
A Thousand Ways to Pack the Bin - A

Practical Approach to Two-Dimensional

Rectangle Bin Packing

Jukka Jylänki

February 27, 2010

Abstract

We review several algorithms that can be used to solve the problem

of packing rectangles into two-dimensional �nite bins. Most of the pre-

sented algorithms have well been studied in literature, but some of the

variants are less known and some are apparently regarded as "folklore"

and no previous reference is known. Di�erent variants are presented

and compared. The main contribution of this survey is an original

classi�cation of these variants from the viewpoint of solving the �nite

bin packing problem. This work focuses on empirical studies on the

problem variant where rectangles are placed orthogonally and may be

rotated by 90 degrees. Synthetic tests are used as the main benchmark

and solving a practical problem of generating texture atlases is used to

test the real-world performance of each method. As a related contribu-

tion, an original proof concerning the number of maximal orthogonal

rectangles inside a rectilinear polygon is presented.

Keywords: Two-dimensional bin packing, optimization, heuristic algo-
rithm, on-line algorithm, NP-hard
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1 Introduction

The two-dimensional rectangle bin packing is a classical problem in combi-
natorial optimization. In this problem, one is given a sequence of rectangles
(R1; R2; : : : ; Rn); Ri = (wi; hi) and the task is to �nd a packing of these
items into a minimum number of bins of size (W;H). No two rectangles
may intersect or be contained inside one another. This problem has sev-
eral real-world applications and is proven to be NP-hard [1] by a reduction
from the 2-partition problem [2]. There does not even exist an asymptotic
polynomial time approximation scheme (APTAS), but it is APX-hard [3].
A lot of work has been done to develop e�cient heuristic algorithms that
approximate the optimal solution. In this survey we present several of these
algorithms and compare their performance on a practical level. By changing
only a small rule in the heuristic decisions of an algorithm one can obtain
very di�erent results in the produced packings. Most of the conducted re-
search focuses on asymptotic performance ratios and typically neglects these
subtleties, since they don't usually play a role in the theoretical properties
of the algorithm. We welcome these kinds of changes and test in practice
how they a�ect the quality of the produced packings.

The two-dimensional bin packing problem is a generalization of the one-
dimensional bin packing problem, on which Csirik and Woeginger [4] give a
good survey. For the two-dimensional problem, there exist several variants.
In one version, the process is modelled as if the rectangles are received from
some input one at a time, and they must immediately be placed into one
of the bins without any knowledge of the upcoming items. This variant
is called online rectangle bin packing. The opposite to this variant is the
o�ine rectangle bin packing problem, in which the whole sequence to pack
is known in advance. We examine algorithms for both variants.

In one formulation of the bin packing problem there may exist several
simultaneously open bins, between which the algorithm can choose the
destination for the current rectangle. In the more restricting variant, there
is a limit on the number of bins that may be open at any given time, and
to open a new one, an existing bin must be closed. The -BNF algorithms
we will present can be used for the most restricting case where only one bin
may be open at a time, but other variants exploit the case when there is no
limit on the number of open bins.

A packing is called orthogonal if all the sides of the placed rectangles are
parallel with the bin edges. We only consider packings that are orthogonal
and we allow that each rectangle may be rotated by 90 degrees. This is called
rotatable rectangle bin packing. That is, the packing algorithm may choose
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for an input R = (w; h) whether to pack the rectangle R0 = (h;w) instead.
In some formulations of the bin packing problem, this is not allowed. This
is not in any way a critical property for the working of any of the heuristic
methods and each of them can be �t to work for the non-oriented rectangle
bin packing case as well.

In some real-world applications it is required that the packings that are
produced are guillotineable. A packing P is guillotineable if it can be
split into two parts P1; P2 with a single straight horizontal or vertical cut
that doesn't cross any of the rectangles in the packing, and where both
P1 and P2 are either guillotineable as well or only consist of at most a
single rectangle each. Not all of the algorithms presented in this survey
produce guillotineable packings, but we make a mention of which do. Lodi,
Martello and Vigo [5] provide an overview and comparison of variants with
and without guillotineability or rotatability properties.

As a practical aspect, we con�ne ourselves to solving the problem with
all integral values. That is, the dimensions of the bin and the rectangles as
well as the coordinates on which the rectangles may be placed must all be
integers.

2 The Algorithms

In this chapter we introduce each data structure and algorithm that was
included in the review. These algorithms are classi�ed in groups based on
the underlying data structure that is used to represent the packing process
and the free space left in the bin. We start with the easiest and then proceed
to the more complicated ones.

2.1 The Shelf Algorithms

The Shelf algorithms (or level algorithms) are unarguably the simplest
methods one can use to produce packings. We de�ne a shelf to be a sub-
rectangle of the bin with width Wb and height hs. As the packing proceeds,
the free area of the bin is organized into shelves, bottom-up, in which the
rectangles are placed from left to right. The last shelf (the topmost shelf)
is called the open shelf. Since the rectangles are placed bottom-up, the
area above the open shelf is always unused. This allows that the height of
the open shelf may be adjusted whenever a rectangle is placed on that shelf.
For the shelves below the open shelf we don't have this freedom and those
are called closed shelves.
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Figure 1: A sample packing produced by a Shelf algorithm.

When packing a rectangle (w; h) onto the shelf (Wb; hs), we have to
choose whether we rotate the rectangle or not, that is, whether the rect-
angle is stored in upright (store (min(w; h);max(w; h))) or sideways (store
(max(w; h);min(w; h))) orientation. In all variants of our implementation,
the choice is made in the following order:

1. If the rectangle is the �rst rectangle on a new open shelf, store it
sideways. This is to minimize the height of the new shelf.

2. If the rectangle �ts upright, i.e. if max(w; h) < hs, then store it so.
This aims to minimize the wasted surface area between the rectangle
top side and the shelf ceiling.

3. Otherwise store the rectangle sideways if possible.

The image 2.1 shows a sample packing produced by a shelf algorithm.
The rectangles are numbered in the order they were placed in the bin and
the red lines show the shelf ceilings. All the variants of the shelf algorithm
generate packings very similar to the one shown in this image.

2.1.1 Shelf Next Fit (SHELF-NF)

Of all the algorithms and their variants presented in this paper, the Shelf
Next Fit is absolutely the simplest method to produce a packing. It has
a special property that no other algorithm reviewed here shares, namely
that it only requires a constant amount of work memory. As it will be
seen, all other algorithms use some kind of data structure that is at least
linear in the number of rectangles already packed. For SHELF-NF, only
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three temporary registers are needed. This property may be useful in some
applications. Unfortunately, the packings produced by SHELF-NF can be
quite far from the best methods presented in the paper.

Algorithm 1: SHELF-NF.

Initialize:
Set y  0.
Set x 0.
Set hs  0.
Pack:
foreach Rectangle R = (w; h) in the sequence do

Determine the proper orientation.
Try to �t the rectangle onto the current open shelf.
If it does not �t, close the current shelf and open a new one.
If there is no room for a new shelf, terminate.

end

Proposition 1. The SHELF-NF algorithm can be implemented to run

in �(n) time and O(1) space.

2.1.2 Shelf First Fit (SHELF-FF)

It is somewhat wasteful to forget about the free space in the old shelves
when a new shelf is opened. Therefore all the variants of the SHELF-
NF algorithm maintain a list of all the previously closed shelves so that
rectangles can still be placed there if possible. But in case that there exists
more than one shelf where the rectangle �ts, which one should we pick? The
policy in making this choice yields several variants. In Shelf First Fit we
always place the rectangle into the shelf with the lowest index where it �ts.
This is quite straightforward, but note that now both the running time and
memory consumption of the algorithm is linear in the number of shelves in
the current bin.

With SHELF-FF, a rectangle that we manage to �t onto a closed shelf
saves that space from being used in the open shelf. Compared to SHELF-
NF, SHELF-FF can occasionally get a "free lunch" if it is able to pack a
rectangle in this way. So one might think that SHELF-FF cannot perform
worse than SHELF-NF, but this is not true. The reason is that since the
packing decisions are heuristic in the �rst place, it cannot be guaranteed
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that this smarter packing that SHELF-FF does would be any more optimal.
In practice SHELF-FF performs better than SHELF-NF, but for some se-
quences it looks like SHELF-FF just hits a streak of bad luck when trying
to outperform SHELF-NF and ends up with a worse packing. This e�ect is
a recurring one when comparing other algorithms as well.

Proposition 2. The SHELF-FF algorithm can be implemented to run

in O(n logn) time and O(n) space.

Proof. The additional O(n) space comes from having to store a data struc-
ture of the list of shelves, unlike in the SHELF-NF algorithm, where only
the last shelf is kept track of. An implementation that �nds the �rst shelf
where the rectangle �ts by linear search takes O(n2) time, but with a bi-
section method the shelf can also be found in logn time, thus giving a
O(n logn) time algorithm.

2.1.3 Shelf Best Width Fit (SHELF-BWF)

It can be seen as a shortcoming of SHELF-FF that it doesn't consider all
the possible shelves as whole, but just greedily places the rectangle onto the
�rst shelf it �ts. Perhaps it is better to �rst look at all the possible shelves
and only then pick a best one out of them. In Shelf Best Width Fit we take
a rule of choosing the shelf in which the remaining width of the shelf space
is minimized.

2.1.4 Shelf Best Height Fit (SHELF-BHF)

Since the edges dividing shelves are straight lines, packing a rectangle of
smaller height than the shelf height just produces a strip of wasted space
between the rectangle top side and the shelf ceiling. To minimize this wasted
area, Shelf Best Height Fit chooses to pack each rectangle onto the shelf that
minimizes the leftover height hs � h.

2.1.5 Shelf Best Area Fit (SHELF-BAF)

Both of the above methods have their advantages. To try to combine them
both we can try to maximize the total used shelf area. This results in the
Shelf Best Area Fit algorithm.
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2.1.6 Shelf Worst Width Fit (SHELF-WWF)

While SHELF-BWF tries to �ll the width of each shelf as well as possible,
the Shelf Worst Width Fit algorithm tries to do exactly the opposite and
keep each shelf with as much width still available as possible. This is an
another curiosity with heuristic algorithms. SHELF-WWF and SHELF-
BWF are the total opposites of each other, but even still one cannot claim
that one would be more optimal than the other.

With SHELF-WWF we adopt an extra rule that if we are packing a
rectangle of width w and we �nd a shelf that has exactly w units of space
still left, we immediately pick that shelf to pack the rectangle in.

Following the same pattern, one could de�ne the algorithms Shelf Worst
Height Fit and Shelf Worst Area Fit. But since the shelf algorithms waste
the space between each packed rectangle and the shelf ceiling, trying to
maximize this di�erence would correspond to maximizing wasted area, and
therefore these variants are most likely suboptimal. If co-used with the
Floor-Ceiling variant or with the Waste Map Improvement (see the next
two subsections) this might not be strictly the case, but we did not test
these variants nevertheless.

Proposition 3. Each of the algorithms SHELF-BWF, SHELF-BHF,

SHELF-BAF, SHELF-WWF can be implemented to run in O(n2) time
and O(n) space.

Proof. For each rectangle to be packed, we examine each shelf to �nd the
best of them. The number of shelves has a growth rate of O(n).

2.1.7 Shelf Floor-Ceiling

All the abovementioned variants still have the same problem that they can-
not recover the free area that they waste when the rectangle heights do
not match the height of the shelf. To �x this, Lodi, Martello and Vigo
[6] proposed the Shelf Floor-Ceiling variant, where the input is sorted by
decreasing long side �rst, and is packed normally into shelves proceeding
left-to-right along the �oor of the shelf. As soon as we close a shelf and thus
�x the height of that shelf, we also start packing rectangles from right-to-
left along the shelf ceiling. Since the input is sorted by decreasing height,
tracking valid ceiling positions to place the rectangles into is feasible by
using a simple data structure. The authors show that this improves the
performance of the Shelf algorithm.
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We did not implement the Shelf Floor-Ceiling, mostly because we feel
that it is quite similar to and probably outperformed by the Skyline algo-
rithm, but we cannot cannot verify this claim.

2.1.8 The Waste Map Improvement (-WM)

Another method to try to utilize the excessive wasting of free area in the
Shelf algorithm is using what we call a Waste Map. Since the Guillotine
algorithm presented in the next subsection is such a simple and e�ective
way of storing free areas of the bin, we utilize it to keep track of all the
areas that would otherwise go to waste.

For the Shelf algorithm, the process is as follows. We start the packing by
initializing the Shelf algorithm as usual, and by initializing as a substructure
an instance of the Guillotine packer algorithm. For a description of the
Guillotine data structure and related algorithms, see the chapter 2.2 below.
This data structure initially has F = ;. Whenever we close a shelf, we �nd
all the disjoint rectangles of free area on that shelf and add those to F .
When packing a rectangle, we �rst check if the Guillotine packer can place
the rectangle, and if not, we use the Shelf algorithm as usual. Then the
question is that which variant of the Guillotine packer should we use? Since
there are so many and to keep down the number of combinations to test,
we only consider a few of the best performing ones.

Proposition 4. The algorithms SHELF-x-WM can be implemented to

run in O(n2) time and O(n) space.

Proof. For each rectangle, we �rst check if it can be packed into the GUIL-
LOTINE data structure (see the next section). This can be done in linear
time. If it doesn't �t, we do another linear search to �nd the appropriate
shelf. An update of both the SHELF and the GUILLOTINE data structures
is performed in constant time. Hence, the total running time is O(n2) time,
requiring O(n) space.

Note that the time complexity of the SHELF-FF-WM algorithm is O(n2)
and notO(n logn), since the Guillotine placement step dominates the binary
search step when �nding the destination shelf.

Figure 1 summarizes the algorithms presented in this chapter.

2.2 The Guillotine Algorithms

No matter what kind of tweaks are used to improve the Shelf method, it
can still waste a lot of space in the worst case. In this chapter we pick a
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Algorithm Name Time Complexity Space Complexity

SHELF-NF �(n) O(1)
SHELF-FF O(n logn) O(n)
SHELF-BWF O(n2) O(n)
SHELF-BHF O(n2) O(n)
SHELF-BAF O(n2) O(n)
SHELF-WWF O(n2) O(n)
SHELF-x-WM O(n2) O(n)

Table 1: A summary of the di�erent SHELF variants and their algorithmic
complexities.

totally di�erent approach to the problem. This algorithm is based on an
operation that we call the guillotine split placement, which is a procedure
of placing a rectangle to a corner of a free rectangle of the bin, after which the
remaining L-shaped free space is split again into two disjoint free rectangles.
This procedure and the possible split choices are shown in diagram 2.2. The
actual process of packing several rectangles is then modelled as an iterative
application of the guillotine split placement operation.

Algorithm based on this split rule are well known and widely used. For
example, it is presented in the book 3D Games, Volume 2 [7] and also by
several web authors such as Jim Scott [8] and John Ratcli� [9]. However,
we could not �nd a source referring to the original author of this method or
even less get a name for the algorithm. Therefore we name this method the
Guillotine algorithm, since it produces packings that are easily seen to be
guillotineable.

The Guillotine algorithm itself works as follows. We maintain a list of
rectangles F = fF1; : : : ; Fng that represent the free space of the bin. These
rectangles are pairwise disjoint, i.e. Fi \ Fj = ; for all i 6= j and the total
free unused area of the bin can be computed with

Sn
i=1 Fi. The algorithm

starts with a single free rectangle F = fF1 = (W;H)g. At each packing
step, we �rst pick a free rectangle Fi to place the next rectangle R = (w; h)
into. The rectangle R is placed to the bottom-left corner of Fi, which is then
split using the guillotine split rule to produce two smaller free rectangles F 0

and F 00, which then replace Fi in the list of free rectangles. This procedure
continues until no free rectangle can �t the next rectangle, and then the
process is started again on a new empty bin. This algorithm is outlined in
the diagram 2.

The Guillotine algorithm is very likeable since it keeps exact track of

11



Figure 2: The guillotine split placement process. After placing a rectangle,
there are two ways to store the remaining free area.

Algorithm 2: The Guillotine algorithm.

Initialize:
Set F = f(W;H)g.
Pack:
foreach Rectangle R = (w; h) in the sequence do

Decide the free rectangle Fi 2 F to pack the rectangle into.
If no such rectangle is found, restart with a new bin.
Decide the orientation for the rectangle and place it at the
bottom-left of Fi.
Use the guillotine split scheme to subdivide Fi into F

0 and F 00.
Set F  F [ fF 0; F 00g n Fi.

end

12



Figure 3: A sample packing produced by a Guillotine algorithm. The red
lines denote the split choices.

the free areas of the bin and never "forgets" any free space, unlike the
Shelf algorithms. The drawback here is that the algorithm only considers
placements in which a rectangle R fully �ts inside a single free rectangle Fi.
It never tries to pack R into a position where it would straddle a split line.
In other words, it fails to pack R if R 6� Fi for all i, but R �

Sn
i=1 Fi.

A sample packing produced by the Guillotine algorithm is shown in
image 2.2. The red lines denote the split lines that were used to cut the free
area so that it can be represented using a set of disjoint rectangles. At this
stage the set of free rectangles F consists of 8 rectangles, which correspond
to the white areas of the image.

To complete the algorithm we still have to de�ne two rules. First, we
have to come up with a rule of how we select the Fi in which the rectangle
is placed. Second, we have to choose which of the two possible directions we
use for the split. We �nd six di�erent ways to do both. These choices can
be made independently, so this gives 36 di�erent variants of the algorithm.
It is not obvious whether one convention would be superior to another, so
we test them all.

When reviewing published implementations of this algorithm, we found
that some of them [8] [7] construct elaborate data structures that utilise
kD-trees, binary partitioning or recursion to make the choice of selecting
the free rectangle. Our previous published implementation [10] operated
in a similar way as well. We feel this is overly complicated, unnecessary
and outright suboptimal, since these data structures do not generally allow
one to well-de�ne an e�cient rule for selecting the next free rectangle. In
the implementation written for this review, we have switched to using a
resizable array to store the free rectangles. For optimization purposes the
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array could be stored in sorted order to allow a loop early-out optimization,
but after observing good enough practical performance we did not bother
with such details.

In the following subchapters, we present the di�erent heuristic selection
rules we used for the review.

2.2.1 Guillotine Best Area Fit (GUILLOTINE-BAF)

Very similarly to SHELF-BAF, the Guillotine Best Area Fit picks the
free rectangle Fi of smallest area in which the next rectangle �ts. This is a
natural rule to try to minimize the narrow strips of wasted space.

2.2.2 Guillotine Best Short Side Fit (GUILLOTINE-BSSF)

When we are placing a rectangle R = (w; h) into a free rectangle Fi =
(wf ; hf ), we can consider the di�erences in the side lengths of these two
rectangles. The Guillotine Best Short Side Fit rule chooses to pack R
into such Fi that min(wf � w, hf � h) is the smallest. In other words, we
minimize the length of the shorter leftover side.

2.2.3 Guillotine Best Long Side Fit (GUILLOTINE-BLSF)

We get another rule with Guillotine Best Long Side Fit, where pack
R into an Fi such that max(wf � w, hf � h) is the smallest. That is, we
minimize the length of the longer leftover side.

2.2.4 Guillotine Worst Fit Rules

Since the Worst Fit variants for the Shelf algorithm were not a total bust,
we can try the same approach here. These Worst Fit rules are analogous to
the Best Fit rules in the previous subsection. The Guillotine Worst Area
Fit (GUILLOTINE-WAF) algorithm packs R into the Fi such that the area
left over is maximized. Note that with this variant, as well as with all other
Guillotine variants, we have the special placement rule that if R = Fi for
some i, then that Fi is picked immediately, since it is the perfect match.

The Worst Width Fit variant for the Shelf algorithm can be brought over
to the Guillotine algorithm in two di�erent ways. In Guillotine Worst
Short Side Fit (GUILLOTINE-WSSF), we maximize the length of the
shorter leftover side. Finally, the third possible variant is the Guillotine
Worst Long Side Fit (GUILLOTINE-WLSF), in which we maximize the
length of the longer leftover side.
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The essential motivation for all Worst Fit variants is the same as with the
Shelf Worst Fit variants - to try to keep big spaces left in the free rectangles
as long as possible and to try to avoid very small useless strips of space.

Proposition 5. The algorithms GUILLOTINE-BAF, -BSSF, -BLSF,

-WAF, -WSSF and -WLSF can be implemented to run in O(n2) time
and O(n) space.

Proof. These algorithms only di�er by how they compare two elements of
F , which is in each case a constant time operation. The size of the free
rectangle structure jFj has a growth rate of O(n), since at each packing
step we add at most one new free rectangle into F . For each rectangle, we
examine each of the free rectangles in F one at a time, which yields the
running time O(n2).

2.2.5 The Rectangle Merge Improvement (-RM)

The biggest issue with the Guillotine algorithm is that rectangles cannot be
placed in any position of the free area where the rectangle would straddle an
existing split line. If the free space is su�ciently fragmented, the algorithm
can incorrectly report that there is no free space to place a rectangle even
though there is. Therefore we assume we would get better packings if we
could minimize the number of split lines dividing the free area. However, it
is not obvious if much can be done to mend this since we insist to represent
the free area using a set of disjoint rectangles. There is a straightforward
procedure that we simply call the Rectangle Merge Improvement. The
way it works is that after packing a rectangle, we go through all the free
rectangles and see if there exists a pair of neighboring rectangles Fi; Fj such
that Fi [ Fj can be exactly represented by a single bigger rectangle. If so,
we merge these two into one, which e�ectively removes fragmentation of
the free area by removing a single split line that existed between Fi and
Fj . In his online blog John Ratcli� writes [9] to imply that this process is
important for robustness, so we test all the variants with and without this
improvement.

Proposition 6. The algorithms GUILLOTINE-x-RM can be implemented

to run in O(n3) time and O(n) space.

Proof. After packing each rectangle, we do a rectangle merge step by exam-
ining each pair Fi; Fj 2 F . There are �(n2) such pairs and this step rises
to dominate the overall complexity.
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2.3 Split Rules for the Guillotine Algorithm

Since the split axes determine the sizes of the free rectangles and because a
placement of a rectangle may not straddle a split line, it is important to be
careful about how the splits are performed. In this subsection we present
di�erent methods of choosing whether to split horizontally or vertically.
In the following, let Fi = (wf ; hf ) be the free rectangle inside which the
rectangle R = (w; h) has just been packed.

As all of the following split rules only make a local constant time choice
of the direction of the split, they don't a�ect the complexity of the main
algorithm.

2.3.1 Shorter/Longer Axis Split Rule (-SAS, -LAS)

As the simplest convention, we can determine the split axis independent
of the dimension of R and just split horizontally if wf < hf and vertically
otherwise. This is called the Shorter Axis Split Rule (-SAS). As the opposite
rule, the Longer Axis Split Rule (-LAS) splits horizontally if wf � hf and
vertically otherwise.

2.3.2 Shorter/Longer Leftover Axis Split Rule (-SLAS, -LLAS)

We can also examine the leftover lengths wf �w and hf �h of the free rect-
angle. In the Shorter Leftover Axis Split Rule (-SLAS), we split horizontally
if wf � w < hf � h, and vertically otherwise. Again, we can also take the
opposite convention and in the Longer Leftover Axis Split rule (-LLAS), we
split horizontally if wf � w � hf � h, and vertically otherwise.

2.3.3 Max/Min Area Split Rule (-MAXAS, -MINAS)

Instead of looking at the side lengths, we can also examine the surface areas
of the four subrectangles that are formed in the process. Diagram Y shows
this setting. In the Max Area Split Rule (-MAXAS), we try to keep the
rectangles A1 and A2 as even-sized as possible and join A3 with the smaller
of these two. With the Min Area Split Rule (-MINAS) we join A3 with the
larger of A1 and A2 to produce a single larger free rectangle instead.

We refer to each Guillotine variant using a name of the form GUILLOTINE-
RECT -SPLIT, where RECT is one of the strings BAF, BSSF, BLSF, WAF,
WSSF or WLSF, and SPLIT is one of the strings SAS, LAS, SLAS, LLAS,
MAXAS, MINAS. If the Rectangle Merge improvement is used, we append

16



Algorithm Name Time Complexity Space Complexity

GUILLOTINE-RECT -SPLIT (n2) O(n)
GUILLOTINE-RECT -SPLIT -RM (n3) O(n)

Table 2: A summary of the di�erent GUILLOTINE variants and their algo-
rithmic complexities.

the su�x -RM to the name. To �nish this chapter, table 2 shows a summary
of these algorithms.

2.4 The Maximal Rectangles Algorithms

The Guillotine algorithm introduced in the previous section is a big im-
provement over the Shelf algorithm, but the split line boundaries still cause
problems with the practical performance. To try to remove all these is-
sues altogether, we introduce the Maximal Rectangles algorithm. This
algorithm is in some sense based on an extension of the Guillotine Split
Placement rule. Like the Guillotine algorithm, the Maximal Rectangles al-
gorithm stores a list of free rectangles that represents the free area of the bin.
But unlike the Guillotine algorithm which chooses one of the two split axes,
the Maximal Rectangles algorithm performs an operation that essentially
corresponds to picking both split axes at the same time.

This split process is shown in the diagram 2.4. When we place an input
rectangle R to the bottom-left of a free rectangle F , we compute the two
rectangles F1 and F2 that cover the L-shaped region of F n R and update
F  (F [ fF1; F2g) n fFg. The 'Maximal' in the name of the algorithm
refers to the property that these new rectangles F1 and F2 are formed to be
of maximal length in each direction. That is, at each side they touch either
the bin edge or some rectangle already placed into the bin. Performing the
split in this way gives us the following special property for the list F .

Proposition 7. Let F = fF1; : : : ; : : : ; Fng be the set of maximal free

rectangles that represents the free area left in the bin at some packing

step of the Maximal Rectangles algorithm. Then for any rectangle R �
Sn
i=1 Fi, there exists Fi 2 F such that R � Fi.

The above proposition guarantees that when considering the potential
positions to place a rectangle to, we can just consider each free rectangle Fi
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Figure 4: The rectangle placement rule for the MAXRECTS data structure.
Both the rectangles on the right are stored in F .

in turn and be sure that if the rectangle �ts the bin we will not miss a valid
placement.

Losing the property that the free rectangles Fi are pairwise disjoint gen-
erates issues when placing a rectangle. This is because after we have packed
R into some Fi, we have to check and update all the other rectangles Fj 2 F
for which R \ Fj 6= ;, or our data structure becomes inconsistent. We do
this simply by looping through each free rectangle Fj and intersecting it
with R, producing a set of new free rectangles. After this step we may
be left with degenerate and/or nonmaximal rectangles in the set F , so we
go through each free rectangle Fi 2 F again and remove it if there exists
another rectangle Fj 2 F ; i 6= j, for which Fi � Fj .

18



Algorithm 3: The Maximal Rectangles algorithm.

Initialize:
Set F = f(W;H)g.
Pack:
foreach Rectangle R = (w; h) in the sequence do

Decide the free rectangle Fi 2 F to pack the rectangle R into.
If no such rectangle is found, restart with a new bin.
Decide the orientation for the rectangle and place it at the
bottom-left of Fi. Denote by B the bounding box of R in the bin
after it has been positioned.
Use the MAXRECTS split scheme to subdivide Fi into F

0 and F 00.
Set F  F [ fF 0; F 00g n fFig.
foreach Free Rectangle F 2 F do

Compute F nB and subdivide the result into at most four
new rectangles G1; : : : ; G4.
Set F  F [ fG1; : : : ; G4g n fFg.

end
foreach Ordered pair of free rectangles Fi; Fj 2 F do

if Fi contains Fj then
Set F  F n fFjg

end

end

end

2.4.1 Maximal Rectangles Bottom-Left (MAXRECTS-BL)

A very di�erent variant to the algorithms de�ned in the previous sections
is what is called the Bottom-Left algorithm, or the Tetris algorithm. The
heuristic rule used by this algorithm is very simple: Orient and place each
rectangle to the position where the y-coordinate of the top side of the rect-
angle is the smallest and if there are several such valid positions, pick the
one that has the smallest x-coordinate value. We can use the Maximal Rect-
angles data structure to implement this algorithm and it will be called the
Maximal Rectangles Bottom-Left algorithm. See Bernard Chazelle's
paper [11] on a more e�cient implementation of this algorithm.

Image 2.4.1 shows a sample output produced by the MAXRECTS-BL
algorithm. The maximal rectangles inside the free area are colored in red,
green and blue, and slightly shrunk for clarity.
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Figure 5: A sample packing produced by the MAXRECTS-BL algorithm.
The maximal rectangles of F are shown in colors.

2.4.2 Maximal Rectangles Best Area Fit (MAXRECTS-BAF)

We can use the same heuristic rules when choosing the free rectangle in the
Maximal Rectangles data structure as we had with the Guillotine algorithm.
In Maximal Rectangles Best Area Fit we pick the Fi 2 F that is
smallest in area to place the next rectangle R into. If there is a tie, we use
the Best Short Side Fit rule to break it.

2.4.3 Maximal Rectangles Best Short Side Fit (MAXRECTS-
BSSF)

Again, we can also consider the di�erences in the side lengths ofR and Fi. As
was with the GUILLOTINE-BSSF, theMaximal Rectangles Best Short
Side Fit rule chooses to pack R into such Fi that min(wf � w; hf � h) is
the smallest. In other words, we minimize the length of the shorter leftover
side.

2.4.4 Maximal Rectangles Best Long Side Fit (MAXRECTS-BLSF)

TheMaximal Rectangles Best Long Side Fit rule is exactly analogous.
We pack R into an Fi such that max(wf �w; hf � h) is the smallest. That
is, we minimize the length of the longer leftover side.

2.4.5 The E�ciency of MAXRECTS

Analysing the e�ciency of algorithms that are based on the MAXRECTS
data structure is not as straightforward, as is seen in this section.
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Proposition 8. The algorithms MAXRECTS-BL, -BAF, -BSSF, -BLSF

can be implemented to run in O(jFj2n) time. They consume �(jFj)
space.

Proof. After packing each rectangle and having intersected it with the ele-
ments of F and produced the set of new potential maximal rectangles, we
go through each pair of elements in F to prune the redundant free rectan-
gles from the list. This is the most time consuming step of the algorithm,
yielding the O(jFj2n) time complexity.

Based on the above, it is very important to know the growth rate of jFj
in order to estimate the actual complexity of these algorithms. We do not
know of any previous results on this problem, but are still able to settle
the question. To our best knowledge, the result presented below is original,
except for the proof on the lower bound of jFj, which is a straightforward
adaptation from a proof on a similar problem published by [12]. We start
with a few preliminaries.

De�nition A rectilinear polygon is a two-dimensional connected, closed
and non-self-intersecting polygon consisting only of horizontal and vertical
lines.

It is obvious that at each packing step, the free space of the bin forms
one or more rectilinear polygons. The number of vertices in these polygons
is linear in n, the number of rectangles we have packed. It is also immediate
that the worst case occurs when the free space is not disconnected, but
forms only a single rectilinear polygon, call it P . Denote by p1; : : : ; pk the
vertices of this polygon.

Let M be a maximal rectangle of P , and m be a side of M . We say that
m is edge-supported if it does not touch any vertex of P . Otherwise, one
or more vertices of P touch m and we say that m is vertex-supported. We
can make the following observation.

Proposition 9. For each maximal rectangle M , there exist two opposing

sides of M that are both vertex-supported.

Proof. If all the sides of M are vertex-supported, then the statement natu-
rally holds. So assume that a side m of M is edge-supported instead. If a
side adjacent to m were also edge-supported, then P would have to be self-
intersecting, which is not allowed. Hence, the two sides that are adjacent to
m must both be vertex-supported and again there exist two opposing sides
of M that are vertex-supported.
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The above lemma gives us a constructive method for de�ning any of
the maximal rectangles of P in terms of its two supporting vertices and the
knowledge of whether these support the horizontal or vertical edges of the
maximal rectangle.

Proposition 10. A triplet (pi; pj ; o), where pi and pj are vertices of P ,
and o 2 fH;Vg is a binary label denoting the choice of expansion direc-

tion (horizontal or vertical), uniquely constructs a maximal rectangle

of P .

Proof. Fix pi = (xi; yi) and pj = (xj ; yj) to be two vertices of P . Let R be
the rectangle with the bottom-left coordinate (min(xi; xj);min(yi; yj)) and
the top-right coordinate (max(xi; xj);max(yi; yj)). R cannot intersect P ,
or pi and pj are not "compatible", and do not form a maximal rectangle.
Then, if o = H, the height of the maximal rectangle is jyi � yj j and there
is only one way to expand the left and right sides of R to form a maximal
rectangle. Equivalently, if o = V, then the width of the maximal rectangle
is jxi � xj j and there is again only one way to expand the top and bottom
sides of R to form a maximal rectangle.

Since each maximal rectangle is characterized by a triplet of the above
form, we can give an upper bound on the number of di�erent maximal
rectangles that can exist. Hence, we have obtained the following result.

Corollary 2.1. The number of maximal rectangles in a rectilinear poly-

gon with n vertices is at most 2n2.

.
Having an upper bound for the number of maximal rectangles is not that

useful if the bound is loose. The next result shows that in fact this bound
is asymptotically tight. The proof is a straightforward adaptation from the
example presented in [12].

Proposition 11. The upper bound given in 2.1 is asymptotically tight

in the worst case.

Proof. We prove this by giving an instance of a rectilinear polygon with n
vertices where the number of maximal rectangles is proportional to n2.

This instance is shown in diagram 2.4.5. In this polygon, there exists
two "staircases", which both have a number of corners linear to n. These
staircases have been specially positioned (see the dotted helper lines) so
that every corner in the upper-left part of the polygon forms a pair with
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Figure 6: An example of a worst case con�guration producing O(n2) maxi-
mal rectangles.

all the corners on the bottom-left, giving a number of maximal rectangles
quadratic to n.

Combining the results 8 and 2.1 above show a time complexity of O(n5)
for the MAXRECTS algorithm. Proposition 11 shows that this bound is
tight if we consider arbitrary rectilinear polygons, but in practice the poly-
gons formed in the packing process behave much more nicely. In our tests
we have observed that the size of F is linear in n, which would suggest an av-
erage O(n3) time and O(n) space complexity for the whole algorithm. Still,
the MAXRECTS-BL variant is beaten by Chazelle's excellent O(n2) time
and O(n) space implementation [11], which is based on a representation of
the free space by using trees of doubly linked-lists.

2.4.6 Maximal Rectangles Contact Point (MAXRECTS-CP)

Lodi, Martello and Vigo [5] describe an interesting variant that is unique
to the ones presented already. In Maximal Rectangles Contact Point
we look to place R into a position where the length of the perimeter of
R that is touched by the bin edge or by a previously packed rectangle is
maximized. We only considered bottom-left stable rectangle placements in
this algorithm. In [5], this algorithm is called the Touching Perimeter
algorithm.

Proposition 12. The algorithm MAXRECTS-CP can be implemented

to run in O(jFj2n) time and �(jFj) space as well.
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Figure 7: A sample packing produced by the SKYLINE-BL algorithm.

Proof. The only issue compared to the other MAXRECTS-x algorithms is
in the scoring procedure of MAXRECTS-CP, which involves going through
the list of all previously packed rectangles. This is a linear step that is
performed for each rectangle that is to be packed. However, since pruning
F is of time complexity �(jFj2), the time taken by this linear step is just
negligible in comparison. The space consumption of this algorithm is exactly
the same as with MAXRECTS-x.

2.5 The Skyline Algorithms

Since the Maximal Rectangles algorithm involves some tedious manipulation
to maintain the list of maximal free rectangles, we propose a simpli�ed data
structure that can also be used to implement the Bottom-Left heuristics.
The data structure in the Skyline algorithm is "lossy", just like with the
Shelf algorithms, that is, it cannot perfectly keep track of the free areas
of the bin and may mark some unused space as used. As a trade-o�, the
Skyline algorithms produce packings a lot faster than the ones using the
Maximal Rectangles data structure.

The way the Skyline data structure works is that it only maintains a list
of the horizon or "skyline" edges formed by the topmost edges of already
packed rectangles. This list is very simple to manage and grows linearly in
the number of the rectangles already packed.

Wei et al. [13] describe a very similar method. In their approach they
call the skyline an envelope. The data structure is essentially the same, but
the rule according to which they choose the placement position di�ers.

2.5.1 Skyline Bottom-Left (SKYLINE-BL)

The Skyline data structure allows us to implement the same Bottom-left
heuristics that the MAXRECTS-BL does, except a bit of packing e�ciency
is traded for runtime performance. In Skyline Bottom-Left, we pack the
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rectangle R left-aligned on top of that skyline level that results in the top
side of R lie at the bottommost position. Since R can be rotated, this might
not be the skyline level that lies in the lowest position.

2.5.2 Skyline Best Fit (SKYLINE-BF)

Since the Skyline data structure is prone to losing information about free
areas, we can force as a heuristic to try to minimize this from happening as
much as possible. This yields the Skyline Best Fit variant. In this variant,
for each candidate position to pack the next rectangle into, we compute the
total area of the bin that would be lost if the rectangle was positioned there.
Then we choose the position that minimizes this loss. If there is a tie, we
use the Bottom-Left rule to decide.

2.5.3 The Waste Map Improvement (-WM)

Since it is quite easy to compute the free rectangles that we will lose when
packing a rectangle on top of a hole, we can utilize the Guillotine data
structure to store this space and use it as a secondary data structure. This
is exactly the same idea that was used with the Shelf algorithm.

Proposition 13. The algorithms SKYLINE-x and SKYLINE-x-WM

can be implemented to run in O(n2) time and O(n) space.

3 General Improvement Methods

In this section we consider methods that improve the packing performance
independent of the actual algorithm we are using to produce the packing.
What all the aforementioned algorithms have in common is that they work
with online input. They place all the rectangles in the order they are given
and never move a rectangle that has already been placed. There is no
backtracking or any kind of search involved in making the choices. These
kind of restrictions greatly simplify the complexity of the algorithms and
also the e�ort required to implement them. The downside of course is that
the quality of the packings can be rather poor in the worst case. In this
section we consider a few tricks that can be used to greatly improve the
situation.
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3.1 Choosing the Destination Bin

We have not yet discussed how the algorithms work when the rectangles
do not �t into a single bin and multiple bins must be used. These rules
are very similar to the heuristics we use when picking the destination shelf
in the Shelf algorithms. In Bin Next Fit (-BNF), we only have a single
open bin into which rectangles are packed. When the next input rectangle
does not �t into that bin, that bin is closed and completely forgotten about,
and a new bin is opened. E�ectively all the algorithms we have previously
discussed are of type -BNF, since they have just dealt with one bin.

In the Bin First Fit (-BFF), we consider the bins in the order they were
opened and pack the input rectangle into the bin with the lowest index
where it �ts. When using the Bin Best Fit (-BBF) rule, the rectangle
is packed into the bin that gives the best score for whatever criterion the
algorithm uses to decide between possible placements. Analogously to the
shelf selection case, one can de�ne Bin Worst Fit as well, but in this survey
this variant was not implemented, since it was assumed to be suboptimal.

Proposition 14. The -BFF variant adds a factor of logn to the com-

plexity of the corresponding -BNF algorithm. For example, the running

time of SHELF-FF-BNF is O(n logn), but the running time of SHELF-
FF-BFF is O(n log2 n).

Proof. Since the number of rectangles each bin can hold is independent
of n, the number of bins needed to pack n items is of �(n). Just like
with SHELF-FF versus SHELF-NF, we can �nd the destination bin for the
rectangle in logn time by using a bisection method (binary search).

In the above proof, by substituting the binary search step with a linear
search, we also get the following result.

Proposition 15. The -BBF variant adds a factor of n to the complexity

of the corresponding -BNF algorithm. For example, the running time

of SHELF-FF-BNF is O(n logn), but the running time of SHELF-FF-
BBF is O(n2 logn).

3.2 Sorting the Input

An easy method to enhance the performance of any online packing algo-
rithm is to simply sort the sequence by some criterion before producing the
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packing. Since this is just a preprocess step, it does not require any changes
be made to the existing packing routine, which makes it very practical.
Of course, this can be considered only if we know the whole sequence in
advance.

We can think of several di�erent methods to use as the comparison
function for the sorting routine. If we have two rectangles Ra = (wa; ha)
and Rb = (wb; hb), where wa � ha and wb � hb, we can compare them at
least in the following ways:

1. Sort by area. Ra � Rb if waha < wbhb. This variant will be called
-ASCA. We can of course reverse the condition to get the variant -
DESCA.

2. Sort by the shorter side �rst, followed by a comparison of the longer
side. Ra � Rb if wa < wb or if wa = wb and ha < hb. These variants
will be called -ASCSS and -DESCSS.

3. Sort by the longer side �rst, followed by a comparison of the shorter
side. Ra � Rb if ha < hb or if ha = hb and wa < wb. These variants
will be called -ASCLS and -DESCLS.

4. Sort by perimeter. Ra � Rb if wa + ha < wb + hb. These variants will
be called -ASCPERIM and -DESCPERIM.

5. Sort by the di�erence in side lengths. Ra � Rb if jwa�haj < jwb�hbj.
These variants will be called -ASCDIFF and -DESCDIFF.

6. Sort by the ratio of the side lengths. Ra � Rb if wa

ha
< wb

hb
. These

variants will be called -ASCRATIO and -DESCRATIO.

The sorting step takesO(n logn) time. Except for the algorithm SHELF-
NF-BNF, the time to sort is dominated by the time taken to produce the
actual packing and so the overall running time is not a�ected.

3.3 The Globally Best Choice

Most of the variants we have considered have a structure that can be rep-
resented as follows. Given the next input rectangle R0 in the sequence of
input rectangles R, we have a set of choices S to place R0 into and a scoring
function C : S �R 7! R de�ned by the heuristic rules of the variant. Then
�nd S0 = maxS2S C(S;R0) and pack R according to the choice S0. The set
S can be interpreted as follows:
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1. For the Shelf algorithms, S is the set of shelves where R0 can be validly
placed onto.

2. For the Guillotine algorithms, S is the set of free rectangles F times the
two choices for orienting R0 that are valid placements. We pondered
on even extending S to cover the two possible choices for choosing the
split axis, but this was deemed to slow down the search too much.

3. For the Maximal Rectangles algorithms, S is the set of the maximal
rectangles times the two choices for orienting R0 that are valid place-
ments.

4. For the Skyline algorithms, S is the set of skyline levels times the two
choices for orienting R0 that are valid placements.

There is a natural extension of this optimization rule that can lead to
better packings. Instead of searching only the set f(S;R)jS 2 Sg where
R is �xed, consider all the elements of R, that is, search the whole set
f(S;R)jS 2 S; R 2 Rg. Then, at each packing step, we �nd (S00; R00) =
maxS2S;R2RC(S;R) and pack R00 according to the choice S00.

Put in words, at each packing step, we go through each unpacked rectan-
gle and each possible placement of that rectangle and compute the score for
that particular placement. Then we pick the one that maximizes the value
of the heuristic rule we are considering. Since instead of the next rectangle
in the sequence we are picking the globally best one of all the rectangles
still left, we give this variant the su�x -GLOBAL. Of course with this rule
it does not matter any more in which order the sequence of input rectangles
is given (ignoring any ties in the scoring function if there is no tiebreaker),
so sorting is not performed with this variant.

Proposition 16. The -GLOBAL variant adds a linear factor to the

complexity of the corresponding online version of the algorithm. For

example, the algorithm SKYLINE-BL can be implemented to run in

O(n2) time, so the variant SKYLINE-BL-GLOBAL can be implemented

to run in O(n3) time. Space complexity is not changed.

Proof. We can think of this process like follows. At each packing step we
pack all the rectangles still left in the input sequence in parallel, and then
�x our choice to packing the one rectangle that gave the best value for the
scoring function. The other parallel paths are then forgotten. The number
of these parallel paths is of course linear in n, and thus the work done to
pack a single rectangle is multiplied by n, giving the extra linear factor to
the overall complexity.
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Applying these improvements to all of the algorithm variants from the
previous chapters, we obtain the �nal list of algorithms for the review. Table
6 summarizes all of these.

4 Synthetic Benchmarks

We implemented most of the possible combinations of the rule variants pre-
sented in the previous sections, except for the algorithms that we explicitly
mentioned to have been omitted. The number of variants we tested sums
up to a grand total of 2619 distinct algorithms, which is too huge a number
to present in a single tabular form. Therefore we present the results by �rst
hand-picking di�erent variants from each class and then present the set of
"best contenders" in a �nal review.

Since the heart of all these algorithms consists of a heuristic rule, it is
possible that one algorithm is better than the other for some input, but with
another input sequence, the result is the opposite. Based on our tests this
phenomenon is even more common than one might think, which makes it
near impossible to single out one best algorithm. Still, some of the variants
that we have described are clearly suboptimal and it is unlikely that there
exist input sequences on which these variants could show their "full poten-
tial" and outperform the other algorithms. Moreover, some algorithms have
been observed to consistently produce relatively good packings no matter
what the input, while others seem to be more sensitive to the particular
input sequence.

Because of this instability, to try to correctly estimate the relative per-
formance of the di�erent algorithms, we construct the input sequences using
di�erent selections of uniform probability distributions. The following sec-
tion presents the method.

4.1 Rectangle Categories and Probability Distributions

To start with, we divide the possible side lengths of a rectangle into distinct
categories. These categories are shown in table 3. To generate a side length
from a given category, we use random uniform sampling.

Then we assemble categories of possible rectangle sizes using these side
length categories. The rectangle categories we used are presented in table 4.
Since we are interested in the problem variant where rotating the rectangles
is allowed, the list of rectangle categories does not contain the cases where
h > w.
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Category Name Length distribution

Tiny [1; 1
4
B]

Short [1
4
B; 2

4
B]

Medium [2
4
B; 3

4
B]

Long [3
4
B;B]

Table 3: Categories for rectangle side lengths relative to the bin side B.

Tiny Short Medium Long

Tiny R1 R2 R3 R4

Short R5 R6 R7

Medium R8 R9

Long R10

Table 4: Categories for rectangle sizes (w; h).

Distribution A B C Distribution A B C

D1 90% 10% - D10 40% 30% 30%
D2 70% 30% - D11 60% - 40%
D3 50% 50% - D12 40% 20% 40%
D4 80% 10% 10% D13 40% 10% 50%
D5 60% 30% 10% D14 40% - 60%
D6 80% - 20% D15 20% 20% 60%
D7 60% 20% 20% D16 20% 10% 70%
D8 40% 40% 20% D17 20% - 80%
D9 60% 10% 30% D18 - - 100%

Table 5: Distributions for choosing rectangles from categories A, B and C.
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To generate actual input sequences, we need to de�ne the probability
distributions according to which we select rectangles from each of the classes
R1; : : : ; R10. Since the number of ways this can be done is enormous even
if the probabilities are quantized, we pick the following scheme. We select
two rectangle categories, A and B, and let C = fR1; : : : ; R10g n fA;Bg. To
generate an actual problem instance, we draw rectangles from A, B and C
according to the uniform distribution presented in table 5. As a special note,
if the probability in the column B is marked with "-", then it is understood
that we choose only one rectangle category A, and let C contain all the rest.

We also tested the e�ect of di�ering the size of the input, by using three
di�erent input sizes of S1 = 100, S2 = 500 and S3 = 1000. The actual test
instances were as follows. For each combination of (A = Ri; B = Rj ; Dk; Sl),
we generated 20 random problem instances and ran each of them through
each algorithm. There are 45 ways to choose A and B, 18 ways to choose
the distribution and 3 di�erent size classes, so the total number of instances
that each algorithm solved was 48600. From the results we analysed the
average and worst case performances of each algorithm.

4.2 Results

The results from all the runs are presented in tables in the appendix. In
each problem instance, the average number of bins used by the algorithm
was divided by the best known number of bins that were needed to pack
the rectangles. This means that a score of 1:0 corresponds to a perfect
performance with respect to all other algorithms, but this does not mean
necessarily that the algorithm used the optimal number of bins. In each
cell, the value corresponds to the average case performance, and the value
in the parentheses shows the worst case performance that occurred.

4.3 The Shelf algorithms

The performance of any of the Shelf algorithms is not good enough to rec-
ommend the use of these algorithms except when fast runtime performance
is needed. In online instances the Shelf algorithms can consume twice the
number of bins in the worst case, and about 1:5 times on average. In o�ine
cases, sorting by descending area and packing into multiple bins simultane-
ously (-BFF) looks like the best option, giving a 1:077 performance in the
average case, but still a 1:571 times the best in the worst case.
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4.4 Guillotine algorithms

On average, the Rectangle Merge was seen to improve the results in all
cases, so the results from the variants without the -RM improvement were
be omitted.

Also, all the di�erent Worst Fit rules performed poorly compared to the
Best Fit rules, so the Worst Fit rules were omitted in the o�ine case. The
best average case performance in the online packing problem was obtained
with the GUILLOTINE-MINAS-RM-BNF-BAF algorithm, yielding a 1:445
packing factor on average. The best worst case performance was obtained
with the GUILLOTINE-LAS-RM-BNF-BSSF algorithm, which yielded a
score of 1:773.

In the o�ine case, the Guillotine algorithms perform very well. The
best average and worst case performance was obtained with the algorithm
GUILLOTINE-BSSF-SAS-RM-DESCSS-BFF with scores of 1:016 and 1:111
respectively.

4.5 The MAXRECTS algorithms

The best performing algorithms are the MAXRECTS variants. When pro-
ducing online packings, MAXRECTS-BSSF-BNF got a score of 1:408(1:788).
If we are allowed to pack into multiple bins at once, the MAXRECTS-BSSF-
BBF received a score of 1:041(1:130).

In the o�ine packing case, the MAXRECTS-BSSF-BBF-GLOBAL algo-
rithm produces the ultimately best packings, with a score of 1:005(1:068).
Another very good performer, and slightly faster, was the MAXRECTS-
BSSF-BBF-DESCSS, which received a score of 1:009(1:087).

4.6 The SKYLINE algorithms.

The results obtained from the SKYLINE variants were quite interesting.
In the online packing problem, SKYLINE-BL-WM-BNF was the best of all
packers, receiving a score of 1:392(1:654). When packing into multiple bins,
the SKYLINE-BL-WM-BFF got a score of 1:056(1:158), and only slightly
lost to the best-performing MAXRECTS variant.

In the o�ine case, the best performing packer was the SKYLINE-MW-
WM-BFF-DESCSS, with a score of 1:013(1:090). This is slightly better
than the best o�ine GUILLOTINE variant, but not quite as good as the
best MAXRECTS variant. It is to be noted though that the runtime perfor-
mance of the SKYLINE variants is somewhat better than the MAXRECTS
algorithms.
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5 Conclusions and Future Work

An overall leaderboard of results is presented in the tables 21 and 22. It is
clear that the MAXRECTS algorithms perform the best of all. The SKY-
LINE algorithms performed the best when packing is performed online only
to a single bin at a time (-BNF). The GUILLOTINE variants are asymp-
totically faster than the MAXRECTS algorithms, but also perform slightly
worse. The SHELF algorithms should only be favored if implementation
simplicity is a concern.

This survey only consisted of evaluating di�erent immediate heuris-
tic rules. In the literature there exists several solvers that are based on
meta-heuristics [14] [15], agent-based approaches [16] and iterative search-
ing [17]. Also, publications presenting other novel heuristic approaches have
appeared. These use concepts such as corner-occupying action and caving
degree [18] [19], Less Flexibility First [20], and Least Wasted First [13].
In the future, it would be interesting to compare these algorithms with the
best performing variants presented in this survey.
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6 Appendix: Summary and Results
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Algorithm Name Time Complexity Space Complexity Input

SHELF-NF-BNF �(n) O(1) Online
SHELF-NF-sort -BNF �(n logn) O(1) O�ine
SHELF-NF-BFF �(n logn) O(1) Online
SHELF-NF-sort -BFF �(n logn) O(1) O�ine
SHELF-FF-BNF O(n logn) O(n) Online
SHELF-FF-sort -BNF O(n logn) O(n) O�ine
SHELF-FF-BFF O(n log2 n) O(n) Online
SHELF-FF-sort -BFF O(n log2 n) O(n) O�ine
SHELF-opt -BNF O(n2) O(n) Online
SHELF-opt -sort -BNF O(n2) O(n) O�ine
SHELF-opt -BFF O(n2 logn) O(n) Online
SHELF-opt -sort -BFF O(n2 logn) O(n) O�ine
SHELF-NF-WM-BNF O(n2) O(n) Online
SHELF-NF-WM-sort -BNF O(n2) O(n) O�ine
SHELF-NF-WM-BFF O(n2 logn) O(n) Online
SHELF-NF-WM-sort -BFF O(n2 logn) O(n) O�ine
SHELF-FF-WM-BNF O(n2) O(n) Online
SHELF-FF-WM-sort -BNF O(n2) O(n) O�ine
SHELF-FF-WM-BFF O(n2 logn) O(n) Online
SHELF-FF-WM-sort -BFF O(n2 logn) O(n) O�ine
SHELF-opt -WM-BNF O(n2) O(n) Online
SHELF-opt -sort -WM-BNF O(n2) O(n) O�ine
SHELF-opt -WM-BFF O(n2 logn) O(n) Online
SHELF-opt -sort -WM-BFF O(n2 logn) O(n) O�ine
GUILLOTINE-rect -split -BNF O(n2) O(n) Online
GUILLOTINE-rect -split -sort -BNF O(n2) O(n) O�ine
GUILLOTINE-rect -split -BFF O(n2 logn) O(n) Online
GUILLOTINE-rect -split -sort -BFF O(n2 logn) O(n) O�ine
GUILLOTINE-rect -split -GLOBAL O(n3) O(n) O�ine
GUILLOTINE-rect -split -RM-BNF O(n3) O(n) Online
GUILLOTINE-rect -split -RM-sort -BNF O(n3) O(n) O�ine
GUILLOTINE-rect -split -RM-BFF O(n3 logn) O(n) Online
GUILLOTINE-rect -split -RM-sort -BFF O(n3 logn) O(n) O�ine
GUILLOTINE-rect -split -RM-GLOBAL O(n4) O(n) O�ine
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Algorithm Name Time Complexity Space Complexity Input

MAXRECTS-x -BNF O(jFj2n) O(jFj) Online
MAXRECTS-x -sort -BNF O(jFj2n) O(jFj) O�ine
MAXRECTS-x -GLOBAL-BNF O(jFj2n2) O(jFj) O�ine
MAXRECTS-x -BFF O(jFj2n logn) O(jFj) Online
MAXRECTS-x -sort -BFF O(jFj2n logn) O(jFj) O�ine
MAXRECTS-x -GLOBAL-BFF O(jFj2n2 logn) O(jFj) O�ine
MAXRECTS-x -BBF O(jFj2n2) O(jFj) Online
MAXRECTS-x -sort -BBF O(jFj2n2) O(jFj) O�ine
MAXRECTS-x -GLOBAL-BBF O(jFj2n3) O(jFj) O�ine
SKYLINE-x -BNF O(n2) O(n) Online
SKYLINE-x -sort -BNF O(n2) O(n) O�ine
SKYLINE-x -BFF O(n2 logn) O(n) Online
SKYLINE-x -sort -BFF O(n2 logn) O(n) O�ine
SKYLINE-x -GLOBAL O(n3) O(n) O�ine
SKYLINE-x -WM-BNF O(n2) O(n) Online
SKYLINE-x -sort -WM-BNF O(n2) O(n) O�ine
SKYLINE-x -WM-BFF O(n2 logn) O(n) Online
SKYLINE-x -sort -WM-BFF O(n2 logn) O(n) O�ine

Table 6: The �nal list of algorithm classes considered in the survey.

-BNF -BFF -WM-BNF -WM-BFF

SHELF-NF 1.53815(2.29835) 1.15465(1.85651) 1.4911(2.01266) 1.07304(1.21877)
SHELF-FF 1.52317(2.27066) 1.11645(1.71695) 1.4911(2.01266) 1.07304(1.21877)

SHELF-BWF 1.52382(2.27066) 1.11651(1.71695) 1.49106(2.01266) 1.073(1.21877)
SHELF-BHF 1.52552(2.27066) 1.11627(1.71695) 1.49106(2.01266) 1.073(1.21877)
SHELF-BAF 1.52395(2.27066) 1.11632(1.71695) 1.49106(2.01266) 1.073(1.21877)

SHELF-WWF 1.52738(2.27066) 1.11644(1.71695) 1.49106(2.01266) 1.073(1.21877)
SHELF-WAF 1.52718(2.27066) 1.11671(1.71695) 1.49106(2.01266) 1.073(1.21877)

Table 7: Average and worst case results for online Shelf algorithms on in-
stances of 1000 rectangles.
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SHELF-
NF

SHELF-
FF

SHELF-
BWF

SHELF-
BHF

SHELF-
BAF

SHELF-
WWF

SHELF-
WAF

-DESCLS-BNF 1.440
(2.033)

1.425
(1.954)

1.425
(1.954)

1.425
(1.960)

1.424
(1.955)

1.429
(1.983)

1.429
(1.979)

-DESCSS-BNF 1.455
(2.086)

1.445
(2.076)

1.446
(2.076)

1.447
(2.076)

1.447
(2.076)

1.446
(2.076)

1.446
(2.076)

-ASCDIFF-BNF 1.462
(2.004)

1.452
(1.950)

1.453
(1.950)

1.454
(1.950)

1.453
(1.950)

1.456
(1.950)

1.455
(1.950)

-DESCPERIM-BNF 1.464
(2.123)

1.454
(2.033)

1.455
(2.037)

1.455
(2.047)

1.455
(2.037)

1.457
(2.066)

1.456
(2.059)

-DESCA-BNF 1.465
(2.277)

1.455
(2.181)

1.456
(2.198)

1.456
(2.191)

1.456
(2.198)

1.456
(2.198)

1.456
(2.195)

-DESCRATIO-BNF 1.465
(2.086)

1.456
(2.076)

1.457
(2.076)

1.457
(2.076)

1.457
(2.076)

1.457
(2.076)

1.456
(2.076)

-DESCDIFF-BNF 1.474
(2.099)

1.463
(2.043)

1.463
(2.043)

1.465
(2.044)

1.463
(2.043)

1.466
(2.048)

1.466
(2.048)

-ASCLS-BNF 1.471
(2.022)

1.468
(1.988)

1.467
(1.989)

1.467
(1.989)

1.468
(1.989)

1.469
(1.998)

1.469
(1.987)

-ASCPERIM-BNF 1.497
(2.143)

1.493
(2.098)

1.493
(2.098)

1.493
(2.098)

1.493
(2.098)

1.493
(2.098)

1.493
(2.098)

-ASCA-BNF 1.516
(2.383)

1.511
(2.305)

1.511
(2.305)

1.512
(2.327)

1.512
(2.307)

1.512
(2.353)

1.512
(2.354)

-ASCRATIO-BNF 1.514
(2.248)

1.513
(2.218)

1.513
(2.218)

1.513
(2.218)

1.513
(2.218)

1.513
(2.219)

1.513
(2.219)

-ASCSS-BNF 1.515
(2.235)

1.514
(2.217)

1.514
(2.217)

1.515
(2.229)

1.515
(2.229)

1.514
(2.229)

1.514
(2.217)

Table 8: The o�ine SHELF-BNF variants.
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SHELF-
NF

SHELF-
FF

SHELF-
BWF

SHELF-
BHF

SHELF-
BAF

SHELF-
WWF

SHELF-
WAF

-DESCA-BFF 1.118
(1.837)

1.077
(1.571)

1.077
(1.571)

1.077
(1.571)

1.077
(1.571)

1.077
(1.571)

1.077
(1.571)

-DESCPERIM-BFF 1.119
(1.772)

1.081
(1.589)

1.081
(1.589)

1.081
(1.589)

1.081
(1.589)

1.081
(1.589)

1.081
(1.589)

-DESCSS-BFF 1.124
(1.758)

1.083
(1.652)

1.083
(1.652)

1.083
(1.652)

1.083
(1.652)

1.083
(1.652)

1.083
(1.652)

-DESCRATIO-BFF 1.125
(1.758)

1.085
(1.652)

1.085
(1.652)

1.085
(1.652)

1.085
(1.652)

1.085
(1.652)

1.085
(1.652)

-DESCLS-BFF 1.132
(1.806)

1.106
(1.637)

1.106
(1.637)

1.106
(1.637)

1.106
(1.637)

1.107
(1.637)

1.107
(1.637)

-ASCDIFF-BFF 1.152
(1.808)

1.131
(1.672)

1.131
(1.677)

1.131
(1.659)

1.131
(1.677)

1.132
(1.664)

1.132
(1.657)

-ASCLS-BFF 1.255
(1.832)

1.254
(1.818)

1.253
(1.818)

1.253
(1.818)

1.253
(1.818)

1.254
(1.813)

1.254
(1.813)

-DESCDIFF-BFF 1.278
(1.944)

1.263
(1.885)

1.263
(1.885)

1.264
(1.885)

1.263
(1.885)

1.264
(1.885)

1.264
(1.885)

-ASCPERIM-BFF 1.386
(1.975)

1.382
(1.928)

1.382
(1.928)

1.382
(1.928)

1.382
(1.928)

1.382
(1.928)

1.382
(1.928)

-ASCA-BFF 1.453
(2.216)

1.446
(2.208)

1.446
(2.182)

1.447
(2.198)

1.446
(2.191)

1.447
(2.208)

1.447
(2.188)

-ASCRATIO-BFF 1.491
(2.166)

1.490
(2.139)

1.490
(2.139)

1.490
(2.152)

1.490
(2.152)

1.490
(2.152)

1.490
(2.139)

-ASCSS-BFF 1.498
(2.167)

1.498
(2.155)

1.498
(2.155)

1.498
(2.168)

1.498
(2.168)

1.498
(2.168)

1.498
(2.155)

Table 9: The o�ine SHELF-BFF variants.
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SHELF-
NF

SHELF-
FF

SHELF-
BWF

SHELF-
BHF

SHELF-
BAF

SHELF-
WWF

SHELF-
WAF

-DESCLS-WM-BNF 1.362
(1.653)

1.362
(1.653)

1.362
(1.653)

1.362
(1.653)

1.362
(1.653)

1.362
(1.653)

1.362
(1.653)

-DESCSS-WM-BNF 1.398
(1.745)

1.398
(1.745)

1.398
(1.745)

1.398
(1.745)

1.398
(1.745)

1.398
(1.745)

1.398
(1.745)

-DESCPERIM-WM-BNF 1.400
(1.744)

1.400
(1.744)

1.400
(1.744)

1.400
(1.744)

1.400
(1.744)

1.400
(1.744)

1.400
(1.744)

-DESCA-WM-BNF 1.403
(1.749)

1.403
(1.749)

1.403
(1.749)

1.403
(1.749)

1.403
(1.749)

1.403
(1.749)

1.403
(1.749)

-DESCRATIO-WM-BNF 1.408
(1.737)

1.408
(1.737)

1.408
(1.737)

1.408
(1.737)

1.408
(1.737)

1.408
(1.737)

1.408
(1.737)

-DESCDIFF-WM-BNF 1.414
(1.678)

1.414
(1.678)

1.414
(1.678)

1.414
(1.678)

1.414
(1.678)

1.414
(1.678)

1.414
(1.678)

-ASCDIFF-WM-BNF 1.417
(1.676)

1.417
(1.676)

1.417
(1.676)

1.417
(1.676)

1.417
(1.676)

1.417
(1.676)

1.417
(1.676)

-ASCPERIM-WM-BNF 1.442
(1.800)

1.442
(1.800)

1.442
(1.800)

1.442
(1.800)

1.442
(1.800)

1.442
(1.800)

1.442
(1.800)

-ASCA-WM-BNF 1.448
(1.860)

1.448
(1.860)

1.448
(1.860)

1.448
(1.860)

1.448
(1.860)

1.448
(1.860)

1.448
(1.860)

-ASCRATIO-WM-BNF 1.455
(2.003)

1.455
(2.003)

1.455
(2.003)

1.455
(2.003)

1.455
(2.003)

1.455
(2.003)

1.455
(2.003)

-ASCSS-WM-BNF 1.456
(2.072)

1.456
(2.072)

1.456
(2.072)

1.456
(2.072)

1.456
(2.072)

1.456
(2.072)

1.456
(2.072)

-ASCLS-WM-BNF 1.457
(1.964)

1.457
(1.964)

1.457
(1.964)

1.457
(1.964)

1.457
(1.964)

1.457
(1.964)

1.457
(1.964)

Table 10: The o�ine SHELF-WM-BNF variants.
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SHELF-
NF

SHELF-
FF

SHELF-
BWF

SHELF-
BHF

SHELF-
BAF

SHELF-
WWF

SHELF-
WAF

-DESCPERIM-WM-BFF 1.040
(1.177)

1.040
(1.177)

1.040
(1.177)

1.040
(1.177)

1.040
(1.177)

1.040
(1.177)

1.040
(1.177)

-DESCA-WM-BFF 1.042
(1.265)

1.042
(1.265)

1.042
(1.265)

1.042
(1.265)

1.042
(1.265)

1.042
(1.265)

1.042
(1.265)

-DESCSS-WM-BFF 1.049
(1.248)

1.049
(1.248)

1.049
(1.248)

1.049
(1.248)

1.049
(1.248)

1.049
(1.248)

1.049
(1.248)

-DESCRATIO-WM-BFF 1.051
(1.251)

1.051
(1.251)

1.051
(1.251)

1.051
(1.251)

1.051
(1.251)

1.051
(1.251)

1.051
(1.251)

-DESCLS-WM-BFF 1.072
(1.371)

1.072
(1.371)

1.072
(1.371)

1.072
(1.371)

1.072
(1.371)

1.072
(1.371)

1.072
(1.371)

-ASCDIFF-WM-BFF 1.105
(1.389)

1.105
(1.389)

1.105
(1.384)

1.105
(1.384)

1.105
(1.384)

1.105
(1.384)

1.105
(1.384)

-DESCDIFF-WM-BFF 1.194
(1.507)

1.194
(1.507)

1.194
(1.507)

1.194
(1.507)

1.194
(1.507)

1.194
(1.507)

1.194
(1.507)

-ASCLS-WM-BFF 1.246
(1.780)

1.246
(1.780)

1.246
(1.788)

1.246
(1.788)

1.246
(1.788)

1.246
(1.788)

1.246
(1.788)

-ASCPERIM-WM-BFF 1.320
(1.648)

1.320
(1.648)

1.320
(1.648)

1.320
(1.648)

1.320
(1.648)

1.320
(1.648)

1.320
(1.648)

-ASCA-WM-BFF 1.364
(1.693)

1.364
(1.693)

1.364
(1.693)

1.364
(1.693)

1.364
(1.693)

1.364
(1.693)

1.364
(1.693)

-ASCRATIO-WM-BFF 1.401
(1.732)

1.401
(1.732)

1.401
(1.732)

1.401
(1.732)

1.401
(1.732)

1.401
(1.732)

1.401
(1.732)

-ASCSS-WM-BFF 1.408
(1.744)

1.408
(1.744)

1.408
(1.744)

1.408
(1.744)

1.408
(1.744)

1.408
(1.744)

1.408
(1.744)

Table 11: The o�ine SHELF-WM-BFF variants.
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-BAF -BLSF -BSSF -WAF -WLSF -WSSF
GUILLOTINE-MINAS-RM-BNF 1.445

(2.301)
1.447
(2.132)

1.454
(2.849)

1.511
(2.892)

1.510
(3.385)

1.517
(2.803)

GUILLOTINE-MINAS-BNF 1.446
(2.320)

1.449
(2.156)

1.455
(2.859)

1.513
(2.915)

1.512
(3.411)

1.520
(2.864)

GUILLOTINE-LAS-RM-BNF 1.467
(1.836)

1.473
(2.004)

1.483
(1.773)

1.558
(3.569)

1.561
(2.587)

1.552
(3.636)

GUILLOTINE-LAS-BNF 1.468
(1.852)

1.474
(2.049)

1.484
(1.783)

1.561
(3.620)

1.564
(2.619)

1.554
(3.696)

GUILLOTINE-SLAS-RM-BNF 1.468
(2.709)

1.474
(2.765)

1.461
(2.837)

1.544
(3.388)

1.517
(3.386)

1.560
(3.524)

GUILLOTINE-SLAS-BNF 1.470
(2.727)

1.475
(2.771)

1.462
(2.853)

1.547
(3.416)

1.519
(3.412)

1.563
(3.562)

GUILLOTINE-SAS-RM-BNF 1.614
(3.433)

1.643
(3.460)

1.594
(3.357)

1.690
(3.519)

1.644
(3.616)

1.739
(3.655)

GUILLOTINE-SAS-BNF 1.615
(3.451)

1.645
(3.467)

1.596
(3.377)

1.693
(3.537)

1.648
(3.661)

1.743
(3.673)

GUILLOTINE-LLAS-RM-BNF 1.616
(2.861)

1.634
(2.891)

1.616
(2.791)

1.715
(3.493)

1.676
(3.010)

1.713
(3.536)

GUILLOTINE-LLAS-BNF 1.617
(2.872)

1.635
(2.894)

1.617
(2.801)

1.717
(3.558)

1.678
(3.018)

1.715
(3.588)

GUILLOTINE-MAXAS-RM-BNF 1.634
(3.060)

1.658
(3.327)

1.623
(2.814)

1.732
(3.249)

1.689
(3.030)

1.751
(3.576)

GUILLOTINE-MAXAS-BNF 1.635
(3.070)

1.659
(3.330)

1.625
(2.830)

1.735
(3.266)

1.692
(3.037)

1.754
(3.586)

Table 12: The online GUILLOTINE variants.
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-DESC
SS -BFF

-DESC
RATIO
-BFF

-DESCA
-BFF

-DESC
PERIM
-BFF

-GLOBAL -DESC
LS -BFF

GUILLOTINE-BSSF-SAS-RM 1.016
(1.111)

1.017
(1.111)

1.019
(1.128)

1.021
(1.148)

1.036
(1.142)

1.043
(1.396)

GUILLOTINE-BAF-SAS-RM 1.017
(1.112)

1.018
(1.112)

1.020
(1.135)

1.022
(1.159)

1.020
(1.135)

1.044
(1.396)

GUILLOTINE-BSSF-LLAS-RM 1.019
(1.125)

1.019
(1.125)

1.023
(1.144)

1.026
(1.172)

1.035
(1.141)

1.043
(1.396)

GUILLOTINE-BSSF-MAXAS-RM 1.019
(1.125)

1.020
(1.125)

1.023
(1.144)

1.025
(1.172)

1.035
(1.141)

1.043
(1.396)

GUILLOTINE-BLSF-SAS-RM 1.019
(1.136)

1.020
(1.136)

1.021
(1.149)

1.023
(1.173)

1.024
(1.164)

1.046
(1.396)

GUILLOTINE-BAF-LLAS-RM 1.020
(1.125)

1.021
(1.125)

1.025
(1.144)

1.028
(1.172)

1.025
(1.145)

1.048
(1.396)

GUILLOTINE-BAF-MAXAS-RM 1.021
(1.127)

1.022
(1.127)

1.024
(1.144)

1.027
(1.172)

1.024
(1.145)

1.047
(1.396)

GUILLOTINE-BLSF-LLAS-RM 1.023
(1.125)

1.024
(1.125)

1.026
(1.151)

1.030
(1.173)

1.032
(1.181)

1.052
(1.396)

GUILLOTINE-BLSF-MAXAS-RM 1.024
(1.127)

1.025
(1.127)

1.026
(1.151)

1.028
(1.173)

1.030
(1.181)

1.052
(1.396)

GUILLOTINE-BSSF-SLAS-RM 1.026
(1.155)

1.026
(1.155)

1.023
(1.163)

1.023
(1.160)

1.020
(1.156)

1.046
(1.396)

GUILLOTINE-BSSF-MINAS-RM 1.027
(1.168)

1.028
(1.168)

1.024
(1.173)

1.025
(1.169)

1.020
(1.156)

1.047
(1.396)

GUILLOTINE-BSSF-LAS-RM 1.027
(1.311)

1.028
(1.317)

1.031
(1.309)

1.035
(1.329)

1.019
(1.133)

1.048
(1.396)

GUILLOTINE-BLSF-SLAS-RM 1.029
(1.210)

1.030
(1.215)

1.027
(1.223)

1.027
(1.222)

1.040
(1.330)

1.045
(1.396)

GUILLOTINE-BAF-SLAS-RM 1.029
(1.215)

1.029
(1.211)

1.027
(1.227)

1.027
(1.222)

1.027
(1.223)

1.045
(1.396)

GUILLOTINE-BLSF-MINAS-RM 1.037
(1.371)

1.038
(1.370)

1.035
(1.340)

1.036
(1.332)

1.044
(1.412)

1.046
(1.396)

GUILLOTINE-BAF-MINAS-RM 1.037
(1.372)

1.037
(1.371)

1.034
(1.340)

1.036
(1.332)

1.035
(1.339)

1.046
(1.396)

GUILLOTINE-BAF-LAS-RM 1.048
(1.479)

1.049
(1.484)

1.050
(1.495)

1.052
(1.484)

1.050
(1.494)

1.051
(1.396)

GUILLOTINE-BLSF-LAS-RM 1.048
(1.479)

1.049
(1.484)

1.049
(1.495)

1.051
(1.484)

1.049
(1.471)

1.052
(1.396)

Table 13: The o�ine GUILLOTINE variants.
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-ASC
DIFF
-BFF

-DESC
DIFF
-BFF

-ASCLS
-BFF

-ASC
PERIM
-BFF

-ASCA -
BFF

-ASC
RATIO
-BFF

-ASCSS
-BFF

GUILLOTINE-BSSF-SAS-RM 1.084
(1.344)

1.158
(1.465)

1.222
(1.506)

1.294
(1.567)

1.324
(1.593)

1.385
(1.739)

1.391
(1.739)

GUILLOTINE-BAF-SAS-RM 1.086
(1.353)

1.161
(1.472)

1.225
(1.509)

1.299
(1.560)

1.333
(1.610)

1.399
(1.769)

1.405
(1.776)

GUILLOTINE-BSSF-LLAS-RM 1.087
(1.348)

1.161
(1.467)

1.221
(1.497)

1.295
(1.558)

1.336
(1.625)

1.407
(1.776)

1.413
(1.786)

GUILLOTINE-BSSF-MAXAS-RM 1.086
(1.348)

1.161
(1.468)

1.227
(1.498)

1.298
(1.558)

1.336
(1.612)

1.402
(1.771)

1.408
(1.782)

GUILLOTINE-BLSF-SAS-RM 1.088
(1.364)

1.164
(1.478)

1.235
(1.522)

1.312
(1.595)

1.341
(1.617)

1.406
(1.776)

1.412
(1.783)

GUILLOTINE-BAF-LLAS-RM 1.092
(1.371)

1.166
(1.473)

1.230
(1.513)

1.302
(1.560)

1.345
(1.633)

1.420
(1.807)

1.426
(1.819)

GUILLOTINE-BAF-MAXAS-RM 1.092
(1.372)

1.165
(1.472)

1.236
(1.527)

1.306
(1.560)

1.346
(1.625)

1.414
(1.795)

1.420
(1.806)

GUILLOTINE-BLSF-LLAS-RM 1.095
(1.388)

1.170
(1.477)

1.239
(1.541)

1.311
(1.605)

1.348
(1.633)

1.424
(1.821)

1.430
(1.831)

GUILLOTINE-BLSF-MAXAS-RM 1.095
(1.388)

1.169
(1.478)

1.245
(1.533)

1.317
(1.593)

1.349
(1.630)

1.418
(1.803)

1.424
(1.811)

GUILLOTINE-BSSF-SLAS-RM 1.084
(1.332)

1.161
(1.477)

1.166
(1.571)

1.286
(1.601)

1.308
(1.598)

1.362
(1.695)

1.367
(1.701)

GUILLOTINE-BSSF-MINAS-RM 1.084
(1.332)

1.165
(1.480)

1.158
(1.565)

1.282
(1.597)

1.307
(1.599)

1.363
(1.696)

1.368
(1.701)

GUILLOTINE-BSSF-LAS-RM 1.090
(1.428)

1.173
(1.503)

1.160
(1.503)

1.282
(1.599)

1.326
(1.615)

1.387
(1.726)

1.392
(1.732)

GUILLOTINE-BLSF-SLAS-RM 1.091
(1.340)

1.171
(1.551)

1.171
(1.514)

1.308
(1.636)

1.327
(1.634)

1.378
(1.714)

1.383
(1.719)

GUILLOTINE-BAF-SLAS-RM 1.090
(1.341)

1.170
(1.548)

1.168
(1.494)

1.304
(1.635)

1.324
(1.638)

1.374
(1.709)

1.379
(1.714)

GUILLOTINE-BLSF-MINAS-RM 1.095
(1.457)

1.184
(1.660)

1.158
(1.497)

1.306
(1.717)

1.333
(1.731)

1.388
(1.742)

1.393
(1.742)

GUILLOTINE-BAF-MINAS-RM 1.094
(1.458)

1.184
(1.660)

1.157
(1.490)

1.304
(1.717)

1.331
(1.731)

1.386
(1.742)

1.391
(1.742)

GUILLOTINE-BAF-LAS-RM 1.106
(1.562)

1.203
(1.697)

1.164
(1.489)

1.315
(1.708)

1.354
(1.736)

1.411
(1.810)

1.416
(1.810)

GUILLOTINE-BLSF-LAS-RM 1.107
(1.567)

1.203
(1.697)

1.164
(1.499)

1.314
(1.708)

1.353
(1.736)

1.410
(1.810)

1.416
(1.810)

Table 14: The o�ine GUILLOTINE variants.

-BNF -BFF -BBF

MAXRECTS-BSSF 1.408 (1.788) 1.047 (1.134) 1.041 (1.130)

MAXRECTS-BAF 1.420 (1.817) 1.047 (1.134) 1.043 (1.132)

MAXRECTS-BLSF 1.436 (1.708) 1.051 (1.155) 1.052 (1.181)

MAXRECTS-CP 1.411 (1.669) 1.049 (1.142) 1.062 (1.206)

MAXRECTS-BL 1.388 (1.648) 1.051 (1.157) 1.280 (1.486)

Table 15: The online MAXRECTS variants.
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-DESC
SS

-DESC
RATIO

-DESCA -DESC
PERIM

-GLOBAL -DESC
LS

MAXRECTS-BL-BFF 1.008
(1.091)

1.009
(1.091)

1.013
(1.120)

1.015
(1.125)

1.041
(1.396)

MAXRECTS-BSSF-BBF 1.009
(1.087)

1.010
(1.087)

1.010
(1.106)

1.012
(1.111)

1.005
(1.068)

1.035
(1.396)

MAXRECTS-BSSF-BFF 1.009
(1.087)

1.010
(1.087)

1.012
(1.106)

1.014
(1.111)

1.040
(1.396)

MAXRECTS-CP-BFF 1.009
(1.087)

1.009
(1.087)

1.012
(1.109)

1.014
(1.111)

1.042
(1.396)

MAXRECTS-BAF-BFF 1.009
(1.088)

1.010
(1.088)

1.012
(1.108)

1.014
(1.111)

1.041
(1.396)

MAXRECTS-BLSF-BFF 1.010
(1.086)

1.011
(1.090)

1.014
(1.102)

1.017
(1.119)

1.045
(1.396)

MAXRECTS-BAF-BBF 1.010
(1.088)

1.010
(1.088)

1.011
(1.107)

1.012
(1.111)

1.010
(1.083)

1.036
(1.396)

MAXRECTS-BLSF-BBF 1.011
(1.087)

1.012
(1.094)

1.014
(1.103)

1.016
(1.117)

1.011
(1.089)

1.042
(1.396)

MAXRECTS-CP-BBF 1.011
(1.116)

1.012
(1.122)

1.012
(1.100)

1.014
(1.109)

1.012
(1.121)

1.040
(1.395)

MAXRECTS-BL-BBF 1.030
(1.186)

1.031
(1.183)

1.062
(1.161)

1.096
(1.335)

1.480
(1.862)

1.198
(1.592)

MAXRECTS-BL-BNF 1.360
(1.696)

1.360
(1.697)

1.365
(1.692)

1.355
(1.686)

1.343
(1.666)

1.329
(1.585)

MAXRECTS-CP-BNF 1.374
(1.717)

1.375
(1.715)

1.375
(1.697)

1.358
(1.680)

1.010
(1.120)

1.325
(1.577)

MAXRECTS-BSSF-BNF 1.384
(1.732)

1.385
(1.732)

1.389
(1.729)

1.367
(1.676)

1.005
(1.068)

1.311
(1.556)

MAXRECTS-BAF-BNF 1.389
(1.737)

1.390
(1.736)

1.398
(1.734)

1.389
(1.790)

1.010
(1.083)

1.316
(1.557)

MAXRECTS-BLSF-BNF 1.390
(1.738)

1.391
(1.739)

1.396
(1.706)

1.397
(1.767)

1.011
(1.089)

1.338
(1.602)

Table 16: The o�ine MAXRECTS variants.
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-ASC
DIFF

-DESC
DIFF

-ASCLS -ASC
PERIM

-ASCA -ASC
RATIO

-ASCSS

MAXRECTS-BL-BFF 1.050
(1.311)

1.152
(1.466)

1.125
(1.483)

1.237
(1.524)

1.290
(1.565)

1.350
(1.694)

1.355
(1.694)

MAXRECTS-BSSF-BBF 1.043
(1.317)

1.147
(1.456)

1.122
(1.488)

1.235
(1.532)

1.279
(1.554)

1.346
(1.675)

1.351
(1.681)

MAXRECTS-BSSF-BFF 1.052
(1.323)

1.150
(1.456)

1.127
(1.488)

1.239
(1.531)

1.282
(1.554)

1.348
(1.677)

1.353
(1.682)

MAXRECTS-CP-BFF 1.051
(1.324)

1.151
(1.460)

1.126
(1.474)

1.236
(1.516)

1.285
(1.547)

1.345
(1.670)

1.350
(1.675)

MAXRECTS-BAF-BFF 1.052
(1.323)

1.151
(1.465)

1.130
(1.491)

1.243
(1.536)

1.286
(1.571)

1.350
(1.673)

1.355
(1.678)

MAXRECTS-BLSF-BFF 1.056
(1.338)

1.154
(1.459)

1.138
(1.526)

1.249
(1.571)

1.295
(1.581)

1.359
(1.681)

1.364
(1.686)

MAXRECTS-BAF-BBF 1.049
(1.323)

1.150
(1.463)

1.126
(1.490)

1.239
(1.538)

1.284
(1.577)

1.349
(1.673)

1.354
(1.677)

MAXRECTS-BLSF-BBF 1.055
(1.340)

1.157
(1.463)

1.135
(1.533)

1.245
(1.577)

1.292
(1.581)

1.358
(1.680)

1.363
(1.686)

MAXRECTS-CP-BBF 1.069
(1.410)

1.158
(1.477)

1.161
(1.498)

1.261
(1.642)

1.302
(1.675)

1.353
(1.728)

1.359
(1.728)

MAXRECTS-BL-BBF 1.176
(1.472)

1.322
(1.731)

1.410
(1.920)

1.459
(1.848)

1.462
(1.835)

1.480
(1.868)

1.487
(1.874)

MAXRECTS-BL-BNF 1.363
(1.677)

1.342
(1.691)

1.338
(1.590)

1.352
(1.687)

1.369
(1.694)

1.374
(1.710)

1.373
(1.709)

MAXRECTS-CP-BNF 1.375
(1.686)

1.368
(1.697)

1.337
(1.585)

1.357
(1.685)

1.382
(1.698)

1.392
(1.740)

1.392
(1.744)

MAXRECTS-BSSF-BNF 1.411
(1.848)

1.374
(1.694)

1.327
(1.565)

1.352
(1.672)

1.397
(1.746)

1.418
(1.775)

1.418
(1.776)

MAXRECTS-BAF-BNF 1.413
(1.887)

1.379
(1.698)

1.335
(1.569)

1.361
(1.675)

1.408
(1.756)

1.449
(1.912)

1.449
(1.912)

MAXRECTS-BLSF-BNF 1.432
(1.865)

1.392
(1.727)

1.354
(1.608)

1.382
(1.705)

1.407
(1.715)

1.446
(1.871)

1.445
(1.871)

Table 17: The o�ine MAXRECTS variants.

-BNF -BFF

SKYLINE-BL-WM 1.392 (1.654) 1.056 (1.158)

SKYLINE-BL 1.398 (1.658) 1.069 (1.235)

SKYLINE-MW-WM 1.413 (1.659) 1.054 (1.141)

SKYLINE-MW 1.416 (1.751) 1.064 (1.187)

Table 18: The online SKYLINE variants.
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SKYLINE-BL-WM-BNF SKYLINE-MW-WM-BNF

-DESCLS 1.329 (1.583) 1.330 (1.586)

-ASCLS 1.337 (1.588) 1.342 (1.596)

-DESCDIFF 1.344 (1.691) 1.348 (1.689)

-ASCPERIM 1.355 (1.689) 1.362 (1.688)

-DESCPERIM 1.358 (1.687) 1.367 (1.683)

-DESCSS 1.361 (1.697) 1.369 (1.705)

-DESCRATIO 1.361 (1.698) 1.369 (1.706)

-DESCA 1.369 (1.697) 1.381 (1.698)

-ASCA 1.373 (1.700) 1.389 (1.708)

-ASCDIFF 1.362 (1.675) 1.390 (1.704)

-ASCSS 1.374 (1.710) 1.407 (1.772)

-ASCRATIO 1.374 (1.710) 1.408 (1.772)

Table 19: The o�ine SKYLINE-BNF variants.

SKYLINE-BL-WM-BFF SKYLINE-MW-WM-BFF

-DESCSS 1.013 (1.094) 1.013 (1.090)

-DESCRATIO 1.013 (1.094) 1.013 (1.090)

-DESCA 1.017 (1.123) 1.017 (1.112)

-DESCPERIM 1.019 (1.125) 1.019 (1.111)

-DESCLS 1.041 (1.396) 1.041 (1.396)

-ASCDIFF 1.051 (1.313) 1.054 (1.323)

-ASCLS 1.126 (1.485) 1.127 (1.489)

-DESCDIFF 1.154 (1.466) 1.154 (1.456)

-ASCPERIM 1.239 (1.530) 1.238 (1.526)

-ASCA 1.294 (1.571) 1.289 (1.568)

-ASCRATIO 1.352 (1.681) 1.352 (1.675)

-ASCSS 1.356 (1.683) 1.357 (1.680)

Table 20: The o�ine SKYLINE-BFF variants.
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MAXRECTS-BSSF-BBF 1.04063 (1.13026)

MAXRECTS-BAF-BBF 1.04256 (1.13231)

MAXRECTS-BSSF-BFF 1.04669 (1.13411)

MAXRECTS-BAF-BFF 1.04728 (1.13409)

MAXRECTS-CP-BFF 1.04911 (1.142)

MAXRECTS-BL-BFF 1.05065 (1.15721)

MAXRECTS-BLSF-BFF 1.05144 (1.15477)

MAXRECTS-BLSF-BBF 1.05181 (1.18114)

SKYLINE-MW-WM-BFF 1.05391 (1.14136)

SKYLINE-BL-WM-BFF 1.05569 (1.15824)

MAXRECTS-CP-BBF 1.06154 (1.20645)

GUILLOTINE-BSSF-SAS-RM-BFF 1.06222 (1.15781)

GUILLOTINE-BSSF-SAS-BFF 1.06273 (1.15781)

GUILLOTINE-BSSF-SLAS-RM-BFF 1.06275 (1.20376)

GUILLOTINE-WLSF-SAS-RM-BFF 1.06349 (1.16027)

GUILLOTINE-BSSF-SLAS-BFF 1.0639 (1.20679)

GUILLOTINE-WLSF-SLAS-RM-BFF 1.06401 (1.20328)

SKYLINE-MW-BFF 1.06403 (1.18656)

GUILLOTINE-WLSF-SAS-BFF 1.06408 (1.16039)

GUILLOTINE-BSSF-MINAS-RM-BFF 1.0642 (1.23088)

GUILLOTINE-WLSF-SLAS-BFF 1.06509 (1.20681)

GUILLOTINE-BSSF-MINAS-BFF 1.06529 (1.23549)

GUILLOTINE-WLSF-MINAS-RM-BFF 1.06532 (1.23439)

GUILLOTINE-BAF-SAS-RM-BFF 1.06549 (1.17989)

GUILLOTINE-BAF-SAS-BFF 1.06593 (1.17996)

GUILLOTINE-WLSF-MINAS-BFF 1.06651 (1.23544)

GUILLOTINE-WAF-SAS-RM-BFF 1.06654 (1.17853)

GUILLOTINE-WAF-SAS-BFF 1.06705 (1.17834)

GUILLOTINE-BLSF-SAS-RM-BFF 1.06725 (1.1804)

GUILLOTINE-BLSF-SAS-BFF 1.06761 (1.1804)

GUILLOTINE-BAF-SLAS-RM-BFF 1.06873 (1.30024)

GUILLOTINE-WSSF-SAS-RM-BFF 1.06882 (1.18171)

GUILLOTINE-WSSF-SAS-BFF 1.06932 (1.18171)

SKYLINE-BL-BFF 1.06948 (1.23466)

GUILLOTINE-BSSF-MAXAS-RM-BFF 1.06963 (1.17194)

GUILLOTINE-BSSF-MAXAS-BFF 1.06984 (1.17162)

GUILLOTINE-BLSF-SLAS-RM-BFF 1.07008 (1.29906)

Table 21: Overall online variants.
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MAXRECTS-BSSF-GLOBAL-BBF 1.00466 (1.06773)

MAXRECTS-BSSF-GLOBAL-BNF 1.00466 (1.06773)

MAXRECTS-BL-DESCSS-BFF 1.00849 (1.0909)

MAXRECTS-CP-DESCSS-BFF 1.00858 (1.08664)

MAXRECTS-BSSF-DESCSS-BBF 1.00898 (1.08718)

MAXRECTS-BL-DESCRATIO-BFF 1.00907 (1.0909)

MAXRECTS-CP-DESCRATIO-BFF 1.00912 (1.08664)

MAXRECTS-BSSF-DESCSS-BFF 1.00922 (1.08699)

MAXRECTS-BAF-DESCSS-BFF 1.00949 (1.08754)

MAXRECTS-BSSF-DESCRATIO-BBF 1.00952 (1.08718)

MAXRECTS-BAF-DESCSS-BBF 1.00957 (1.08754)

MAXRECTS-BSSF-DESCRATIO-BFF 1.0098 (1.08699)

MAXRECTS-BAF-DESCRATIO-BFF 1.01006 (1.08754)

MAXRECTS-BAF-GLOBAL-BBF 1.01013 (1.08258)

MAXRECTS-BAF-GLOBAL-BNF 1.01013 (1.08258)

MAXRECTS-BAF-DESCRATIO-BBF 1.01021 (1.08754)

MAXRECTS-CP-GLOBAL-BNF 1.01045 (1.1199)

MAXRECTS-BSSF-DESCA-BBF 1.01045 (1.10625)

MAXRECTS-BLSF-DESCSS-BFF 1.01046 (1.08601)

MAXRECTS-BLSF-DESCSS-BBF 1.0107 (1.08674)

MAXRECTS-BLSF-DESCRATIO-BFF 1.0111 (1.09038)

MAXRECTS-BLSF-GLOBAL-BNF 1.01121 (1.08929)

MAXRECTS-BAF-DESCA-BBF 1.01127 (1.10651)

MAXRECTS-BLSF-GLOBAL-BBF 1.01129 (1.08929)

MAXRECTS-CP-DESCSS-BBF 1.01138 (1.11591)

MAXRECTS-BLSF-DESCRATIO-BBF 1.0115 (1.09397)

MAXRECTS-BSSF-DESCA-BFF 1.01163 (1.10553)

MAXRECTS-CP-DESCA-BFF 1.01167 (1.10924)

MAXRECTS-BAF-DESCA-BFF 1.01182 (1.10771)

MAXRECTS-CP-DESCRATIO-BBF 1.01193 (1.1219)

MAXRECTS-CP-DESCA-BBF 1.01221 (1.09965)

MAXRECTS-BSSF-DESCPERIM-BBF 1.01237 (1.11109)

MAXRECTS-CP-GLOBAL-BBF 1.01243 (1.12094)

MAXRECTS-BAF-DESCPERIM-BBF 1.01246 (1.11109)

MAXRECTS-BL-DESCA-BFF 1.01269 (1.12007)

SKYLINE-MW-DESCSS-WM-BFF 1.01281 (1.08979)

Table 22: Overall o�ine variants.
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