vt18ODBaEUDAFyDrecU6uvr5Xa7JUlut1sNDQ2SpLq6OmVkZJjvS09PV11dnZ3RAACKkRPNV9uTLyEhwYEkABDfbC2FtLQ0hUIhSVIoFJLL5ZIkZWRk6MyZM+b76urqzIwCAGAfW0shNzdXgUBAkhQIBJSXl2fGy8rK1NHRoZqaGn3yyScaOXKkndEAAIrizWslJSXat2+fzp07p4ceekjPPfecioqKNGfOHK1fv179+/fXihUrJElDhgzRpEmT9OijjyopKUlLlixRUlJStKIBAK4h4Xb+kJ2pU6dyR7ONOsJdSkm+scnlzbwWwK11vf933tbbXMBeKcmJesK/+4Ze+1aR5xanARANHLoBAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgEEpAAAMSgEAYFAKAACDUgAAGJQCAMCgFAAABqUAADAoBQCAQSkAAAxKAbboCHc58loAX0yy0wEQH1KSE/WEf/cNvfatIs8tTgPgWpgpIOYxywDsw0wBMY9ZBmAfZgoAAINSAAAYlAIAwKAUAACGIyeaX3/9da1bt04JCQkaOnSoli9frtbWVs2dO1e1tbXKzMzUq6++qnvuuceJeAAQt2yfKdTV1Wnt2rV69913tWnTJkUiEZWVlcnv98vj8ai8vFwej0d+v9/uaAAQ9xxZPopEImpra1M4HFZbW5vcbreCwaB8Pp8kyefzqaKiwoloABDXbF8+Sk9P16xZszR+/Hh96Utf0re+9S2NGzdO9fX1crvdkiS3262Ghga7owFA3LN9ptDU1KRgMKhgMKgdO3aotbVVGzdutDsGAOAqbC+FXbt2acCAAXK5XOrRo4e8Xq+qq6uVlpamUCgkSQqFQnK5XHZHu+Ox5QOA/4vty0f33XefPvroI7W2tuquu+7S7t27NXz4cPXs2VOBQEBFRUUKBALKy8uzO9od72a2i5DYMgKIB7aXwqhRozRx4kQ9/vjjSk5O1rBhw/S9731PLS0tmjNnjtavX6/+/ftrxYoVdkcDgLjnyH0KxcXFKi4uvmIsJSVFa9ascSIOAOD/4Y5mAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgEEp4I52s5sAsokg4o0j21wAdmETQOCLYaYAADAoBQCAQSkAAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgEEpAAAMSgEAYFAKAACDUgAAGI6Uwvnz51VcXKz8/HxNmjRJ1dXVamxsVGFhobxerwoLC9XU1ORENACIa46UwrJly/Tggw9qy5Yt2rhxowYPHiy/3y+Px6Py8nJ5PB75/X4nogFAXLO9FJqbm7V//35Nnz5dkpSSkqLevXsrGAzK5/NJknw+nyoqKuyOBgBxL9nuH1hTUyOXy6UFCxbo448/VnZ2thYtWqT6+nq53W5JktvtVkNDg93RACDu2T5TCIfDOnz4sJ588kkFAgH17NmTpSIAiBG2l0JGRoYyMjI0atQoSVJ+fr4OHz6stLQ0hUIhSVIoFJLL5bI7GgDEPdtLoV+/fsrIyNDJkyclSbt379bgwYOVm5urQCAgSQoEAsrLy7M7GgDEPdvPKUjS4sWLNW/ePHV2dmrgwIFavny5urq6NGfOHK1fv179+/fXihUrnIgGAHHNkVIYNmyYNmzY8LnxNWvWOJAGAHBZt5aPDhw40K0xAMDtrVulsHTp0m6NAQBub9ddPqqurlZ1dbUaGhr05z//2Yw3NzcrEolEPRwAwF7XLYXOzk5dvHhRkUhELS0tZjw1NVUrV66MejgAgL2uWwqjR4/W6NGj9fjjjyszM9OuTAAAh3Tr6qOOjg4tXrxYtbW1CofDZnzt2rVRCwYAsF+3SuHnP/+5nnjiCc2YMUOJiXwEAwDcqbpVCsnJyfr+978f7SwAAId167B//PjxeuONNxQKhdTY2Gj+AQDcWbo1U3jvvfckSX/605/MWEJCgoLBYHRSAQAc0a1SqKysjHYOAEAM6FYpXN699P93+ZPSAAB3hm6Vwj//+U/zdXt7u3bv3q3s7GxKAQDuMN0qhcWLF1/x+MKFC5o/f35UAgEAnHNDNx3cdddd+vTTT291FgCAw7o1U3jmmWfM111dXTpx4oQmTZoUtVAAAGd0qxRmzZplvk5KSlJmZqYyMjKiFgoA4IxuLR+NHj1aWVlZamlp0fnz59WjR49o5wIAOKBbpbB582bNmDFDW7Zs0QcffGC+BgDcWbq1fPSHP/xB69evV1pamiSpoaFBP/zhD5Wfnx/VcAAAe3VrpmBZlikESerTp48sy4paKACAM7o1Uxg3bpyefvppFRQUSLq0nPTQQw9FNRgAwH7XLYVPP/1UZ8+e1S9+8QuVl5frwIEDsixLX//61/Wd73zHrowAAJtcd/motLRUvXr1kiR5vV4tWLBACxcu1MMPP6zS0lJbAgIA7HPdUqitrdXXvva1z42PGDFCtbW1UQsFAHDGdUuhvb39ms+1tbXd8jAAAGddtxRGjBihd95553Pj69atU3Z2dtRCAQCccd0TzQsXLtSzzz6r999/35TAoUOH1NnZqd///ve2BAQA2Oe6pXDvvffqrbfe0p49e3Ts2DFJ0sMPPyyPx2NLOMBpHeEupSTf0GbCN/VawCnduk9hzJgxGjNmTLSzADEnJTlRT/h339Br3yri4Am3Hw5jAAAGpQAAMCgFAIDhWClEIhH5fD795Cc/kSQ1NjaqsLBQXq9XhYWFampqcioaAMQtx0ph7dq1Gjx4sHns9/vl8XhUXl4uj8cjv9/vVDQAiFuOlMKZM2e0bds2TZ8+3YwFg0H5fD5Jks/nU0VFhRPRACCuOVIKpaWlmj9/vhIT//fH19fXy+12S5LcbrcaGhqinqMj3OXIawEgVnXrPoVbaevWrXK5XBo+fLj27t1r94+/AtegA8CVbC+FDz/8UJWVlaqqqlJ7e7uam5s1b948paWlKRQKye12KxQKyeVy2R0NAOKe7ctHzz//vKqqqlRZWalXXnlFY8aM0csvv6zc3FwFAgFJUiAQUF5ent3RACDuxcx9CkVFRdq5c6e8Xq927typoqIipyMBQNyxffnos3JycpSTkyNJ6tu3r9asWeNkHACIezEzUwAAOI9SAAAYlAIAwKAUAAAGpQAAMCgFIEqc2kaFLVhwMxy9JBW4k93sNipswQInMFMAABiUAgDAoBQAAAalAAAwKAUAgEEpAAAMSuE2wzXoAKKJ+xRuM3yEKIBoYqYAADAoBQCAQSkAAAxKAbjDsJkebgYnmoE7DBcj4GYwUwAAGJQCAMCgFAAABqUAADAoBQCAQSkAAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIBheymcPn1aP/jBDzRp0iQVFBRozZo1kqTGxkYVFhbK6/WqsLBQTU1NdkcDgLhneykkJSXpxRdf1AcffKC3335bf/nLX3T8+HH5/X55PB6Vl5fL4/HI7/fbHQ0A4p7tpeB2u5WdnS1JSk1NVVZWlurq6hQMBuXz+SRJPp9PFRUVdkcDgLjn6DmFU6dO6ciRIxo1apTq6+vldrslXSqOhoYGJ6MBQFxyrBRaWlpUXFyshQsXKjU11akYAIDPcKQUOjs7VVxcrClTpsjr9UqS0tLSFAqFJEmhUEgul8uJaAAQ12wvBcuytGjRImVlZamwsNCM5+bmKhAISJICgYDy8vLsjgYAcS/Z7h944MABbdy4UUOHDtVjjz0mSSopKVFRUZHmzJmj9evXq3///lqxYoXd0QAg7tleCt/85jf173//+6rPXb5nAQDgDO5oBgAYlAIAwKAUAAAGpQDA6Ah3Ofp6OM/2E80AYldKcqKe8O++4de/VeS5hWngBGYKDuBoCkCsYqbggJs5GuNIDEA0MVO4QRztA7gTMVO4QRztA7gTMVMAcMvczAya2XdsYKYA4JZhBn37Y6YAADAoBQCAQSkAAAxKAQBgUAoAAINSABATuJw1NnBJKoCYwOWssYGZAgDAoBQAAAalAAAwKAUAgEEpAAAMSgEAYFAKAACDUgAAGJQCgLjGndRX4o5mAHGNO6mvxEwBwG3vTjxidwozBQC3PY72bx1mCgAAg1IAABiUAgDAoBQAAEbMlUJVVZUmTpyoCRMmyO/3Ox0HAOJKTJVCJBLRSy+9pNWrV6usrEybNm3S8ePHnY4FAFd1s5fCxuKNczF1SerBgwd1//33a+DAgZKkgoICBYNBfeUrX3E4GQB83s1cCitduhw21i6lTbAsy4rKv/kGbNmyRTt27NCyZcskSYFAQAcPHtSSJUuu+v05OTnKzMy0MyIA3PZqa2u1d+/eqz4XUzOFq/VTQkLCNb//Wr8UAODGxNQ5hYyMDJ05c8Y8rqurk9vtdjARAMSXmCqFESNG6JNPPlFNTY06OjpUVlam3Nxcp2MBQNyIqeWj5ORkLVmyRD/60Y8UiUQ0bdo0DRkyxOlYABA3YupEMwDAWTG1fAQAcBalAAAwYuqcQrRVVVVp2bJl6urq0owZM1RUVORYlgULFmjbtm1KS0vTpk2bJEmNjY2aO3euamtrlZmZqVdffVX33HOPrblOnz6tF154QWfPnlViYqK++93vaubMmY5na29v11NPPaWOjg5FIhFNnDhRxcXFjue67PI5sPT0dK1atSpmcuXm5qpXr15KTExUUlKSNmzYEBPZzp8/r1/+8pc6evSoEhISVFpaqkGDBjma6+TJk5o7d655XFNTo+LiYvl8Psffr9dff13r1q1TQkKChg4dquXLl6u1tTU6uaw4EQ6Hrby8POu///2v1d7ebk2ZMsU6duyYY3n27dtnHTp0yCooKDBjv/nNb6xVq1ZZlmVZq1atsn7729/anquurs46dOiQZVmWdeHCBcvr9VrHjh1zPFtXV5fV3NxsWZZldXR0WNOnT7eqq6sdz3XZa6+9ZpWUlFhFRUWWZcXGn6VlWdb48eOt+vr6K8ZiIdsLL7xgvfPOO5ZlWVZ7e7vV1NQUE7kuC4fD1tixY61Tp045nuvMmTPW+PHjrdbWVsuyLKu4uNh69913o5YrbpaPPruFRkpKitlCwykPPPDA51o9GAzK5/NJknw+nyoqKmzP5Xa7lZ2dLUlKTU1VVlaW6urqHM+WkJCgXr16SZLC4bDC4bASEhIczyVJZ86c0bZt2zR9+nQzFgu5rsXpbM3Nzdq/f795v1JSUtS7d2/Hc33W7t27NXDgQGVmZsZErkgkora2NoXDYbW1tcntdkctV9yUQl1dnTIyMszj9PR01dXVOZjo8+rr683Nem63Ww0NDY7mOXXqlI4cOaJRo0bFRLZIJKLHHntMY8eO1dixY2MmV2lpqebPn6/ExP/96xQLuS57+umnNXXqVL399tsxka2mpkYul0sLFiyQz+fTokWLdPHiRcdzfVZZWZkmT54syfn3Kz09XbNmzdL48eM1btw4paamaty4cVHLFTelYH3BLTTiXUtLi4qLi7Vw4UKlpqY6HUeSlJSUpI0bN2r79u06ePCgjh496nQkbd26VS6XS8OHD3c6ylW9+eabeu+99/THP/5Rb7zxhvbv3+90JIXDYR0+fFhPPvmkAoGAevbsGVPb5Hd0dKiyslL5+flOR5EkNTU1KRgMKhgMaseOHWptbdXGjRuj9vPiphRuhy000tLSFAqFJEmhUEgul8uRHJ2dnSouLtaUKVPk9XpjKpsk9e7dWzk5OdqxY4fjuT788ENVVlYqNzdXJSUl2rNnj+bNm+d4rsvS09MlXfrzmzBhgg4ePOh4toyMDGVkZGjUqFGSpPz8fB0+fNjxXJdVVVUpOztb9957ryTn/9vftWuXBgwYIJfLpR49esjr9aq6ujpqueKmFG6HLTRyc3MVCAQkXdohNi8vz/YMlmVp0aJFysrKUmFhYcxka2ho0Pnz5yVJbW1t2rVrl7KyshzP9fzzz6uqqkqVlZV65ZVXNGbMGL388suO55Kkixcvqrm52Xy9c+dODRkyxPFs/fr1U0ZGhk6ePCnp0vr94MGDHc91WVlZmQoKCsxjp3Pdd999+uijj9Ta2irLsqL+fsXVHc3bt29XaWmpuXxw9uzZjmUpKSnRvn37dO7cOaWlpem5557TI488ojlz5uj06dPq37+/VqxYoT59+tia6+9//7ueeuopDR061KyRl5SUaOTIkY5m+/jjj/Xiiy8qEonIsizl5+fr2Wef1blz5xx/zy7bu3evXnvtNa1atSomctXU1OhnP/uZpEvnYyZPnqzZs2fHRLYjR45o0aJF6uzs1MCBA7V8+XJ1dXU5nqu1tVXf/va3VVFRobvvvluSYuL9WrlypTZv3qzk5GQNGzZMy5YtU0tLS1RyxVUpAACuL26WjwAA/zdKAQBgUAoAAINSAAAYlAIAwKAUgBv0t7/9TV/96ld14sQJp6MAtwylANygTZs26Rvf+IY2b97sdBTgluE+BeAGtLS0KD8/X2vXrtXs2bO1ZcsWdXV16aWXXtL+/fs1YMAAdXV1adq0acrPz9ehQ4f061//WhcvXlTfvn21fPnymNtmBZCYKQA3pKKiQg8++KAGDRqkPn366F//+pfKy8tVW1ur999/X0uXLtU//vEPSZf2klq6dKlWrlypDRs2aNq0afrd737n7C8AXENcffIacKuUlZVp5syZkqRHH31UmzZtUjgcVn5+vhITE9WvXz/l5ORIkv7zn//o6NGjZi+prq4u9evXz7HswPVQCsAXdO7cOe3Zs0fHjh1TQkKCIpGIEhIS9Mgjj1z1+y3L0pAhQ8znGQCxjOUj4Av661//Kp/Pp61bt6qyslLbt2/XgAED1LdvX5WXl6urq0tnz57Vvn37JEmDBg1SQ0ODqqurJV1aTjp27JiTvwJwTcwUgC+orKxMP/7xj68Y83q9OnHihNLT0zV58mR9+ctf1siRI3X33XcrJSVFK1eu1NKlS3XhwgVFIhHNnDlTQ4YMceg3AK6Nq4+AW6ilpUW9evXSuXPnNGPGDL355pucP8BthZkCcAs988wzOn/+vDo7O/XTn/6UQsBth5kCAMDgRDMAwKAUAAAGpQAAMCgFAIBBKQAAjP8BzoZeUCm8pCAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.histplot(data=dfTR, x='Age')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "407a75af",
"metadata": {
"papermill": {
"duration": 0.073539,
"end_time": "2022-01-23T20:23:39.959397",
"exception": false,
"start_time": "2022-01-23T20:23:39.885858",
"status": "completed"
},
"tags": []
},
"source": [
"#### Siblings and Spouse count"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "ed61255e",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:40.113976Z",
"iopub.status.busy": "2022-01-23T20:23:40.113395Z",
"iopub.status.idle": "2022-01-23T20:23:40.319023Z",
"shell.execute_reply": "2022-01-23T20:23:40.318565Z",
"shell.execute_reply.started": "2022-01-23T20:21:25.820485Z"
},
"papermill": {
"duration": 0.286662,
"end_time": "2022-01-23T20:23:40.319154",
"exception": false,
"start_time": "2022-01-23T20:23:40.032492",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAUT0lEQVR4nO3df0zV96H/8dfhUNpVohWyA85QEibGrBbXdI4eXGyEAQJ1EKpmWa+XnNWwMStztHZaEzLNtGu+ft2Y7gdnZAnd3WYTp4fVM1cCipA2yqJ21MTYko2VGjmn45ezriCHz/2jt+9bW9RDL5/zAXw+/pIP59gXaeIzn/PhfI7LsixLAABIinN6AABg+iAKAACDKAAADKIAADCIAgDAiHd6wP9Fdna2Fi5c6PQMAJhRLl26pNOnT0/4vRkdhYULF+rw4cNOzwCAGaW8vPym3+PlIwCAQRQAAAZRAAAYRAEAYBAFAIBBFAAABlEAABhEAQBgEAUAgDErozByPeL0hEmbiZsBzD4z+jYXN3P3XW49vPVFp2dMypn/959OTwCA2XmmAAD4dIgCAMAgCgAAgygAAAyiAAAwiAIAwCAKAACDKAAADKIAADCIAgDAIAoAAIMoAAAMogAAMIgCAMAgCgAAgygAAAyiAAAwiAIAwCAKAACDKAAADKIAADCIAgDAIAoAAIMoAAAMogAAMGyPQiQSUVlZmb71rW9JkoaGhuTz+VRQUCCfz6fh4WHz2Pr6euXn56uwsFAdHR12TwMAfIztUXjxxRf1+c9/3nzt9/vl9XrV3Nwsr9crv98vSeru7lYwGFQwGFRDQ4N27typSCRi9zwAwEfYGoW+vj61tbVp7dq15lhra6vKysokSWVlZWppaTHHS0pKlJCQoLS0NKWnp6urq8vOeQCAj7E1Cnv27NHWrVsVF/e//5n+/n55PB5Jksfj0cDAgCQpFAopNTXVPC4lJUWhUMjOeQCAj7EtCidOnFBSUpKWLl0a1eMty/rEMZfLNdWzAAC3EG/XX3z27FkdP35c7e3tGhkZ0dWrV/XMM88oOTlZ4XBYHo9H4XBYSUlJkqTU1FT19fWZ54dCIXNGAQCIDdvOFJ5++mm1t7fr+PHj2rdvnx555BHt3btXubm5CgQCkqRAIKC8vDxJUm5uroLBoEZHR9Xb26uenh5lZWXZNQ8AMAHbzhRuprKyUlu2bNGhQ4e0YMEC1dXVSZIyMzNVVFSk4uJiud1u1dbWyu12x3oeANzRYhKF7OxsZWdnS5Lmz5+vxsbGCR9XVVWlqqqqWEwCAEyAdzQDAAyiAAAwiAIAwCAKAACDKAAADKIAADCIAgDAIAoAAIMoAAAMogAAMIgCAMAgCgAAgygAAAyiAAAwiAIAwCAKAACDKAAADKIAADCIAgDAIAoAAIMoAAAMogAAMIgCAMAgCgAAgygAAAyiAAAwiAIAwCAKAACDKAAADKIAADCIAgDAIAoAAIMoAAAMogAAMIgCAMCwLQojIyNau3atvva1r6mkpEQ//elPJUlDQ0Py+XwqKCiQz+fT8PCweU59fb3y8/NVWFiojo4Ou6YBAG7CtigkJCSosbFRf/zjHxUIBNTR0aHXX39dfr9fXq9Xzc3N8nq98vv9kqTu7m4Fg0EFg0E1NDRo586dikQids0DAEzAtii4XC7NmTNHkjQ2NqaxsTG5XC61traqrKxMklRWVqaWlhZJUmtrq0pKSpSQkKC0tDSlp6erq6vLrnkAgAnYek0hEomotLRUOTk5ysnJ0bJly9Tf3y+PxyNJ8ng8GhgYkCSFQiGlpqaa56akpCgUCtk5DwDwMbZGwe12q6mpSSdPnlRXV5fefPPNmz7WsqxPHHO5XHbOAwB8TEx++2ju3LnKzs5WR0eHkpOTFQ6HJUnhcFhJSUmSpNTUVPX19ZnnhEIhc0YBAIgN26IwMDCgK1euSJLef/99vfbaa8rIyFBubq4CgYAkKRAIKC8vT5KUm5urYDCo0dFR9fb2qqenR1lZWXbNAwBMIN6uvzgcDmvbtm2KRCKyLEurV6/WqlWr9MUvflFbtmzRoUOHtGDBAtXV1UmSMjMzVVRUpOLiYrndbtXW1srtdts1DwAwAduisGTJEnNG8FHz589XY2PjhM+pqqpSVVWVXZMAALfBO5oBAAZRAAAYRAEAYBAFAIBBFAAABlEAABhEAQBgRBWFioqKqI4BAGa2W755bWRkRP/+9781ODio4eFhc9O6q1evmvsXAQBmj1tG4eDBg2psbFQ4HFZ5ebmJQmJiop544omYDAQAxM4to1BRUaGKigr95je/0YYNG2K1CQDgkKjufbRhwwadPXtWly5duuEjMj/8BDUAwOwQVRS2bt2q3t5eLVmyxNy51OVyEQUAmGWiisL58+f1pz/9iU9CA4BZLqpfSc3MzNS7775r9xYAgMOiOlMYHBxUSUmJsrKydNddd5njv/zlL20bBgCIvaiisHnzZrt3AACmgaii8OUvf9nuHQCAaSCqKDz00EPmIvP169c1Njamz3zmMzp79qyt4wAAsRVVFM6dO3fD1y0tLerq6rJlEADAOZ/qLqlf/epXderUqaneAgBwWFRnCs3NzebP4+PjOn/+PO9ZAIBZKKoonDhxwvzZ7XZr4cKF+vnPf27bKACAM6KKwvPPP2/3DgDANBDVNYW+vj5t2rRJXq9XOTk52rx5s/r6+uzeBgCIsaiisH37duXm5qqjo0Pt7e1atWqVtm/fbvc2AECMRRWFgYEBPf7444qPj1d8fLzKy8s1MDBg9zYAQIxFFYX58+erqalJkUhEkUhETU1Nuu+++2yeBgCItaiisGfPHh07dkwrVqzQV77yFb3yyitcfAaAWSiq3z6qq6vTCy+8oHnz5kmShoaG9MILLxAGAJhlojpTuHjxogmCJN133326cOGCbaMAAM6IKgrj4+MaHh42Xw8NDd3wWc0AgNkhqpePvvnNb+rrX/+6CgsL5XK5dOzYMX3729+2exsAIMaiikJZWZmWLl2qU6dOybIsHThwQIsWLbJ7GwAgxqKKgiQtWrSIEADALPepbp0djcuXL2vDhg0qKipSSUmJGhsbJX1wPcLn86mgoEA+n++GaxX19fXKz89XYWGhOjo67JoGALgJ26Lgdru1bds2HTt2TC+99JJ+97vfqbu7W36/X16vV83NzfJ6vfL7/ZKk7u5uBYNBBYNBNTQ0aOfOnVzMBoAYsy0KHo9HDzzwgCQpMTFRGRkZCoVCam1tVVlZmaQPrlW0tLRIklpbW1VSUqKEhASlpaUpPT2dT3cDgBizLQof9c477+jChQtatmyZ+vv75fF4JH0Qjg/voRQKhZSammqek5KSolAoFIt5AID/YXsU3nvvPVVXV+u5555TYmLiTR9nWdYnjvHpbgAQW7ZG4fr166qurtaaNWtUUFAgSUpOTlY4HJYkhcNhJSUlSZJSU1Nv+IyGUChkzigAALFhWxQsy9KOHTuUkZEhn89njufm5ioQCEiSAoGA8vLyzPFgMKjR0VH19vaqp6dHWVlZds0DAEwg6vcpTNaZM2fU1NSkxYsXq7S0VJJUU1OjyspKbdmyRYcOHdKCBQtUV1cnScrMzFRRUZGKi4vldrtVW1srt9tt1zwAwARsi8KXvvQlXbx4ccLvffiehY+rqqpSVVWVXZMAALcRk98+AgDMDEQBAGAQhRnIGhtxesKkzLS9wJ3MtmsKsI8r/m69vetBp2dE7f7aN5yeACBKnCkAAAyiAAAwiAIAwCAKAACDKAAADKIAADCIAgDAIAoAAIMoAAAMogAAMIgCAMAgCgAAgygAAAyiAAAwiAIAwCAKAACDKAAADKIAADCIAgDAIAoAAIMoAAAMogAAMIgCAMAgCgAAgygAAAyiAAAwiAIAwCAKAACDKAAADKIAADCIAgDAsC0K27dvl9fr1WOPPWaODQ0NyefzqaCgQD6fT8PDw+Z79fX1ys/PV2FhoTo6OuyaBQC4BduiUF5eroaGhhuO+f1+eb1eNTc3y+v1yu/3S5K6u7sVDAYVDAbV0NCgnTt3KhKJ2DUNAHATtkVh+fLlmjdv3g3HWltbVVZWJkkqKytTS0uLOV5SUqKEhASlpaUpPT1dXV1ddk0DANxETK8p9Pf3y+PxSJI8Ho8GBgYkSaFQSKmpqeZxKSkpCoVCsZwGANA0udBsWdYnjrlcLgeWAMCdLaZRSE5OVjgcliSFw2ElJSVJklJTU9XX12ceFwqFzBkFACB2YhqF3NxcBQIBSVIgEFBeXp45HgwGNTo6qt7eXvX09CgrKyuW0wAAkuLt+otramrU2dmpwcFBrVy5Ups3b1ZlZaW2bNmiQ4cOacGCBaqrq5MkZWZmqqioSMXFxXK73aqtrZXb7bZrGgDgJmyLwr59+yY83tjYOOHxqqoqVVVV2TUHABCFaXGhGQAwPRAFAIBBFAAABlEAABhEAQBgEAUAgEEUAAAGUQAAGEQBAGAQBQCAQRQAAAZRAAAYRAEAYBAFAIBBFAAABlEAABhEAQBgEAUAgEEUAAAGUQAAGEQBAGAQBQCAQRQAAAZRAAAYRAEAYBAFAIBBFAAABlEAABhEAdPOyNiI0xMmZabtBW4l3ukBwMfdHX+3Vuxf4fSMqL26+VWnJwBThjMFAIBBFABMmbHrEacnTNpM3GwnXj4CMGXi73LrwNMvOz1jUp76/2ucnjCtcKYAADCIAhBD4yMz7zeVZuJmfHq8fATEUNzdd+vkykednjEpj7afdHoCYmjanSm0t7ersLBQ+fn58vv9Ts8BgDvKtIpCJBLRrl271NDQoGAwqKNHj6q7u9vpWQAgSRobHXV6wqRNdvO0evmoq6tL6enpSktLkySVlJSotbVVixYtcngZAEjxCQna/R9rnZ4xKTv+69CkHu+yLMuyacuk/fnPf1ZHR4d2794tSQoEAurq6lJtbe2Ej8/OztbChQtjOREAZrxLly7p9OnTE35vWp0pTNQnl8t108ff7IcCAHw60+qaQmpqqvr6+szXoVBIHo/HwUUAcGeZVlF48MEH1dPTo97eXo2OjioYDCo3N9fpWQBwx5hWLx/Fx8ertrZWGzduVCQS0eOPP67MzEynZwHAHWNaXWgGADhrWr18BABwFlEAABjT6prCdNbe3q7du3drfHxc69atU2VlpdOTpsz27dvV1tam5ORkHT161Ok5U+ry5ct69tln9c9//lNxcXFav369KioqnJ41ZUZGRvTEE09odHRUkUhEhYWFqq6udnrWlPvwGmNKSorq6+udnjOlcnNzNWfOHMXFxcntduvw4cPODrJwW2NjY1ZeXp719ttvWyMjI9aaNWust956y+lZU6azs9M6f/68VVJS4vSUKRcKhazz589blmVZ//rXv6yCgoJZ9f9ufHzcunr1qmVZljU6OmqtXbvWOnfunLOjbPDrX//aqqmpsSorK52eMuVWrVpl9ff3Oz3D4OWjKHz09hsJCQnm9huzxfLlyzVv3jynZ9jC4/HogQcekCQlJiYqIyNDoVDI4VVTx+Vyac6cOZKksbExjY2N3fINnzNRX1+f2tratHbtzLq9xExFFKIQCoWUmppqvk5JSZlV/7DcKd555x1duHBBy5Ytc3rKlIpEIiotLVVOTo5ycnJm3c+3Z88ebd26VXFxs/efqyeffFLl5eV66aWXnJ5CFKJhTfL2G5h+3nvvPVVXV+u5555TYmKi03OmlNvtVlNTk06ePKmuri69+eabTk+aMidOnFBSUpKWLl3q9BTb/P73v9eRI0f0q1/9Sr/97W/1l7/8xdE9RCEK3H5jZrt+/bqqq6u1Zs0aFRQUOD3HNnPnzlV2drY6OjqcnjJlzp49q+PHjys3N1c1NTU6deqUnnnmGadnTamUlBRJUnJysvLz89XV1eXoHqIQBW6/MXNZlqUdO3YoIyNDPp/P6TlTbmBgQFeuXJEkvf/++3rttdeUkZHh8Kqp8/TTT6u9vV3Hjx/Xvn379Mgjj2jv3r1Oz5oy165d09WrV82fX331Vcfv4sCvpEZhtt9+o6amRp2dnRocHNTKlSu1efNmrVu3zulZU+LMmTNqamrS4sWLVVpaKumDn/fRR2fWR2LeTDgc1rZt2xSJRGRZllavXq1Vq1Y5PQtR6u/v16ZNmyR9cG3oscce08qVKx3dxG0uAAAGLx8BAAyiAAAwiAIAwCAKAACDKAAADKIAROEXv/iFSkpKtGbNGpWWluqvf/2rduzYoe7ubknSQw89NOHzXn/9da1bt06lpaUqKirS/v37YzkbmDTepwDcxrlz59TW1qYjR44oISFBAwMDun79unbv3n3b537/+99XXV2dlixZokgkor///e8xWAx8ekQBuI13331X8+fPV0JCgiQpKSlJkrRhwwY9++yzevDBByVJP/rRj3T69GnNnTtXP/7xj5WUlKSBgQF99rOflfTBPYoWLVokSdq/f7/efvtthUIh9fX1aePGjVq/fr0DPx1wI14+Am5jxYoVunz5sgoLC/WDH/xAnZ2dn3jMtWvX9IUvfEFHjhzR8uXLdeDAAUlSRUWFVq9erU2bNungwYMaGRkxz7l48aL8fr8OHjyon/3sZ9x5F9MCUQBuY86cOTp8+LB27dqlpKQkfe973/vEp2PFxcWpuLhYklRaWqozZ85Ikp566in94Q9/0IoVK3T06FFt3LjRPCcvL0/33HOPkpKSlJ2drTfeeCN2PxRwE7x8BETB7XYrOztb2dnZWrx4sQKBwC0f/9Fbq99///36xje+ofXr18vr9WpwcPATjwGmC84UgNv429/+pp6eHvP1hQsX9LnPfe6Gx4yPj+uVV16RJL388st6+OGHJUltbW3m8zj+8Y9/KC4uTnPnzpUktba2amRkRIODg+rs7DTXJgAncaYA3Ma1a9f0wx/+UFeuXJHb7VZ6erp27dql7373u+Yx9957r9566y2Vl5crMTFRP/nJTyRJTU1Nev7553XPPffI7XZr7969crvdkqSsrCxVVlbq8uXL+s53vmPuqw84ibukAg7Yv3+/7r33Xj355JNOTwFuwMtHAACDMwUAgMGZAgDAIAoAAIMoAAAMogAAMIgCAMD4by5GfnqIeuOmAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(data=dfTR, x='SibSp')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "d7b3171c",
"metadata": {
"papermill": {
"duration": 0.075459,
"end_time": "2022-01-23T20:23:40.470328",
"exception": false,
"start_time": "2022-01-23T20:23:40.394869",
"status": "completed"
},
"tags": []
},
"source": [
"#### Distribution of Fares"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "3311530f",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:40.620865Z",
"iopub.status.busy": "2022-01-23T20:23:40.620248Z",
"iopub.status.idle": "2022-01-23T20:23:43.407507Z",
"shell.execute_reply": "2022-01-23T20:23:43.406878Z",
"shell.execute_reply.started": "2022-01-23T20:21:26.058834Z"
},
"papermill": {
"duration": 2.863548,
"end_time": "2022-01-23T20:23:43.407652",
"exception": false,
"start_time": "2022-01-23T20:23:40.544104",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWkklEQVR4nO3df0xV9/3H8RdepabyLZu4y7WUkJBh2jB//FF/0FmMlwLFK4VRydplJt7ZsTEndXSmoilJzWq6uZjZrskgbg1NXGvnHKy7s1pwq8y1dXE21EQ7bUKLRO5NQVCw/PR8/3B+5g+gF+Xcg5fnIzG5fO45h/cHyX3x+XzOjxjLsiwBACBpitMFAAAmDkIBAGAQCgAAg1AAABiEAgDAmOp0Abdj8eLFSkpKcroMALijtLa26oMPPhj2vTs6FJKSkrRv3z6nywCAO0pRUdGI7zF9BAAwCAUAgEEoAAAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADDu6Cuax9P2A6fU1tUrT/x0bcy93+lyAMARhMJ/tXX1qrXzC6fLAABHMX0EADBsC4Vz585p9erVysvLk8/nU01NjSTp5Zdf1sMPP6yCggIVFBTo3XffNftUVVUpOztbubm5amxstKs0AMAIbJs+crlc2rRpk9LT09Xd3a3HH39c3/zmNyVJa9as0dq1a6/b/syZMwoEAgoEAgoGg/L7/Tpw4IBcLpddJQIAbmDbSMHtdis9PV2SFBcXp9TUVAWDwRG3b2hokM/nU2xsrJKTk5WSkqKmpia7ygMADCMiawpnz57VyZMnNX/+fEnS7t27lZ+fr4qKCnV1dUmSgsGgPB6P2ScxMXHUEAEAjD/bQ6Gnp0dlZWXavHmz4uLi9OSTT+qdd95RXV2d3G63XnzxRUmSZVk37RsTE2N3eQCAa9gaCgMDAyorK1N+fr5ycnIkSbNmzZLL5dKUKVNUXFysjz76SJLk8XjU1tZm9g0Gg3K73XaWBwC4gW2hYFmWtmzZotTUVPn9ftMeCoXM6/r6eqWlpUmSvF6vAoGA+vv71dLSoubmZs2bN8+u8gAAw7Dt7KNjx46prq5Oc+bMUUFBgSSpvLxcf/nLX3Tq1ClJV56xvHXrVklSWlqa8vLytGLFCrlcLlVWVnLmEQBEmG2h8OCDD+rjjz++qX3ZsmUj7lNaWqrS0lK7SgIAfAmuaAYAGIQCAMAgFAAABqEAADAIBQCAQSgAAAxCAQBgEAoAAINQAAAYhAIAwCAUAAAGoQAAMAgFAIBBKAAADEIBAGAQCgAAg1AAABiEAgDAIBQAAAahAAAwCAUAgEEoAAAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADAIBQCAQSgAAAxCAQBg2BYK586d0+rVq5WXlyefz6eamhpJUmdnp/x+v3JycuT3+9XV1WX2qaqqUnZ2tnJzc9XY2GhXaQCAEdgWCi6XS5s2bdL+/fu1Z88e/f73v9eZM2dUXV2tjIwMHTx4UBkZGaqurpYknTlzRoFAQIFAQLt27dLzzz+voaEhu8oDAAzDtlBwu91KT0+XJMXFxSk1NVXBYFANDQ0qLCyUJBUWFqq+vl6S1NDQIJ/Pp9jYWCUnJyslJUVNTU12lQcAGEZE1hTOnj2rkydPav78+Wpvb5fb7ZZ0JTg6OjokScFgUB6Px+yTmJioYDAYifIAAP9leyj09PSorKxMmzdvVlxc3IjbWZZ1U1tMTIydpQEAbmBrKAwMDKisrEz5+fnKycmRJCUkJCgUCkmSQqGQZs6cKUnyeDxqa2sz+waDQTOiAABEhm2hYFmWtmzZotTUVPn9ftPu9XpVW1srSaqtrVVWVpZpDwQC6u/vV0tLi5qbmzVv3jy7ygMADGOqXQc+duyY6urqNGfOHBUUFEiSysvLVVJSog0bNmjv3r2aPXu2du7cKUlKS0tTXl6eVqxYIZfLpcrKSrlcLrvKAwAMw7ZQePDBB/Xxxx8P+97VaxZuVFpaqtLSUrtKAgB8Ca5oBgAYhAIAwCAUAAAGoQAAMAgFAIBBKAAADEIBAGAQCgAAg1AAABiEAgDAIBQAAAahAAAwCAUAgEEoAAAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADAIBQCAQSgAAAxCAQBgEAoAAINQAAAYhAIAwCAUAAAGoQAAMAgFAIBBKAAADEIBAGDYFgoVFRXKyMjQypUrTdvLL7+shx9+WAUFBSooKNC7775r3quqqlJ2drZyc3PV2NhoV1kAgFFMtevARUVF+u53v6tnn332uvY1a9Zo7dq117WdOXNGgUBAgUBAwWBQfr9fBw4ckMvlsqs8AMAwbBspLFy4UPHx8WFt29DQIJ/Pp9jYWCUnJyslJUVNTU12lQYAGEFYoXDs2LGw2sKxe/du5efnq6KiQl1dXZKkYDAoj8djtklMTFQwGLyl4wMAbl1YofCzn/0srLYv8+STT+qdd95RXV2d3G63XnzxRUmSZVk3bRsTEzPm4wMAbs+oawrHjx/X8ePH1dHRoVdffdW0d3d3a2hoaMzfbNasWeZ1cXGxfvjDH0qSPB6P2trazHvBYFBut3vMxwcA3J5RRwoDAwO6dOmShoaG1NPTY/7FxcXppZdeGvM3C4VC5nV9fb3S0tIkSV6vV4FAQP39/WppaVFzc7PmzZs35uMDAG7PqCOFRYsWadGiRfrWt76lpKSkMR24vLxcR48e1fnz55WZman169fr6NGjOnXqlCQpKSlJW7dulSSlpaUpLy9PK1askMvlUmVlJWceAYADwjoltb+/X88995xaW1s1ODho2l977bUR99mxY8dNbcXFxSNuX1paqtLS0nDKAQDYJKxQePrpp/XEE0+ouLhYU6ZwETQARKuwQmHq1Kn6zne+Y3ctAACHhfVn//Lly7V7926FQiF1dnaafwCA6BLWSOFPf/qTJOm3v/2taYuJiVFDQ4M9VQEAHBFWKBw6dMjuOgAAE0BYoVBbWztse2Fh4TiWAgBwWlih8NFHH5nXfX19eu+995Senk4oAECUCSsUnnvuueu+vnjxojZu3GhLQQAA59zSRQfTp0/Xp59+Ot61AAAcFtZI4eqN6yTp8uXL+uSTT5SXl2dbUQAAZ4QVCt/73vfMa5fLpaSkpOuefwAAiA5hTR8tWrRIqamp6unp0YULFzRt2jS76wIAOCCsUPjrX/+q4uJivf3229q/f795DQCILmFNH/3mN7/R3r17lZCQIEnq6OjQmjVr9Oijj9paHAAgssIaKViWZQJBkr7yla8M+whNAMCdLayRwtKlS7V27Vr5fD5JV6aTMjMzbS0MABB5o4bCp59+qs8//1zPPvusDh48qGPHjsmyLC1YsECPPfZYpGoEAETIqNNH27Zt04wZMyRJOTk5qqio0ObNm7Vs2TJt27YtIgUCACJn1FBobW3V/ffff1P73Llz1draaltRAABnjBoKfX19I77X29s77sUAAJw1aijMnTtXb7755k3tf/jDH5Senm5bUQAAZ4y60Lx582b9+Mc/1ltvvWVC4MSJExoYGNCvf/3riBQIAIicUUNh1qxZeuONN/T+++/r9OnTkqRly5YpIyMjIsUBACIrrOsUlixZoiVLlthdCwDAYbf0PAUAQHQiFAAABqEAADAIBQCAQSjcYEqM0xUAgHPCOvtoMvna/92l7QdOqa2rV5746dqYe/NtPgAgWhEKw2jr6lVr5xdOlwEAEWfb9FFFRYUyMjK0cuVK09bZ2Sm/36+cnBz5/X51dXWZ96qqqpSdna3c3Fw1NjbaVRYAYBS2hUJRUZF27dp1XVt1dbUyMjJ08OBBZWRkqLq6WpJ05swZBQIBBQIB7dq1S88//7yGhobsKg0AMALbQmHhwoWKj4+/rq2hoUGFhYWSpMLCQtXX15t2n8+n2NhYJScnKyUlRU1NTXaVBgAYQUTPPmpvb5fb7ZYkud1udXR0SJKCwaA8Ho/ZLjExUcFgMJKlAQA0QU5JtSzrpraYGM4NBYBIi2goJCQkKBQKSZJCoZBmzpwpSfJ4PGprazPbBYNBM6IAAEROREPB6/WqtrZWklRbW6usrCzTHggE1N/fr5aWFjU3N2vevHmRLA0AIBuvUygvL9fRo0d1/vx5ZWZmav369SopKdGGDRu0d+9ezZ49Wzt37pQkpaWlKS8vTytWrJDL5VJlZaVcLpddpQEARmBbKOzYsWPY9pqammHbS0tLVVpaalc5AIAwTIiFZgDAxEAoAAAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADAIBQCAQSgAAAxCAQBgEAoAAMO2G+JFq+0HTqmtq1ee+OnamHu/0+UAwLgiFMaoratXrZ1fOF0GANiC6SMAgEEoAAAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADAIBQCAQSgAAAxCAQBgEAoAAINQAAAYhAIAwCAUAAAGoQAAMAgFAIBBKAAADEcex+n1ejVjxgxNmTJFLpdL+/btU2dnp37yk5+otbVVSUlJ+tWvfqX4+HgnygOAScuxkUJNTY3q6uq0b98+SVJ1dbUyMjJ08OBBZWRkqLq62qnSAGDSmjDTRw0NDSosLJQkFRYWqr6+3tmCAGASciwU1q5dq6KiIu3Zs0eS1N7eLrfbLUlyu93q6OhwqjQAmLQcWVN4/fXXlZiYqPb2dvn9fqWmpjpRBgDgBo6MFBITEyVJCQkJys7OVlNTkxISEhQKhSRJoVBIM2fOdKK0sE2JcboCABh/EQ+FS5cuqbu727w+cuSI0tLS5PV6VVtbK0mqra1VVlZWpEsbk6/9313afuCUnnnzQ20/cMrpcgBgXER8+qi9vV3r1q2TJA0NDWnlypXKzMzU3LlztWHDBu3du1ezZ8/Wzp07I13amLV19aq18wunywCAcRPxUEhOTtaf//znm9q/+tWvqqamJtLlAACuMWFOSQUAOI9QAAAYhAIAwCAURsFppwAmG0cuXrtTXD3ttK2rV5KUfu89DlcEAPYiFL7EtaedJt5zl8PVAIC9mD4CABiEAgDAIBQAAAahAAAwCAUAgEEoAAAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADAIBQCAwV1SI+zaW3F74qdrY+79DlcEAP9DKETYtbfivlVXg4VQATDeCIVxMNwT2uz84B6PYAGA4RAK42C4J7SF88E9lsd9Xj0+T38DYCdCYZzcyhParg2TLxtRXD0+T38DYCdCwWFMBQGYSDgl1WZjmSICAKcxUrDZtVNErAcAmOgmdShE6sM6nPWA8RhRcA0EgNs1qUNhIi3ejmXReSThrk9EMjy4pgK4s0zqUJhorn6o270OEcnFbRbSryAccacgFCag4a57GM54hMetHoMPubEhHHGnmHChcPjwYb3wwgu6fPmyiouLVVJS4nRJjgjnuofxWMS+8RjtPf1jum7iThBugBF0mOgi8Ts6oUJhaGhIW7du1auvvqrExEStWrVKXq9XX//6150ubcIaj3WRa48RvNAXkQ/7SK5rhBtgtxJ0BAkiKRJ/jE2oUGhqalJKSoqSk5MlST6fTw0NDbaFgid+uiRpVtxdiomJGfX1RN/uxn2u9m20fo92jOH2f+29ZrV39yn1a3Hm/dvZLlLCrcHOWifCzwF3vkj8HsVYlmXZdvQxevvtt9XY2KgXXnhBklRbW6umpiZVVlYOu/3ixYuVlJQUyRIB4I7X2tqqDz74YNj3JtRIYbh8uvav3xuN1CkAwK2ZULe58Hg8amtrM18Hg0G53W4HKwKAyWVChcLcuXPV3NyslpYW9ff3KxAIyOv1Ol0WAEwaE2r6aOrUqaqsrNRTTz2loaEhPf7440pLS3O6LACYNCbUQjMAwFkTavoIAOAsQgEAYEzKUDh8+LByc3OVnZ2t6upqp8sZFxUVFcrIyNDKlStNW2dnp/x+v3JycuT3+9XV1WXeq6qqUnZ2tnJzc9XY2OhEybfs3LlzWr16tfLy8uTz+VRTUyMpOvvb19enVatW6bHHHpPP59NLL70kKTr7etXQ0JAKCwv1gx/8QFJ099Xr9So/P18FBQUqKiqSNAH6a00yg4ODVlZWlvXZZ59ZfX19Vn5+vnX69Gmny7ptR48etU6cOGH5fD7T9vOf/9yqqqqyLMuyqqqqrF/84heWZVnW6dOnrfz8fKuvr8/67LPPrKysLGtwcNCRum9FMBi0Tpw4YVmWZV28eNHKycmxTp8+HZX9vXz5stXd3W1ZlmX19/dbq1atso4fPx6Vfb3qd7/7nVVeXm6VlJRYlhW9v8eWZVnLly+32tvbr2tzur+TbqRw7a00YmNjza007nQLFy5UfHz8dW0NDQ0qLCyUJBUWFqq+vt60+3w+xcbGKjk5WSkpKWpqaop0ybfM7XYrPT1dkhQXF6fU1FQFg8Go7G9MTIxmzJghSRocHNTg4KBiYmKisq+S1NbWpr///e9atWqVaYvWvo7E6f5OulAIBoPyeDzm68TERAWDQQcrsk97e7u5+M/tdqujo0NSdP0Mzp49q5MnT2r+/PlR29+hoSEVFBTooYce0kMPPRTVfd22bZs2btyoKVP+99EUrX29au3atSoqKtKePXskOd/fCXWdQiRYY7yVRjSKlp9BT0+PysrKtHnzZsXFxY243Z3eX5fLpbq6Ol24cEHr1q3Tf/7znxG3vZP7+re//U0zZ87UN77xjbBuYXMn9/Wq119/XYmJiWpvb5ff71dqauqI20aqv5MuFCbTrTQSEhIUCoXkdrsVCoU0c+ZMSdHxMxgYGFBZWZny8/OVk5MjKbr7K0n33HOPFi9erMbGxqjs67///W8dOnRIhw8fVl9fn7q7u/XTn/40Kvt6VWJioqQrv7vZ2dlqampyvL+TbvpoMt1Kw+v1qra2VtKVO85mZWWZ9kAgoP7+frW0tKi5uVnz5s1zsNKxsSxLW7ZsUWpqqvx+v2mPxv52dHTowoULkqTe3l7985//VGpqalT29ZlnntHhw4d16NAh7dixQ0uWLNEvf/nLqOyrJF26dEnd3d3m9ZEjR5SWluZ4fyfdSCFab6VRXl6uo0eP6vz588rMzNT69etVUlKiDRs2aO/evZo9e7Z27twpSUpLS1NeXp5WrFghl8ulyspKuVwuh3sQvmPHjqmurk5z5sxRQUGBpCv9j8b+hkIhbdq0SUNDQ7IsS48++qiWL1+uBQsWRF1fRxKN/6/SlbWDdevWSbqybrRy5UplZmZq7ty5jvaX21wAAIxJN30EABgZoQAAMAgFAIBBKAAADEIBAGBMulNSgdv1wAMPaM6cOebrV155Rffdd5+DFQHjh1AAxmj69Omqq6sb0z6WZcmyrOvu6QNMRIQCcJt6enr0ox/9SBcuXNDg4KCefvppPfLIIzp79qy+//3va/Hixfrwww/1yiuvaP/+/dq/f7/6+/uVnZ2tsrIyp8sHrsPFa8AYXTt9dN9992nnzp3q7e1VXFycOjo69O1vf1sHDx5Ua2urHnnkEb3xxhtasGCB/vGPf+jAgQPaunWrLMtSaWmpnnrqKS1cuNDhHgH/w0gBGKMbp48GBga0Y8cO/etf/9KUKVMUDAb1+eefS5LuvfdeLViwQJJ05MgRHTlyxNwr/9KlS2pubiYUMKEQCsBteuutt9TR0aF9+/Zp2rRp8nq96uvrkyTdfffdZjvLslRSUqInnnjCqVKBL8WqF3CbLl68qISEBE2bNk3vv/++Wltbh91u6dKl+uMf/6ienh5JV2593N7eHslSgS/FSAG4Tfn5+SotLVVRUZEeeOCBER+UsnTpUn3yySdmpHD33Xdr+/btSkhIiGS5wKhYaAYAGEwfAQAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADD+H2ts5WFVQK2jAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.histplot(data=dfTR, x='Fare')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "987817ef",
"metadata": {
"papermill": {
"duration": 0.085722,
"end_time": "2022-01-23T20:23:45.682201",
"exception": false,
"start_time": "2022-01-23T20:23:45.596479",
"status": "completed"
},
"tags": []
},
"source": [
"### Handle Categorical Variables"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "5b8dad45",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:45.862820Z",
"iopub.status.busy": "2022-01-23T20:23:45.861762Z",
"iopub.status.idle": "2022-01-23T20:23:45.865192Z",
"shell.execute_reply": "2022-01-23T20:23:45.865716Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.189414Z"
},
"papermill": {
"duration": 0.096927,
"end_time": "2022-01-23T20:23:45.865878",
"exception": false,
"start_time": "2022-01-23T20:23:45.768951",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Sex_male | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Sex_male\n",
"0 1\n",
"1 0\n",
"2 0\n",
"3 0\n",
"4 1"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfSex = pd.get_dummies(dfTR['Sex'], prefix='Sex', drop_first=True)\n",
"dfSex.head()"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "28ced7ff",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:45.862820Z",
"iopub.status.busy": "2022-01-23T20:23:45.861762Z",
"iopub.status.idle": "2022-01-23T20:23:45.865192Z",
"shell.execute_reply": "2022-01-23T20:23:45.865716Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.189414Z"
},
"papermill": {
"duration": 0.096927,
"end_time": "2022-01-23T20:23:45.865878",
"exception": false,
"start_time": "2022-01-23T20:23:45.768951",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Emb_Q | \n",
" Emb_S | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Emb_Q Emb_S\n",
"0 0 1\n",
"1 0 0\n",
"2 0 1\n",
"3 0 1\n",
"4 0 1"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfEmb = pd.get_dummies(dfTR['Embarked'], prefix='Emb', drop_first=True)\n",
"dfEmb.head()"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "12e1fbb2",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:46.045359Z",
"iopub.status.busy": "2022-01-23T20:23:46.044459Z",
"iopub.status.idle": "2022-01-23T20:23:46.060753Z",
"shell.execute_reply": "2022-01-23T20:23:46.061296Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.198337Z"
},
"papermill": {
"duration": 0.107758,
"end_time": "2022-01-23T20:23:46.061478",
"exception": false,
"start_time": "2022-01-23T20:23:45.953720",
"status": "completed"
},
"scrolled": true,
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Survived | \n",
" Pclass | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Fare | \n",
" Sex_male | \n",
" Emb_Q | \n",
" Emb_S | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 22.0 | \n",
" 1 | \n",
" 0 | \n",
" 7.2500 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 38.0 | \n",
" 1 | \n",
" 0 | \n",
" 71.2833 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 1 | \n",
" 3 | \n",
" 26.0 | \n",
" 0 | \n",
" 0 | \n",
" 7.9250 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 1 | \n",
" 1 | \n",
" 35.0 | \n",
" 1 | \n",
" 0 | \n",
" 53.1000 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 0 | \n",
" 3 | \n",
" 35.0 | \n",
" 0 | \n",
" 0 | \n",
" 8.0500 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Survived Pclass Age SibSp Parch Fare Sex_male Emb_Q Emb_S\n",
"0 0 3 22.0 1 0 7.2500 1 0 1\n",
"1 1 1 38.0 1 0 71.2833 0 0 0\n",
"2 1 3 26.0 0 0 7.9250 0 0 1\n",
"3 1 1 35.0 1 0 53.1000 0 0 1\n",
"4 0 3 35.0 0 0 8.0500 1 0 1"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfTR=pd.concat([dfTR.drop(['Sex','Embarked'],axis=1), dfSex, dfEmb], axis=1)\n",
"dfTR.head()"
]
},
{
"cell_type": "markdown",
"id": "98e2b4f8",
"metadata": {
"papermill": {
"duration": 0.084343,
"end_time": "2022-01-23T20:23:46.233091",
"exception": false,
"start_time": "2022-01-23T20:23:46.148748",
"status": "completed"
},
"tags": []
},
"source": [
"### ML Models for Prediction"
]
},
{
"cell_type": "markdown",
"id": "a90fd87e",
"metadata": {
"papermill": {
"duration": 0.083941,
"end_time": "2022-01-23T20:23:46.403668",
"exception": false,
"start_time": "2022-01-23T20:23:46.319727",
"status": "completed"
},
"tags": []
},
"source": [
"### Scale the data"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "c9909dba",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:46.881061Z",
"iopub.status.busy": "2022-01-23T20:23:46.880453Z",
"iopub.status.idle": "2022-01-23T20:23:46.883626Z",
"shell.execute_reply": "2022-01-23T20:23:46.884119Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.348259Z"
},
"papermill": {
"duration": 0.097137,
"end_time": "2022-01-23T20:23:46.884268",
"exception": false,
"start_time": "2022-01-23T20:23:46.787131",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"scalerTR = StandardScaler()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "be021a5e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(712, 8)"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"XTR = np.array(dfTR[dfTR.columns[1:]])\n",
"XTR.shape"
]
},
{
"cell_type": "code",
"execution_count": 73,
"id": "e3a4ec97",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(712,)"
]
},
"execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"YTR = np.array(dfTR[dfTR.columns[0:1]]).squeeze()\n",
"YTR.shape"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "3f9bea80",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:47.248788Z",
"iopub.status.busy": "2022-01-23T20:23:47.248187Z",
"iopub.status.idle": "2022-01-23T20:23:47.256031Z",
"shell.execute_reply": "2022-01-23T20:23:47.256578Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.373973Z"
},
"papermill": {
"duration": 0.097559,
"end_time": "2022-01-23T20:23:47.256732",
"exception": false,
"start_time": "2022-01-23T20:23:47.159173",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"scaler.fit(XTR)\n",
"XTRNorm = scaler.transform(XTR)"
]
},
{
"cell_type": "markdown",
"id": "ec840436",
"metadata": {
"papermill": {
"duration": 0.089208,
"end_time": "2022-01-23T20:23:47.820780",
"exception": false,
"start_time": "2022-01-23T20:23:47.731572",
"status": "completed"
},
"tags": []
},
"source": [
"### Version 1: Train - Test Split"
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "a111ced8",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:48.185081Z",
"iopub.status.busy": "2022-01-23T20:23:48.184369Z",
"iopub.status.idle": "2022-01-23T20:23:48.232349Z",
"shell.execute_reply": "2022-01-23T20:23:48.232865Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.439065Z"
},
"papermill": {
"duration": 0.139631,
"end_time": "2022-01-23T20:23:48.233090",
"exception": false,
"start_time": "2022-01-23T20:23:48.093459",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, Y_train, Y_test = train_test_split(XTRNorm, YTR, test_size = 0.3, random_state = 101)"
]
},
{
"cell_type": "markdown",
"id": "71250b50",
"metadata": {
"papermill": {
"duration": 0.087198,
"end_time": "2022-01-23T20:23:48.408373",
"exception": false,
"start_time": "2022-01-23T20:23:48.321175",
"status": "completed"
},
"tags": []
},
"source": [
"### 1. Logistic Regression"
]
},
{
"cell_type": "code",
"execution_count": 76,
"id": "e6f977fe",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:48.591248Z",
"iopub.status.busy": "2022-01-23T20:23:48.590591Z",
"iopub.status.idle": "2022-01-23T20:23:48.799954Z",
"shell.execute_reply": "2022-01-23T20:23:48.800481Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.506562Z"
},
"papermill": {
"duration": 0.301964,
"end_time": "2022-01-23T20:23:48.800690",
"exception": false,
"start_time": "2022-01-23T20:23:48.498726",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"mdl = LogisticRegression()"
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "b2569c2b",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:48.979764Z",
"iopub.status.busy": "2022-01-23T20:23:48.979128Z",
"iopub.status.idle": "2022-01-23T20:23:48.994123Z",
"shell.execute_reply": "2022-01-23T20:23:48.994672Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.824415Z"
},
"papermill": {
"duration": 0.106642,
"end_time": "2022-01-23T20:23:48.994850",
"exception": false,
"start_time": "2022-01-23T20:23:48.888208",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"LogisticRegression()"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mdl.fit(X_train,Y_train)"
]
},
{
"cell_type": "code",
"execution_count": 78,
"id": "85652015",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:49.176592Z",
"iopub.status.busy": "2022-01-23T20:23:49.175983Z",
"iopub.status.idle": "2022-01-23T20:23:49.182887Z",
"shell.execute_reply": "2022-01-23T20:23:49.183388Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.848651Z"
},
"papermill": {
"duration": 0.101284,
"end_time": "2022-01-23T20:23:49.183541",
"exception": false,
"start_time": "2022-01-23T20:23:49.082257",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,\n",
" 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0,\n",
" 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,\n",
" 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,\n",
" 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1,\n",
" 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,\n",
" 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1,\n",
" 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,\n",
" 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1])"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred = mdl.predict(X_test)\n",
"pred"
]
},
{
"cell_type": "code",
"execution_count": 79,
"id": "781ab0cb",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:49.366810Z",
"iopub.status.busy": "2022-01-23T20:23:49.366201Z",
"iopub.status.idle": "2022-01-23T20:23:49.368634Z",
"shell.execute_reply": "2022-01-23T20:23:49.369087Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.859231Z"
},
"papermill": {
"duration": 0.096993,
"end_time": "2022-01-23T20:23:49.369233",
"exception": false,
"start_time": "2022-01-23T20:23:49.272240",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,\n",
" 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1,\n",
" 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0,\n",
" 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,\n",
" 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,\n",
" 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1,\n",
" 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,\n",
" 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,\n",
" 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,\n",
" 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1])"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Y_test"
]
},
{
"cell_type": "code",
"execution_count": 80,
"id": "24fc1c96",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:49.553951Z",
"iopub.status.busy": "2022-01-23T20:23:49.553319Z",
"iopub.status.idle": "2022-01-23T20:23:49.556548Z",
"shell.execute_reply": "2022-01-23T20:23:49.557169Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.875108Z"
},
"papermill": {
"duration": 0.098395,
"end_time": "2022-01-23T20:23:49.557327",
"exception": false,
"start_time": "2022-01-23T20:23:49.458932",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"from sklearn.metrics import accuracy_score, classification_report, confusion_matrix"
]
},
{
"cell_type": "code",
"execution_count": 81,
"id": "adecee8b",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:49.745568Z",
"iopub.status.busy": "2022-01-23T20:23:49.744903Z",
"iopub.status.idle": "2022-01-23T20:23:49.750898Z",
"shell.execute_reply": "2022-01-23T20:23:49.750240Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.885207Z"
},
"papermill": {
"duration": 0.100728,
"end_time": "2022-01-23T20:23:49.751084",
"exception": false,
"start_time": "2022-01-23T20:23:49.650356",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.794392523364486\n"
]
}
],
"source": [
"print(accuracy_score(Y_test,pred))"
]
},
{
"cell_type": "code",
"execution_count": 82,
"id": "d5ada052",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:49.939788Z",
"iopub.status.busy": "2022-01-23T20:23:49.938737Z",
"iopub.status.idle": "2022-01-23T20:23:49.947162Z",
"shell.execute_reply": "2022-01-23T20:23:49.947668Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.898560Z"
},
"papermill": {
"duration": 0.105416,
"end_time": "2022-01-23T20:23:49.947840",
"exception": false,
"start_time": "2022-01-23T20:23:49.842424",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
" 0 0.82 0.84 0.83 128\n",
" 1 0.76 0.72 0.74 86\n",
"\n",
" accuracy 0.79 214\n",
" macro avg 0.79 0.78 0.78 214\n",
"weighted avg 0.79 0.79 0.79 214\n",
"\n"
]
}
],
"source": [
"print(classification_report(Y_test,pred))"
]
},
{
"cell_type": "code",
"execution_count": 88,
"id": "1893aaa9",
"metadata": {
"execution": {
"iopub.execute_input": "2022-01-23T20:23:50.133586Z",
"iopub.status.busy": "2022-01-23T20:23:50.132993Z",
"iopub.status.idle": "2022-01-23T20:23:50.345918Z",
"shell.execute_reply": "2022-01-23T20:23:50.346416Z",
"shell.execute_reply.started": "2022-01-23T20:21:30.915815Z"
},
"papermill": {
"duration": 0.307523,
"end_time": "2022-01-23T20:23:50.346578",
"exception": false,
"start_time": "2022-01-23T20:23:50.039055",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAD4CAYAAADSIzzWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAagElEQVR4nO3dfXRU9b3v8feEiCIPgQlOEmJEyRUvh4dwbsvFuT4cSQ5BJZwzYHVsqVW0N0dFMAGxIKJLK9hTqytpq6dMaUu06pkScaKk2jSDPBQ4PrQqbRERuBxpgAxMCEhAkpns+wdnzRGBMJlM8mO2n5drr8Xs2dn7y1r68Zfv/u3fdliWZSEiIj0uzXQBIiJfVQpgERFDFMAiIoYogEVEDFEAi4gYkt7dF2g7sLO7LyEpqM+Qa0yXIOegSGtDl8/Rmcw5b/CwLl+vKzQCFhExpNtHwCIiPao9arqCuCmARcReohHTFcRNASwitmJZ7aZLiJsCWETspV0BLCJihkbAIiKG6CaciIghGgGLiJhhaRaEiIghugknImKIWhAiIoboJpyIiCEaAYuIGKKbcCIihugmnIiIGZaVOj1grQcsIvZitce/ncWCBQtwu92UlJTE9jU3NzNjxgyKi4uZMWMGhw4din23dOlSJk6cyKRJk1i/fv1Zz68AFhF7aW+PfzuLadOmsWzZspP2+Xw+3G43dXV1uN1ufD4fANu3b6e2tpba2lqWLVvGY489RjTa8WhcASwi9pLEEfC4cePIyMg4aV8wGMTj8QDg8Xior6+P7Z88eTK9e/cmLy+PoUOHsnnz5g7Prx6wiNhLtC3uQ/1+P36/P/bZ6/Xi9Xo7/JlwOIzL5QLA5XLR1NQEQGNjIwUFBbHjsrKyaGxs7PBcCmARsZdOzIKIJ3DjZVnWKfscDkeHP6MWhIjYSxJbEKeTmZlJKBQCIBQK4XQ6AcjOzmbfvn2x4xobG2Mj5TNRAIuIvSTxJtzpFBYWEggEAAgEAhQVFcX219bW0trayu7du9m1axdjxozp8FxqQYiIvSTxQYw5c+bwzjvvcPDgQa699lpmzZpFaWkpZWVlVFdXk5OTQ2VlJQCXX345N9xwAzfeeCO9evXikUceoVevXh2e32GdrnGRRG0Hdnbn6SVF9RlyjekS5BwUaW3o8jmOrfll3Mf2ue7OLl+vKzQCFhF70WI8IiKGaC0IERFDNAIWETFEI2AREUM0AhYRMSSiBdlFRMzQCFhExBD1gEVEDNEIWETEEI2ARUQM0QhYRMQQzYIQETGke9cXSyoFsIjYi3rAIiKGKIBFRAxJoZtweiWRiNhLNBr/dhZVVVWUlJQwefJkli9fDkBzczMzZsyguLiYGTNmcOjQoYRLVQCLiL0k6Z1w27ZtY8WKFaxYsYKamhrWrFnDrl278Pl8uN1u6urqcLvd+Hy+hEtVAIuIvSQpgHfs2EFBQQF9+vQhPT2dcePG8fvf/55gMIjH4wHA4/FQX1+fcKnqAYuIvXSiB+z3+/H7/bHPXq8Xr9cLwPDhw6moqODgwYNccMEFrFu3jlGjRhEOh2Ovm3e5XDQ1NSVcqgJYRGzFao9/HvAXA/fL8vPz+e53v8udd97JhRdeyBVXXHHWtxx3lloQImIvSWpBANx88828+uqrvPjiiwwcOJChQ4eSmZlJKBQCIBQK4XQ6Ey5VASwi9pLEWRDhcBiAPXv2UFdXR0lJCYWFhQQCAQACgQBFRUUJl6oWhIjYSxIfxJg1axbNzc2kp6fz6KOPkpGRQWlpKWVlZVRXV5OTk0NlZWXC51cAi4i9JDGAX3rppVP2DRo0iKqqqqScXy2IDjy85BmunXwrnm/ffdrvd/7nbqaXlvP3103hVy9VJ+Wara2tzF30JDfcciff/L9lNOxtBGDrth1MLy3nn6f/C1O/cw9v1K9NyvWk51x88RDq61bw581r+PCD1cy67y4ABg0ayJu/fZmP/voH3vztywwcmGG40hRnWfFvhimAO+C5cSI/e+aJM36fMaA/88vv5o5v3tTpczfsbeSO+x48Zf/KVXUM6N+PN37zS27zenjmuV8CcMEF57Nk0QPUvLiUpU8/wb/+eCmHPzvS6euKOZFIhHkPPsboMddx1dVTuOeeOxgx4nK+9+BMVr/1B0aMvJrVb/2B7z0403SpqS2JN+G621lbEDt27CAYDMbu+rlcLoqKisjPz+/24kz7+tjRsRHo6WQOGkjmoIGs2/juKd+9/rvVvLiihra2CGNGXsHDc2fGNYVl9fpN3HvXtwEovu4aljzzb1iWxaWXXBw7xnVRJs5BAznYfIgB/fsl8DcTE/btC7Fv34n/jo4caWHr1k/IHZLNlCmTKPrHbwDw/AsrCNZXs+ChJSZLTW2dmIZmWocjYJ/Px5w5cwAYPXo0o0ePBmDOnDldevzO7nbs+pQ3g2t54WdP80rVs6SlpbGq7q24fja0P0y2azAA6em96Nf3QpoPHT7pmD9v+Zi2tgh5uTlJr116xtChFzO2YBRvv/M+Wa7BsWDety+E66JMw9WluCTOguhuHY6AX3nlFVatWsV555130v477riDkpISSktLu7W4VPX2ex+wZet2br3rfgCOHz+Oc9BAAGYveJyGPY20RdrY27ifm24/8evmt2/5Z6ZOLsY6TV/K4XDE/rz/QBMLHn+KxQ/PJS1NHaRU1LfvhfzG/3PmPPAon6mNlHTWOdBaiFeHAexwOAiFQuTm5p60f//+/SeFgpzMsiz+6YZ/pPyeGad89+MnHwFO9IAXLn6a5T/94UnfZ7kGsy90gGzXRUQiUY60HCVjQH8AjrS0cO+8R5hVejsFo0Z0/19Eki49PZ0V/p/z8suvEgi8AUBj6ADZ2S727QuRne0itD9suMoUl0ItiA4D+KGHHuKOO+5g6NCh5OSc+HV3z549fPrppyxatKhHCkxFV359LLPmP853bp1K5qCBHDr8GS1HjzIkO+usPzvh6iup+W09Y0eNoG7NesZ/rQCHw0FbWxv3L/g+/3R9EZMKr+mBv4V0h5/7nuajrdupqPzvFt6q1+v4zm0388OnnuU7t93M66//zmCFNpBC6wE7rNP9zvsF7e3tbN68mcbGRizLIjs7m9GjR8f9THTbgZ1JKdSEeY/+gHff30xz82EynQO5967biPzXC/+8UydzINyE967ZHGk5SlpaGhf2uYCaF5fSr29f3qhfy7IXfkO71c556eksnHPvSaPWM42Ajx9vZcH3n+KjbTvIGNCfpx6bT15uDq//bjWLFj9D/mVDY8cuXjiH/zk8NW+G9hny1fufyFX/Zxxr1wTY/OcttP/XKG3Roh/w9jvv8+8v/Yy8vFx2727A+81/4eDBZrPFGhJpbejyOVoenx73sX0febHL1+uKswZwV6VyAEv3+SoGsJxdUgL4kVvjPrbv4//e5et1hZ6EExF7SaEWhAJYROzFLjfhRERSjW2moYmIpByNgEVEDFEAi4gYcg48YhwvBbCI2Epn3gl3NsuXL2fFihU4HA6GDx/Ok08+ybFjxygvL6ehoYHc3FwqKirIyEhsCVEtJiAi9tJuxb91oLGxkeeffz62Jk40GqW2thafz4fb7aaurg63292lhckUwCJiL0lcDzgajfL5558TiUT4/PPPcblcBINBPB4PAB6Ph/r6+oRLVQtCROwlSS2IrKws7rzzTiZMmMD555/PVVddxdVXX004HMblcgEn1kdvampK+BoKYBGxl04EsN/vx+/3xz57vV68Xi8Ahw4dIhgMEgwG6d+/P/fffz81NTVJLVUBLCK2YkXjfxDji4H7ZRs3buTiiy/G6XQCUFxczPvvv09mZiahUAiXy0UoFIp9nwj1gEXEXpJ0E27IkCF8+OGHHDt2DMuy2LRpE/n5+RQWFhIIBAAIBAIUFRUlXKpGwCJiK8mahlZQUMCkSZOYOnUq6enpjBgxAq/XS0tLC2VlZVRXV5OTk0NlZWXC19BylGKElqOU00nGcpSHbo9/RJpRFezy9bpCI2ARsZfUWYtHASwi9mJFUieBFcAiYi+pk78KYBGxl2SuBdHdFMAiYi8aAYuImKERsIiIKRoBi4iYYUVMVxA/BbCI2EoKvZVeASwiNqMAFhExQyNgERFDFMAiIoZYUYfpEuKmABYRW9EIWETEEKtdI2ARESM0AhYRMcSykjMC3rlzJ+Xl5bHPu3fvZvbs2Xg8HsrLy2loaCA3N5eKigoyMjISuobeCScitmK1x791ZNiwYdTU1FBTU8PKlSvp06cPEydOxOfz4Xa7qaurw+124/P5Eq5VASwittIedcS9xWvTpk3k5eWRm5tLMBjE4/EA4PF4qK+vT7hWtSBExFY6cxPO7/fj9/tjn8/0mvra2lpKSkoACIfDuFwuAFwuF01NTQnXqgAWEVvpTACfKXC/qLW1ldWrVzN37tyulnYKtSBExFYsK/4tHuvWrWPkyJEMHjwYgMzMTEKhEAChUAin05lwrQpgEbEVq90R9xaP2tpaJk+eHPtcWFhIIBAAIBAIUFRUlHCtCmARsRXLcsS9nc2xY8fYuHEjxcXFsX2lpaVs2LCB4uJiNmzYQGlpacK1Oiwr3oF4YtoO7OzO00uK6jPkGtMlyDko0trQ5XNsG3F93McO/+jNLl+vK3QTTkRsJVkPYvQEBbCI2IrWghARMaR7m6rJpQAWEVvRCFhExJBoe+pM7lIAi4itqAUhImJIu2ZBiIiYoWloIiKGqAXxBVmXTeruS0gKesvpNl2C2JRaECIihmgWhIiIISnUgVAAi4i9qAUhImKIZkGIiBhylpcdn1MUwCJiKxYaAYuIGBFJYgvi8OHDPPzww2zbtg2Hw8GSJUu47LLLKC8vp6GhgdzcXCoqKsjIyEjo/KkzX0NEJA4Wjri3s1m8eDHXXHMNb775JjU1NeTn5+Pz+XC73dTV1eF2u/H5fAnXqgAWEVtp78TWkSNHjvDuu+/yjW98A4DevXszYMAAgsEgHo8HAI/HQ319fcK1qgUhIrbSmR6w3+/H7/fHPnu9XrxeLwC7d+/G6XSyYMECtm7dysiRI1m4cCHhcBiXywWAy+Wiqakp4VoVwCJiK52ZBfHFwP2ySCTCli1bWLRoEQUFBTzxxBNdajecjloQImIrURxxbx3Jzs4mOzubgoICAK6//nq2bNlCZmYmoVAIgFAohNPpTLhWBbCI2Eq7I/6tIxdddBHZ2dns3LkTgE2bNpGfn09hYSGBQACAQCBAUVFRwrWqBSEittKexHnAixYt4oEHHqCtrY28vDyefPJJ2tvbKSsro7q6mpycHCorKxM+vwJYRGwlmYvxjBgxgpUrV56yv6qqKinnVwCLiK3oUWQREUPaHXoUWUTEiKjpAjpBASwitnK22Q3nEgWwiNhKMmdBdDcFsIjYil5JJCJiiFoQIiKGaBqaiIghUY2ARUTM0AhYRMQQBbCIiCEp9FZ6BbCI2ItGwCIihuhRZBERQzQPWETEELUgREQMSWYAFxYW0rdvX9LS0ujVqxcrV66kubmZ8vJyGhoayM3NpaKigoyMjITOr3fCiYitWJ3Y4lFVVUVNTU3szRg+nw+3201dXR1ut7tLb0pWAIuIrSTrpZxnEgwG8Xg8AHg8Hurr6xOuVS0IEbGVzsyC8Pv9+P3+2Gev14vX6z3pmLvuuguHwxH7LhwO43K5AHC5XDQ1NSVcqwJYRGylvRMLUp4ucL/o5ZdfJisri3A4zIwZMxg2bFgySoxRC0JEbKW9E9vZZGVlAZCZmcnEiRPZvHkzmZmZhEIhAEKhEE6nM+FaFcAiYivJugl39OhRjhw5Evvzhg0buPzyyyksLCQQCAAQCAQoKipKuFa1IETEVpI1DS0cDjNz5kwAotEoJSUlXHvttYwePZqysjKqq6vJycmhsrIy4WsogEXEViKO5LyUKC8vj9dee+2U/YMGDaKqqiop11AAi4it6J1wIiKG6FFkERFDOjMNzTQFsIjYSurErwJYRGxGLQgREUOiKTQGVgCLiK1oBCwiYoilEbCIiBkaAQu5udk853uKrKyLaG9vp+pXfpb+238/PXPf7Lt4fPF8/sel/5um8EGDlUpP6jXgQoY/cw8XXnEJWBbbyp9j8OTxOCd+HastwrFd+9hW9izRw0dNl5qyNA1NiESiLHroSTZ/uIV+/fqyev2rrFm9gY8/3k5ubjbXTbiK3Z82mC5Telj+E3fStPoDPvru0zjOSyetT28Oru3D/1v8IkTbufThb5M3exq7nvi16VJTVurEr1ZD6zaNjfvZ/OEWAI4caWHbxzvIGXJiabvFP1jIo4t+iGWl0r8q0lW9+vUh48oRNL4UBMBqixA9fJTmtR9C9MQvzp/9cRvn52SaLDPlRbDi3kzTCLgH5F2Sy5gxf8cf3/uQ628sZO+eRv76l62my5IedsHQLNrChxleOZO+f3cpRzbvYMeiX9F+9HjsmKxvFrK/ZoPBKlNfKt2ES3gE/MorrySzDtvq2/dCqn79Ux6av5hIJMLcB+5lyeIK02WJAY70XvQbPYy9y+t4f+I8okePk3ff1Nj3efdPw4pE2f/KeoNVpr5kLsje3RIO4J/85CfJrMOW0tPTqfr1T6n+zWuseq2OSy+7hEsuvZj1G1/ng7+8xZDcbNasD+ByDTZdqvSA43vCHN8b5rP3PwHgwKr/oN+YywBw3fIPOCd+jY9nJr62rJxgdeIf0zpsQUyZMuWM3x04cCDpxdjNj59dwraPd/DcT38FwEdbtnHFsCtj33/wl7co/IdpmgXxFdG2v5njDWH65A/h2I49DLxmNEe3/Y1BE8aSd5+HzVMfpf1Yq+kyU16yR7bRaJSbbrqJrKwsli5dSnNzM+Xl5TQ0NJCbm0tFRQUZGRkJnbvDAA6Hw/ziF79gwIABJ+23LItbb701oQt+VYx3f41bvzWVv/5lK2s3nFjU+fuPPU193VrDlYlJOxb+giueu5+089I59p+NfFL2LGPf/AFpvc9jlH8RAJ/98RO2f89nuNLUFU3yze3nn3+e/Pz82OuJfD4fbreb0tJSfD4fPp+PefPmJXTuDgP4uuuuo6WlhREjRpzy3fjx4xO64FfF25v+iLP/5R0eM3bUhB6qRs4VLX/dxQeTvnfSvvfcswxVY0/JnAe8b98+1qxZw913383y5csBCAaDvPDCCwB4PB5uu+227gngJUuWnPG7p59+OqELioh0p870dv1+P36/P/b5y6+pX7JkCfPmzaOlpSW2LxwO43K5AHC5XDQ1NSVcq6ahiYitdKYH/OXA/aK33noLp9PJqFGjePvtt5NT3JcogEXEVpLVgvjTn/7E6tWrWbduHcePH+fIkSM88MADZGZmEgqFcLlchEIhnE5nwtfQk3AiYivJmoY2d+5c1q1bx+rVq3nmmWe48sor+dGPfkRhYSGBQACAQCBAUVFRwrUqgEXEVqKWFfeWiNLSUjZs2EBxcTEbNmygtLQ04VrVghARW+mO1dDGjx8fm/k1aNAgqqqqzvIT8VEAi4itnAuPGMdLASwitnIuPGIcLwWwiNiKFmQXETEkldbZVgCLiK3otfQiIoaoBSEiYohaECIihmgELCJiiKahiYgYkuwF2buTAlhEbEUtCBERQxTAIiKGaBaEiIghGgGLiBiiWRAiIoZErdRZkFIBLCK2kqwe8PHjx5k+fTqtra1Eo1EmTZrE7NmzaW5upry8nIaGBnJzc6moqCAjIyOha+iVRCJiK+1YcW8d6d27N1VVVbz22msEAgHWr1/PBx98gM/nw+12U1dXh9vtxufzJVyrAlhEbCVZL+V0OBz07dsXgEgkQiQSweFwEAwG8Xg8AHg8Hurr6xOuVS0IEbGV9k60IPx+P36/P/bZ6/Xi9Xpjn6PRKNOmTePTTz/lW9/6FgUFBYTDYVwuFwAul4umpqaEa1UAi4itdGYWxJcD98t69epFTU0Nhw8fZubMmWzbti0ZJcaoBSEithK12uPe4jVgwADGjx/P+vXryczMJBQKARAKhXA6nQnXqgAWEVtpt6y4t440NTVx+PBhAD7//HM2btzIsGHDKCwsJBAIABAIBCgqKkq4VrUgRMRWkvUgRigUYv78+USjUSzL4vrrr2fChAmMHTuWsrIyqqurycnJobKyMuFrOKxufnDa2f/y7jy9pKiavgWmS5Bz0DX7qrt8jvzB/yvuY3cc+FOXr9cVGgGLiK3oUWQREUOiVtR0CXFTAIuIrWg5ShERQ7QcpYiIIRoBi4gY0plHkU1TAIuIrWgWhIiIIVqQXUTEEPWARUQMUQ9YRMQQjYBFRAzRPGAREUM0AhYRMUSzIEREDNFNOBERQ9SCEBExJFlPwu3du5cHH3yQAwcOkJaWxi233MLtt99Oc3Mz5eXlNDQ0kJubS0VFBRkZGQldQ++EExFbsSwr7q0jvXr1Yv78+bzxxhv4/X5eeukltm/fjs/nw+12U1dXh9vtxufzJVyrAlhEbCVZL+V0uVyMHDkSgH79+jFs2DAaGxsJBoN4PB4APB4P9fX1Cdfa7S2Ips8+6e5LiIjERFob4j7W7/fj9/tjn71eL16v95Tj/va3v/HRRx9RUFBAOBzG5XIBJ0K6qakp4VrVAxaRr6wzBe4XtbS0MHv2bB566CH69euX1OurBSEicgZtbW3Mnj2bKVOmUFxcDEBmZiahUAg48ep6p9OZ8PkVwCIip2FZFgsXLmTYsGHMmDEjtr+wsJBAIABAIBCgqKgo4Ws4rFSaNCci0kPee+89pk+fzvDhw0lLOzFWnTNnDmPGjKGsrIy9e/eSk5NDZWUlAwcOTOgaCmAREUPUghARMUQBLCJiiAK4h6xbt45JkyYxceLELj05I/axYMEC3G43JSUlpksRQxTAPSAajfL444+zbNkyamtrWbVqFdu3bzddlhg2bdo0li1bZroMMUgB3AM2b97M0KFDycvLo3fv3kyePJlgMGi6LDFs3LhxCS/iIvagAO4BjY2NZGdnxz5nZWXR2NhosCIRORcogHvA6Wb6ORwOA5WIyLlEAdwDsrOz2bdvX+xzY2NjbDEPEfnqUgD3gNGjR7Nr1y52795Na2srtbW1FBYWmi5LRAzTk3A9ZO3atSxZsoRoNMpNN93EPffcY7okMWzOnDm88847HDx4kMzMTGbNmsXNN99suizpQQpgERFD1IIQETFEASwiYogCWETEEAWwiIghCmAREUMUwCIihiiARUQM+f/0LeJfmAztFwAAAABJRU5ErkJggg==\n",
"text/plain": [
"