
KittyTerminalImages.jl
A package for displaying images
on the kitty terminal emulator.

kitty - the fast, featureful, GPU based terminal emulator

● Terminal emulator like rxvt or iTerm

● Quite modern

● Fast

● Linux, Mac & Windows

● Supports images

Download at https://sw.kovidgoyal.net/kitty/

https://sw.kovidgoyal.net/kitty/

Escape sequences - communicate with the terminal
Special sequences of characters as commands

● Usually are of the form "\033[<some data> m"

● Red Background: "\033[30;41m"

● Query for the text Color: "\e]10;?\e\\"

=> kitty answers with: "10;rgb:d5d5/c4c4/a1a1

Sending an image to kitty
1. Write image to a temporary .png file.

=> Julia provides functions mktemp() and tempname()

2. Send an escape sequence with the path to kitty:

function draw_temp_file(path::String)
cmd_prefix = transcode(UInt8, "\033_Gf=100,t=t,a=T;")
cmd_postfix = transcode(UInt8, "\033\\")
payload = transcode(UInt8, base64encode(path))

cmd = [cmd_prefix; payload; cmd_postfix]
write(stdout, cmd)

end

Issues with this approach
1. Does not work over SSL
2. Does not work with tmux and screen

=> There might be workarounds for both problems

Julia REPL functions for displaying Media
● For text: show(...)

julia> a = [1, 2, 3]
julia> show(a)

[1, 2, 3]

julia> using Plots
julia> p = plot([1,2,3]);
julia> display(p)

=> opens up a new window

● For richer media: display(...)

Different representations: MIMEs
● An object can have different representations.

Ex: Julia can show markdown as html or latex

● Use MIME types for specifying the representation:
show(io::IO, m::MIME, x)

● Create a mime object:
MIME"text/html"()

● Verify if x can be shown as MIME m:
showable(m, x)

● KittyTerminalImages supports MIMES "image/png", "image/svg+xml" and
"text/latex"

Different displays: displaystack
● Media can be shown on various media:

REPL, browser, separate window, IDE, kitty

● A display is represented by a subtype of AbstractDisplay

● Julia has an internal display stack: Base.Multimedia.display

● Packages can put their own display on this stack.

● Julia tries to display with the topmost display.

What happens when you press enter in the REPL?
1. The line is evaluated and returns an object x.

2. Julia calls display(x).

3. Julia selects the topmost d::AbstractDisplay from the display stack
that knows how to display this object.

4. Julia calls display(d, x).

5. Julia selects the best the best mime m::MIME for this display and object,
and calls display(d, m, x).

6. display(d, m, x) uses show(m, x) to get a text representation of x.

Links
● kitty: https://sw.kovidgoyal.net/kitty

● KittyTerminalImages: https://github.com/simonschoelly/KittyTerminalImages.jl

Other approaches:
● TerminalExtensions.jl: https://github.com/Keno/TerminalExtensions.jl

● TerminalGraphics.jl: https://github.com/m-j-w/TerminalGraphics.jl

● SixelTerm.jl: https://github.com/tshort/SixelTerm.jl

https://sw.kovidgoyal.net/kitty
https://github.com/simonschoelly/KittyTerminalImages.jl
https://github.com/Keno/TerminalExtensions.jl
https://github.com/m-j-w/TerminalGraphics.jl
https://github.com/tshort/SixelTerm.jl

