{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "import os\n", "from pathlib import Path\n", "from IPython.display import display\n", "\n", "from scholar_scraper import *" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/json": { "ascii": false, "bar_format": null, "colour": null, "elapsed": 0.002631664276123047, "initial": 0, "n": 0, "ncols": null, "nrows": null, "postfix": null, "prefix": "Articles", "rate": null, "total": 22, "unit": "it", "unit_divisor": 1000, "unit_scale": false }, "application/vnd.jupyter.widget-view+json": { "model_id": "afd2516b372346adadf9bf024f9a2366", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Articles: 0%| | 0/22 [00:00\"\n", "\n", "# cache your results\n", "out_path = Path(\"results\")\n", "\n", "# depending on the number of your citations, scraping might:\n", "# 1. require a paid serpapi plan\n", "# 2. take a while (~ 7 sec/citation)...\n", "results = scrape_author(author_id, out_path=out_path)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
nameaffiliationsemailwebsiteemail_domainwarningsaffil_countryaffil_namecitationsabbrv_namearticlearticle_idcitationcitation_idauthor_idaffil_country_name
158Simon WelkerUniversität HamburgVerified email at unihamburg.deNaNunihamburg.de[]DEUniversität Hamburg287.0S WelkerAn optimal control perspective on diffusion-ba...73-D2jgAAAAJ:W7OEmFMy1HYCDriftRec: Adapting diffusion models to blind J...NoneIf3qsuwAAAAJGermany
111Yoshua BengioProfessor of computer science, University of M...Verified email at umontreal.cahttps://yoshuabengio.org/umontreal.ca[]CAUniversité de Montréal799012.0Y BengioAn optimal control perspective on diffusion-ba...73-D2jgAAAAJ:W7OEmFMy1HYCOn diffusion models for amortized inference: B...15947547171699022423kukA0LcAAAAJCanada
113Maxence NoblePh.D. Student, Ecole Polytechnique, FranceVerified email at polytechnique.eduhttps://maxencenoble.github.io/polytechnique.edu[]FREcole Polytechnique81.0M NobleAn optimal control perspective on diffusion-ba...73-D2jgAAAAJ:W7OEmFMy1HYCStochastic Localization via Iterative Posterio...173440465612910187384eGHx3gAAAAJFrance
\n", "
" ], "text/plain": [ " name affiliations \\\n", "158 Simon Welker Universität Hamburg \n", "111 Yoshua Bengio Professor of computer science, University of M... \n", "113 Maxence Noble Ph.D. Student, Ecole Polytechnique, France \n", "\n", " email website \\\n", "158 Verified email at unihamburg.de NaN \n", "111 Verified email at umontreal.ca https://yoshuabengio.org/ \n", "113 Verified email at polytechnique.edu https://maxencenoble.github.io/ \n", "\n", " email_domain warnings affil_country affil_name \\\n", "158 unihamburg.de [] DE Universität Hamburg \n", "111 umontreal.ca [] CA Université de Montréal \n", "113 polytechnique.edu [] FR Ecole Polytechnique \n", "\n", " citations abbrv_name article \\\n", "158 287.0 S Welker An optimal control perspective on diffusion-ba... \n", "111 799012.0 Y Bengio An optimal control perspective on diffusion-ba... \n", "113 81.0 M Noble An optimal control perspective on diffusion-ba... \n", "\n", " article_id \\\n", "158 73-D2jgAAAAJ:W7OEmFMy1HYC \n", "111 73-D2jgAAAAJ:W7OEmFMy1HYC \n", "113 73-D2jgAAAAJ:W7OEmFMy1HYC \n", "\n", " citation citation_id \\\n", "158 DriftRec: Adapting diffusion models to blind J... None \n", "111 On diffusion models for amortized inference: B... 15947547171699022423 \n", "113 Stochastic Localization via Iterative Posterio... 17344046561291018738 \n", "\n", " author_id affil_country_name \n", "158 If3qsuwAAAAJ Germany \n", "111 kukA0LcAAAAJ Canada \n", "113 4eGHx3gAAAAJ France " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# load results as pandas dataframe\n", "author_path = out_path / author_id\n", "results = load_yaml(author_path / \"results.yaml\")\n", "df = get_citation_df(results, keep_warnings=True)\n", "df.sort_values(\"article\").head(3)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namecited_by_nameaffil_namewebsite
1858philipp grohs37.0Universität Viennahttp://mds.univie.ac.at/
2099Arnulf Jentzen31.0Westfälische Wilhelms-Universität Münsterhttp://www.ajentzen.de/
57Julius Berner25.0California Institute of Technologyhttps://jberner.info/
1877Gitta Kutyniok20.0Ludwig-Maximilians-Universität Münchenhttp://www.math.lmu.de/~kutyniok
56Lorenz Richter20.0Zuse Institute BerlinNaN
\n", "
" ], "text/plain": [ " name cited_by_name \\\n", "1858 philipp grohs 37.0 \n", "2099 Arnulf Jentzen 31.0 \n", "57 Julius Berner 25.0 \n", "1877 Gitta Kutyniok 20.0 \n", "56 Lorenz Richter 20.0 \n", "\n", " affil_name \\\n", "1858 Universität Vienna \n", "2099 Westfälische Wilhelms-Universität Münster \n", "57 California Institute of Technology \n", "1877 Ludwig-Maximilians-Universität München \n", "56 Zuse Institute Berlin \n", "\n", " website \n", "1858 http://mds.univie.ac.at/ \n", "2099 http://www.ajentzen.de/ \n", "57 https://jberner.info/ \n", "1877 http://www.math.lmu.de/~kutyniok \n", "56 NaN " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# authors that most often cited your articles\n", "cols = [\"name\", \"cited_by_name\", \"affil_name\", \"website\"]\n", "author_df = drop_and_count_duplicates(\n", " df, [\"name\", \"author_id\"], col_name=\"cited_by_name\"\n", ")\n", "author_df.loc[:, cols].sort_values(\"cited_by_name\", ascending=False).head(5)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namecitationsaffil_namewebsite
63Yoshua Bengio798537.0Université de Montréalhttps://yoshuabengio.org/
68Kevin Black263059.0University of Wisconsin - Madisonhttps://www.physics.wisc.edu/directory/black-k...
62Aaron Courville248850.0Université de Montréalhttp://aaroncourville.wordpress.com/
1751Philip S. Yu198809.0University of Illinois at Chicagohttp://www.cs.uic.edu/PSYu
223Sepp Hochreiter155041.0Johannes Kepler Universität Linzhttps://www.jku.at/en/institute-for-machine-le...
2076Dacheng Tao124900.0Nanyang Technological UniversityNaN
320Joshua B. Tenenbaum110169.0Massachusetts Institute of Technologyhttp://web.mit.edu/cocosci/josh.html
1549Seyedali Mirjalili109722.0Griffith Universityhttps://seyedalimirjalili.com/
1300George Em Karniadakis106354.0Brown Universityhttps://www.brown.edu/research/projects/crunch...
578Michael Wooldridge85143.0University of Oxfordhttp://www.cs.ox.ac.uk/people/michael.wooldridge/
\n", "
" ], "text/plain": [ " name citations affil_name \\\n", "63 Yoshua Bengio 798537.0 Université de Montréal \n", "68 Kevin Black 263059.0 University of Wisconsin - Madison \n", "62 Aaron Courville 248850.0 Université de Montréal \n", "1751 Philip S. Yu 198809.0 University of Illinois at Chicago \n", "223 Sepp Hochreiter 155041.0 Johannes Kepler Universität Linz \n", "2076 Dacheng Tao 124900.0 Nanyang Technological University \n", "320 Joshua B. Tenenbaum 110169.0 Massachusetts Institute of Technology \n", "1549 Seyedali Mirjalili 109722.0 Griffith University \n", "1300 George Em Karniadakis 106354.0 Brown University \n", "578 Michael Wooldridge 85143.0 University of Oxford \n", "\n", " website \n", "63 https://yoshuabengio.org/ \n", "68 https://www.physics.wisc.edu/directory/black-k... \n", "62 http://aaroncourville.wordpress.com/ \n", "1751 http://www.cs.uic.edu/PSYu \n", "223 https://www.jku.at/en/institute-for-machine-le... \n", "2076 NaN \n", "320 http://web.mit.edu/cocosci/josh.html \n", "1549 https://seyedalimirjalili.com/ \n", "1300 https://www.brown.edu/research/projects/crunch... \n", "578 http://www.cs.ox.ac.uk/people/michael.wooldridge/ " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# citing authors with most citations\n", "cols = [\"name\", \"citations\", \"affil_name\", \"website\"]\n", "author_df.loc[:, cols].sort_values(\"citations\", ascending=False).head(10)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Make this Notebook Trusted to load map: File -> Trust Notebook
" ], "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# map of citing authors\n", "get_map(author_df, out_path=author_path, radius_scale=5, radius_log_base=2)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
affil_namecited_by_affilaffil_country_name
289Universität Vienna66.0Austria
19Swiss Federal Institute of Technology, Zurich56.0Switzerland
3California Institute of Technology46.0United States
1131Westfälische Wilhelms-Universität Münster40.0Germany
311Microsoft38.0United States
\n", "
" ], "text/plain": [ " affil_name cited_by_affil \\\n", "289 Universität Vienna 66.0 \n", "19 Swiss Federal Institute of Technology, Zurich 56.0 \n", "3 California Institute of Technology 46.0 \n", "1131 Westfälische Wilhelms-Universität Münster 40.0 \n", "311 Microsoft 38.0 \n", "\n", " affil_country_name \n", "289 Austria \n", "19 Switzerland \n", "3 United States \n", "1131 Germany \n", "311 United States " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# affiliations that most often cited your articles\n", "cols = [\"affil_name\", \"cited_by_affil\", \"affil_country_name\"]\n", "affil_df = drop_and_count_duplicates(df, [\"affil_name\"], col_name=\"cited_by_affil\")\n", "affil_df.loc[:, cols].sort_values(\"cited_by_affil\", ascending=False).head(5)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
627728.0California Institute of TechnologyUnited States3
22705.0Frostburg State UniversityUnited States3
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "6 27728.0 California Institute of Technology United States \n", "2 2705.0 Frostburg State University United States \n", "\n", " cited_by_affil \n", "6 3 \n", "2 3 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
1646964.0University of PennsylvaniaUnited States5
1136042.0Tsinghua UniversityChina4
249640.0Swiss Federal Institute of Technology, ZurichSwitzerland5
\n", "
" ], "text/plain": [ " citations affil_name \\\n", "16 46964.0 University of Pennsylvania \n", "11 36042.0 Tsinghua University \n", "24 9640.0 Swiss Federal Institute of Technology, Zurich \n", "\n", " affil_country_name cited_by_affil \n", "16 United States 5 \n", "11 China 4 \n", "24 Switzerland 5 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Neural Operators with Localized Integral and Differential Kernels\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
3346964.0University of PennsylvaniaUnited States5
3717926.0Bayerische Julius-Maximilians-Universität Würz...Germany3
289966.0NVIDIAUnited States1
274890.0California Institute of TechnologyUnited States3
\n", "
" ], "text/plain": [ " citations affil_name \\\n", "33 46964.0 University of Pennsylvania \n", "37 17926.0 Bayerische Julius-Maximilians-Universität Würz... \n", "28 9966.0 NVIDIA \n", "27 4890.0 California Institute of Technology \n", "\n", " affil_country_name cited_by_affil \n", "33 United States 5 \n", "37 Germany 3 \n", "28 United States 1 \n", "27 United States 3 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "An optimal control perspective on diffusion-based generative modeling\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
111799012.0Université de MontréalCanada10
68263059.0University of Wisconsin - MadisonUnited States1
13663989.0University of OxfordUnited Kingdom5
14230073.0Swiss Federal Institute of Technology, ZurichSwitzerland7
6011077.0MetaUnited States2
\n", "
" ], "text/plain": [ " citations affil_name \\\n", "111 799012.0 Université de Montréal \n", "68 263059.0 University of Wisconsin - Madison \n", "136 63989.0 University of Oxford \n", "142 30073.0 Swiss Federal Institute of Technology, Zurich \n", "60 11077.0 Meta \n", "\n", " affil_country_name cited_by_affil \n", "111 Canada 10 \n", "68 United States 1 \n", "136 United Kingdom 5 \n", "142 Switzerland 7 \n", "60 United States 2 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Improved sampling via learned diffusions\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
213799012.0Université de MontréalCanada12
223155041.0Johannes Kepler Universität LinzAustria2
24863989.0University of OxfordUnited Kingdom5
18311077.0MetaUnited States1
2375399.0Stanford UniversityUnited States1
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "213 799012.0 Université de Montréal Canada \n", "223 155041.0 Johannes Kepler Universität Linz Austria \n", "248 63989.0 University of Oxford United Kingdom \n", "183 11077.0 Meta United States \n", "237 5399.0 Stanford University United States \n", "\n", " cited_by_affil \n", "213 12 \n", "223 2 \n", "248 5 \n", "183 1 \n", "237 1 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mathematical Capabilities of ChatGPT\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
1751198809.0University of Illinois at ChicagoUnited States2
320110169.0Massachusetts Institute of TechnologyUnited States8
1549109722.0Griffith UniversityAustralia1
1300106354.0Brown UniversityUnited States4
57885143.0University of OxfordUnited Kingdom14
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "1751 198809.0 University of Illinois at Chicago United States \n", "320 110169.0 Massachusetts Institute of Technology United States \n", "1549 109722.0 Griffith University Australia \n", "1300 106354.0 Brown University United States \n", "578 85143.0 University of Oxford United Kingdom \n", "\n", " cited_by_affil \n", "1751 2 \n", "320 8 \n", "1549 1 \n", "1300 4 \n", "578 14 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Large Language Models for Mathematicians\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
18348913.0University of OxfordUnited Kingdom1
18277075.0MetaUnited States1
18334377.0Ohio State UniversityUnited States4
1828724.0University of TorontoCanada3
1825276.0Nanjing UniversityChina2
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name cited_by_affil\n", "1834 8913.0 University of Oxford United Kingdom 1\n", "1827 7075.0 Meta United States 1\n", "1833 4377.0 Ohio State University United States 4\n", "1828 724.0 University of Toronto Canada 3\n", "1825 276.0 Nanjing University China 2" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Physics-Informed Neural Operators with Exact Differentiation on Arbitrary Geometries\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
184320743.0Stanford UniversityUnited States4
184119578.0University of California, IrvineUnited States2
183811096.0University of Texas at AustinUnited States3
184629.0NVIDIAUnited States1
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "1843 20743.0 Stanford University United States \n", "1841 19578.0 University of California, Irvine United States \n", "1838 11096.0 University of Texas at Austin United States \n", "1846 29.0 NVIDIA United States \n", "\n", " cited_by_affil \n", "1843 4 \n", "1841 2 \n", "1838 3 \n", "1846 1 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Learning ReLU networks to high uniform accuracy is intractable\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
18508366.0Texas A&M UniversityUnited States4
18537950.0Claremont Graduate UniversityUnited States1
18514994.0California Institute of TechnologyUnited States1
18643993.0Universität ViennaAustria4
18561739.0Peking UniversityChina1
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "1850 8366.0 Texas A&M University United States \n", "1853 7950.0 Claremont Graduate University United States \n", "1851 4994.0 California Institute of Technology United States \n", "1864 3993.0 Universität Vienna Austria \n", "1856 1739.0 Peking University China \n", "\n", " cited_by_affil \n", "1850 4 \n", "1853 1 \n", "1851 1 \n", "1864 4 \n", "1856 1 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "The Modern Mathematics of Deep Learning\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
2076124900.0Nanyang Technological UniversitySingapore1
198845237.0University of CambridgeUnited Kingdom8
204544881.0King Abdul Aziz UniversitySaudi Arabia2
206844479.0Columbia UniversityUnited States1
189643958.0Technische Universität GrazAustria3
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "2076 124900.0 Nanyang Technological University Singapore \n", "1988 45237.0 University of Cambridge United Kingdom \n", "2045 44881.0 King Abdul Aziz University Saudi Arabia \n", "2068 44479.0 Columbia University United States \n", "1896 43958.0 Technische Universität Graz Austria \n", "\n", " cited_by_affil \n", "2076 1 \n", "1988 8 \n", "2045 2 \n", "2068 1 \n", "1896 3 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
237830713.0California Institute of TechnologyUnited States7
23739966.0NVIDIAUnited States2
23969422.0University of California, MercedUnited States1
23883993.0Universität ViennaAustria1
24201909.0University of Minnesota - CrookstonUnited States1
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "2378 30713.0 California Institute of Technology United States \n", "2373 9966.0 NVIDIA United States \n", "2396 9422.0 University of California, Merced United States \n", "2388 3993.0 Universität Vienna Austria \n", "2420 1909.0 University of Minnesota - Crookston United States \n", "\n", " cited_by_affil \n", "2378 7 \n", "2373 2 \n", "2396 1 \n", "2388 1 \n", "2420 1 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Group testing for SARS-CoV-2 allows for up to 10-fold efficiency increase across realistic scenarios and testing strategies\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
246146020.0Harvard UniversityUnited States4
252528210.0State University of New York at New PaltzUnited States1
251214128.0University of Wisconsin - MadisonUnited States1
249313717.0Simon Fraser UniversityCanada5
257913716.0University of California, Los AngelesUnited States17
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "2461 46020.0 Harvard University United States \n", "2525 28210.0 State University of New York at New Paltz United States \n", "2512 14128.0 University of Wisconsin - Madison United States \n", "2493 13717.0 Simon Fraser University Canada \n", "2579 13716.0 University of California, Los Angeles United States \n", "\n", " cited_by_affil \n", "2461 4 \n", "2525 1 \n", "2512 1 \n", "2493 5 \n", "2579 17 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Numerically Solving Parametric Families of High-Dimensional Kolmogorov Partial Differential Equations via Deep Learning\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
272480799.0University of Wisconsin - MadisonUnited States3
269263344.0MicrosoftUnited States9
272033347.0University of South AustraliaAustralia2
265530713.0California Institute of TechnologyUnited States7
264328394.0University of PennsylvaniaUnited States1
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "2724 80799.0 University of Wisconsin - Madison United States \n", "2692 63344.0 Microsoft United States \n", "2720 33347.0 University of South Australia Australia \n", "2655 30713.0 California Institute of Technology United States \n", "2643 28394.0 University of Pennsylvania United States \n", "\n", " cited_by_affil \n", "2724 3 \n", "2692 9 \n", "2720 2 \n", "2655 7 \n", "2643 1 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Analysis of the Generalization Error: Empirical Risk Minimization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical Approximation of …\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
3027106354.0Brown UniversityUnited States1
305133347.0University of South AustraliaAustralia3
303426183.0Princeton UniversityUnited States5
304124534.0Swiss Federal Institute of Technology, ZurichSwitzerland28
293524373.0Universität GrazAustria2
\n", "
" ], "text/plain": [ " citations affil_name \\\n", "3027 106354.0 Brown University \n", "3051 33347.0 University of South Australia \n", "3034 26183.0 Princeton University \n", "3041 24534.0 Swiss Federal Institute of Technology, Zurich \n", "2935 24373.0 Universität Graz \n", "\n", " affil_country_name cited_by_affil \n", "3027 United States 1 \n", "3051 Australia 3 \n", "3034 United States 5 \n", "3041 Switzerland 28 \n", "2935 Austria 2 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Towards a regularity theory for ReLU networks–chain rule and global error estimates\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
334860996.0University of FloridaUnited States7
337859082.0Stanford UniversityUnited States1
332910503.0Westfälische Wilhelms-Universität MünsterGermany1
33508220.0Humboldt Universität BerlinGermany2
33343993.0Universität ViennaAustria4
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "3348 60996.0 University of Florida United States \n", "3378 59082.0 Stanford University United States \n", "3329 10503.0 Westfälische Wilhelms-Universität Münster Germany \n", "3350 8220.0 Humboldt Universität Berlin Germany \n", "3334 3993.0 Universität Vienna Austria \n", "\n", " cited_by_affil \n", "3348 7 \n", "3378 1 \n", "3329 1 \n", "3350 2 \n", "3334 4 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "How degenerate is the parametrization of neural networks with the ReLU activation function?\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
citationsaffil_nameaffil_country_namecited_by_affil
343545144.0University of ManitobaCanada1
344619980.0Institute of Science and TechnologyAustria1
346319169.0Faculty of Engineering, Lund UniversitySweden2
345918182.0Ludwig-Maximilians-Universität MünchenGermany3
345815776.0Technische Universität MünchenGermany1
\n", "
" ], "text/plain": [ " citations affil_name affil_country_name \\\n", "3435 45144.0 University of Manitoba Canada \n", "3446 19980.0 Institute of Science and Technology Austria \n", "3463 19169.0 Faculty of Engineering, Lund University Sweden \n", "3459 18182.0 Ludwig-Maximilians-Universität München Germany \n", "3458 15776.0 Technische Universität München Germany \n", "\n", " cited_by_affil \n", "3435 1 \n", "3446 1 \n", "3463 2 \n", "3459 3 \n", "3458 1 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# affiliations citing specific articles\n", "cols = [\"citations\", \"affil_name\", \"affil_country_name\", \"cited_by_affil\"]\n", "for article in df.loc[:, \"article\"].unique():\n", " print(article)\n", " article_df = df.loc[df.loc[:, \"article\"] == article].dropna(subset=[\"affil_name\"])\n", " article_df = article_df.sort_values(\"citations\", ascending=False)\n", " article_df = drop_and_count_duplicates(\n", " article_df, [\"affil_name\"], col_name=\"cited_by_affil\"\n", " )\n", " display(article_df.loc[:, cols].head(5))" ] } ], "metadata": { "kernelspec": { "display_name": "edu", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.0" } }, "nbformat": 4, "nbformat_minor": 2 }