
1

Design Report: Self-Driving Car Simulation
Chris Yoon and Julian Lapenna

Outline
Project Overview 2

Strategy 2

Character Recognition Modules 2
Pre-Processing 3
Data Generation 3
NN Architecture and Parameters 5
Testing and Analysis 5

Driver Module 6
Driving controller 7

Pre-Processing 7
Data Generation/Collection 7
NN Architecture and Parameters 8
Testing and Analysis 8

Pedestrian and Vehicle Detection 9

Summary 9
Dead Ends 10
Further Development 10



2

Project Overview
The purpose of this project was to explore and apply control systems involving data classification
techniques and machine learning. We performed these tasks by developing autonomous control
software for a driving robot in a simulated environment that follows traffic rules and collects license
plates and associated parking ID data.

This paper will outline the approaches and strategies our team used from development up to our final
model and the analysis techniques we used throughout our process. Our high level strategy was to use
fully artificial intelligence based control software and learn as much as we could about them. To
achieve this we prioritized capturing large amounts of clean data for training precise and accurate
models.

Our approach for the competition was to consistently score maximum points on the outer ring and then
transition to the inner ring using the algorithms already developed. Our final controller succeeded in
doing this with a total of five convolution neural networks (CNNs). Each neural network model will
be explained more in detail in their respective sections along with example training data, prediction
outputs and error-analysis.

Strategy
Our main strategy was to drive using imitation learning, slow down while reading license plates to
capture clear data, and enter the inner ring after a set amount of crosswalks were reached. For reading
license plates, we used three CNNs: one for reading the parking ID, one for the license plate letters
and one for the license plate numbers.

Upon approaching a car, we first read the parking ID, then the license plate. The predicted license
plate went into a set under the corresponding ID label. Since we took multiple reads of each plate, the
set corresponding to each ID label would have multiple license plates, usually with some being
incorrect.

To determine which license plate to publish we took the highest frequency license plate in each ID set,
and in the case of a tie we took the license plate with the higher cumulative prediction probability
output from our model. Since publishing was slow and took time, we waited until we were stopped at
a crosswalk to calculate the license plate for a given ID and publish it. Lastly, for the inside since there
was no place to stop, we waited until we’d seen five instances of each ID and then stopped, published
and ended the timer.

Character Recognition Modules
Our license plate reader system was a combination of three CNNs. One was trained for recognizing
parking spot IDs (ID model), one for license plate letters (alpha model) and one for license plate
numbers (number model). The approaches for gathering data and their architectures were quite similar
so we will focus on the general process and address parts that were unique to a specific one
individually. At a high level, we explored the environment using different OpenCV processing
techniques such as HSV filtering, blurring, and binary thresholding to efficiently gather data and
process it during the competition.



3

Pre-Processing
For all three character recognition CNNs, we first identified when a car’s license plate was nearby and
in our field of view. This was done by blurring the input image for consistency, then creating a
bandpass filter in HSV color space to capture gray values.

The image on the left shows that the front of the car
is clearly distinguishable from the surrounding
environment. The next task was to isolate the front
of the car. By selecting the largest contour in view
we could apply OpenCV’s contour approximation
and save the vertices of the quadrilateral. In the
case where the largest contour was something else,
it wouldn’t have four vertices to transform and we
could discard that frame.

The vertices were then used to extract a
clear picture of the license plate from
the original input image. Using
homography, we transformed the
image to isolate the license plate. Next,
assuming we got a clear perspective
transform of the front of a car, the
parking ID and license plate characters
would always be in the same positions.
Leveraging this we cropped at specific
points to get images of the individual
characters we tried to read.

The only other preprocessing
performed was to reduce the
dimensionality of our input character
images. The main goal was to remove
as much information as possible
without obscuring the character itself.
Therefore, we applied a black and
white filter and reduced the size to 1%
of the original. This then left us with
images that were small enough to be
processed quickly and with enough
information to clearly contain a distinct
identifiable character. This final

preprocessing also helped with edge cases where the image was blurry because as you can see in the
first image, the letter ‘A’ was blurry but at a smaller scale most of the blur was removed.

Data Generation
Once our preprocessing routine was set up, capturing and labeling data was straightforward. We edited
the license plate generator script to load all license plates as the character we specified. Starting with
'A' and '0' we systematically went through the alphabet and all 10 digits, saving hundreds of images for
each character. We captured a variety of blurred and sharp images, dark and light images, and images



4
from the left and right sides. Additionally, we manually checked each data point captured to verify that
we weren’t feeding our models bad data. With each callback from the ROS topic `R1/cmd_vel`, we
saved the images using OpenCV's `imwrite()` method and labeled them according to the selected
character in the generator script.

The following three graphs show how much data was fed into each CNN by label.

Total letters fed to alphabet model: 15193 Total numbers fed to ID model: 953

Total numbers fed to number model: 3860

We tried to keep the data roughly equally spread between each label in all our CNN training sets, only
adding extra data where it had difficulties.

In the alpha model, we aimed for approximately 450 images of each character, with extras for ‘Q’,
‘O’, ‘W’, and ‘V’ as these were the letters our model had the most trouble with. In the ID model, there
was very little variance in the data we would be reading, so we aimed for 100 images of each number.
Lastly in the license plate number model, we aimed for nearly 350 images of each number, and it
tended to get confused by ‘8’s and ‘9’s so more images of each were added.
A trend we noticed was that as the output range grew, in general more input training data was required.
This seemed to make sense as the model would need more information to distinguish between each
output class. Despite the pipeline we established for generating data and processing it all, we found the
data generation stage —specifically for the reading models— to be the slowest part of the process.



5

NN Architecture and Parameters
The architecture of the models we used were the following:

Model: License Plate Alpha Reader

Layer (type) Output Shape Param #

Conv2D (None, 27, 13, 32) 320

MaxPooling2D (None, 13, 6, 32) 0

Conv2D (None, 11, 4, 64) 18496

MaxPooling2D (None, 5, 2, 64) 0

Flatten (None, 640) 0

Dense (None, 512) 328192

Dense (None, 26) 13338

Total params: 360,346
Trainable params: 360,346
Non-trainable params: 0

Model: License Plate Number Reader

Layer (type) Output Shape Param #

Conv2D (None, 27, 13, 32) 320

MaxPooling2D (None, 13, 6, 32) 0

Conv2D (None, 11, 4, 64) 18496

MaxPooling2D (None, 5, 2, 64) 0

Flatten (None, 640) 0

Dropout (None, 640) 0

Dense (None, 512) 328192

Flatten (None, 512) 0

Dense (None, 256) 131328

Dense (None, 10) 2570

Total params: 480,906
Trainable params: 480,906
Non-trainable params: 0

Model:Parking Spot ID Reader

Layer (type) Output Shape Param #

Conv2D (None, 28, 13, 32) 320

MaxPooling2D (None, 14, 6, 32) 0

Conv2D (None, 12, 4, 64) 18496

MaxPooling2D (None, 6, 2, 64) 0

Flatten (None, 762) 0

Dense (None, 512) 393728

Dense (None, 8) 4104

Total params: 416,648
Trainable params: 416,648
Non-trainable params: 0

We didn’t have a specific architecture in mind
when creating our models. We started with a
few layers and then added more layers and
compared the validation and training loss
graphs. We found that a few layers worked
well for the alpha and ID readers, but more
layers worked better for the number reader.

The only other training parameter we varied
was the number of epochs. After training, we
looked at the validation graphs and increased
the number of epochs until the accuracy began
to plateau to prevent overfitting. Lastly, for our
later models we kept the same parameters and
simply trained with more data but didn’t
change layers or compare the various graphs
because we didn’t want to risk maxing out our
computing power on Google Colab and losing
our environment.

Testing and Analysis
To evaluate each model, we compared the validation and training loss graphs, looked at the confusion
matrices, and briefly looked at the top losses. The results for the alpha and ID readers were quite
similar, this likely due to them having the same architecture.

The number of epochs for the license plate reader and parking ID models both seemed to plateau after
about 40 epochs while the license plate number model needed 50 epochs.



6

Model loss graph for alpha and ID models Model loss graph for number model

Model accuracy graph for alpha and ID models Model accuracy graph for number model

The model loss and accuracy for the license alpha and ID reader are as expected. The number reader,
while looking choppy, has initial values that are much closer to the convergence values. Therefore
only the scale of the graph is zoomed in, the performance is roughly on par with the other two models.

Finally the confusion matrix was useful in evaluating what inputs our models had the most difficulties
with. We used it to identify which data we needed more of when coming back to retrain our models.

The confusion matrices from (left to right) our alpha, number and ID models used in competition.

Driver Module
Our driver module, responsible for controlling the robot’s movements, was composed of two main
components: driving controller and object (pedestrian and vehicle) detection. The driving controller
was created with two CNNs (one for the outside track and one for the inside), with the input as images
from the robot’s front camera and the output being the velocities of the robot. Simultaneously as the
robot drove, we performed checks for any pedestrians and parked vehicles, which would adjust the
driving of the robot accordingly.



7

Driving controller
This subsection will cover all details regarding the CNN used for the driving controller. We spent the
majority of our time working on the driver for the outside loop and then replicated our process but
with different data for the inside loop, so for conciseness and clarity we will look at the process for the
outer loop CNN.

Pre-Processing
The main purpose for pre-processing the raw image from the robot’s camera was to reduce the
dimensionality of input to the CNN, while keeping only the necessary information from an image.

Considering this, we first decided to apply an
HSV band filter to the white lines on the sides
of the road - this also allowed our data to make
no distinction between the regular and grass
road portions, making the data more uniform.
Upon testing, we realized that the image sizes
were too large, which slowed the model’s
training and predictions. Therefore, we
cropped the upper half of the images and
compressed it by a factor of four. The resulting
image still contained all of the necessary data,
since the road lines were only present on the
bottom half of the robot’s field of view.

Data Generation/Collection
Collecting data was done by driving around the track with the robot, and saving and labeling the
images throughout the process. Since we expected to collect a large amount, we tried to streamline our
process as possible. Considering this, we created a script that as we drove, would automatically
preprocess and label the images accordingly. The labels of each image included the velocities of the
robot when the image was received as those should be the predicted output velocities of the CNN.
Specifically, we held the following format: <x linear velocity>_<z angular velocity>_<frame
number>.png. The frame numbers are unique values so that images with the same velocities were not
overwritten. To decrease the output space of our CNN, we discretized our velocity values to only have
three possible [x,z] combinations - driving straight [x_set,0], turning right [0,- z_set], and turning left
[0,z_set], where x_set = 0.4 and z_set = 0.8 are the setpoint discretized velocities values.

Additionally, our script was made so that we can determine when to start and stop data collection.
Using the fact that changing ‘y’ velocities did not affect the robot’s movements but were readable
through ROS, increasing the ‘y’ velocity would start the data collection, and decreasing it would stop.
This allowed us to efficiently collect specific types of image data in specific durations while only
launching the competition surface once. For instance, we used this method to collect data on the
robot's recovery from driving off the road. We would drive the robot off the road, then start recording
while driving back onto the road, and repeat the process multiple times without having to run, stop
and rerun the script each time.



8

The overall goal was to collect data such
that our robot can be robust in all possible
situations. Therefore, we collected large
quantities of data for the robot turning left,
right and driving straight to maintain
performance in all directions. We didn’t need
as much data of the robot turning right since
the outside track only has left turns.
Additionally, we collected data with the
robot driving within the road, correcting
itself when starting to drift off the road, and
starting completely off the road. This was
done at every region of the track, to maintain
its performance in all locations.

NN Architecture and Parameters

Akin to the license plate models, we
didn’t have a specific architecture in
mind, but decided to start with only three
layers and planned to make adjustments
if deemed necessary. Luckily this model’s
performance was sufficient and the only
deficiencies were solved with a more
robust dataset. A summary of the driver
model is outlined below.

Testing and Analysis
Likewise to the license plate models, the models were analyzed by plotting the model’s losses and
accuracies and the confusion matrix, for both the training and validation dataset. In the driver case
though, a bad prediction is acceptable because the model would need to make several poor predictions
in a row to drive off the road so we also considered its performance on the competition surface in our
testing. As seen from the images below, the model’s validation accuracy seems to plateau at 80%,
while the training accuracy increases. The model seems clearly overfit but when testing it performed
adequately so we used it in our driving controller.



9

Summary of model characteristics. Plot of the losses and accuracy of training and validation data (top) and the
confusion matrix of the entire dataset (bottom)

Pedestrian and Vehicle Detection
To detect and safely drive past the crosswalk, we implemented a set of sequences. First, while driving,
we checked if the robot was close to the red line. This was implemented by filtering only for the color
red, and we deemed it close if the largest contour was above a threshold area, since the area is larger
when closer. Once at the crosswalk, the robot stops and only drives across when the pedestrian has
moved off the road. This is done by comparing two subsequent images: If the mean squared error
between the two images are similar, then the pedestrian is at the same spot and is not crossing.
Otherwise, the pedestrian is considered moving across.

A frequently encountered problem was the projected license plate images would become blurry when
seen at a far distance from parked vehicles, increasing the risk of a misprediction. To minimize this,
we only predicted the license plates when the robot was considered close enough to the parked
vehicles. Since all the parked vehicles are blue, we checked the image’s blue area to determine the
distance from the license plates. To further minimize the risk, the robot also slows down in this region
so it can gather more data.

Summary
To summarize, our main strategy was driving and reading using imitation learning, completing the
outer loop, then proceeding to the inner loop. We read each license plate we passed multiple times,
saving both the predicted license plate and the prediction values. Once we stopped at a crosswalk we



10
computed the most commonly predicted license plate for every given parking ID and published the
result. On the inner ring, after capturing five frames of each parking ID, we computed, published and
stopped the timer.

Our biggest challenge was also our biggest accomplishment: the pipeline for gathering adequate
amounts of data. It was the biggest challenge by far because we needed lots of data to properly train
our models for robust performance. However, it was also our biggest accomplishment because we
attribute our success to the well-trained and robust models. Gathering the data took the longest of any
task in the project despite the amount of time we spent optimizing it. It was also very tiring because
we manually checked through each data point to remove bad data before training. Once we had all our
data though, this allowed us to test different model structures, test training on different datasets and
ultimately create the effective models we used in competition.

Dead Ends
One of the methods we attempted but didn’t include in our final build was a driving machine learning
model that instead of outputting one of three states, would output an angle to determine how much we
should turn at each instance. Instead of simply going straight, turning left or turning right, the model
would continuously move forward and turn increasing amounts as required. We planned on gathering
data by driving with a joystick instead of a keyboard since this would allow for smooth steering. The
desired advantages of this was that it would drive faster, more efficiently, and be a more competitive
robot. However, gathering data for this method was not worth the trouble since our alternative of
driving using a keyboard did fine, and we had difficulties adapting a joystick controller to give the
proper inputs to ROS and reading those values.

Further Development
Some alternative approaches we would have tested with more time were a SIFT detection model for
the parking space IDs since they’re distinct objects, training our inner circle driver by filtering for the
gray road instead of the white lines, and attempting a single reader CNN for license plates and parking
IDs.

The parking IDs would have been a perfect opportunity to learn more about SIFT because they are
distinct objects that need to be recognized. However, we didn’t spend much time working with SIFT
because object detection seems weaker when dealing with blur and we already had the neural net
infrastructure set up for the other models.

Training with images that highlighted the road instead of the lines would have also been a good idea
to test since the inner ring didn’t have “grass-road” terrain. Additionally, at a first glance it seems
quite effective since the white lines were ambiguous due to there being multiple lanes and
intersections that were all within view. Unfortunately, we only considered this option much later and
had already built the infrastructure for gathering data that highlighted the white road lines.

Lastly, a larger single reader CNN would have been very interesting (and fun!) to train. We thought
that training two separate models would reduce the output space and thus the error, but hadn’t
considered only looking at the outputs we were expecting for a given input (i.e. when looking at the
second half of a license plate, only evaluate data that points to numbers). Building one that also read
the parking IDs seemed out of reach though since it would need to interpret two unique fonts and we
were already maxing out the computing power available on Google Colab.


