{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import os\n", "import rioxarray" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "'''\n", "Folder\n", "'''\n", "os.chdir(r'C:/Users/jtrum/world_bank/data/')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "'''\n", "Read raster\n", "'''\n", "\n", "import xarray as xr" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\jtrum\\AppData\\Local\\Temp\\ipykernel_18792\\3927092705.py:1: DeprecationWarning: open_rasterio is Deprecated in favor of rioxarray. For information about transitioning, see: https://corteva.github.io/rioxarray/stable/getting_started/getting_started.html\n", " raster = xr.open_rasterio('ago_women_2020.tif')\n" ] } ], "source": [ "raster = xr.open_rasterio('ago_women_2020.tif')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (band: 1, y: 54000, x: 50400)>\n",
       "[2721600000 values with dtype=float64]\n",
       "Coordinates:\n",
       "  * band     (band) int32 1\n",
       "  * y        (y) float64 -4.0 -4.0 -4.001 -4.001 ... -19.0 -19.0 -19.0 -19.0\n",
       "  * x        (x) float64 11.0 11.0 11.0 11.0 11.0 ... 25.0 25.0 25.0 25.0 25.0\n",
       "Attributes:\n",
       "    transform:      (0.0002777777777780012, 0.0, 10.999861111264721, 0.0, -0....\n",
       "    crs:            +proj=longlat +datum=WGS84 +no_defs=True\n",
       "    res:            (0.0002777777777780012, 0.0002777777777780012)\n",
       "    is_tiled:       0\n",
       "    nodatavals:     (nan,)\n",
       "    scales:         (1.0,)\n",
       "    offsets:        (0.0,)\n",
       "    AREA_OR_POINT:  Area
" ], "text/plain": [ "\n", "[2721600000 values with dtype=float64]\n", "Coordinates:\n", " * band (band) int32 1\n", " * y (y) float64 -4.0 -4.0 -4.001 -4.001 ... -19.0 -19.0 -19.0 -19.0\n", " * x (x) float64 11.0 11.0 11.0 11.0 11.0 ... 25.0 25.0 25.0 25.0 25.0\n", "Attributes:\n", " transform: (0.0002777777777780012, 0.0, 10.999861111264721, 0.0, -0....\n", " crs: +proj=longlat +datum=WGS84 +no_defs=True\n", " res: (0.0002777777777780012, 0.0002777777777780012)\n", " is_tiled: 0\n", " nodatavals: (nan,)\n", " scales: (1.0,)\n", " offsets: (0.0,)\n", " AREA_OR_POINT: Area" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raster" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\jtrum\\miniconda3\\envs\\wash\\lib\\site-packages\\geopandas\\_compat.py:124: UserWarning: The Shapely GEOS version (3.11.1-CAPI-1.17.1) is incompatible with the GEOS version PyGEOS was compiled with (3.10.4-CAPI-1.16.2). Conversions between both will be slow.\n", " warnings.warn(\n", "C:\\Users\\jtrum\\AppData\\Local\\Temp\\ipykernel_18792\\1169633712.py:1: DeprecationWarning: Shapely 2.0 is installed, but because PyGEOS is also installed, GeoPandas still uses PyGEOS by default. However, starting with version 0.14, the default will switch to Shapely. To force to use Shapely 2.0 now, you can either uninstall PyGEOS or set the environment variable USE_PYGEOS=0. You can do this before starting the Python process, or in your code before importing geopandas:\n", "\n", "import os\n", "os.environ['USE_PYGEOS'] = '0'\n", "import geopandas\n", "\n", "In the next release, GeoPandas will switch to using Shapely by default, even if PyGEOS is installed. If you only have PyGEOS installed to get speed-ups, this switch should be smooth. However, if you are using PyGEOS directly (calling PyGEOS functions on geometries from GeoPandas), this will then stop working and you are encouraged to migrate from PyGEOS to Shapely 2.0 (https://shapely.readthedocs.io/en/latest/migration_pygeos.html).\n", " import geopandas as gpd\n" ] } ], "source": [ "import geopandas as gpd\n", "aoi = gpd.read_file('aoiLuanda.geojson')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NAME_1GID_0COUNTRYGID_1NL_NAME_1GID_2NAME_2VARNAME_2NL_NAME_2TYPE_2ENGTYPE_2CC_2HASC_2geometry
0LuandaAGOAngolaAGO.11_1NAAGO.11.1_1CacuacoNANAMunicípioMunicpality|City Council1108AO.LU.CCMULTIPOLYGON (((13.01919 -9.02194, 13.02049 -9...
\n", "
" ], "text/plain": [ " NAME_1 GID_0 COUNTRY GID_1 NL_NAME_1 GID_2 NAME_2 VARNAME_2 \\\n", "0 Luanda AGO Angola AGO.11_1 NA AGO.11.1_1 Cacuaco NA \n", "\n", " NL_NAME_2 TYPE_2 ENGTYPE_2 CC_2 HASC_2 \\\n", "0 NA Município Municpality|City Council 1108 AO.LU.CC \n", "\n", " geometry \n", "0 MULTIPOLYGON (((13.01919 -9.02194, 13.02049 -9... " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "aoi" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "##clip raster\n", "clip_bound = aoi.geometry" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 MULTIPOLYGON (((13.01919 -9.02194, 13.02049 -9...\n", "Name: geometry, dtype: geometry" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "clip_bound" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "clip_raster = raster.rio.clip(clip_bound, from_disk=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAHHCAYAAACLPpP8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNqUlEQVR4nO2dd3gU1frHv5tAeiGEkAQJvURKUEAU4SctEBApiqKCUgSxgDSlKQIqEFBBVLoiReHiRUGQq1GQrvSOdKRESGhCQhJIQnZ+f3B37+zknCk7s7uzm/fzPPOwO3POmXcW750vbzsWQRAEEARBEARBmAA/TxtAEARBEARhg4QJQRAEQRCmgYQJQRAEQRCmgYQJQRAEQRCmgYQJQRAEQRCmgYQJQRAEQRCmgYQJQRAEQRCmgYQJQRAEQRCmgYQJQRAEQRCmgYQJYWomTJgAi8WCa9euedoUO4sWLYLFYsG5c+c8bYpPsWnTJlgsFmzatEnzXNt/J57go48+QrVq1eDv748HHnjAIzYQhC9BwoQgvICcnByMHz8e7du3R9myZWGxWLBo0SJPm+UUs2fP9lrbpfz6668YOXIkmjVrhoULF2Ly5Mluu/fNmzcxYMAAxMTEIDQ0FK1atcK+ffvcdn+CcBWlPG0AQRDKXLt2De+//z4qVaqEBg0aOOVVMAuzZ89GuXLl0KdPH4fzjz32GG7fvo2AgADPGOYEGzZsgJ+fHxYsWOBWu61WKzp27IiDBw9ixIgRKFeuHGbPno2WLVti7969qFmzpttsIQijIWFCEF5AfHw8MjIyEBcXhz179uChhx7ytEmG4+fnh6CgII/akJubi9DQUNXjr1y5guDgYLeLqe+++w5//PEHVqxYgaeffhoA0L17d9SqVQvjx4/HsmXL3GoPQRgJhXIIr+DatWvo3r07IiIiEB0djSFDhuDOnTsOYxYuXIjWrVujfPnyCAwMRJ06dTBnzpxia1WpUgVPPPEEtm3bhiZNmiAoKAjVqlXDkiVLio39888/0bp1awQHB6NixYqYOHEirFary56TR2BgIOLi4gxf9/PPP0fdunUREhKCqKgoNG7c2OGlZsvdOH78uCG/f5UqVfDnn39i8+bNsFgssFgsaNmyJQB2jsnWrVvxzDPPoFKlSggMDERCQgKGDRuG27dv6372Pn36ICwsDGfOnMHjjz+O8PBw9OzZE8A9j8SMGTNQt25dBAUFITY2Fq+88gpu3Lhhn2+xWLBw4ULk5uban8VdIarvvvsOsbGxeOqpp+znYmJi0L17d6xevRr5+flusYMgXAF5TAivoHv37qhSpQpSU1OxY8cOfPbZZ7hx44aDmJgzZw7q1q2Lzp07o1SpUvjxxx/x+uuvw2q1YuDAgQ7rnT59Gk8//TT69euH3r1746uvvkKfPn3QqFEj1K1bFwCQmZmJVq1a4e7duxg9ejRCQ0Mxf/58BAcHq7I5Pz8ft27dUjW2XLlyKn8J4/jiiy8wePBgPP3003ahcejQIezcuRM9evRwGGvU7z9jxgy88cYbCAsLwzvvvAMAiI2N5dq4YsUK5OXl4bXXXkN0dDR27dqFzz//HH///TdWrFih+ze4e/cuUlJS0Lx5c3z88ccICQkBALzyyitYtGgR+vbti8GDB+Ps2bOYOXMm9u/fj99//x2lS5fG119/jfnz52PXrl348ssvAQCPPvoo9155eXnIy8tTtMnf3x9RUVGyY/bv34+GDRvCz8/x35ZNmjTB/PnzcfLkSdSvX1/xXgRhSgSCMDHjx48XAAidO3d2OP/6668LAISDBw/az+Xl5RWbn5KSIlSrVs3hXOXKlQUAwpYtW+znrly5IgQGBgpvvvmm/dzQoUMFAMLOnTsdxkVGRgoAhLNnz8ravnDhQgGAqkMLu3fvFgAICxcu1DRPSpcuXYS6devKjnHF71+3bl2hRYsWxcZu3LhRACBs3LhRds3U1FTBYrEI58+fL2anFnr37i0AEEaPHu1wfuvWrQIAYenSpQ7n09LSip3v3bu3EBoaqup+NhuVjsqVKyuuFRoaKrz00kvFzv/nP/8RAAhpaWmqbCIIM0IeE8IrkHo83njjDcyePRs//fQTkpKSAMDBk5GVlYXCwkK0aNECv/zyC7KyshAZGWm/XqdOHfzf//2f/XtMTAxq166Nv/76y37up59+wiOPPIImTZo4jOvZsydmz56taHNKSgrWrVun/WHdRJkyZfD3339j9+7dijkrRv/+ahGvmZubi9u3b+PRRx+FIAjYv38/KlWqpHlNKa+99prD9xUrViAyMhJt27Z1KFNv1KgRwsLCsHHjxmIeJTX06tULzZs3VxynxiN3+/ZtBAYGFjtvy9ExItRFEJ6ChAnhFUirDKpXrw4/Pz+HXiK///47xo8fj+3btxdzmUtfjKwXWlRUlEMOwfnz5/Hwww8XG1e7dm1VNsfHxyM+Pl7VWE8watQorF+/Hk2aNEGNGjXQrl079OjRA82aNSs21ujfXy0XLlzAuHHjsGbNGoe/G9uaeilVqhQqVqzocO7UqVPIyspC+fLlmXOuXLni1L2qVauGatWqOTVXSnBwMDOPxJb3ozbcSBBmhIQJ4ZVIm2mdOXMGbdq0QWJiIqZPn46EhAQEBATgp59+wieffFIsYdXf35+5riAIhtl4+/Zt1S9PVyS2KnH//ffjxIkTWLt2LdLS0vD9999j9uzZGDduHN577z3ZuXp/fzUUFRWhbdu2+OeffzBq1CgkJiYiNDQUFy9eRJ8+fQxJQg4MDCyWp2G1WlG+fHksXbqUOScmJsape+Xk5CAnJ0dxnL+/v+I9bFVaUmznKlSo4JSNBGEGSJgQXsGpU6dQtWpV+/fTp0/DarWiSpUqAIAff/wR+fn5WLNmjYM3ZOPGjU7fs3Llyjh16lSx8ydOnFA1/9tvv0Xfvn1VjTVSEGkhNDQUzz77LJ599lkUFBTgqaeewqRJkzBmzBiH0l0jf3+1HVoPHz6MkydPYvHixejVq5f9vKvDY9WrV8f69evRrFkzQz0PH3/8saLgA+79d6fUVfiBBx7A1q1bYbVaHYTVzp07ERISglq1auk1lyA8BgkTwiuYNWsW2rVrZ//++eefAwA6dOgA4H8eEPELPisrCwsXLnT6no8//jhmzJiBXbt22fNMrl69yv2XtBSz55hcv34d0dHR9u8BAQGoU6cOfv75ZxQWFjoIEyN//9DQUNy8eVPRPtaagiDg008/VfN4TtO9e3fMnj0bH3zwQbFOrnfv3kVOTg7KlCmjeV0jc0yefvppfPfdd1i5cqW9j8m1a9ewYsUKdOrUiZl/QhDeAgkTwis4e/YsOnfujPbt22P79u345ptv0KNHDzRo0AAA0K5dOwQEBKBTp0545ZVXkJOTgy+++ALly5dnurzVMHLkSHz99ddo3749hgwZYi8Xrly5Mg4dOqQ43+gck5kzZ+LmzZu4dOkSgHteir///hvAvWRUWw6Hrcx14cKFxbqrimnXrh3i4uLQrFkzxMbG4tixY5g5cyY6duyI8PBwh7FG/v6NGjXCnDlzMHHiRNSoUQPly5dH69ati9mXmJiI6tWr46233sLFixcRERGB77//vliuidG0aNECr7zyClJTU3HgwAG0a9cOpUuXxqlTp7BixQp8+umndjGgBSNzTJ5++mk88sgj6Nu3L44ePWrv/FpUVKTKK0MQpsaDFUEEoYitxPLo0aPC008/LYSHhwtRUVHCoEGDhNu3bzuMXbNmjZCUlCQEBQUJVapUEaZOnSp89dVXxUp7K1euLHTs2LHYvVq0aFGsjPXQoUNCixYthKCgIOG+++4TPvjgA2HBggWqyoWNxlbmzDrEtnz++eeqSkbnzZsnPPbYY0J0dLQQGBgoVK9eXRgxYoSQlZVlH+OK3z8zM1Po2LGjEB4eLgCw/+ascuGjR48KycnJQlhYmFCuXDnh5ZdfFg4ePFisXNrZcmG5Ut/58+cLjRo1EoKDg4Xw8HChfv36wsiRI4VLly6pXsOV/PPPP0K/fv2E6OhoISQkRGjRooWwe/duj9hCEEZiEQQPBbcJgnAJ3bt3x7lz57Br1y7da02YMAHvvfcerl696pEmcARBlDwolEMQPoQgCNi0aRO++eYbT5tCEAThFCRMCMKHsFgsTvfZ8BWysrIUG4x5ojybIAh1kDAhCMKnGDJkCBYvXiw7hiLYBGFeKMeEIAif4ujRo/bKJR7JyclusoYgCK2QMCEIgiAIwjT4KQ8hCIIgCIJwD5RjooDVasWlS5cQHh6uupU2QRAEUTIRBAG3bt1ChQoViu3DZCR37txBQUGB7nUCAgIcujybARImCly6dAkJCQmeNoMgCILwItLT04vtXG0Ud+7cQdXKYci8UqR7rbi4OJw9e9ZU4oSEiQK21tzp6emIiIjwsDUEQRCEmcnOzkZCQkKxbR2MpKCgAJlXinB2b2VEhDvvlcm+ZUXVRudRUFBAwsSbsIVvIiIiSJgQBEEQqnBH6D8i3E+XMDErJEwIgiAIwgspEqwo0lFXWyRYjTPGQEiYEARBEIQXYoUAK5xXJnrmuhLf8wERBEEQBOG1kMeEIAiCILwQK6zQE4zRN9t1kDAhCIIgCC+kSBBQpKN5u565roSECUEQBKGaVu2mFju38ddRHrCE8FVImBAEQRCKsAQJQKLEk1DyK0EQBOHzpIT2Yp7nCRCeYCFcjxUCinQcJEwIgiAI0/NL7hLm+VbtppJ3hHALFMohCIIg7J4PnvjQep5wPb4ayiFhQhAEQdgFhs0zIv1TOo7wPL5alUOhHIIgCBPiztwN8b1IeHgPVgMOM0LChCAIwiTYBII78jnESa42zwgJFMIMkDAhCILwMNL8DneIAmmS68ZfRzHvSwLFvOipyLEdepgyZQosFguGDh1qP9eyZUtYLBaH49VXX9W0LgkTgiAIDyP38ndHSIdKfr2TIkH/4Sy7d+/GvHnzkJSUVOzayy+/jIyMDPvx4YcfalqbhAlBEITJkIZUpGEWI9a1rSlOciUINeTk5KBnz5744osvEBUVVex6SEgI4uLi7EdERISm9UmYEARBmAy94RM5kcHLIyFx4n0YlfyanZ3tcOTn58ved+DAgejYsSOSk5OZ15cuXYpy5cqhXr16GDNmDPLy8jQ9F5ULEwRBmAypF0MqVJSSY1nXWGtRKbB3Y4UFRbDomg8ACQkJDufHjx+PCRMmMOcsX74c+/btw+7du5nXe/TogcqVK6NChQo4dOgQRo0ahRMnTmDlypWq7SJhQhAE4SF4AkNJIMi1hxf3I5Gbo2YNomSQnp7uEG4JDAzkjhsyZAjWrVuHoKAg5pgBAwbYP9evXx/x8fFo06YNzpw5g+rVq6uyh0I5BEEQbkacMyIVEOLcD6B4jonafBNplQ1rDuveLO8MYU6sgv4DACIiIhwOnjDZu3cvrly5goYNG6JUqVIoVaoUNm/ejM8++wylSpVCUVFRsTkPP/wwAOD06dOqn4s8JgRBEE5ghGdBLqzCGyft0Gr7LB3Hmiu9lxovip5nVGpzT+ijSGcoR+vcNm3a4PDhww7n+vbti8TERIwaNQr+/v7F5hw4cAAAEB8fr/o+JEwIgiCcwNmXrbQyhpV0KhYcasI9amxhJb26WjiQIPEtwsPDUa9ePYdzoaGhiI6ORr169XDmzBksW7YMjz/+OKKjo3Ho0CEMGzYMjz32GLOsmAcJE4IgCDfC2pNGfJ41Vow0xKP25S8VI5RL4v2422OiREBAANavX48ZM2YgNzcXCQkJ6NatG8aOHatpHRImBEEQHkQqVJSSUo2qopEKGxIq3odVsMAq6KjK0THXxqZNm+yfExISsHnzZt1rUvIrQRCEm1ATTuElmxrR20RN1Q4lu3oPNo+JnsOMkDAhCIJwA0oeCV6fEaNQWy5MXhPC03iNMDl58iS6dOmCcuXKISIiAs2bN8fGjRtl50g3ErIdH330kZusJgiCuAfLI8ETK65KSlVTBUQeE++hCH66DzNiTqsYPPHEE7h79y42bNiAvXv3okGDBnjiiSeQmZnJnSPeRCgjIwNfffUVLBYLunXr5kbLCYIgHOH1D2GdN/KerMRXaV8UCul4D8J/c0ycPQQDckxcgVcIk2vXruHUqVMYPXo0kpKSULNmTUyZMgV5eXk4cuQId554E6G4uDisXr0arVq1QrVq1dxoPUEQxP9Q0/jMdt1Ij4maFvbSxm48+4zaVJAgWHiFMImOjkbt2rWxZMkS5Obm4u7du5g3bx7Kly+PRo0aqVrj8uXL+M9//oN+/frJjsvPzy+2oRFBEIQ7MGojPZ5wUCoxdkfTNcI4KPnVg1gsFqxfvx779+9HeHg4goKCMH36dKSlpTG3XGaxePFihIeH46mnnpIdl5qaisjISPsh3dyIIAjCCOR2+dWLnLeDJTxY7fF5LfNt51yVpEuop0jw032YEY9aNXr0aG6Cqu04fvw4BEHAwIEDUb58eWzduhW7du1C165d0alTJ2RkZKi611dffYWePXtyNx6yMWbMGGRlZdmP9PR0Ix6VIAjCAXG4xhUvdrmeKCzEeS5i4SHXmVY6jyCMwCIIguCpm1+9ehXXr1+XHVOtWjVs3boV7dq1w40bNxx2QKxZsyb69euH0aNHy66xdetWPPbYYzhw4AAaNGigycbs7GxERkYiKyvL4d4EQRB68dReMlqbqRnRfK2kNHBzxzvDdo//HKqG0PDi+9OoJfdWETom/WW695tHO7/GxMQgJiZGcVxeXh4AwM/P0cHj5+cHq9WqOH/BggVo1KiRZlFCEARhw8gXq6cFidb7GhleIozDbC3pjcKcASYJTZs2RVRUFHr37o2DBw/i5MmTGDFiBM6ePYuOHTvaxyUmJmLVqlUOc7Ozs7FixQr079/f3WYTBOFD6N1ll5dTYhTSnBBeAqzWihq5XBOCcAVeIUzKlSuHtLQ05OTkoHXr1mjcuDG2bduG1atXO3hBTpw4gaysLIe5y5cvhyAIeP75591tNkEQBBd3NE/j5X5oube4kofEibnw1eRXj+aYeAOUY0IQhBG40mPCqpJR2ytFbm5JyQsxEnfmmHx/sJbuHJNuDU6a7v1mTrlEEAThY9g8GEbnqdjW5nkz1OxKzOoIyxrnjG2E67DqbEdvNakEMKdVBEEQJRg1eR1yjdBYwoO3s7A45GNUuIbCPoQePFqVQxAEQRTHiJb0vAocd4VmKATkevTmiRSZNJODPCYEQRBuxF2eBDlhYNT+POQV8SzW/4Zj9BxmxJxWEQRB+Chm8CRQyIYwMyRMCIIg3IhZXuRqBZKcvay8FbM8X0mgSLDoPswICROCIAgGWhuR+SpqBIx0bx1nod9bG3oqcmyHGTGnVQRBEB7GyNJeb4fnDeFV/0jHqRV59HsTAFXlEARBuBVvfvnybFfaKdmbn9nMWAU/WHVU5VipKocgCKLk4s1hCi35KHKt8AljoVAOQRAEUaLQktAq1zWWRAqhBQrlEARBEEy0JLTKjaFQjmuwAroqa6zGmWIoJEwIgiDcAL2cCaPR2yTNrA3WSJgQBEEQDrA2CCRhZT70t6Q3pzAxp1UEQRBejDfnVIgTWM0gSrz5tyScg4QJQRCEwXizd8FTm/6JkXpsCDZWWHQfZoRCOQRBEAZje7HSS9U56HdTB4VyCIIgShDOhhDEoRBfQW25MEEYAQkTgiAIg/G1l7TecmHCNVCDNYIgCB9HvKeLsy9aX/OWEObFKlh0H3qYMmUKLBYLhg4daj93584dDBw4ENHR0QgLC0O3bt1w+fJlTeuSMCEIgvgvRosKX/OcEISN3bt3Y968eUhKSnI4P2zYMPz4449YsWIFNm/ejEuXLuGpp57StDYlvxIEUeIRe0mkHhPejrpqPCvkOSFciVVnOMbZBms5OTno2bMnvvjiC0ycONF+PisrCwsWLMCyZcvQunVrAMDChQtx//33Y8eOHXjkkUdUrU8eE4IgCBQXEWLhIe3rIRYr5BWRh34f12HbXVjPAQDZ2dkOR35+vux9Bw4ciI4dOyI5Odnh/N69e1FYWOhwPjExEZUqVcL27dtVPxd5TAiCYGLNrAW/uJOeNsOtSJuJ8bwnPG8KURzyGpmfhIQEh+/jx4/HhAkTmGOXL1+Offv2Yffu3cWuZWZmIiAgAGXKlHE4Hxsbi8zMTNX2kMeEIIhi2ESJNbOWp01xOWIxIg7lSMM7LBHC87KQYCHcQREsug8ASE9PR1ZWlv0YM2YM837p6ekYMmQIli5diqCgIJc9FwkTgiAA3BMjtkPsKbFm1vLJFy0rr4TXfl2cFMsL5yitQRBGY1QoJyIiwuEIDAxk3m/v3r24cuUKGjZsiFKlSqFUqVLYvHkzPvvsM5QqVQqxsbEoKCjAzZs3HeZdvnwZcXFxqp+LhAlBEABQTIyIvSWs0AXPi2BW5JJYpXvCSJuk8XJK5PJQCDb02xhHEfR6TbTRpk0bHD58GAcOHLAfjRs3Rs+ePe2fS5cujd9++80+58SJE7hw4QKaNm2q+j6UY0IQJRybABELE1sYRy7HROo5MKuXQCwyxCIEQLHz0nly323o2ejO7L+dKyhJz+prhIeHo169eg7nQkNDER0dbT/fr18/DB8+HGXLlkVERATeeOMNNG3aVHVFDkDChCAIwCGfRPxZKk7MsMGbVsQ2SsWJmmRXOc+K9B5qBIpUHBGEs4jDMc7ON5pPPvkEfn5+6NatG/Lz85GSkoLZs2drWsMiCIJguGU+RHZ2NiIjI5GVlYWIiAhPm0MQLoElSmyCxPa9Ta9+9vFqXtbi69LP7kDONr0eDhs8LwzvXnK/B+Wm+AbueGfY7jFme3sEhZV2ep07OYVIbZpmuvcb5ZgQRAlGnEciDduI80z84k4ycyiUXqRay2qNyluRVtqIz0vHaUGpmZrUE8Kq8OGtVVJFCXmOCCkkTAiiBCKuvhGHbYB7IsQmUlg5JlIPgdQLwEJNeMMVibW2daTrsUI6atYSz5cKH145Mc+TRBB6EWCBVcchQN9eOa6CckwIogQiDtPwElx54kQaHlEbqmE1KWN5EoxOCOV5TLSur5TkKnedN0fr8/tiuMfXnsedFAl+KNKRJ6Jnrisxp1UEQbgUucZpSk3VxJ4SuX/5S8fJdVFlraPkVVDTFl66tlKPErl7KVXuqE18FdshJ3JY9/DmpFlvtZtwPyRMCKIEIu3qKm2uxhMnckmutj/FL3Ferger06p4HZZY4CWe8pJI5XI9xOfVhHLU/KteGt7ihXakdshV+EjhVRF5A+QZMR6rYNF9mBESJgRRApEKD3HYhhfeYTVcY/UEEaOmx4fahFrxC5vVh4QlXOTW4z0HC16JL09UaMktkYojqSeJJ7KUno3wfYr+u7uwnsOMULmwAlQuTPgiLPHBEissD4pf3ElFz4lSma5cLw+5ubbrLFhr88JGzvQdUTqnFqW5PPHji/klvog7y4WH/t4ZgTrKhfNzCjGj2RrTvd/MKZcIgnA74mocANwma3KeBan3g1UNI/6TdY4XglEKISl5PdTmf0jXlRvvTChFbQk1y0NEEGJ8NZRDHhMFyGNC+Bqs/BFpMzVp1c6lixVQ4b5L9vEsscHLAZF+l4Zt1L50lapU5Lw1asMfLG+KnK1GeTDUeIOMvB/hOtzpMRm07UndHpOZzVeZ7v1G5cIEUULgdXQVX7eFbWyfM4tyAJEosQkUqVeEl1MhJ07E52zrSOcoeRdYYQ7WZ2fCNWoqZoxCKVSkFDbzNShspY4iwYIiHV4PPXNdCYVyCKIEIW05bzt4ybAAUOG+S7h0sYLDdVa1jTTkoKUyheeVkFb4SJFW5agNvUhDTdIkWGcSaY2Cl+gq/axGcHkr3lwWTejHa4TJyZMn0aVLF5QrVw4RERFo3rw5Nm7cKDsnJycHgwYNQsWKFREcHIw6depg7ty5brKYIDyPtKur9LwNsUDJLMqxCxFx+EYsTnh5IdISXvEhhfXykXpXxHOVkmVZ8LwvahJstYgeoxD/biwhYqMkvLh9VXQZia/mmHhNKOeJJ55AzZo1sWHDBgQHB2PGjBl44okncObMGcTFxTHnDB8+HBs2bMA333yDKlWq4Ndff8Xrr7+OChUqoHPnzm5+AoJwP9LKGlZ+SbFW9P8VIFIvCeAoVMSorZThXWOtocadLxcaYo1hvdx546VrufJFyfsN5Dw1ciEveqmXDASduwsL1PnVea5du4ZTp05h9OjRSEpKQs2aNTFlyhTk5eXhyJEj3Hl//PEHevfujZYtW6JKlSoYMGAAGjRogF27drnReoLwPNJyX2mpsM1LIvaU2ESI+LN4jA1eBQ4v3MP6U5qoygvbiK/zPCFK67NgJc466ylxtlJHGhLTarOc98lV+LrXhvAMXiFMoqOjUbt2bSxZsgS5ubm4e/cu5s2bh/Lly6NRo0bceY8++ijWrFmDixcvQhAEbNy4ESdPnkS7du24c/Lz85Gdne1wEIQ7UWoJr3RdOla65424yytwT5QA/xMgtpySSxLPiVig2GCJD9tn8QuTlyshHSc+LzeeJUD0eDdY3hq1AkFqo17kckdYz6tFxBiNuzwzJIDYFMGi+zAjXiFMLBYL1q9fj/379yM8PBxBQUGYPn060tLSEBUVxZ33+eefo06dOqhYsSICAgLQvn17zJo1C4899hh3TmpqKiIjI+1HQkKCKx6JIJhI28RrmSc33uYRySzKcThs8HJJxNdY3pKlCz8FwN7PhfcveJZ3QDxPPJaV+KpGwEhtkd5Leg+e+FH74nVH/gfrNxbfm/Wnr7zQ3Znn401YBb15Jp5+AjYeFSajR4+GxWKRPY4fPw5BEDBw4ECUL18eW7duxa5du9C1a1d06tQJGRkZ3PU///xz7NixA2vWrMHevXsxbdo0DBw4EOvXr+fOGTNmDLKysuxHenq6Kx6dIIohzvXg7WMjTWYVl/byyoBtiMWHWGyw/mSNk3pLxHPUVK3IhUek+R7SlyvLG8JKtJUKG979xd/1hG3kntVo1AglXo6Kr+Brz0Ow8Wjy65tvvok+ffrIjqlWrRo2bNiAtWvX4saNG/YmMLNnz8a6deuwePFijB49uti827dv4+2338aqVavQsWNHAEBSUhIOHDiAjz/+GMnJycz7BQYGIjAwUN+DEYROWHvV2M7zOrLazon/tDVHA8CstLGFbaR/imGJEjEV7rukmMshl+Qq5/WQExq8vBBpwq2WUIyvvvh87bnUhth8HavO5Fc9c12JR62KiYlBYmKi7BEQEIC8vLx7xvo5muvn5wer1cpcu7CwEIWFhcXm+Pv7c+cQhKdR6ilSrIKGMV/6WZzECjgKFKkYEYsSlkiRnhd/luY88DwRvJCOVKCwwimsMA5PvLBCSrxQjtTjYna0JLp6yzOpQUveD2++L2GFRfdhRswplyQ0bdoUUVFR6N27Nw4ePIiTJ09ixIgROHv2rN0bAgCJiYlYtWoVACAiIgItWrTAiBEjsGnTJpw9exaLFi3CkiVL8OSTT3rqUYgShNocEWmIRlzaK+3WygrXsLwkYnhhGpbosMHykPDCPBXuu4SlCz91EAG8yhoxvHALaxwv50Mc1mFVAPFKhOWSdtXg6hwSpfvIhbqkc33Js6Al74c335ewdX7Vc5gRrxAm5cqVQ1paGnJyctC6dWs0btwY27Ztw+rVq9GgQQP7uBMnTiArK8v+ffny5XjooYfQs2dP1KlTB1OmTMGkSZPw6quveuIxiBIAKwdECXEHVtZOvtLPvFwSaVdXQD58Y0PqJZF6RHjjbcmwahqv2c7xql94OR7Sa3IJrNI/WR4QNaXAakSHq3JIWOecEUG+5hkQ48vPRtyDNvFTgDbxI5xF7P2Qigap+OB5O3gb7knXFF8D5JNY1ZyzwfOqsHJTAOV/pbP+dc+qypF6AnhhGulYNWW0SvdwdwksK1TlTImynPeEcB/u3MTvud9eQEBYgNPrFOQUYHmbb0z3fvMKjwlBeDOsKhvxNduf0lwSXhiHNU/ao0SMtC8Jq/yXJVKkSa/SRmusMQD7RcvL85DOUaqu4eWsaCmRZYV9pOfdBSs0JfcMrLwY2zwtooS8Dr6BFTpb0lOOCUGUHFgVM1IRwcol4ZX/SqtxxPeRihFejglLfNjOSwUGr5KH5UGRhnPEIRdWGTAryVVOrLA8KuIx4rwRuRAOT+yw8mLc8eKWExE8ccYSVLz1lMQNQZgVr9krhyC8Aakg4YVvxIgFCmtPG6mQkc6V3ssGr3qGVW3DC80A/xMerHyT4hU9QxzWlQoFXtmwmnJiXuiD9ULmiR/WeFbyqys9J2o8G0peIKWEXbkwljdVHxHyCDorawSTekwox0QByjEhtMLKFxELFiWBoiRi5NYUX+eVBcuJC9Z4rfTsO0T2utyLUY03hSd0pNeVXsy8BF3WGFeit/xVqZxaep51nTAOd+aYdFvfG6VDnc8xKcwtwPfJi033fqNQDkEYDKsLqzTBVZpTwmqcJg37qEmalXpbpB4QaT6I+Lp0Lxzxeekc1npyuSbi77xSXRu8cA0rH0RNVQ2rdFkut0QqTozyLuipruGFn3g5KrzfXm24hyA8CQkTgnADvP4kALvLK68FvfSznBdGGmaR5oLI7Y8jni+3iZ80WVbsLeF5AqT5EyxhIP6Th9LLmTfeSLGhBS0eCjkhpbSWNDGYl++j1SYzUtKFla3zq57DjJjTKoLwQpQ20rMh9X6I80t4Y23jWJ4T8VgeUo+IVHQAxcULqyEbS+CI72FD7kWq9l//LFgvVTUeEvF4NdU34pe4q3MyxM+hJEikKCUN80SeM+XIZsTbhZVe9G3gd+8wIyRMCMIAWPkerG6ucj1LbOd4oR7xmqz1pYhDOGq7virtiaMUEpLC8lIoeTSUkMtPkSaMSsWFUiWMszYZAa+MWWmOGKUKHjWlyLy1CcJdkDAhCAPg9SpR2s9Gek6pc6xY4Niu8z6LkfYu4eWGyHlClLwpFe67xA3LiL/LNRZTg9QjoJRPwSoDlruftHpHLsFUDqVxPM+Rq2HlzqjJ1SHMB+2VQxAEl8b9p6PJ2FfthzRx1QYv1CNNklVbcizXUVau9bx4jBxiD4nS2EsXKzjkNIiRvuR5Ca5akBM5UhtY6/MEC09MaQk5qRnnTHhF7z3lnsEV9hCuhUI5BEFw2fPlcIfDhlxTNBusRmzS71JBoralvVRQsDq38jq8ivNQlDwtFe675JD4yivFFcMr2dUC7wXLEzpSMaOU+8IKg8iFQtzhZdB7D6NKh8nL4nl8VZioarDWsGFDTYtaLBasWbMG9913n1NGEYS30Lj/dLsQadx/OnZNnMsMpyiFW1ieEvE88Vy5xFfWNTVN1qR9S5R2Hma1swf4CalitHoepHN5IRalsUpj5HJMePdRmq8V3v209jphjTe6Ioc8KiWPOXPmYM6cOTh37hwAoG7duhg3bhw6dOgAAGjZsiU2b97sMOeVV17B3LlzNd1HlTA5cOAA3nzzTYSFhSmOFQQBU6ZMQX5+viZDCMJbsYmTXRPv/Y+PFVrhlfvKXROLFVbPE6X8FV7CKy9RVU0bejlhY+v6qraJmXis9DMPnniQux/La6PmX/ZytquxWxq2UhNm4Y2RVgkpzVPjLXIHWgUVoQ29Xg+tcytWrIgpU6agZs2aEAQBixcvRpcuXbB//37UrVsXAPDyyy/j/ffft88JCQnRbJfqlvQjRoxA+fLlVY2dNm2aZkMIwluwCZHG/acDgN1jwtuET2knYPEY6Wfbd+kcnieFl2ci5w0RCxA5TwprDXEOytKFFQAoV4moSUDVCkvoiF/mLKHCSmpljZWr6JETWawxepATLWpwRiToFRYkSlyLu4VJp06dHL5PmjQJc+bMwY4dO+zCJCQkBHFxcU7bBKjMMTl79ixiYmJUL3r06FFUrlzZaaMIwqyIRQkrn0S6CZ9ciEU6ntXFlZdEK4a1l45f3EnE+YdxdwFm7YXDQy68w8s/YSW3Sv+1rrdHCM+LwBI+rBAGL99ETX4Mbz2WfZ5Gj5fEmYRktZjhtyHukZ2d7XCoiXgUFRVh+fLlyM3NRdOmTe3nly5dinLlyqFevXoYM2YM8vLyNNujSphUrlwZFot6ZZWQkAB/f3/NxhCEN2DzlNiQazUvRtpeXnzwNvBTEjSse7BCPVJRwhMivLANq2W9GPGavDwGXvKo3n+Ry63HC+2wvCC8iiKet4V3jpV3ouYZXeVd0LuuUeXRrqCkixsB+kqGbRvlJSQkIDIy0n6kpqZy73n48GGEhYUhMDAQr776KlatWoU6deoAAHr06IFvvvkGGzduxJgxY/D111/jhRde0PxcTm3id/PmTezatQtXrlyB1Wp1uNarVy/NRpgZ2sSPkCIN4ahpLy+9xttDRwleDgqvZNgv7qRi6Mb2mYV0rx2lzf2UNvATw8oLkYZf9LxU9awnV+4sh9x9nLXDG8MhahKTbXgi94Vlj1H3ducmfq3/8ypKhQY6vc7d3Hxs6DgX6enpDrYGBgYiMJC9bkFBAS5cuICsrCx89913+PLLL7F582a7OBGzYcMGtGnTBqdPn0b16tVV26VZmPz444/o2bMncnJyEBER4eBJsVgs+Oeff7QsZ3pImBBSWJU4NqTigheekY7hiRJeWbAYuWRYFnLJrTaUdhiWChYb4heM9LP0T8H/f//fsennkWjZ4UMAgKXI8f+SjBATvFwSXh4Kbw01eSRGv1y9VZyowdOCxBV4ozDRY2tycjKqV6+OefPmFbuWm5uLsLAwpKWlISUlRfWamvuYvPnmm3jppZeQk5ODmzdv4saNG/bD10QJQfCQek2A4jv8snqXsCp15DbxY1XkyIWL5JAmxQKOokRNm3leHxQx0pd8yw4fQvC3FPtTjE2UAIDgb4Hgb2FWoMghzRMRh2WkYRZWuIaXI8IaK81NcZV48GVRAujPM9KD+L8Jbw0JmaGPidVq5eakHDhwAAAQHx+vaU3VVTk2Ll68iMGDBztVAkQQvgZLbMiFVmznxH+y4HlHbPdgzVdTzQMAcf7/K/uXJsGyNvcTj5WWC0vHL10ItOxgATjeEB7iMbbPLTt86OA9UfuClsvrYHlylD7LzZeeN1pE+LIosaG1rNoofOG3dXdVzpgxY9ChQwdUqlQJt27dwrJly7Bp0yb88ssvOHPmDJYtW4bHH38c0dHROHToEIYNG4bHHnsMSUlJmu6jWZikpKRgz549qFatmtapBOETSL0kYkHAK9vV4uFQ2qGYlSQrvoeaHY7F4sYmMJQ8JjzhIhUsQHGBYcN2jiVWNv08EoCj98TIxE2WkJB+ls5hfVdTtWMUvu4xEePu55QKoZL0WzvLlStX0KtXL2RkZCAyMhJJSUn45Zdf0LZtW6Snp2P9+vWYMWMGcnNzkZCQgG7dumHs2LGa76NKmKxZs8b+uWPHjhgxYgSOHj2K+vXro3Tp0g5jO3furNkIgvAmpB1e5cp7teR+iNdQC6+Jm/Sa3PpyXhO5HBMWjftPxx6GILFhOye9JvaWsLCJGR68PBKAvVmgXJUOL9dELnnV6FAAqwxabpwv46pn9IXfzd0ekwULFnCvJSQkFOv66iyqkl/9/NSlolgsFhQVFek2ykxQ8ishRZz8akOuQZoSSq3pWWvLeUWknhPed5YdrCoeG1KRIq3UEefdsISEVHywPClSpOdZ4kTsgZETL1LkxAxLpCiN5a1rNCRGjL2PGCPu6c7k12arB+lOfv29y0zTvd+cKhcuSZAwIcTYRAlPfCiVBqtBSYgo5bDIoaUiyIZc8zUbnce/BcAxzOWM8BCft60hDf/IiRMlWHkMSi59tS5/I3IktJYUlwSR4m24U5g0Xf2GbmGyvcvnpnu/aRYmS5YswbPPPlusxrmgoADLly+nPiaEz8LapI/Xh0StB0UuH0XJc8JCS54Jy5PCy4thbdgn9ZTYsHlMWLC8JeJr0gRY3hqs/BQlL43WcJDtHGCePARP359QhoSJfjQLE39/f2RkZBTbN+f69esoX748hXIIn4VX9aIkOnjXbKjJRZHuhyM9J4U1VmqrFsEkTpIFHL0oNm+JlLCLd5nn5RJgbddZyIV0eNdYQkf6WTofKN5LhYU7BYIrBAmJHNfgTmHy8A+DdQuTnV0/M937TXMfE0EQmO3p//77b0RGRhpiFEGYEWmfEl7fEl67eBvSFva2z0qt6MXjWAmvrB4nPFuUhBArXMRKeLWdk+bcyMFLgJUbK0Za7WMTOWKRoZRMK16Hdd6WeGrrp2LrrWKD1+PECOQavRlJSRIl3tqnRAlBsOg+zIhqj8mDDz4Ii8WCgwcPom7duihV6n8FPUVFRTh79izat2+Pf//73y4z1hOQx8QcsBJO3XlvXgiH9acYXkhHa4KsVuRscmYtMeL1pF1wWbsui5F6StR4T1jXeXkmWubwxIs05MPKc2HNc6UHgnJO5FHqOOxO3OkxabJqiG6Pya4nPzXd+011H5OuXbsCuNfJLSUlBWFh/2vSFBAQgCpVqqBbt26GG0iUbORecu66v63lvNwLmicAeGLG1fBa49uuqRFVvLWkOyyL/46k56SIX+Ys4SAnUqTzgeIiwvZZ/Kd4LbkSZulc1pos0WK7Ju1mqwWlF6jW5nIlDWmPGtZnX8Td5cLuQrUwGT9+PIqKilClShW0a9dOc4tZgnAG20vOEx6T/93zf/fl5W2IQyZyXhM1XV+NRK5ySPxdKb9FupYaUdK4/3SEXbzLfZHb/pSGXngeCWmljhjxObUeFrlrcp4dpbnOYNQL1Bf3niH46A3HeH0ox0ZQUBCOHTuGqlWrusomU0GhHM/h6fCN3L1ZHgdAXnBoLRt2Nc50qJUKERvicI74O0scKAkL6XelDrFy64rPy5Ucq8lJka4lHa9WCMmhJ/SgtKsx4R7cGcpp9P0w3aGcvd0+Md37TXPya7169fDXX3+5whaCKBYC4IUEXG2DOHzDSzaV7o+jpqrGk6JErkOseAwv8ZZVFmw7xIJEKui0eBls3hPpy198iMdIv7PWk/4pXlt6D6XEXFaYiVe67AxqOr1qnUuixHcRdG7gZ1aPiWZhMnHiRLz11ltYu3YtMjIykJ2d7XAQhFZ44sMT3hKbp0T8spaGbliVMFKkFTquTnRVA2tfH/E1OeFk+11YwgNw/LsS/32q9RzIhXBswoPlIWGJBJa4YOWPSHNPeKJFKd9F6oVxVpSogZXH4gu75BLOIQAQBB2Hpx+Ag+ZQjrg9vbhs2FZGTH1MCGcxS+iG1zMEUN/eXTxGaZxRuCux1pXwwja2a2qFjpqkWjXJt0reHaX+KFpt19pWXzqP1yROaa8fwjjcGcp58Lvh8A9xPpRTlJeP/U9PN937TbMwUdqkp0WLFroMMhskTFyPJytvxGEbKaxmarbzahuiyX2Ww+hxvLk2zCRo1CSy8kp4bdfFa0nPs7wbvGtq7VCy30i0iB/e/UmcuA53CpMG372pW5gcfHqa6d5vtFeOAiRM3I87PCfS3iSAOgEhrcSREym8Lq2uEAHe5i2RS0CVwhMevPCJXGhFLg9FujZrLfF91YoadyInujxpV0nCncIkacVbuoXJoWc+Nt37TXW5sJibN29iwYIFOHbsGACgbt26eOmll6jzK6Ebd4gSa2Yt7PnyJOTKgHnt33kt4NUKD1eJE28SJYD6Zme2a7x+JHKhGd55NWN4Nsh9F583y8tfzka5KiXCO7AKFlh8sI+JZo/Jnj17kJKSguDgYDRp0gQAsHv3bty+fRu//vorGjZs6BJDPQV5TNyDu8M5rNAM77sYuQ32WGPlElPVhoJY33lzlNY1E3IvRN7LkycIeD1HWNelKCWvyuWmaOmXorYk2Wi05M0YgTQBt6SFjNzpMan37xG6PSZHun9kuveb5qqcYcOGoXPnzjh37hxWrlyJlStX4uzZs3jiiScwdOhQF5hI+BLiig1pHwy5jqFGoiRC5BqiSctpeVU3St+ldkhRM581x1tECcDeQI/nFZHzhojHiM9LS4rF46XjpPe2XeN5FKT30lJ9xHpWVyKuHlIKZRmJbb8hwnXoqsj572FGNHtMgoODsX//fiQmJjqcP3r0KBo3boy8vDxDDfQ05DFxLVJx4q7KHKUdeXm5JOKxcmvKreGu/XLMiBovidI423UbLI8HLydELq9FTX6JlmdQQuk+roB3HwrnGIc7PSZ1lo/U7TE5+tyHpnu/afaYRERE4MKFC8XOp6enIzw83BCjCN9F3K5cLEKkf7oSVsiDtcsv65z4O6/xmhiW50Nt3xEl+/WO8QRyL3Txn0o5H7weItJ7SL0uts9yZck88WKbJ/WyiNfT8nIXezCUntcI5ESJ3Bzbn9LfjXWOIIxAszB59tln0a9fP3z77bdIT09Heno6li9fjv79++P55593hY0AgJMnT6JLly4oV64cIiIi0Lx5c2zcuFF2zuXLl9GnTx9UqFABISEhaN++PU6dOuUyGwllxALEnWLERuP+02WTWIHiYRtp11aW50QaRuG1qpeel+u0yqPJ2Fcdnof3jFrwRIddG2oSRqUvP7WJm7Z1lQQDT2DIhYLEdqu1nRc2kq6ttI4WlESTXIhHLvQlfnYSJ57BtleOnsOMaA7lFBQUYMSIEZg7dy7u3r0LAChdujRee+01TJkyBYGBzruV5KhVqxZq1qyJ1NRUBAcHY8aMGVi0aBHOnDmDuLi4YuMFQcCjjz6K0qVLY9q0aYiIiMD06dORlpaGo0ePIjQ0VNV9KZRjDJ7eJViM1Bbpd7mQjZzgsH1XuqY3fGP0b+nJxnZStIRRlMI34nVsn1nrsGxQk5RrQ0uoR836rHX1hlr0Jr6ykpBZdhLuDeXUXjZadyjnRI8ppnu/Od3HJC8vD2fOnAEAVK9eHSEhIYYaJubatWuIiYnBli1b8H//938AgFu3biEiIgLr1q1DcnJysTknT55E7dq1ceTIEdStWxcAYLVaERcXh8mTJ6N///6q7k3CxHnMJEbESHfBFcPbnI7XYE3J28Ea44ocE1eIC08LFrlwC6uKhpdXIl1DLtdEy0tWbU6MUqmx2nt4Grkwm1lsNAMkTPSjOZRjIyQkBPXr10f9+vVdKkoAIDo6GrVr18aSJUuQm5uLu3fvYt68eShfvjwaNWrEnJOfnw/g3m7INvz8/BAYGIht27a51N6Sji1/BPC8KOFtCsh66aqtCuL1LBHvN8OrkJHzqDiD+LeWG+MM7vy7E4dRpHkL0lCDGk+J+Jo03GJ7sWr5Vz8vlMSbryapVg1meuHLhawolOMZfLUqR7Mwyc3NxbvvvotHH30UNWrUQLVq1RwOV2CxWLB+/Xrs378f4eHhCAoKsodloqKimHMSExNRqVIljBkzBjdu3EBBQQGmTp2Kv//+GxkZGdx75efn08aEOpHb7M0TttiQihHpxnS8fA1xXgpPbIgTYgF+7ogWL4mcYJHbzVd83TbG7EiFg/hPG6xcDVZYgZfToTYRljWXZ4OcoGI9o96QilmQ/n1RnolnuCcu9OSYePoJ2GgO5Tz//PPYvHkzXnzxRcTHxzts5AcAQ4YMUb3W6NGjMXWq/G6Yx44dQ+3atdG1a1cUFhbinXfeQXBwML788kusWbMGu3fvRnx8PHPu3r170a9fPxw8eBD+/v5ITk6Gn58fBEHAzz//zJwzYcIEvPfee8XOm83VRfARCxDpZym8EmXWPFsLe1ZVj1JDNLm9drSGdLxNdGiB9+JWk5ehJFLk8k3UnGPZobWcWA5WQq8za/mK+PFW3BnKqfnNaPiHBClP4FCUdwenXjBfKEezMClTpgz+85//oFmzZrpvfvXqVVy/fl12TLVq1bB161a0a9cON27ccPjxatasiX79+mH06NGya2RlZaGgoAAxMTF4+OGH0bhxY8yaNYs5Nj8/3x4GAu79B5CQkGC6vzizYpYdglnnxF4GcZ4J60/xfNscpTwTLaXAcrknzuDO391d99KTwMq6rqZcVprgqTdZVO8Yln1q1jRTbkpJw53CpMbXY3QLk9Mvppru/aY5lBMVFYWyZcsacvOYmBgkJibKHgEBAfambX5+jub6+fnBarUq3icyMhIxMTE4deoU9uzZgy5dunDHBgYGIiIiwuEg1OPJf8GzwjFie6QChSdCbOEbaZ5Mk7GvMqt0pKjdFVgvWj0nRpUEu/LvmNcThJdHIoe034j0O2st1tpyIR1xOId3Lzn71D6H2vGssRRi8V0EAw4zolmYfPDBBxg3bpxbO7w2bdoUUVFR6N27Nw4ePIiTJ09ixIgROHv2LDp27Ggfl5iYiFWrVtm/r1ixAps2bcJff/2F1atXo23btujatSvatWvnNtuJe7iyT4ZYUCjdW9o7RZo8ysrZEF+X83Jo2cjPCOQEAi9sxRqj9e/GiL9LOQEg/qw2d4EnMKTeAzUVJbzeHUohG5a3hSVceDazzsuFmZTmSp+HJ8YI74X6mPyXBx98EGfOnIEgCKhSpQpKly7tcH3fvn2GGmhjz549eOedd7Bnzx4UFhaibt26GDduHDp06GAfY7FYsHDhQvTp0wcA8Nlnn+Gjjz7C5cuXER8fj169euHdd99FQECA6vtSubC5kZb+snJLbN9t1+XKhVlI17HlmtjQsgEgr8y4JLepFyOXH6El9MHrdWJDrdhgzeOtxfqsBblcGSX7nOnJQrgGd4Zyqi15W3co569ek033ftMsTFiJoWLGjx+vyyCzQcKEj9lKgpXEhlS0sPbpkZsjZtfEuQCcL/mV6yLr7UhFoRF9O9TkWejN6+DlpEhDMzxhwBNBLLu1JNxqsZXwPG4VJosNECa9zSdMSmmdoFZ4/Otf/0Lnzp1Vd1glvA9PCxIecgJEOk4azpB6X3ifrZlzmV4O6WcWRogSXlKv3Dh3Ib2fEc3EeNUq4pc565pSmEZ6b6U5LO+INK9DTVUNq7eJ3G8hHac23ET4OHrDMSYN5TjdYE2JV155BZcvX3bV8gQhC69Ch/VZnFci13hN3O9EbndhVg8TaR8Uvcmv0qReV4oPvTklRuU08HqU8Map6YOiNEc8ntW3Q0l0yHl/bNd560q9RGorkFj5LAThTbhMmDjZ6Z4gNCEWDIB8OEdaDszKT9GyDlB87xwxrAoeZzbts9kq992VuLM0WC5BVE15sO1QSnKVvsR5Hgo5m+REDOu6lsodXlhIToyJPzub30J4F9T5lSBMiNJLk+clkTtnO88qL7Yd4vtKdx9mfZaOsaE2hMPy4qid52z1jRJq19NSFssLUdiQSwoVr6Glkofn9ZB6Mlj3lVtPjedCzuMi/a62DNkZKATknbi7KmfOnDlISkqyt9Jo2rSpQ7PSO3fuYODAgYiOjkZYWBi6devmVOSEhAnhU8gJEVbrebmusFIBwmq1b+ttIm1Hz4LlLVHynugp6ZXmnrCqlLSuKcZZT4pSSSuvlFgqFlj5HVruy1pPyU7pNaWkXF4Vj9w9lEJEauareQaC0ErFihUxZcoU7N27F3v27EHr1q3RpUsX/PnnnwCAYcOG4ccff8SKFSuwefNmXLp0CU899ZTm+5AwIWRxZ8jAHahtSqZm/xwb0hb1rBAOb48dJZR6laipQtJ6zcg5gLpwjDScIn3xi4UDr6xWek3O88BCyRPCGisnqHheFrXhHDlblbw9rM+EDyJY9B8a6NSpEx5//HHUrFkTtWrVwqRJkxAWFoYdO3YgKysLCxYswPTp09G6dWs0atQICxcuxB9//IEdO3Zoug8JE0IRNTvYegq5hFYxvIoVaY4K65ptvvSc7X5ir4kNaT4JKxlWba4Jq7pI6e/D1XkhWv57UEoGFSMdoyQweGJDnDvCS3QVj5WzW83LnZfXIb4/LzzEEzdiAcPy0KgNV5HXxHcxKsdEunGteFsWHkVFRVi+fDlyc3PRtGlT7N27F4WFhUhOTraPsW2mu337dk3P5TJhUrly5WLN1wjvw0w7BbNQSlJVmgvwE0vlPCbS9ZX2vVHTyp5li/g+rOdh5cF4I7w8DlZyKitZVbwGy5ug1pshxoiXutgmOe8PazxPxIjDWjxBZvvsTCIsUfJISEhAZGSk/UhNTeWOPXz4MMLCwhAYGIhXX30Vq1atQp06dZCZmYmAgACUKVPGYXxsbCwyMzM12aO5wVp6ejosFgsqVqwIANi1axeWLVuGOnXqYMCAAZpu7g1QgzXvg5cLwWuoxhMwajvE2uar3dSPtwGgFjzRn0SPDWoqarTmibBKannjePdRqrDRYpvSHLnKHzFGCQk5MUa4Dnc2WKv8xbvw09FgzZp3B+df/gDp6ekOtgYGBiIwMJA5p6CgABcuXEBWVha+++47fPnll9i8eTMOHDiAvn37FvO2NGnSBK1atcLUqVNV26W5wVqPHj0wYMAAvPjii8jMzETbtm1Rt25dLF26FJmZmRg3bpzWJQnCUHi7BPP2x1FqUCZeU/rZcdyr2PMliiXDspBrT6/2GaX397RQkaIlOVVNiIc1lpWTwksSlQsLsex21uMgl/fCElZ6BINczo4aEUR4N3r3u7HN1bJhbUBAAGrUqAEAaNSoEXbv3o1PP/0Uzz77LAoKCnDz5k0Hr8nly5cRFxenyS7NoZwjR46gSZMmAIB///vfqFevHv744w8sXboUixYt0rocQehCLDLEf8p1RWXln7BEi9xeO3JrSju68vqZGIGrtwUQl0hLzyvdU+0LVylkIhYI0pctK7FWLllVuq6c3c4KEqVKHL3lv3KVQLxwkTicRCLFx/Dw1sJWqxX5+flo1KgRSpcujd9++81+7cSJE7hw4QKaNm2qaU3NwqSwsNDu4lm/fj06d+4M4F6SS0ZGhtblCJPhbTkK0uoZqSeE5yWxzRWPZa3Hu4/aTQCVQjV6m6252kvCy28x8r68lysvV0SaTKoUspATIFpKhOXGSHNgWLkiYtvUJPDy0CpmpLkqSmErguAxZswYbNmyBefOncPhw4cxZswYbNq0CT179kRkZCT69euH4cOHY+PGjdi7dy/69u2Lpk2b4pFHHtF0H83CpG7dupg7dy62bt2KdevWoX379gCAS5cuITo6WutyhIkwYziAB8tTArC7t/LazEv/lHpc5Cp+pAJFKflUKTlW6VnFnz39d+Rsoq3cS0/68pbLBZELxzhbeqtUliu1gWU/67qcCGAl/Kr1aLAqeaSeEd7vovbvgTA/7m6wduXKFfTq1Qu1a9dGmzZtsHv3bvzyyy9o27YtAOCTTz7BE088gW7duuGxxx5DXFwcVq5cqfm5NCe/btq0CU8++SSys7PRu3dvfPXVVwCAt99+G8ePH3fKCDNDya/mhOXRYLWYF4+Xa6Ymt1cO775ySbXi3YflNvOTelS05LuotdkIjLyHUgKqXChGqeJGTb6F9Jp0fbmxziTYugJpGEgp0VZpDRIkxuHO5NeEuePhF6wj+fX2HaS/+p7p3m+ahQlwr345OzsbUVFR9nPnzp1DSEgIypcvb6iBnoaEiTlRWymj5l/1ci94NaXILLGilNgqvSb2oDgjAlwlTpTCRs7cV65iRWs1jRw8oaPlZaxkq3Qtlp1qhY4zKIWC1IRtSJQYCwkT/TjVx0QQBOzduxfz5s3DrVu3ANzL1A0JCTHUOIKQQxq2kYZnWCEeVkiHF+5hzVUSLrbvvC6wYsQ7DvMEgBphxapA4o3TilI7e2fEkJy3RBze4PX+EI/j5U1IQyTS3A7Wy1wcElHyRPBEBcsONWXBWkJJvDWUEny1lg9Tvok3YDHgMCGCRs6dOyckJiYKISEhgr+/v3DmzBlBEARh8ODBwiuvvKJ1OdOTlZUlABCysrI8bYpTNOo3rdhn8TlvRfpcrIM1Vmkd6Xq8sUrnWOeLMmoW+247xHOU/n5YdvLu6Sxq1jLyv6cW7adqOi+9Jv1s+84bo7S23Bjx+mrXEtuj9pnU2MG6xrsX795KayvZTDjijneG7R4JcyYIlRdNcfpImDPBlO83zX1MhgwZgsaNG+PgwYMOya5PPvkkXn75ZcMEE6EPaat1d1ZyuBpWciqvd4n0mnSMnAdESyUKLzdEnEMi9p5I98/Z86W6+0ivq2kU5wxq1pLrSOssSqWwPA+B1IuhplpHTQiDN4Z3P7nx0s9aQilK4SC5SiUlzwcvFES5J4Sn0BzK2bp1K8aOHYuAgACH81WqVMHFixcNM4zQB6uPh7cLEjmUepnwSoql820ojWfdk1WtYxMk0t4lznR6lcIKYzkLq5xaL0aUtKrp+aFULWMbozc0wQo78e4l/lM8X6lMWIsQkAvdKJUIS6t5eOtLfzcK75gMPT1MDOxlYjSahYnVakVRUVGx83///TfCw8MNMYowDl8TI3IvT96+MdIXuFwpsPSc+E9ebxPeOuJrrEZrSs/l7n4lasQYyzbeWGdyGKRNwHheD6WSV9Y8tS99NTkhcrASYsXn5Tw/zsArpVbKgVESWNLvSgnIJFo8gJt3F3YXmqtynn32WURGRmL+/PkIDw/HoUOHEBMTgy5duqBSpUpYuHChq2z1CFSVYx54oRkbakWC7bpSZ1ctsLwlRosJT/UwUXtfLfZpCRNoqXTRurbW+zu7ttaqI2fW5IWT5Dw1zlYmable0nBrVc6s9/RX5Qwcb7r3m2aPybRp0/D777+jTp06uHPnDnr06GEP42jZpIcgtKD00lOqqOH9C1/sCVGTU8Kq0JHLtfCGTrq8yiIbasWGFtGkJ2TBq6iR63Ei9cRoQY93Q6nqSLyuFttYFUo8++TycqRrsb4rPTOJEs8hCPoPM6JZmFSsWBEHDx7E22+/jWHDhuHBBx/ElClTsH//fp/rYUKYD55YECNN/OXBGic+p7YHik3csLwwLBuc3SvHVd4SLUm+gHx4Swu83AW1L2heSbB0jFwprqvDD1oEh1yCq/S7XGhKSWjwnptXmi2HHsFHGADlmPyPUqVK4YUXXsCHH36I2bNno3///ggODjbaNoIAUPxFyAvD8DwhvHOs5FheszVWdZOcLbY5rBe3Ur6JJ9HSkE5rvxUpWv8lrxWWB0VrZQ7vJa81sVdtzgtPhCjl3kjXVrKHt4Zc/xbxZ6mHirwmHsJHc0ycEiZff/01mjdvjgoVKuD8+fMA7vXIX716taHGEYQYudAKq5kawE4gVRPeUVOGy7qHnK1mDus4W3LsipJhG86+7KQvV17ehdJnng3O5FSoqQ5ircuqrlErpli/g3Rd3nw1vwMJEsJVaBYmc+bMwfDhw9GhQwfcuHHDXqETFRWFGTNmGG0fUYIReyR4XV15XVtZQsM2X+w5YXlVeKKCJ0R4ZbtKPVO04IpyXjFqbVNbQg14pkpD6eXOQs5bo6e6h3cvOTvkvBi2z2qFEa/cl+d5YeXBsGwhQWIeLIL+w4xorsqpU6cOJk+ejK5duyI8PBwHDx5EtWrVcOTIEbRs2RLXrl1zla0egapyPIecGLChJqdDPF+ukke6Dq8/iVqbXYXR9+A9r1Ilk1YbxWEJVkmttMJEC1ord3hrOHNvPRhhN2suq1xZDOt3J7FhDG6typnxvv6qnKHjTPd+0yxMgoODcfz4cVSuXNlBmJw6dQpJSUm4ffu2q2z1CCRMzIXSy1EurCInSFjlx+KxcvknRuCpUmDx/W0YbYdSCav0nFEvSb0lyYBrRYqcYJCbwxMyPA+VUcKHUAcJE/1oDuVUrVoVBw4cKHY+LS0N999/vxE2EQQTVtMz8Z+AfDdUaZmv9BprPqvpGEvA8MJDahqVqfH0qF3PCLTYr2YNufwOMVpLZpXWk17TkjBqVAKuHM4k/KpJbOXlorB+C7VJtVR1Y1Io+fUew4cPx8CBA/Htt99CEATs2rULkyZNwpgxYzByJClxwljUlOKqLXdVkxdhm6/1hSwWMVoSX5XKmrWW8rJQqlZi2SH3/GrKhXl2yuUoOPuveTUhC/E9lPI4eGsp4UwfEttv4WypLiskI1fCK/VISUUM7/7kZTEpVC58j/79+2Pq1KkYO3Ys8vLy0KNHD8yZMweffvopnnvuOVfYSJRgpBU2Uk8Gq5RYfI4VslESIryqHPE9pfdn3U9N6bBSMikLZ0ST0lq8HBo5kaZFzNiQe8EpJamKUSqr5a2vlACrphqFh1KlC+9+UrHGCimJx4rXkEtklT6T2moeEiGEp9GUY3L37l0sW7YMKSkpiI2NRV5eHnJycny6sRrlmBgDq1eIs2vIneMlzGpJYNVqg55xrsDIe7vqOXglvVLPgZ4cEbk+IXI5L7zPRsHyjjh7P7mSYNZ53u/a1u8ZrLOu0PooBAO35phM+0B/jsmb75ru/aY5+TUkJATHjh1D5cqVXWWTqSBhYj5YiahqkjeNFkV61uH96UnU2KS28skZ5F7KapJT1fbpcHa80lpKHhMjhAhrXRZGhsoIbbhVmHxsgDB5y3zCRHMop0mTJti/f78rbCF8BFckaLKEh/QFKtfLRHxOjX28XiVyiaGs3AveOq5sTOYMLDEilyQsnse7ZkNtcqraMaw8FWfCELwkUdt6WvJO1CSlarVP7X1ZCa+sRFe1ScgE4Wk0C5PXX38db775JmbOnInt27fj0KFDDgdBaM07kINXCaPkaVCTFyGXFKokcuTKksX3MIvwkEPLc0tR461Sk1ci/qzU1EzJSyLN35DCajomvS59ySt5c9TAygdRI1RYz8uyWSmsIz1H3hMfwEercjSHcvz8imsZi8UCQRBgsVjsnWB9BQrlmB9WXolcEqr0PO+cnOjhvcC9QYhoxdkwkzOhA615JTac6X8i9yIXr2dUlYoRoRQ1axg1hnAOd4ZyKn04UXco58LIsaZ7v2n2mJw9e7bY8ddff9n/JAg1GFGFIhURrERYuXCL0stWTpQY0etDbr6aklxXoiZEIzcHcO7lrScUIxUYch4DsVdEWrorPscqreWtrcZeZ8MnctVGrPsYMYbwAny0XFizx6SkQR4Tc6Gm54jWqhyt1T4lBS1eILW/j1HJnkYkj7LmKlX3iL0oZn+5e4ONvohbPSZTDfCYjDKfx0SzMFmzZg17IYsFQUFBqFGjBqpWrWqIcWaAhIl5YFXjsMYA2sWHGatkPI3Rv4GayhVAXT8QreEeteXBcusYEYZh2eIKSJR4DhIm+nEqx8SWU+KwkCjPpHnz5vjhhx8QFRVlqLGegISJd6AlH0R8DZAP2ei5t9ngCTul38jMz+aM2FHT60O6PivfRK/nxJmcGBIb5sedwqTy1InwC9IhTO7cwXlfECa//fYb3nnnHUyaNAlNmjQBAOzatQvvvvsuxo4di8jISLzyyit4+OGHsWDBApcY7U5ImJgPrYJCOt4bmqQpIc11cVZEqRUonsLZl7HahFWW0GCNZ50noUCwIGGiH83Jr0OGDMH06dPRpk0bhIeHIzw8HG3atMFHH32EESNGoFmzZpgxYwbWrVvnCnsJQnNJq22OUhKt9LuWl7Srk1SVeqTYzkvHSc+zWs7bxusVJXqfX05MKJW+8kqM5XqViNeXu4c0OdaI/h9yCboEoRofLRfWLEzOnDnDVFYRERH2qpyaNWvi2rVr+q0TsW/fPrRt2xZlypRBdHQ0BgwYgJycHNk5giBg3LhxiI+PR3BwMJKTk3Hq1ClD7SI8g5xXRK7fCctjIP4sHqel8kZtgzdnUGp+5syeNVKMECXSNbS+dHkiRJoPwqpQkesxIic4pJ4QaWUOq1LHmWeToqfhmh5ICPkYPlqVo1mYNGrUCCNGjMDVq1ft565evYqRI0fioYceAgCcOnUKCQkJhhl56dIlJCcno0aNGti5cyfS0tLw559/ok+fPrLzPvzwQ3z22WeYO3cudu7cidDQUKSkpODOnTuG2Ua4FjWeCNuLmeUVUBIj4rm8z9I11WJUWITXxIzXmZXnFXElLFGiJqGUhXQe67ucF0RuLus6q8yY1zlV6j3xNrzRZqLkoVmYLFiwAGfPnkXFihVRo0YN1KhRAxUrVsS5c+fw5ZdfAgBycnIwduxYw4xcu3YtSpcujVmzZqF27dp46KGHMHfuXHz//fc4ffo0c44gCJgxYwbGjh2LLl26ICkpCUuWLMGlS5fwww8/GGYb4VrkXqpae33IhSt4vVDEooAXRnEHvP4sLC+Nmi61UrQ+j9J4V1W5KIVelO4j1zGVd116f3q5E6aBPCb3qF27No4ePYrVq1dj8ODBGDx4MNasWYM///wTtWrVAgB07doVL774omFG5ufnIyAgwKHrbHBwMABg27ZtzDlnz55FZmYmkpOT7eciIyPx8MMPY/v27bL3ys7OdjgIzyInJmx/agllsPqcsNaRu49SpY/WnBO1niElcSW1Va23RKtXRY0gkkMpEVXpuzS8Iz4v13ZdLteEdY3nTaGQCGEGLIL+w4xoFibAvZLh9u3bY8CAAXjjjTeQkpLCbFVvFK1bt0ZmZiY++ugjFBQU4MaNGxg9ejQAICMjgzknMzMTABAbG+twPjY21n6NRWpqKiIjI+2HkSEpwrVIRYM0Z0Qu8dOGFo8Ia4w0FKTVfrXiRMkmV3p2eM+tN2SkRqzYzvH2znHGo2EL0fAaronHaAkjEQThHJrVhNVqxQcffID77rsPYWFhOHv2LADg3Xff1VwePHr0aFgsFtnj+PHjqFu3LhYvXoxp06YhJCQEcXFxqFq1KmJjYw0XRGPGjEFWVpb9SE9PN3R9wnh44Qtpzoj4mhhWLokaD4xcgzc5W1nn1IgS8Xy58VLB5WxLeR6uylmReiWk+R9a+oZoad/O8r5IxYecV4YgPIabQzmpqal46KGHEB4ejvLly6Nr1644ceKEw5iWLVsWe4+/+uqrmu5TSptZwMSJE7F48WJ8+OGHePnll+3n69WrhxkzZqBfv36q13rzzTcVE1irVasGAOjRowd69OiBy5cvIzQ0FBaLBdOnT7dflxIXFwcAuHz5MuLj4+3nL1++jAceeIB7v8DAQAQGBqp+BsKzsHqUiL9LP0u/K728WZ4HuRez0kvblT1D9HpHjLDHiN4eciEVPWtIr4sFBi9spDWnhSDcit48EY1zN2/ejIEDB+Khhx7C3bt38fbbb6Ndu3Y4evQoQkND7eNefvllvP/++/bvISEhGu3SSPXq1YX169cLgiAIYWFhwpkzZwRBEIRjx44JZcqU0bqc0yxYsEAICQkRbty4wbxutVqFuLg44eOPP7afy8rKEgIDA4V//etfqu+TlZUlABCysrL0muw1NOo3zeVrGnEP8Rpa1rONlf4pd12PvXJzlWwxC3p/A0/Rov1UoUX7qczzcuOlB2se77MamwjfxR3vDNs9qr4/Saj+4TSnj6rvT9Jl65UrVwQAwubNm+3nWrRoIQwZMkTX82mOg1y8eBE1atQodt5qtaKwsFDrcqqZOXMm9u3bh5MnT2LWrFkYNGgQUlNTUaZMGfuYxMRErFq1CsC9FvlDhw7FxIkTsWbNGhw+fBi9evVChQoV0LVrV5fZ6Qu4wlXvbAmrnBeAVz1jlG2spFe1Tdrk1ufh6kofPesbkUMiRSnZ1Qik4SCpl0TOa8KyjZePomXvHqOatBGEUUgLPvLz81XNy8rKAgCULVvW4fzSpUtRrlw51KtXD2PGjEFeXp4mezQLkzp16mDr1q3Fzn/33Xd48MEHtS6nml27dqFt27aoX78+5s+fj3nz5mHw4MEOY06cOGH/oQBg5MiReOONNzBgwAA89NBDyMnJQVpaGoJ0tPAlXI/cy1+u6ZnaShGl6hbWGkohHy2dZXk2S3unGI24JFprAzkeWqtxxCJAqWKG11dEbl05eImrckJB3AjNiB4mnmqsRvgoBnV+TUhIcCj6SE1NVby11WrF0KFD0axZM9SrV89+vkePHvjmm2+wceNGjBkzBl9//TVeeOEFTY+lea+c1atXo3fv3hgzZgzef/99vPfeezhx4gSWLFmCtWvXom3btpoMMDu0V45rkRMIrKRQlvgw8l/yrCoeo9q1yyXLSrvT2s4ZgVJyrTsasDmL1mRXVjKrmjwR3gZ9ts9a7dE6lvAd3LlXTtUJk3XvlXN2wttIT093sFVNruVrr72Gn3/+Gdu2bUPFihW54zZs2IA2bdrg9OnTqF69uiq7NAsTANi6dSvef/99HDx4EDk5OWjYsCHGjRuHdu3aaV3K9JAw8Sw8j4cr7qHWg6L1/mrFlysEglRgiXGHIHFmB12AXy1jQ2kHYLk9dsTr81ATbiHRQbDwRmGi1dZBgwZh9erV2LJlC6pWrSo7Njc3F2FhYUhLS0NKSoqq9TVX5QDA//3f/9EmfV4M6yXoqhejs7A8CawxRtisJBrUjHVmffF9XIWW/BZeabXaNdSEZ5TgCQK5dVjhEZbAUStY5K7zbGG1rVdjO0HoQW+TNK1zBUHAG2+8gVWrVmHTpk2KogQADhw4AAAO1bFKuK4rGmFKeC8aM4kSQLnLqpIXQs051nXxn0b8Jmoapikl1roKVohMjxBjCQO5TfRYqOlXomZN6cZ74nWVvCisEA4r10RuLDViI9yCm/uYDBw4EN988w2WLVuG8PBwZGZmIjMzE7dv3wZwb5PfDz74AHv37sW5c+ewZs0a9OrVC4899hiSkpJU30dVKCcqKgoWi7rtkf/55x/VN/cGKJRzD2dDGICxokeNHXIeIT0eAWdsc8VvoBdXh4+MwMj8DDlvBu+82lAOL4eFBEnJxZ2hnGrj9Idy/npffSiHpwMWLlyIPn36ID09HS+88AKOHDmC3NxcJCQk4Mknn8TYsWM1/RaqhMnixYvtn69fv46JEyciJSUFTZs2BQBs374dv/zyC959910MGzZM9c29ARImbNTkTYg/63kJqn25G52wasQ6Zn75O4Orn8eZnBS55FZpKEd8jnddDjXjWV1kiZKDW4XJu5Phr0OYFN25g78+0J5j4mo0J79269YNrVq1wqBBgxzOz5w5E+vXr/e5nXtJmNxD6wuJ1wZebYKpeKya7q5GoVZweRp32qL3Xs54P/QmzUo/276z5ojhiQpWxY5c/gqJkZKLW4XJWAOEyUQfECZhYWE4cOBAsSZrp0+fxgMPPICcnBxDDfQ0JEw8i9bwiBHCQk24x4whGlfiCVHG21TPGcECoJhwUOPxUBv+IS8JYYOEiX40J79GR0dj9erVxc6vXr0a0dHRhhhFuAZ3dxY14n68RF1pszDxNWf6dcglvbLW9GTSqrPo7fyqFb2b3enN3VDTl4Q3T64bLK9Jmk3IkCgh3Iabk1/dhWaPyaJFi9C/f3906NABDz/8MABg586dSEtLwxdffKG4KZ+34e0eE0+FH1yRVOps4quR4121hidxpf3OhjiMCofIhWRs59UmuSpBgoQA3Osxqf62fo/Jmcnm85g41WBt586d+Oyzz3Ds2DEAwP3334/BgwfbhYov4e3CxBmMfLm7sgpGL96ST0LIw8sjcSaMowcSJgRAwsQInOpj8vDDD2Pp0qXYt28f9u3bh6VLl/qkKCmpaH0haxnvqoRVZ5CGYpRa3/sS3v48asUIrxmaNBzjTCM4PWEb2sSPIPioEibZ2dmaFr1165ZTxhC+gdwL3si1jboHq7mYJ9q3uxM1+TaeQmvYhLe5nngXYGm+C6uqRuk+vAZyzogT8q4QhuCjOSaqhElUVBSuXLmietH77rsPf/31l9NGEd6HK8WIGKObtam9j5qXtadf6EbhaREm7a6qZjyvSZqasI1Sl1nbWuI1nd3YjyCMxNaSXs9hRlTtlSMIAr788kuEhYWpWrSwsFCXUYT34eqXmStyPlyxnrflpqgtjXb3MzkTYlHaT0cqUKQeFGdwtpyZxAxB8FElTCpVqoQvvvhC9aJxcXEoXbq000YRhBRPvuy1vJi9SZRI0buPkhlftnKdYMXXldrSa60u4pUmU0kxYTgm9XrowamqnJJESazKIZzD27wlYlzRzt8ojGxaprRrsBbPiVJirdw5JRtJuHgv7qzKqTFqMvwDdVTl5N/B6ak+UpVDmBNfyXHQgjM7CbsKM73MtSK23WzPIfYw6K1mUVuNo/Y66zzL8+KMjQRRUiGPiQLkMSG8GbN5P5QwuqW7mg385FDqGKvGA8MKATnrFaGW9+bHnR6TmiP1e0xOfUgeE4IwhJLoHXIGbxIlADsng5e0yhMFrB4nrAodNd4X3nitc8W2SD9rgfJTCAdKcrkwQXgKZ/a9cWa9kozRv4kz4RZewzS50lw1YRbpvjfOVPnw1uONUbKD9Z2F3usE4a1QKEcBCuUQhDJmTNhU00TNmfb0LK+OeC2lhm08EUb4Bu4M5dR6S38o5+THPhLK2bp1K1544QU0bdoUFy9eBAB8/fXX2LZtm6HGEQThHZjxBaumF4rWLrOsJFzpOXFJMCv0otcegrBDoZx7fP/990hJSUFwcDD279+P/Px8AEBWVhYmT55suIEEQRBaYIVM1Hh0lHJApK3tWbkulANCuBUSJveYOHEi5s6diy+++MKhiVqzZs2wb98+Q40jSjauyAehHJPi+Npv4mx5rlKiK8ubIZeYKz7E16WVNRTaIQhHNAuTEydO4LHHHit2PjIyEjdv3jTCJoIAYPy+ON5WOusubK30zY4aYSA9Jw2nqG2KJp6v5rza76yNAMXf5aqQCEKKr+6Vo1mYxMXF4fTp08XOb9u2DdWqVTPEKIJwBd7yAibYKFW+yJ2zodR3RCog1IoCXmKt9DurD4m0pFm6HnlRCC4UyrnHyy+/jCFDhmDnzp2wWCy4dOkSli5dirfeeguvvfaaK2wkCN3IbbCndudgXxY1vuhJUhILarwYrHlq1raNkeac8HJQpLkwJEaIkozmcmFBEDB58mSkpqYiLy8PABAYGIi33noLH3zwgUuM9CRULkwQ3oGezfVYayh5V6Tr8bwcznZrpS6v3ok7y4VrD9FfLnziUx8oF7ZYLHjnnXfwzz//4MiRI9ixYweuXr3qk6KE8Aw2z4QveSh86Vk8hdqmZHLJqixvhNRb4UzzM16ui5aEWZatBCGHr+aYUIM1BdzlMaHETN+G/n69A6nXw6imbOK50vvJeW/Ec8zYxI4ojjs9JomD9XtMjn9mPo9JKTWDnnrqKdULrly50mljSjK83Ae58/Sy8w7o78lYjAxxyHVqVbMXjxi1gkVNW325kmKCsKM3gdWkbglVoZzIyEj7ERERgd9++w179uyxX9+7dy9+++03REZGusxQX4fl6ue9zGzn6WVnXqR/n0rfCWXEL2ujPAfO9jwRf1bq7srrAKt0H15/FRIphA0K5fyXUaNG4Z9//sHcuXPh7+8PACgqKsLrr7+OiIgIfPTRRy4x1FOYKflV+i9v+pc4QRiDmhCO+LptDi80I7ezsJzHR0l0UCjH/LgzlHP/IP2hnGMzzRfK0Zz8+tVXX+Gtt96yixIA8Pf3x/Dhw/HVV18ZahzhCIkSglBGq0dBKjDkRIXtuprcEN58Nd4TXnt88pgQDlAfk3vcvXsXx48fL3b++PHjsFqthhhFKEPNwgiCjRpPBG+/G2nuh3jHYOnaLJEg3bzP6Pb4BOEACZN79O3bF/369cP06dOxbds2bNu2DdOmTUP//v3Rt29fV9hIcCCPCVFS0PtylmtFryQgWKJEKlyMtld6P4JgYTHgMCOqqnLEfPzxx4iLi8O0adOQkZEBAIiPj8eIESPw5ptvGm4gIQ+FdAhfR0tbeDXt6KVChNdtVc7zIudFcQVUMkyUJHT1McnOzgYAUyXNGI2Zkl8JPiTQSi68l7WrXuKsRFmWcNDb8VU6l/bP8Q7cmfxa5zX9ya9H56hPfk1NTcXKlStx/PhxBAcH49FHH8XUqVNRu3Zt+5g7d+7gzTffxPLly5Gfn4+UlBTMnj0bsbGxqu3SHMoRExERQS9rlVA+iGshUVJy4fX6UJucqoS4MywrUVZuHx1nBAQluxJqcXe58ObNmzFw4EDs2LED69atQ2FhIdq1a4fc3Fz7mGHDhuHHH3/EihUrsHnzZly6dElTLzTACWFStWpVVKtWjXsQBOEIiVL34CovgjM5JkbbQ94SwgykpaWhT58+qFu3Lho0aIBFixbhwoUL2Lt3LwAgKysLCxYswPTp09G6dWs0atQICxcuxB9//IEdO3aovo/mHJOhQ4c6fC8sLMT+/fuRlpaGESNGaF2uxED/oi+50N+9uTDCiyHOSVGTm2IktLkfYcfDnV+zsrIAAGXLlgVwr9lqYWEhkpOT7WMSExNRqVIlbN++HY888oiqdTULkyFDhjDPz5o1y6EbrNHs27cPo0aNwu7du+Hv749u3bph+vTpCAsL485ZuXIl5s6di7179+Kff/7B/v378cADD7jMRoIgfBst/Uf03keu6RuJEsKOASW/tnxRG4GBgQgMDJSdY7VaMXToUDRr1gz16tUDAGRmZiIgIABlypRxGBsbG4vMzEzV9ujKMRHToUMHfP/990Yt58ClS5eQnJyMGjVqYOfOnUhLS8Off/6JPn36yM7Lzc1F8+bNMXXqVJfYRRDejK+GmOR2F/ZGSIQQriYhIcFh65nU1FTFOQMHDsSRI0ewfPlyw+3R7DHh8d1339ndOUazdu1alC5dGrNmzYKf3z0tNXfuXCQlJeH06dOoUaMGc96LL74IADh37pxL7CIIb8ZXQ0xKG+R5K0pJt0TJQ+9+N7a56enpDoUsSt6SQYMGYe3atdiyZQsqVqxoPx8XF4eCggLcvHnTwWty+fJlxMXFqbZLs8fkwQcfRMOGDe3Hgw8+iPj4eLz99tt4++23tS6nivz8fAQEBNhFCQAEBwcDALZt22b4vbKzsx0OwrvwVk+At9ptNHo9Hb7iMTFys0LCRzGo86utwtZ28ISJIAgYNGgQVq1ahQ0bNqBq1aoO1xs1aoTSpUvjt99+s587ceIELly4gKZNm6p+LM3CpEuXLg7HU089hfHjx+PIkSMYMGCA1uVU0bp1a2RmZuKjjz5CQUEBbty4gdGjRwOAvcmbUaSmpjq4tBISEgxdn3AtZny5q7XJFR4M273N+Lvw0Psy9qTHxF1iiAQL4QkGDhyIb775BsuWLUN4eDgyMzORmZmJ27dvAwAiIyPRr18/DB8+HBs3bsTevXvRt29fNG3aVHXiK6CzwZpeRo8erZj/cezYMSQmJmLZsmUYPnw4rl27Bn9/fwwePBhff/01hg0bhlGjRsmuce7cOVStWlVV8mt+fj7y8/Pt37Ozs5GQkEAN1gifgZrRGQ9VyhA23NlgrX7/yfAP0NFgreAODn+pvsGaxcJuYr9w4UJ7zqetwdq//vUvhwZrWkI5moWJv78/MjIyUL58eYfz169fR/ny5VFUVKR6ratXr+L69euyY6pVq4aAgAD798uXLyM0NBQWiwURERFYvnw5nnnmGdk1tAgTKdT5lSAIglCLW4VJPwOEyQL1wsRdaE5+5ekYWx6IFmJiYhATE6Npjq2t7VdffYWgoCC0bdtW03yCIAhXQt4Twl0YlfxqNlQLk88++wzAPVfOl19+6dA/pKioCFu2bEFiYqLxFv6XmTNn4tFHH0VYWBjWrVuHESNGYMqUKQ6Zv4mJiUhNTcWTTz4JAPjnn39w4cIFXLp0CcC9JBzgXuawFrcSQbgLCrMoY6aKFKUW9WaylSC8BdXC5JNPPgFwz2Myd+5c+Pv7268FBASgSpUqmDt3rvEW/pddu3Zh/PjxyMnJQWJiIubNm2cvB7Zx4sQJeyc6AFizZg369u1r//7cc88BAMaPH48JEya4zFaCcBZvESWeFFBmftFLN/WTfncGEjcEFw93fnUVmnNMWrVqhZUrVyIqKspVNpkKyjEhjIQ8It6NkkigMA7hzhyTpD76c0wOLfKBHJONGze6wg6CKBGQKPEdWCKFBAlB6EeVMBk+fDg++OADhIaGYvhw+f9jnT7de/olEARBqEUqREiEEJ6mRCe/7t+/H4WFhQDubabHq2UmCILwVUiIEKbDR3NMVAkTcfhm06ZNrrKFINwK5XsQeqHEVIIwHs0t6V966SXcunWr2Pnc3Fy89NJLhhhFEHIY1V6dRAmhFxIlhCexCILuw4xoFiaLFy+298UXc/v2bSxZssQQowhCDhIUhLO07PCh12/uRxB2DNrEz2yorsrJzs6GIAgQBAG3bt1CUND/SpSKiorw008/FWtTTxAEYRZcXcpLpcIEYQyqhUmZMmVgsVhgsVhQq1atYtctFgvee+89Q40jCIIwClcLBhIkhLsp0VU5wL0EWEEQ0Lp1a3z//fcoW7as/VpAQAAqV66MChUquMRIgiAIgiAklOSqHABo0aIFAODs2bNISEiAn5/m9BSCIAifRk+VDoWCCK2UeI+JjcqVKwMA8vLycOHCBRQUFDhcT0pKMsYygiAIL8KI0mEj9tYhCG9HszC5evUq+vbti59//pl5vaioSLdRBEEQ3gaJEsLt+GgoR3M8ZujQobh58yZ27tyJ4OBgpKWlYfHixahZsybWrFnjChtLBEb15iAIwnshUUJowRbK0XOYEc0ekw0bNmD16tVo3Lgx/Pz8ULlyZbRt2xYRERFITU1Fx44dXWGnz0O9OQiCIAjCCY9Jbm6uvV9JVFQUrl69CgCoX78+9u3bZ6x1BEEQXgQ1byPcSklvsGajdu3aOHHiBKpUqYIGDRpg3rx5qFKlCubOnYv4+HhX2EgQBGFqqKKG8BRmDcfoQbPHZMiQIcjIyAAAjB8/Hj///DMqVaqEzz77DJMnTzbcQIIgCDMibW/vLlFiuyd5ZwhfxSII+nbxycvLw/Hjx1GpUiWUK1fOKLtMQ3Z2NiIjI5GVlYWIiAhPm0MQhEmhihoCcM87w3aPRs9MRKnSQcoTONwtvIO9K8aa7v2mu0taSEgIGjZs6JOihCAIQozcJoC2cl+CcBcluipn+HD1FSPTp1PZK0EQvonYI8LykJDHhCD0o0qY7N+/X9ViFotFlzEEURJo3H86lYd7GazkVjOIEAoflXB8tMGaKmGyceNGV9tBECUGEiXeB738CTNisd479Mw3I5rLhQmCIAhzQIKphOOjHhPaIpggCIIgCNNAHhOCIAiC8EL0VtaYtSqHPCZeAG3wV3Kgv2uCIFQjCPoPE0LCxAugZMmSA/1dEwRR0qFQDkEQBEF4Ib4ayiFhQhAmxBbSIQ8KQRBcqCqHIAh3sefL4SRKCIIwHVu2bEGnTp1QoUIFWCwW/PDDDw7X+/TpA4vF4nC0b99e0z1ImBAEQRCEF+KJvXJyc3PRoEEDzJo1izumffv2yMjIsB//+te/NN2DQjleCLU0JwiCIHRX1jgxt0OHDujQoYPsmMDAQMTFxTlrFXlMvBESJQRBEIRRZGdnOxz5+fm61tu0aRPKly+P2rVr47XXXsP169c1zSdhQhAEQRBeiFGhnISEBERGRtqP1NRUp21q3749lixZgt9++w1Tp07F5s2b0aFDBxQVFaleg0I5BEEQBOGNGFSVk56ejoiICPvpwMBAp5d87rnn7J/r16+PpKQkVK9eHZs2bUKbNm1UrUEeE4LQAXVqJQjCUxjlMYmIiHA49AgTKdWqVUO5cuVw+vRp1XNImBCEDijfhyAIgs/ff/+N69evIz4+XvUcCuUQBEEQhDdiFe4deuZrJCcnx8H7cfbsWRw4cABly5ZF2bJl8d5776Fbt26Ii4vDmTNnMHLkSNSoUQMpKSmq70HChCAIgiC8EQ90ft2zZw9atWpl/z58+D2vce/evTFnzhwcOnQIixcvxs2bN1GhQgW0a9cOH3zwgabwEAkTgiAIgiBU0bJlSwgy/U9++eUX3fcgYUIQBEEQXogFOjfxM8wSY/Ga5Nd9+/ahbdu2KFOmDKKjozFgwADk5ORwxxcWFmLUqFGoX78+QkNDUaFCBfTq1QuXLl1yo9UEQRAE4SJsnV/1HCbEK4TJpUuXkJycjBo1amDnzp1IS0vDn3/+iT59+nDn5OXlYd++fXj33Xexb98+rFy5EidOnEDnzp3dZzhBEARBEJrwilDO2rVrUbp0acyaNQt+fve01Ny5c5GUlITTp0+jRo0axeZERkZi3bp1DudmzpyJJk2a4MKFC6hUqZJbbCcIgiAIV+DsRnzi+WbEK4RJfn4+AgIC7KIEAIKDgwEA27ZtYwoTFllZWbBYLChTpozsvcT7BGRnZztnNEEQBEG4Eg9U5bgDrwjltG7dGpmZmfjoo49QUFCAGzduYPTo0QCAjIwMVWvcuXMHo0aNwvPPP+/QeldKamqqw54BCQkJhjwDQRAEQRDKeFSYjB49GhaLRfY4fvw46tati8WLF2PatGkICQlBXFwcqlatitjYWAcvCo/CwkJ0794dgiBgzpw5smPHjBmDrKws+5Genm7U4xIEQRCEYVgEQfdhRjwaynnzzTdlE1iBe332AaBHjx7o0aMHLl++jNDQUFgsFkyfPt1+nYdNlJw/fx4bNmyQ9ZYA9zYvMnKfAIIgCIJwCdb/HnrmmxCPCpOYmBjExMRomhMbGwsA+OqrrxAUFIS2bdtyx9pEyalTp7Bx40ZER0frspcgCIIgzIJer4dZPSZekWMC3Kuo2bdvH06ePIlZs2Zh0KBBSE1NdUhkTUxMxKpVqwDcEyVPP/009uzZg6VLl6KoqAiZmZnIzMxEQUGBh56CIAiCIAg5vKIqBwB27dqF8ePHIycnB4mJiZg3bx5efPFFhzEnTpxAVlYWAODixYtYs2YNAOCBBx5wGLdx40a0bNnSHWYTBEEQhGvw0aocrxEmS5YsURwj7t9fpUoV2X7+BEEQBOHV6O3eatJ3pNeEcgiCIAiC8H28xmNCEARBEMT/oM6vBEEQBEGYBwrlEARBEARBuBbymBAEQRCEF2Kx3jv0zDcjJEwIgiAIwhuhUA5BEARBEIRrIY8JQRAEQXgj1GCNIAiCIAizQHvlEIQX0bj/dE+bQBAE4VpsOSZ6DhNCwoTwSfZ8OdzTJhAEQRBOQKEcgiAIgvBGBAB6Sn7N6TAhYUIQBEEQ3gjlmBAEQRAEQbgY8pgQBEEQhDciQGeDNcMsMRQSJgRBEAThjVDnV6IkQmW3BEEQhDshjwkhC5XdEgRBmBQrAIvO+SaEhAlBEARBeCG+WpVDwoQgCIIgvBHKMSEIgiAIgnAtJEwIgiAIwhvxwF45W7ZsQadOnVChQgVYLBb88MMPEpMEjBs3DvHx8QgODkZycjJOnTql6R4kTAiCIAjCG/GAMMnNzUWDBg0wa9Ys5vUPP/wQn332GebOnYudO3ciNDQUKSkpuHPnjup7UI4JQRAEQRCq6NChAzp06MC8JggCZsyYgbFjx6JLly4AgCVLliA2NhY//PADnnvuOVX3II8JQRAEQXgjVgMOANnZ2Q5Hfn6+U+acPXsWmZmZSE5Otp+LjIzEww8/jO3bt6teh4QJ4RTUeI0gCMKz2MqF9RwAkJCQgMjISPuRmprqlD2ZmZkAgNjYWIfzsbGx9mtqoFAO4RTUeI0gCMI3SE9PR0REhP17YGCgB60hjwlBEARBeCcGJb9GREQ4HM4Kk7i4OADA5cuXHc5fvnzZfk0NJEwIr4RCSQRBlHisgv7DQKpWrYq4uDj89ttv9nPZ2dnYuXMnmjZtqnodCuUQXgmFkgiCINxPTk4OTp8+bf9+9uxZHDhwAGXLlkWlSpUwdOhQTJw4ETVr1kTVqlXx7rvvokKFCujatavqe5AwIQiCIAhvxAMt6ffs2YNWrVrZvw8ffu8fib1798aiRYswcuRI5ObmYsCAAbh58yaaN2+OtLQ0BAUFqb4HCROCIAiC8Ep0ChNon9uyZUsIMve0WCx4//338f777zttFQkTgiAIgvBGaBM/giAIgiAI10IeE4IgCILwRqwCnAnHOM43HyRMCIIgCMIbEaz3Dj3zTQiFcgiCIAiCMA3kMSEIgiAIb8RHk19JmBAEQRCEN+KjOSYUyiEIgiAIwjSQx4QgCIIgvBEfDeV4jcdk3759aNu2LcqUKYPo6GgMGDAAOTk5snMmTJiAxMREhIaGIioqCsnJydi5c6ebLCYIgiAIFyJA5+7Cnn4ANl4hTC5duoTk5GTUqFEDO3fuRFpaGv7880/06dNHdl6tWrUwc+ZMHD58GNu2bUOVKlXQrl07XL161T2GEwRBEAShCa8I5axduxalS5fGrFmz4Od3T0vNnTsXSUlJOH36NGrUqMGc16NHD4fv06dPx4IFC3Do0CG0adPG5XYTBEEQhMugUI7nyM/PR0BAgF2UAEBwcDAAYNu2barWKCgowPz58xEZGYkGDRrI3is7O9vhIMxH4/7TPW0CQRCEZ7Fa9R8mxCuESevWrZGZmYmPPvoIBQUFuHHjBkaPHg0AyMjIkJ27du1ahIWFISgoCJ988gnWrVuHcuXKccenpqYiMjLSfiQkJBj6LIQx7PlyuKdNIAiC8Cy68kv07kzsOjwqTEaPHg2LxSJ7HD9+HHXr1sXixYsxbdo0hISEIC4uDlWrVkVsbKyDF4VFq1atcODAAfzxxx9o3749unfvjitXrnDHjxkzBllZWfYjPT3d6McmCIIgCIKDRRA8J5muXr2K69evy46pVq0aAgIC7N8vX76M0NBQWCwWREREYPny5XjmmWdU37NmzZp46aWXMGbMGFXjs7OzERkZiaysLERERKi+D0EQBFHycMc7w3aP5HIvoZRfgPIEDnetBVh/7SvTvd88mvwaExODmJgYTXNiY2MBAF999RWCgoLQtm1bTfOtVivy8/M1zSEIgiAI00GdXz3LzJkzsW/fPpw8eRKzZs3CoEGDkJqaijJlytjHJCYmYtWqVQCA3NxcvP3229ixYwfOnz+PvXv34qWXXsLFixc1eVgIgiAIgnAfXlEuDAC7du3C+PHjkZOTg8TERMybNw8vvviiw5gTJ04gKysLAODv74/jx49j8eLFuHbtGqKjo/HQQw9h69atqFu3ricegVBB4/7TKbGVIAhCBYJghSA4X1mjZ64r8RphsmTJEsUx4nSZoKAgrFy50pUmES6ARAlBEIRKBEFfOIaqcgiCIAiCIOTxGo8JQRAEQRAiBJ3Jr+QxIQjXQx1hCYIoMVDnV4IwP5SjQhAE4d1QKIcgCIIgvBEfDeWQMCEIgiAIL0SwWiFYqFyYIAiCIAgz4KMeE8oxIQiCIAjCNJDHhCAIgiC8EasAWHzPY0LChCAIgiC8EUEAoCNPxKTChEI5BEEQBEGYBhImhFdAjdMIgiAcEayC7sOMUCiHMD204zBBEAQDwQp9oRxzlguTx4QwPSRKCIIgSg7kMSEIgiAIL0SwChB0VOUIJk1+JWFCEARBEN6Ij4ZySJgoYFOU2dnZHraEIAiCMDu2d4U7vBF3Uair8etdFBpnjIGQMFHg1q1bAICEhAQPW0IQBEF4C7du3UJkZKRL1g4ICEBcXBy2Zf6ke624uDgEBAQYYJVxWASzBplMgtVqxaVLlxAeHg6LxQLgniJOSEhAeno6IiIiPGyh+yiJz10Snxmg56bnLhm44rkFQcCtW7dQoUIF+Pm5rr7kzp07KCgo0L1OQEAAgoKCDLDIOMhjooCfnx8qVqzIvBYREVGi/kdsoyQ+d0l8ZoCeu6RBz20MrvKUiAkKCjKdoDAKKhcmCIIgCMI0kDAhCIIgCMI0kDBxgsDAQIwfPx6BgYGeNsWtlMTnLonPDNBz03OXDErqc5sdSn4lCIIgCMI0kMeEIAiCIAjTQMKEIAiCIAjTQMKEIAiCIAjTQMKEIAiCIAjTUOKFyZYtW9CpUydUqFABFosFP/zwg8P1CRMmIDExEaGhoYiKikJycjJ27typuO6sWbNQpUoVBAUF4eGHH8auXbtc9ATO4YrnVlrTDLjiuVNTU/HQQw8hPDwc5cuXR9euXXHixAkXPoV2XPHcc+bMQVJSkr05VdOmTfHzzz+78Cm04ar/bduYMmUKLBYLhg4daqzhOnHFc0+YMAEWi8XhSExMdOFTaMdVf98XL17ECy+8gOjoaAQHB6N+/frYs2ePi56CAEiYIDc3Fw0aNMCsWbOY12vVqoWZM2fi8OHD2LZtG6pUqYJ27drh6tWr3DW//fZbDB8+HOPHj8e+ffvQoEEDpKSk4MqVK656DM244rmV1jQDrnjuzZs3Y+DAgdixYwfWrVuHwsJCtGvXDrm5ua56DM244rkrVqyIKVOmYO/evdizZw9at26NLl264M8//3TVY2jCFc9sY/fu3Zg3bx6SkpKMNls3rnruunXrIiMjw35s27bNFeY7jSue+8aNG2jWrBlKly6Nn3/+GUePHsW0adMQFRXlqscgAEAg7AAQVq1aJTsmKytLACCsX7+eO6ZJkybCwIED7d+LioqEChUqCKmpqUaZaihGPbfWNT2NK55bEAThypUrAgBh8+bNOi10Da56bkEQhKioKOHLL7/UYZ1rMPKZb926JdSsWVNYt26d0KJFC2HIkCHGGWowRj33+PHjhQYNGhhrnAsx6rlHjRolNG/e3GDrCCVKvMdECwUFBZg/fz4iIyPRoEED7pi9e/ciOTnZfs7Pzw/JycnYvn27u0w1FDXP7Ys4+9xZWVkAgLJly7rKNJfizHMXFRVh+fLlyM3NRdOmTV1sofFoeeaBAweiY8eODv8b91a0PPepU6dQoUIFVKtWDT179sSFCxfcZKXxqH3uNWvWoHHjxnjmmWdQvnx5PPjgg/jiiy/caGnJhDbxU8HatWvx3HPPIS8vD/Hx8Vi3bh3KlSvHHHvt2jUUFRUhNjbW4XxsbCyOHz/uDnMNQ8tz+xJ6nttqtWLo0KFo1qwZ6tWr52JLjcWZ5z58+DCaNm2KO3fuICwsDKtWrUKdOnXcZLF+tD7z8uXLsW/fPuzevduNVhqP1ud++OGHsWjRItSuXRsZGRl477338H//9384cuQIwsPD3Wi5PrQ+919//YU5c+Zg+PDhePvtt7F7924MHjwYAQEB6N27txstL1mQx0QFrVq1woEDB/DHH3+gffv26N69u6nyRVwFPbf25x44cCCOHDmC5cuXu9hK43HmuWvXro0DBw5g586deO2119C7d28cPXrUTRbrR8szp6enY8iQIVi6dKnX7+qq9e+6Q4cOeOaZZ5CUlISUlBT89NNPuHnzJv7973+70Wr9aH1uq9WKhg0bYvLkyXjwwQcxYMAAvPzyy5g7d64brS55kDBRQWhoKGrUqIFHHnkECxYsQKlSpbBgwQLm2HLlysHf3x+XL192OH/58mXExcW5w1zD0PLcvoSzzz1o0CCsXbsWGzduRMWKFd1gqbE489wBAQGoUaMGGjVqhNTUVDRo0ACffvqpmyzWj5Zn3rt3L65cuYKGDRuiVKlSKFWqFDZv3ozPPvsMpUqVQlFRkZutdx69/9suU6YMatWqhdOnT7vQSuPR+tzx8fHFPID333+/V4exvAESJk5gtVqRn5/PvBYQEIBGjRrht99+cxj/22+/eWXsXYzcc/sySs8tCAIGDRqEVatWYcOGDahataobrXMdzvx9e/t/I3L2t2nTBocPH8aBAwfsR+PGjdGzZ08cOHAA/v7+brbWOLT+veXk5ODMmTOIj493oVWuR+m5mzVrVqz0/+TJk6hcubKrTSvRlPgck5ycHAfVf/bsWRw4cABly5ZFdHQ0Jk2ahM6dOyM+Ph7Xrl3DrFmzcPHiRTzzzDP2OW3atMGTTz6JQYMGAQCGDx+O3r17o3HjxmjSpAlmzJiB3Nxc9O3b1+3Px8MVzy23ZqVKldz3cDK44rkHDhyIZcuWYfXq1QgPD0dmZiYAIDIyEsHBwe59QA6ueO4xY8agQ4cOqFSpEm7duoVly5Zh06ZN+OWXX9z+fCyMfubw8PBieUOhoaGIjo42VT6RK/6u33rrLXTq1AmVK1fGpUuXMH78ePj7++P55593+/PxcMVzDxs2DI8++igmT56M7t27Y9euXZg/fz7mz5/v9ucrUXi6LMjTbNy4UQBQ7Ojdu7dw+/Zt4cknnxQqVKggBAQECPHx8ULnzp2FXbt2OaxRuXJlYfz48Q7nPv/8c6FSpUpCQECA0KRJE2HHjh1ufCplXPHccmuaBVc8N2s9AMLChQvd+3AyuOK5X3rpJaFy5cpCQECAEBMTI7Rp00b49ddf3fxkfFz1v20xZiwXdsVzP/vss0J8fLwQEBAg3HfffcKzzz4rnD592s1PJo+r/r5//PFHoV69ekJgYKCQmJgozJ8/341PVTKxCIIguELwEARBEARBaIVyTAiCIAiCMA0kTAiCIAiCMA0kTAiCIAiCMA0kTAiCIAiCMA0kTAiCIAiCMA0kTAiCIAiCMA0kTAiCIAiCMA0kTIgSQcuWLTF06FCfum+fPn3QtWtXXWtUqVIFFosFFosFN2/e5I5btGgRypQpo+teBJ8+ffrY/x5++OEHT5tDEB6FhAlBuJCVK1figw8+sH+vUqUKZsyY4TmDGLz//vvIyMhAZGSkp03xeTZt2sQUgZ9++ikyMjI8YxRBmIwSv1cOQbiSsmXLetoERcLDw02z83VhYSFKly7taTPcTmRkJAlDgvgv5DEhSiQ3btxAr169EBUVhZCQEHTo0AGnTp2yX7eFLn755Rfcf//9CAsLQ/v27R3+VXv37l0MHjwYZcqUQXR0NEaNGoXevXs7hFfEoZyWLVvi/PnzGDZsmN1tDwATJkzAAw884GDfjBkzUKVKFfv3oqIiDB8+3H6vkSNHQrqbhNVqRWpqKqpWrYrg4GA0aNAA3333nVO/z6JFi1CpUiWEhITgySefxPXr14uNWb16NRo2bIigoCBUq1YN7733Hu7evWu/fvz4cTRv3hxBQUGoU6cO1q9f7xCqOHfuHCwWC7799lu0aNECQUFBWLp0KQDgyy+/xP3334+goCAkJiZi9uzZDvdOT09H9+7dUaZMGZQtWxZdunTBuXPn7Nc3bdqEJk2aIDQ0FGXKlEGzZs1w/vx5Vc+u9FzTp09H/fr1ERoaioSEBLz++uvIycmxXz9//jw6deqEqKgohIaGom7duvjpp59w7tw5tGrVCgAQFRUFi8WCPn36qLKJIEoSJEyIEkmfPn2wZ88erFmzBtu3b4cgCHj88cdRWFhoH5OXl4ePP/4YX3/9NbZs2YILFy7grbfesl+fOnUqli5dioULF+L3339Hdna2bH7AypUrUbFiRXvoRIvrftq0aVi0aBG++uorbNu2Df/88w9WrVrlMCY1NRVLlizB3Llz8eeff2LYsGF44YUXsHnzZvU/DICdO3eiX79+GDRoEA4cOIBWrVph4sSJDmO2bt2KXr16YciQITh69CjmzZuHRYsWYdKkSQDuCamuXbsiJCQEO3fuxPz58/HOO+8w7zd69GgMGTIEx44dQ0pKCpYuXYpx48Zh0qRJOHbsGCZPnox3330XixcvBnDPq5KSkoLw8HBs3boVv//+u104FhQU4O7du+jatStatGiBQ4cOYfv27RgwYIBdCMqh9FwA4Ofnh88++wx//vknFi9ejA0bNmDkyJH26wMHDkR+fj62bNmCw4cPY+rUqQgLC0NCQgK+//57AMCJEyeQkZGBTz/9VNPfDUGUCDy7hyBBuAfxLrAnT54UAAi///67/fq1a9eE4OBg4d///rcgCIKwcOFCAYDDDqqzZs0SYmNj7d9jY2OFjz76yP797t27QqVKlYQuXbow7ysI93Yv/eSTTxxsGz9+vNCgQQOHc5988olQuXJl+/f4+Hjhww8/tH8vLCwUKlasaL/XnTt3hJCQEOGPP/5wWKdfv37C888/z/1dWPY8//zzwuOPP+5w7tlnnxUiIyPt39u0aSNMnjzZYczXX38txMfHC4IgCD///LNQqlQpISMjw3593bp1AgBh1apVgiAIwtmzZwUAwowZMxzWqV69urBs2TKHcx988IHQtGlT+31q164tWK1W+/X8/HwhODhY+OWXX4Tr168LAIRNmzZxn5uH0nOxWLFihRAdHW3/Xr9+fWHChAnMsbYdcG/cuMG8Lv59CKKkQjkmRInj2LFjKFWqFB5++GH7uejoaNSuXRvHjh2znwsJCUH16tXt3+Pj43HlyhUAQFZWFi5fvowmTZrYr/v7+6NRo0awWq2G2puVlYWMjAwHe0uVKoXGjRvbwzmnT59GXl4e2rZt6zC3oKAADz74oKb7HTt2DE8++aTDuaZNmyItLc3+/eDBg/j9998dPAlFRUW4c+cO8vLycOLECSQkJDjkroh/KzGNGze2f87NzcWZM2fQr18/vPzyy/bzd+/etedgHDx4EKdPn0Z4eLjDOnfu3MGZM2fQrl079OnTBykpKWjbti2Sk5PRvXt3xMfHKz670nOFhIRg/fr1SE1NxfHjx5GdnY27d+86XB88eDBee+01/Prrr0hOTka3bt2QlJSkeG+CIO5BwoQgOEiTMC0WS7G8DiPw8/Mrtq44pKQGW47Df/7zH9x3330O1wIDA/UZyLnfe++9h6eeeqrYtaCgIE1rhYaGOqwLAF988YWDEAPuCT/bmEaNGtnzUcTExMQAABYuXIjBgwcjLS0N3377LcaOHYt169bhkUce0fVc586dwxNPPIHXXnsNkyZNQtmyZbFt2zb069cPBQUFCAkJQf/+/ZGSkoL//Oc/+PXXX5Gamopp06bhjTfe0PS7EERJhYQJUeK4//77cffuXezcuROPPvooAOD69es4ceIE6tSpo2qNyMhIxMbGYvfu3XjssccA3PuX9b59+4olsooJCAhAUVGRw7mYmBhkZmZCEAR7HsSBAwcc7hUfH4+dO3fa73X37l3s3bsXDRs2BADUqVMHgYGBuHDhAlq0aKHqGXjcf//92Llzp8O5HTt2OHxv2LAhTpw4gRo1ajDXqF27NtLT03H58mXExsYCAHbv3q1479jYWFSoUAF//fUXevbsyRzTsGFDfPvttyhfvjwiIiK4az344IN48MEHMWbMGDRt2hTLli1TFCZKz7V3715YrVZMmzYNfn73UvT+/e9/FxuXkJCAV199Fa+++irGjBmDL774Am+88QYCAgIAoNh/AwRB/A8SJkSJo2bNmujSpQtefvllzJs3D+Hh4Rg9ejTuu+8+dOnSRfU6b7zxBlJTU1GjRg0kJibi888/x40bN2STLKtUqYItW7bgueeeQ2BgIMqVK4eWLVvi6tWr+PDDD/H0008jLS0NP//8s8NLd8iQIZgyZQpq1qyJxMRETJ8+3aEXRnh4ON566y0MGzYMVqsVzZs3R1ZWFn7//XdERESgd+/eqp9r8ODBaNasGT7++GN06dIFv/zyi0MYBwDGjRuHJ554ApUqVcLTTz8NPz8/HDx4EEeOHMHEiRPRtm1bVK9eHb1798aHH36IW7duYezYsQCgmIT63nvvYfDgwYiMjET79u2Rn5+PPXv24MaNGxg+fDh69uyJjz76CF26dMH777+PihUr4vz581i5ciVGjhyJwsJCzJ8/H507d0aFChVw4sQJnDp1Cr169VJ8dqXnqlGjBgoLC/H555+jU6dO+P333zF37lyHNYYOHYoOHTqgVq1auHHjBjZu3Ij7778fAFC5cmVYLBasXbsWjz/+OIKDgxEWFqb674YgSgSeTXEhCPcgTUL9559/hBdffFGIjIwUgoODhZSUFOHkyZP26wsXLnRI9hQEQVi1apUg/p9MYWGhMGjQICEiIkKIiooSRo0aJTzzzDPCc889x73v9u3bhaSkJCEwMNBhrTlz5ggJCQlCaGio0KtXL2HSpEkOya+FhYXCkCFDhIiICKFMmTLC8OHDhV69ejkk2lqtVmHGjBlC7dq1hdKlSwsxMTFCSkqKsHnzZu7vwkp+FQRBWLBggVCxYkUhODhY6NSpk/Dxxx8X+z3S0tKERx99VAgODhYiIiKEJk2aCPPnz7dfP3bsmNCsWTMhICBASExMFH788UcBgJCWliYIwv+SX/fv31/s/kuXLhUeeOABISAgQIiKihIee+wxYeXKlfbrGRkZQq9evYRy5coJgYGBQrVq1YSXX35ZyMrKEjIzM4WuXbsK8fHxQkBAgFC5cmVh3LhxQlFREfd30PJc06dPF+Lj4+3/3SxZssQhoXXQoEFC9erVhcDAQCEmJkZ48cUXhWvXrtnnv//++0JcXJxgsViE3r17O9wblPxKEIJFEFwQNCeIEojVasX999+P7t27O3R7NTNVqlTB0KFD3dKu//fff0fz5s1x+vRph6Ri4n9YLBasWrVK91YDBOHNUB8TgnCS8+fP44svvsDJkydx+PBhvPbaazh79ix69OjhadM0MWrUKISFhSErK8vQdVetWoV169bh3LlzWL9+PQYMGIBmzZqRKGHw6quvUkiHIP4LeUwIwknS09Px3HPP4ciRIxAEAfXq1cOUKVPsCarewPnz5+0VQNWqVbMndBrBkiVLMHHiRFy4cAHlypVDcnIypk2bhujoaMPuoZW6detyO8DOmzePm3Draq5cuYLs7GwA98rSxZVKBFHSIGFCEESJQSzEpMTGxhbrjUIQhPshYUIQBEEQhGmgHBOCIAiCIEwDCROCIAiCIEwDCROCIAiCIEwDCROCIAiCIEwDCROCIAiCIEwDCROCIAiCIEwDCROCIAiCIEwDCROCIAiCIEzD/wNS7GxKMxglAgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#plot clipped raster\n", "clip_raster.plot()" ] } ], "metadata": { "kernelspec": { "display_name": "wash", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.18" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }