{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.core.display import HTML\n", "css_file = 'style.css'\n", "HTML(open(css_file, 'r').read())" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from numpy import array" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pickle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Unpickle a machine learning model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reading the pickle" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Opening the pickle file\n", "# The rb stands for read binary\n", "model_pkl = open(\"Random_forest_regressor_model.pkl\", \"rb\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Reading the model\n", "model = pickle.load(model_pkl)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,\n", " max_features='auto', max_leaf_nodes=None,\n", " min_impurity_split=1e-07, min_samples_leaf=1,\n", " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", " n_estimators=100, n_jobs=-1, oob_score=True, random_state=42,\n", " verbose=0, warm_start=False)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Calling the model\n", "model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Testing the model" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "13" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Confirming the number of features\n", "model.n_features_" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.12339053, 0.10903826, 0.19797339, 0.45332269, 0.01259731,\n", " 0.01452948, 0.01445595, 0.01312439, 0.01143903, 0.01015556,\n", " 0.01254152, 0.01582894, 0.01160294])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The importance of each feature\n", "model.feature_importances_" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.08])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Testing the probability of a positive outcome of a new example\n", "new_patient = array([[3, 16, 9, 22, 1, 0, 0, 0, 1, 0, 0, 1, 0]])\n", "model.predict(new_patient)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 2 }