{ "cells": [ { "cell_type": "markdown", "metadata": { "example": { "difficulty": "Hard" } }, "source": [ "# Example notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Markdown cells\n", "\n", "This is an example notebook that can be converted with nbconvert to different formats. This is an example of a markdown cell." ] }, { "cell_type": "markdown", "metadata": { "tags": [ "Medium" ] }, "source": [ "### LaTeX Equations\n", "\n", "Here is an equation:\n", "\n", "$$\n", "y = \\sin(x)\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "example": { "difficulty": "Easy" } }, "source": [ "### Code cells" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "Easy" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This is a code cell that produces some output\n" ] } ], "source": [ "print(\"This is a code cell that produces some output\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Inline figures" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "example": { "difficulty": "Medium" }, "tags": [ "Hard" ] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4lfX9//HnO5sMEkLCyoAAYW9iUHAwBSeKC6yKOHBb\na2vFr7Zaq63WVlHEgThwax1AFWWjKCIEZEPIYCSsJISRQfbn90cO/pKYkHFOcp/xflzXuXLOfe47\n5xVa88rnXh8xxqCUUkqd5mV1AKWUUs5Fi0EppVQ1WgxKKaWq0WJQSilVjRaDUkqparQYlFJKVaPF\noJRSqhotBqWUUtVoMSillKrGx+oATREREWG6dOlidQyllHIpGzZsyDHGRNa3nksWQ5cuXUhKSrI6\nhlJKuRQR2deQ9XRXklJKqWq0GJRSSlWjxaCUUqoaLQallFLVaDEopZSqxiHFICJviUiWiGyr430R\nkZdEJFVEtojIkCrvTRWRFNtjqiPyKKWUajpHjRjeASac4f2LgHjbYzrwKoCIhAOPA8OAROBxEWnj\noExKKaWawCHXMRhjvheRLmdYZSLwrqmcR3StiISJSEdgJLDUGJMLICJLqSyYjxyRSzVOQXEZqVn5\npGXnc7ywlOKyCorLymnl60271v60Cwmga2QQHUNbWR1VKdWMWuoCtyggo8rrTNuyupb/hohMp3K0\nQWxsbPOk9DCnSspZm36UlclZfLc7m31HCxu0XafQAAZ3bsOIbhFc3L8DYYF+zZxUKdWSWqoYpJZl\n5gzLf7vQmDnAHICEhIRa11ENs+vwSd79aR/zfzlAYUnliGB4t7ZcMzSa7u1C6N4umIhgP/x9vPHz\n8aKwpIysvGKOnCwi+XAeG/YdY8O+Y3y95RCPL9zGBT3acfXQaC7s0x4vr9r+J1VKuZKWKoZMIKbK\n62jgoG35yBrLV7VQJo+zbk8u/1mSzM97cvH38eKygZ24fGAnEuPCCfD1rnO7kABfQgJ86RYZzPBu\nEUwbEYcxhu0HT7Jg0wEWbj7Isp1H6BYZxN0ju3P5oE74eusJb0q5Kqnc7e+Ab1R5jOErY0y/Wt67\nBLgXuJjKA80vGWMSbQefNwCnz1LaCAw9fcyhLgkJCUbvldRwKUfyePbbXSzbmUX71v7cMiKOaxNi\naBPkmF1A5RWGRVsPMXtlKrsO59GlbSCPX9aXUb3aOeT7K6UcQ0Q2GGMS6lvPISMGEfmIyr/8I0Qk\nk8ozjXwBjDGvAYuoLIVUoBCYZnsvV0T+Dqy3fasn6ysF1XBFpeW8uDyF179LI8jPh4fG9+SWEXG0\n8qt7dNAU3l7CZQM7cemAjizfmcU/vtnJtHfWM75ve/56WV+iwvRgtVKuxGEjhpakI4b6bco4zkP/\n3UxKVj7XJkQz46LehDtohFCfkrIK5v6QzqzlqYjAkxP7cdWQKET0+INSVmroiEF3BLsZYwyvrkpj\n0is/kl9cxjvTzuJfVw9ssVIA8PPx4u6R3Vn64Pn0jwrlT//dzB8+2UReUWmLZVBKNZ1Lzsegapdf\nXMZD/93MN9sOc8mAjvxzUn9aB/halie6TSAf3n42s1emMnPZbn7JOM7cmxKIbx9iWSalVP10xOAm\n9uYUMPHlH1iy4wiPXtybl6cMtrQUTvP2Eu4fE88nd5xDYUk5k15Zw+qUbKtjKaXOQIvBDWzNPMFV\nr64ht6CE925N5Pbzuzrd/vyzuoQz/54RRLVpxc1vr+f9tQ2aSEopZQEtBhf3Q0oOk+f8RICvN5/d\nNZzh3SKsjlSnqLBWfHbXcC7oEclj87fx4rIUXPHkB6XcnRaDC/t22yGmvbOOmPBAvrh7ON0ig62O\nVK9gfx/euCmBq4ZE88Ky3fxrcbKWg1JORg8+u6gl2w9z74e/MCA6lLenJRLayvrjCQ3l7SU8d/UA\nAny9eHVVGkWl5fz10j5Ot/tLKU+lxeCCVuw6wj0fbqRvVCjzbkkkxAkOMjeWl5fw1BX98Pfx5q0f\n9+DjJfzfxb21HJRyAloMLmZ1SjZ3vreRXh1a866LlsJpIsJfLu1NeUUFb6zeQ1igH/eM6m51LKU8\nnhaDC9l24AR3vreBrpFBvHera+0+qouI8PhlfTlxqpTnFicT2sqXG87ubHUspTyaFoOLyMgtZNo7\n6wlt5cu8WxLdag4ELy/huWsGkldUxl8WbCMi2I8J/TpaHUspj6VnJbmA44Ul3Pz2OopLy5l3SyLt\nWwdYHcnhfL29mP27IQyOCeOBTzaxJfO41ZGU8lhaDE6utLyCO9/fQEbuKd5w89tJBPh6M+emBCKC\n/bltXhKHTpyyOpJSHkmLwck9/fVO1qbn8sxV/RnWta3VcZpdRLA/b049i8KScm59J4mC4jKrIynl\ncbQYnNinSRm8s2Yvt50bx6Qh0VbHaTE9O4Qw6/rB7Dp8kj9/vkUvgFOqhTmkGERkgogki0iqiMyo\n5f0XRGST7bFbRI5Xea+8ynsLHZHHHWzcf4zHvtzGefERzLiol9VxWtyonu340/iefL3lEG//uNfq\nOEp5FLvPShIRb2A2MI7KOZzXi8hCY8yO0+sYY/5QZf37gMFVvsUpY8wge3O4k9yCEu75YCPtQ/2Z\nNWUwPh46f/JdF3Tjl/3H+ceinQyIDiWhS7jVkZTyCI74jZMIpBpj0o0xJcDHwMQzrD8F+MgBn+uW\nKioMf/x0E0fzS3j1d0Pd6rTUxhIR/nPtQKLbtOLuDzaSlVdkdSSlPIIjiiEKyKjyOtO27DdEpDMQ\nB6yosjhARJJEZK2IXOGAPC7tjdXprEzO5rFLe9MvKtTqOJZrHeDLazcO5WRRKQ9+spmKCj3eoFRz\nc0Qx1HZzm7r+650MfGaMKa+yLNY2B+n1wEwR6Vbrh4hMtxVIUna2e070smFfLv9anMzF/Ttwo179\n+6teHVrz+GV9+SE1hzdWp1sdRym354hiyARiqryOBg7Wse5kauxGMsYctH1NB1ZR/fhD1fXmGGMS\njDEJkZGR9mZ2OieLSrn/o01EhbXimasG6M3kaph8VgwX9evAc4uT2ZyhF78p1ZwcUQzrgXgRiRMR\nPyp/+f/m7CIR6Qm0AX6qsqyNiPjbnkcAI4AdNbf1BE8s3M7hk0XMnDzIKabkdDYiwj8n9ScyxJ/7\nP/6FfL2+QalmY3cxGGPKgHuBxcBO4FNjzHYReVJELq+y6hTgY1P9pPTeQJKIbAZWAs9UPZvJUyza\neogvNh7gnlHdGRLbxuo4Tiss0I+Z1w0iI7eQJ/+33eo4SrktccWLhxISEkxSUpLVMRziyMkixs/8\nns7hgXx213B8PfTU1MZ49ttdvLoqjbduTmB0r/ZWx1HKZYjIBtsx3TPS30IWMsbw0GdbKC6t4IXr\nBmkpNNADY+Pp2T6Ehz/fyvHCEqvjKOV29DeRhf67IZPvd2fzyMW96OoC8zU7C38fb/5z7UCOFZTw\n+ELdpaSUo2kxWOTwiSL+/tUOhsWFc8MwPTW1sfpFhXLf6HgWbDrIt9sOWR1HKbeixWABYwyPfrmV\n0vIKnr1qAF5eempqU9w9qhv9olrz2PztnCgstTqOUm5Di8ECCzcfZPmuLP50YU+6RARZHcdl+Xp7\n8cykARwrLOEfi3ZaHUcpt6HF0MJyC0p4YuF2BseGMW1EnNVxXF6/qFBuP68rnyRlsCY1x+o4SrkF\nLYYW9o9FO8krKuPZqwbgrbuQHOKBsfF0bhvII19upai0vP4NlFJnpMXQgn5KO8pnGzKZfn5Xerjx\nFJ0tLcDXm39O6s++o4XMXJZidRylXJ4WQwspLivn0S+3EhseyH2j462O43aGd4vgmqHRzF2dTsqR\nPKvjKOXStBhayKur0kjPKeDvV/SjlZ+31XHc0oyLehHk78Nj87fpdKBK2UGLoQXsO1rAK6vSuGxg\nJy7o4X53hnUWbYP9eXhCL37ek8v8TQesjqOUy9JiaAFP/m8Hvl7CY5f0tjqK25t8VgwDY8J4+utd\nnDil1zYo1RRaDM1s+c4jLN+VxQNje9C+dYDVcdyel5fw9BX9yC0o5vklyVbHUcolaTE0o6LScv72\nvx10bxfMzSO6WB3HY/SLCuWGszvz3tp97Dp80uo4SrkcLYZm9Mb36ezPLeRvl/fVO6e2sAfH9aB1\nK1+eWLhdD0Qr1Uj626qZHDx+itmrUrmkf0dGdI+wOo7HCQv0448X9mRtei7fbDtsdRylXIpDikFE\nJohIsoikisiMWt6/WUSyRWST7XFblfemikiK7THVEXmcwbPf7sIYeOTiXlZH8VjXJ8bSq0MIT3+9\nU6+IVqoR7C4GEfEGZgMXAX2AKSLSp5ZVPzHGDLI95tq2DQceB4YBicDjIuLyc1tu2HeMBZsOMv38\nrkS3CbQ6jsfy9hKeuLwvB46f4vXv0q2Oo5TLcMSIIRFINcakG2NKgI+BiQ3cdjyw1BiTa4w5BiwF\nJjggk2UqKgxPfrWD9q39ufOCblbH8Xhnd23LJf078up3qRw+UWR1HKVcgiOKIQrIqPI607aspqtE\nZIuIfCYiMY3c1mUs2HyAzRnH+fP4yqtwlfVmXNSLigr4t56+qlSDOKIYartFaM3TQP4HdDHGDACW\nAfMasW3liiLTRSRJRJKys7ObHLY5FZaU8ew3yQyIDuXKwS7db24lJjyQaSO68PnGTLYdOGF1HKWc\nniOKIROIqfI6GjhYdQVjzFFjTLHt5RvA0IZuW+V7zDHGJBhjEiIjnfO2EnNX7+HwySL+cmkfnZXN\nydw9qjttAv146usdevqqUvVwRDGsB+JFJE5E/IDJwMKqK4hIxyovLwdOT7e1GLhQRNrYDjpfaFvm\ncrLzinn9uzTG923PWV3CrY6jaght5csfxsazNj2XZTuzrI6jlFOzuxiMMWXAvVT+Qt8JfGqM2S4i\nT4rI5bbV7heR7SKyGbgfuNm2bS7wdyrLZT3wpG2Zy5m5bDfFZRU8PEFPT3VWUxJj6RYZxD8X7aS0\nvMLqOEo5LXHFYXVCQoJJSkqyOsavUrPyGT/ze24YFsvfJvazOo46g2U7jnDbu0n8/Yp+3Hh2Z6vj\nKNWiRGSDMSahvvX0ymcHeOabXQT6enP/GJ2Ax9mN6d2OxC7hvLgshYLiMqvjKOWUtBjstG5PLst2\nHuHOkd1oG+xvdRxVDxFhxsW9yMkv5o3VetGbUrXRYrCDMYZnvtlJ+9b+3DIizuo4qoGGxLbhon4d\nmPN9Otl5xfVvoJSH0WKww9IdR9i4/zgPjO2h03W6mIfG96S4rIJZK1KsjqKU09FiaKLyCsNzi5Pp\nGhnENUOjrY6jGqlrZDBTEmP48Of97M0psDqOUk5Fi6GJPt+YSUpWPg9d2BMfnWvBJd0/Oh5fby9e\nWLbb6ihKORX9jdYERaXlzFy6m4ExYUzo18HqOKqJ2rUOYNqILizcfJCdh3SmN6VO02JogvfX7uPg\niSIeHt8TEb31hSu74/xuhPj78O/FeoM9pU7TYmik/OIyXl2VxrndIxiuM7O5vNBAX+4c2Y3lu7JI\n2uuSF90r5XBaDI309g97OFpQwp/G97Q6inKQacPjiAzx51+Lk/UGe0qhxdAoxwtLmLM6nXF92jMo\nJszqOMpBWvl5c//o7qzbk8vqlByr4yhlOS2GRnj9+3Tyi8v444U9rI6iHOy6s2KJCmvFv5foqEEp\nLYYGysor4u0f93D5wE706tDa6jjKwfx8vPj92Hi2ZJ5g6Y4jVsdRylJaDA30yso0SssND4zV0YK7\nmjQ4iriIIJ5fupuKCh01KM+lxdAAh06c4sN1+7l6SDRxEUFWx1HNxMfbiwfGxrPrcB5fbz1kdRyl\nLKPF0ACzV6ZijOHe0d2tjqKa2WUDOtGzfQgvLNtNmU7mozyUQ4pBRCaISLKIpIrIjFref1BEdojI\nFhFZLiKdq7xXLiKbbI+FNbe1WuaxQj5Zn8G1CTHEhAdaHUc1My8v4Q/j4knPLmDBplqnH1fK7dld\nDCLiDcwGLgL6AFNEpE+N1X4BEowxA4DPgH9Vee+UMWaQ7XE5TmbW8lREREcLHmR83w706dial1ak\n6KhBeSRHjBgSgVRjTLoxpgT4GJhYdQVjzEpjTKHt5VrAJW5Huu9oAZ9tzOT6xFg6hrayOo5qISLC\nH8b1YN/RQr745YDVcZRqcY4ohiggo8rrTNuyutwKfFPldYCIJInIWhG5oq6NRGS6bb2k7Oxs+xI3\n0EvLU/H1Fu4e2a1FPk85j7G929E/KpRZK1Io1VGD8jCOKIba7iJX67l+InIDkAA8V2VxrG1y6uuB\nmSJS629hY8wcY0yCMSYhMjLS3sz12pNTwJe/ZHLDsM60ax3Q7J+nnEvlqCGejNxTfL4h0+o4SrUo\nRxRDJhBT5XU08JujdiIyFngUuNwY8+t8isaYg7av6cAqYLADMtlt1vIU/Hy8uOMCHS14qlE92zEw\nJoxZK1IpKdNRg/IcjiiG9UC8iMSJiB8wGah2dpGIDAZep7IUsqosbyMi/rbnEcAIYIcDMtklPTuf\n+ZsOcOPZnYkM8bc6jrKIiPCHsfEcOH6Kz3TUoDyI3cVgjCkD7gUWAzuBT40x20XkSRE5fZbRc0Aw\n8N8ap6X2BpJEZDOwEnjGGGN5McxakYqfjxfTz9fRgqe7oEckg2LCmL1SRw3Kc/g44psYYxYBi2os\n+2uV52Pr2G4N0N8RGRwlLTufBZsOcNt5XXW0oBARHhgbz81vr+ezDZlcPyzW6khKNTu98rmGl1ek\n4u/jzfTzu1odRTkJHTUoT6PFUEW6bbRw4zmdiQjW0YKqdHrUcOD4KT7fqMcalPvTYqjiZduxhdvP\n09GCqu70qOFlPUNJeQAtBps9OQXM33SAG4bpmUjqt0SE3+uoQXkILQabl1ek4uvtxfQLdLSgajey\nRyQDo0OZvTJVr4ZWbk2Lgcp7Is3fdIDfDetMuxC9ylnV7vSoIfPYKb7cqPdQUu5Li4HK+RZ8vIQ7\ndbSg6jGqZ+U9lF5emap3XlVuy+OLISO3kC82HmBKYqzeE0nVS0S4f0w8+3MLma/zNSg35fHF8Mqq\nNLxEuFPviaQaaGzvdvTp2JrZOmpQbsqji6HyHjgZXHdWDB1CdbSgGub0qGFPTgH/26KjBuV+PLoY\nXluVBsBdOt+CaqQL+7SnV4cQXl6RSnlFrXeZV8pleWwxHD5RxCfrM7gmIYZOYTo7m2ocLy/hvtHx\npGUXsGjrIavjKOVQHlsMr32XRoUx3KXHFlQTXdSvA/Htgnl5RSoVOmpQbsQjiyErr4iP1u1n0pAo\nYsIDrY6jXJSXl3Dv6O4kH8ljyY7DVsdRymE8shje+D6dsgrDPaO6Wx1FubhLB3Sia0QQLy1PxRgd\nNSj34JBiEJEJIpIsIqkiMqOW9/1F5BPb+z+LSJcq7z1iW54sIuMdkedMcvKLeX/tfiYO7ETntkHN\n/XHKzXl7CfeM6s6OQydZtjOr/g2UcgF2F4OIeAOzgYuAPsAUEelTY7VbgWPGmO7AC8Cztm37UDkV\naF9gAvCK7fs1m7mr91BUVs49o3W0oBxj4qBOdG4byKwVKTpqUG7BESOGRCDVGJNujCkBPgYm1lhn\nIjDP9vwzYIyIiG35x8aYYmPMHiDV9v2axbGCEt77aS+XDuhEt8jg5voY5WF8vL24e2Q3tmSe4Lvd\n2VbHUcpujiiGKCCjyutM27Ja17HNEX0CaNvAbR3mrR/3UFBSzn06WlAOduXgaKLCWvHSch01qOaR\nmpXPtLfXsf9oYbN/liOKQWpZVvO/jLrWaci2ld9AZLqIJIlIUnZ20/4qyy0o4ZIBHenRPqRJ2ytV\nFz8fL+4a2Y2N+4+zJu2o1XGUG5q9MpW16bkE+Tfr3nbAMcWQCcRUeR0N1LxPwK/riIgPEArkNnBb\nAIwxc4wxCcaYhMjIyCYFffrK/rw0eXCTtlWqPtckRNOhdQAvLk+xOopyM3tyCn6ddrhtC0w77Ihi\nWA/Ei0iciPhReTB5YY11FgJTbc+vBlaYyvH2QmCy7aylOCAeWOeATHXy9qptkKKU/fx9vLnzgq6s\n25PL2nQdNSjHeWVl5URit50X1yKfZ3cx2I4Z3AssBnYCnxpjtovIkyJyuW21N4G2IpIKPAjMsG27\nHfgU2AF8C9xjjCm3N5NSVpmcGEtkiD+zVuioQTlGRm4hX/xygOuHxbbYRGI+jvgmxphFwKIay/5a\n5XkRcE0d2z4NPO2IHEpZLcDXmzvO78pTX+9kw75chnYOtzqScnGvrErDW4Q7zm+52/d45JXPSjWn\n64fF0jbIj5eWp1odRbk4q6YG0GJQysEC/Xy4/fyufLc7m00Zx62Oo1zY699VTg1wZwtPDaDFoFQz\nuOHszoQF+jJLz1BSTXT4RBEfr8vg6qExRLXw1ABaDEo1g2B/H247N47lu7LYduCE1XGUC3r9+8qp\nAe62YCIxLQalmslNw7vQOsCHl3TUoBopK6+ID3+2bmoALQalmknrAF9uOTeOJTuOsOPgSavjKBdi\n9dQAWgxKNaNpw+MI8ffR6xpUg+XkF/Pe2n22u/ZaMzWAFoNSzSg00JdpI7rwzbbDJB/OszqOcgFv\nrE6npKzC0onEtBiUama3nBtHsL8PL+moQdUjt6CE937ax2UDrZ0aQItBqWYWFujH1OGdWbT1EClH\ndNSg6vbG6nROlVo/NYAWg1It4NZzu9LK15uXVujV0Kp2uQUlzFtTOZFY93bWTg2gxaBUCwgP8uOm\nc7rw1ZaDpGbpqEH91lzbaOF+J5hITItBqRZy+3lxlaMGvYeSquGYbbRwcf+OxDvBRGJaDEq1kLbB\n/tx0Thf+p6MGVcObP1ROO3z/6HirowBaDEq1qNOjhll6rEHZHCso4Z01e7mkf0d6drB+tABaDEq1\nqNOjhoWbD5KalW91HOUE5v6QTkFJGfePcY7RAthZDCISLiJLRSTF9rVNLesMEpGfRGS7iGwRkeuq\nvPeOiOwRkU22xyB78ijlCv7/sQa9rsHT5RaU8M6PlccWnGW0APaPGGYAy40x8cBy2+uaCoGbjDF9\ngQnATBEJq/L+Q8aYQbbHJjvzKOX0qh5r0OsaPNvc1ekUlpbzgBONFsD+YpgIzLM9nwdcUXMFY8xu\nY0yK7flBIAuItPNzlXJp08/vSqCvNy/qqMFjVb1uwRnORKrK3mJob4w5BGD72u5MK4tIIuAHpFVZ\n/LRtF9MLIuJvZx6lXEJ4kB83j+jC11sP6T2UPNQbttGCM1y3UFO9xSAiy0RkWy2PiY35IBHpCLwH\nTDPGVNgWPwL0As4CwoGHz7D9dBFJEpGk7Ozsxny0Uk7p9vO6EuTnw4vLd1sdRbWwnPxi3vlxL5c5\n4WgBGlAMxpixxph+tTwWAEdsv/BP/+LPqu17iEhr4GvgMWPM2irf+5CpVAy8DSSeIcccY0yCMSYh\nMlL3RCnXFxboxy0jurBo62Gdr8HDvLYqjeKycn4/1rmOLZxm766khcBU2/OpwIKaK4iIH/Al8K4x\n5r813jtdKkLl8YltduZRyqXcem5XQgJ8mLlMRw2e4sjJIt5bu48rB0dbegfVM7G3GJ4BxolICjDO\n9hoRSRCRubZ1rgXOB26u5bTUD0RkK7AViACesjOPUi4lNNCX287typIdR9iaqXNDe4JXVqZSVmG4\nf4zzHVs4TYwxVmdotISEBJOUlGR1DKUcIq+olPP+tZJBMWG8M63OvanKDRw8foqRz61i0pAonrlq\nQIt/vohsMMYk1LeeXvmslMVCAny584JurErOJmlvrtVxVDN6eWUqBsO9TngmUlVaDEo5gZvO6UxE\nsD/PLU7GFUfxqn77jhbw6foMJp8VS3SbQKvjnJEWg1JOINDPh3tGdePnPbmsSTtqdRzVDGYuS8HH\nWyyfna0htBiUchJTEmPpGBqgowY3tPtIHvM3HWDqOV1o1zrA6jj10mJQykkE+Hpz/5h4NmUcZ9nO\nWi8JUi7qP0uSCfLz4c4LulkdpUG0GJRyItcMjSYuIoh/L06mvEJHDe5gc8ZxFm8/wm3nxdEmyM/q\nOA2ixaCUE/Hx9uLBcT1IPpLHgk0HrI6jHODfS5JpE+jLrefGWR2lwbQYlHIyl/TvSJ+OrXlh2W5K\nyirq30A5rTWpOaxOyeHukd0JCfC1Ok6DaTEo5WS8vISHJvQkI/cUH6/fb3Uc1UTGGJ79dhedQgO4\n8ZzOVsdpFC0GpZzQyB6RJMaF89LyVAqKy6yOo5rgm22H2Zx5ggfG9SDA19vqOI2ixaCUExIRHp7Q\ni5z8Yuau3mN1HNVIZeUV/HtxMvHtgrlqSLTVcRpNi0EpJzW0cxvG923PnO/TyMkvtjqOaoRPkzJJ\nzyngofE98fYSq+M0mhaDUk7szxN6UVRWwUs6BajLKCwpY+ay3QyJDWNcn/ZWx2kSLQalnFi3yGCu\nOyuGD3/ez56cAqvjqAaYu3oPWXnFPHpJbyqnmnE9WgxKObkHxsTj6+3FvxcnWx1F1SMrr4jXvktj\nQt8ODO0cbnWcJtNiUMrJtWsdwO3nxfH11kNs3H/M6jjqDGYuS6GkrIKHL+pldRS72FUMIhIuIktF\nJMX2tU0d65VXmb1tYZXlcSLys237T2zTgCqlarjjgm5Ehvjz1Fc79AZ7Tio1K49P1mdww9mdiYsI\nsjqOXewdMcwAlhtj4oHltte1OWWMGWR7XF5l+bPAC7btjwG32plHKbcU5O/DH8f1YOP+43y99ZDV\ncVQtnvlmF4G2GyG6OnuLYSIwz/Z8HnBFQzeUyqMyo4HPmrK9Up7mmoQYenUI4dlvd1FUWm51HFXF\nDyk5LNuZxV2juhHuIjfKOxN7i6G9MeYQgO1ruzrWCxCRJBFZKyKnf/m3BY4bY05f1pkJRNmZRym3\n5e0lPHZJHzJyTzFvzV6r4yibsvIK/v7VDmLCW3HLCNe5Ud6Z+NS3gogsAzrU8tajjficWGPMQRHp\nCqwQka3AyVrWq3PnqYhMB6YDxMbGNuKjlXIf58ZHMKpnJC+vSOXqodG0Dfa3OpLH+yQpg+Qjebz6\nuyEud+uLutQ7YjDGjDXG9KvlsQA4IiIdAWxfa51dxBhz0PY1HVgFDAZygDAROV1O0cDBM+SYY4xJ\nMMYkREaojnEAAAAPnklEQVRGNuJHVMq9PHpJb06VlvPvJbutjuLxThaV8p8lu0mMC2dCv9r+fnZN\n9u5KWghMtT2fCiyouYKItBERf9vzCGAEsMNUnlqxErj6TNsrparr3i6EqcO78PH6/Ww7cMLqOB7t\n5RWpHCss4a+X9nHZi9lqY28xPAOME5EUYJztNSKSICJzbev0BpJEZDOVRfCMMWaH7b2HgQdFJJXK\nYw5v2plHKY9w/5h4wgP9eGLhdj191SJp2fm8/eMerh4STb+oUKvjOFS9xxjOxBhzFBhTy/Ik4Dbb\n8zVA/zq2TwcS7cmglCcKbeXLQ+N7MuOLrSzcfJCJg/S8jZZkjOGJhdsJ8PHmzxNc+2K22uiVz0q5\nqGsSYugfFco/F+2isETnbGhJi7cfYXVKDn8Y14PIEPc7AUCLQSkX5e0lPHF5Hw6fLGLWilSr43iM\nUyXl/P2rHfRsH8JNLjYzW0NpMSjlwoZ2DufahGje+D6dlCN5VsfxCK9+l8aB46f428S++Hi7569Q\n9/yplPIgD0/oRZC/D39ZsE0PRDezvTkFvPZdGpcP7MTZXdtaHafZaDEo5eLaBvvz8IRerE3PZcGm\nOi8FUnYyxvDY/G34e3vx6CW9rY7TrLQYlHIDk8+KYWBMGE99vZMTp0qtjuOWFm4+yA+pOfx5Qk/a\ntw6wOk6z0mJQyg14eQlPX9GP3IJinv12l9Vx3M7xwhL+/tUOBsaEcf0w9zzgXJUWg1Juol9UKLed\n15UPf97Pz+lHrY7jVp79dhfHCkv5x5X98PZynyuc66LFoJQb+cPYHsSEt+KRL7bqrbkd5Of0o3y0\nLoNbz42jbyf3usK5LloMSrmRVn7e/OPK/qTnFPCyXttgt1Ml5Tz8+RZiwwN5YKzrT8DTUFoMSrmZ\n8+IjuWpINK99l8aOg7Xd3V411PNLk9l7tJBnrupPoJ9ddxByKVoMSrmhxy7pTVigH3/872ZKyiqs\njuOSNu4/xps/7OF3w2IZ3i3C6jgtSotBKTfUJsiPf07qz85DJ3l5RYrVcVxOUWk5f/5sCx1aBzDj\nIve7SV59tBiUclPj+rRn0pAoZq9KY3PGcavjuJT/LEkmNSuff0zqT0iAr9VxWpwWg1Ju7PHL+hIZ\n7M8f/7tZz1JqoDVpOcz9YQ83nB3LyJ51TWPv3rQYlHJjoa18efbqAaRm5euFbw1w4lQpf/p0M3Ft\ng3j04j5Wx7GMXcUgIuEislREUmxf29SyzigR2VTlUSQiV9jee0dE9lR5b5A9eZRSv3VBj0imntOZ\nt3/cy8rkWqdlVzZ/XbCNrLxiXrhuEK38vK2OYxl7RwwzgOXGmHhgue11NcaYlcaYQcaYQcBooBBY\nUmWVh06/b4zZZGcepVQtHrm4N706hPCnTzeTlVdkdRynNP+XAyzYdJD7x8QzMCbM6jiWsrcYJgLz\nbM/nAVfUs/7VwDfGmEI7P1cp1QgBvt7MmjKY/OIy/vjpZioq9PbcVaVl5/N/X24lsUs4d4/sZnUc\ny9lbDO2NMYcAbF/rO1IzGfioxrKnRWSLiLwgInXOkSci00UkSUSSsrOz7UutlAeKbx/CXy7tw+qU\nHOasTrc6jtMoKi3nng82EuDrzUtTBrvt5DuNUe+/gIgsE5FttTwmNuaDRKQj0B9YXGXxI0Av4Cwg\nHHi4ru2NMXOMMQnGmITIyMjGfLRSyuZ3w2K5pH9H/vXtLn5K0xvtAfztf9vZdTiP568dSIdQ976d\ndkPVWwzGmLHGmH61PBYAR2y/8E//4j/Tka1rgS+NMb/eLN4Yc8hUKgbeBhLt+3GUUmciIjx79QDi\nIoK476ONHD7h2ccbvtiYyUfrMrhrZDePPTW1NvaOmRYCU23PpwILzrDuFGrsRqpSKkLl8YltduZR\nStUj2N+H128cSmFJOfd8uNFjb5mxJfM4M77YyrC4cP44rofVcZyKvcXwDDBORFKAcbbXiEiCiMw9\nvZKIdAFigO9qbP+BiGwFtgIRwFN25lFKNUD3diH86+oBbNh3jCe/2m51nBaXlVfE9Hc3EBnszyu/\nG6LHFWqw63aBxpijwJhalicBt1V5vReIqmW90fZ8vlKq6S4d0ImtB07w+nfpdI8M5uYRcVZHahEl\nZRXc/f5Gjp8q4fO7htM2uM5zXjyW59xHVin1Gw+P78We7AKe/GoHnSOCGOXm+9mNMTzyxVaS9h1j\n1pTBHjPxTmPp+EkpD+blJcycPIjeHVtz34e/kHw4z+pIzer5pbv5fGMmD4yN57KBnayO47S0GJTy\ncIF+PsydmkCQvzdT31pHRq57Xn/64c/7mbUilesSYvj9GM+Zja0ptBiUUnQMbcW8WxIpLCnjxjd/\nJjuv2OpIDrV0xxEem7+VkT0jeerKflSeCKnqosWglAKgV4fWvD0tkSMni7nprXWcOFVa/0YuYGVy\nFvd8sJH+UaHMvn4IvnoGUr30X0gp9auhndvw+o1DSc3KY6oblMP3u7O5470NxLcP5t1bhhHkr+fb\nNIQWg1KqmvN7RDL7+iFsP3iC699YS25BidWRmuTH1BxufzeJrhFBvH/rMEIDPW8mtqbSYlBK/caF\nfTvwxk0JpGblM3nOTy53q+6vtxxi2tvr6dI2iA9uG0abID+rI7kULQalVK1G9mzH2zefReaxU1z9\n6k+kZuVbHalB3vtpL/d+tJEB0aF8csfZegFbE2gxKKXqNLx7BB/cNozCkjImvfIjP6bmWB2pTuUV\nhme/3cVfFmxnTK92vHfrMMICdaTQFFoMSqkzGhzbhi/vHkGH0ACmvrWO99fuwxjnmujnWEEJ095Z\nz6ur0piSGMtrNwz16Kk57aXFoJSqV0x4IJ/fNZwR3SN4bP427vvoF04WOccZS9sOnOCyl39gbdpR\n/jmpP/+c1F9vimcn/ddTSjVISIAvb918Fg+N78k32w5z8Yur2bDvmGV5SssreGl5Cle+8iNl5YZP\n7jibKYmxluVxJ1oMSqkG8/YS7hnVnU/vOAdj4OrX1vCX+ds4Udiyo4cdB09yxewfeX7pbi7q15Fv\nfn8eg2PbtGgGdybOtq+wIRISEkxSUpLVMZTyaCeLSnl+yW7e/WkvbQL9eHhCLyYNiWrW3TiHTpzi\n+SWVN8ILD/LjqSv6M6Ffh2b7PHcjIhuMMQn1rmdPMYjINcATQG8g0TYPQ23rTQBeBLyBucaY0xP6\nxAEfUznf80bgRmNMvVfTaDEo5Ty2HzzBX+ZvY+P+48SGB3LnBd24amgU/j6OO/ibkVvIuz/t5d2f\n9mEM3HROZ+4d3V3POmqkliqG3kAF8Drwp9qKQUS8gd1UzvCWCawHphhjdojIp8AXxpiPReQ1YLMx\n5tX6PleLQSnnUlFhWLbzCLNXprI58wSRIf5cMagTEwdF0bdT6ybdtK6otJw1aTl8+PN+lu/KQoCJ\ng6J4cFwPYsIDHf9DeICGFoO9M7jttH3YmVZLBFKNMem2dT8GJorITmA0cL1tvXlUjj7qLQallHPx\n8hIu7NuBcX3a80NqDvPW7OOdNXt5Y/Ue4iKCOLtrOENi2zA4NoyosMDfnEpqjOFoQQkpR/JJPnyS\n1Sk5/JiWQ1FpBRHBftwzsjvXD4ulU1gri35Cz9ISd5SKAjKqvM4EhgFtgePGmLIqy38z/adSynWI\nCOfFR3JefCTHC0tYtPUwS3Yc5usth/ho3f//NRDi70N4sB8VxlBcWkFhSTn5xWW/vh8T3orrEmIY\n2bMdw7u3dehuKVW/eotBRJYBtR3dedQYs6ABn1HbcMKcYXldOaYD0wFiY/WUNKWcXVigH9cPi+X6\nYbFUVBjSsvPZeuAEh08WkXWymKMFJfh6Cf6+Xvj7eBMbHkh8+2C6twumQ+sAnTPBQvUWgzFmrJ2f\nkQnEVHkdDRwEcoAwEfGxjRpOL68rxxxgDlQeY7Azk1KqBXl5CfHtQ4hvH2J1FNUALXEdw3ogXkTi\nRMQPmAwsNJVHvVcCV9vWmwo0ZASilFKqGdlVDCJypYhkAucAX4vIYtvyTiKyCMA2GrgXWAzsBD41\nxmy3fYuHgQdFJJXKYw5v2pNHKaWU/fQCN6WU8hANPV1Vb4mhlFKqGi0GpZRS1WgxKKWUqkaLQSml\nVDVaDEoppapxybOSRCQb2NfEzSOovLjOVbl6fnD9n8HV84Pr/wyunh+s+Rk6G2Mi61vJJYvBHiKS\n1JDTtZyVq+cH1/8ZXD0/uP7P4Or5wbl/Bt2VpJRSqhotBqWUUtV4YjHMsTqAnVw9P7j+z+Dq+cH1\nfwZXzw9O/DN43DEGpZRSZ+aJIwallFJn4FHFICITRCRZRFJFZIbVeRpDRN4SkSwR2WZ1lqYQkRgR\nWSkiO0Vku4j83upMjSUiASKyTkQ2236Gv1mdqSlExFtEfhGRr6zO0hQisldEtorIJhFxubtpikiY\niHwmIrts/z2cY3WmmjxmV5KIeAO7gXFUTh60HphijNlhabAGEpHzgXzgXWNMP6vzNJaIdAQ6GmM2\nikgIsAG4wlX+/QGkckqxIGNMvoj4Aj8AvzfGrLU4WqOIyINAAtDaGHOp1XkaS0T2AgnGGJe8jkFE\n5gGrjTFzbXPUBBpjjludqypPGjEkAqnGmHRjTAnwMTDR4kwNZoz5Hsi1OkdTGWMOGWM22p7nUTk3\nh0vN8W0q5dte+toeLvWXlYhEA5cAc63O4olEpDVwPra5Z4wxJc5WCuBZxRAFZFR5nYmL/WJyFyLS\nBRgM/Gxtksaz7YbZBGQBS40xrvYzzAT+DFRYHcQOBlgiIhtsc8G7kq5ANvC2bXfeXBEJsjpUTZ5U\nDLXNLO5Sf+25AxEJBj4HHjDGnLQ6T2MZY8qNMYOonKM8UURcZreeiFwKZBljNlidxU4jjDFDgIuA\ne2y7WV2FDzAEeNUYMxgoAJzueKcnFUMmEFPldTRw0KIsHsm2X/5z4ANjzBdW57GHbfi/CphgcZTG\nGAFcbttH/zEwWkTetzZS4xljDtq+ZgFfUrmb2FVkAplVRpqfUVkUTsWTimE9EC8icbYDPpOBhRZn\n8hi2A7dvAjuNMc9bnacpRCRSRMJsz1sBY4Fd1qZqOGPMI8aYaGNMFyr//7/CGHODxbEaRUSCbCcv\nYNsFcyHgMmfqGWMOAxki0tO2aAzgdCdg+FgdoKUYY8pE5F5gMeANvGWM2W5xrAYTkY+AkUCEiGQC\njxtj3rQ2VaOMAG4Ettr20QP8nzFmkYWZGqsjMM92hpsX8KkxxiVP+XRh7YEvK//OwAf40BjzrbWR\nGu0+4APbH6jpwDSL8/yGx5yuqpRSqmE8aVeSUkqpBtBiUEopVY0Wg1JKqWq0GJRSSlWjxaCUUqoa\nLQallFLVaDEopZSqRotBKaVUNf8PSkPz2rqC2OEAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "plt.ion()\n", "\n", "x = np.linspace(0, 2 * np.pi, 100)\n", "y = np.sin(x)\n", "plt.plot(x, y)" ] } ], "metadata": { "celltoolbar": "Edit Metadata", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }