{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Numerical maximum likelihood estimation\n", "\n", "[Dataset download](https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv)\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " Loading BokehJS ...\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " const force = true;\n", "\n", " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", "const JS_MIME_TYPE = 'application/javascript';\n", " const HTML_MIME_TYPE = 'text/html';\n", " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " const CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " const script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", " // Clean up Bokeh references\n", " if (id != null && id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", " const id = msg.content.text.trim();\n", " if (id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd_destroy);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " const output_area = handle.output_area;\n", " const output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " const bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " const script_attrs = bk_div.children[0].attributes;\n", " for (let i = 0; i < script_attrs.length; i++) {\n", " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " const toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[toinsert.length - 1]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " const events = require('base/js/events');\n", " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " const NB_LOAD_WARNING = {'data': {'text/html':\n", " \"
\\n\"+\n", " \"

\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"

\\n\"+\n", " \"\\n\"+\n", " \"\\n\"+\n", " \"from bokeh.resources import INLINE\\n\"+\n", " \"output_notebook(resources=INLINE)\\n\"+\n", " \"\\n\"+\n", " \"
\"}};\n", "\n", " function display_loaded() {\n", " const el = document.getElementById(\"de7ec4fe-c68d-4da2-9b41-4f4b5f5550c8\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", " if (root.Bokeh !== undefined) {\n", " if (el != null) {\n", " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", " }\n", " } else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(display_loaded, 100)\n", " }\n", " }\n", "\n", " function run_callbacks() {\n", " try {\n", " root._bokeh_onload_callbacks.forEach(function(callback) {\n", " if (callback != null)\n", " callback();\n", " });\n", " } finally {\n", " delete root._bokeh_onload_callbacks\n", " }\n", " console.debug(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(css_urls, js_urls, callback) {\n", " if (css_urls == null) css_urls = [];\n", " if (js_urls == null) js_urls = [];\n", "\n", " root._bokeh_onload_callbacks.push(callback);\n", " if (root._bokeh_is_loading > 0) {\n", " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", "\n", " function on_load() {\n", " root._bokeh_is_loading--;\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", " run_callbacks()\n", " }\n", " }\n", "\n", " function on_error(url) {\n", " console.error(\"failed to load \" + url);\n", " }\n", "\n", " for (let i = 0; i < css_urls.length; i++) {\n", " const url = css_urls[i];\n", " const element = document.createElement(\"link\");\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.rel = \"stylesheet\";\n", " element.type = \"text/css\";\n", " element.href = url;\n", " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", " document.body.appendChild(element);\n", " }\n", "\n", " for (let i = 0; i < js_urls.length; i++) {\n", " const url = js_urls[i];\n", " const element = document.createElement('script');\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.async = false;\n", " element.src = url;\n", " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.head.appendChild(element);\n", " }\n", " };\n", "\n", " function inject_raw_css(css) {\n", " const element = document.createElement(\"style\");\n", " element.appendChild(document.createTextNode(css));\n", " document.body.appendChild(element);\n", " }\n", "\n", " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.1.min.js\", \"https://unpkg.com/@holoviz/panel@1.2.1/dist/panel.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", "function(Bokeh) {\n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " if (root.Bokeh !== undefined || force === true) {\n", " for (let i = 0; i < inline_js.length; i++) {\n", " inline_js[i].call(root, root.Bokeh);\n", " }\n", "if (force === true) {\n", " display_loaded();\n", " }} else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!root._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", " const cell = $(document.getElementById(\"de7ec4fe-c68d-4da2-9b41-4f4b5f5550c8\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", "\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(css_urls, js_urls, function() {\n", " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(window));" ], "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"de7ec4fe-c68d-4da2-9b41-4f4b5f5550c8\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.1.min.js\", \"https://unpkg.com/@holoviz/panel@1.2.1/dist/panel.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"de7ec4fe-c68d-4da2-9b41-4f4b5f5550c8\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import itertools\n", "import warnings\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import scipy.optimize\n", "import scipy.stats as st\n", "\n", "import bebi103\n", "import iqplot\n", "\n", "import bokeh.io\n", "import bokeh.plotting\n", "bokeh.io.output_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "As discussed in the previous lesson, maximum likelihood estimates for parameters may sometimes be computed analytically, but often cannot. In those cases, we need to resort to numerical methods. In this tutorial, we demonstrate some numerical methods to perform maximum likelihood estimates of parameters form a Negative Binomial distribution." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The data set\n", "\n", "The data come from the [Elowitz lab](http://elowitz.caltech.edu/), published in Singer et al., Dynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells, *Molec. Cell*, **55**, 319-331, 2014, available [here](https://doi.org/10.1016/j.molcel.2014.06.029).\n", "\n", "In this paper, the authors investigated cell populations of embryonic stem cells using RNA single molecule fluorescence in situ hybridization (smFISH), a technique that enables them to count the number of mRNA transcripts in a cell for a given gene. They were able to measure four different genes in the same cells. So, for one experiment, they get the counts of four different genes in a collection of cells. \n", "\n", "The authors focused on genes that code for pluripotency-associated regulators to study cell differentiation. Indeed, differing gene expression levels are a hallmark of differentiated cells. The authors do not just look at counts in a given cell at a given time. The *temporal* nature of gene expression is also important. While the authors do not directly look at temporal data using smFISH (since the technique requires fixing the cells), they did look at time lapse fluorescence movies of other regulators. We will not focus on these experiments here, but will discuss how the distribution of mRNA counts acquired via smFISH can serve to provide some insight about the dynamics of gene expression.\n", "\n", "The data set we are analyzing now comes from an experiment where smFISH was performed in 279 cells for the genes *rex1*, *rest*, *nanog*, and *prdm14*. The data set may be downloaded at [https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv](https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploratory data analysis\n", "\n", "We first load in the data set and generate ECDFs for the mRNA counts for each of the four genes. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Rex1RestNanogPrdm14
01134390
117291335
226170680
317854881
412954410
\n", "
" ], "text/plain": [ " Rex1 Rest Nanog Prdm14\n", "0 11 34 39 0\n", "1 172 91 33 5\n", "2 261 70 68 0\n", "3 178 54 88 1\n", "4 129 54 41 0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load DataFrame\n", "df = pd.read_csv('../data/singer_transcript_counts.csv', comment='#')\n", "\n", "# Take a look\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each of the 279 rows has the mRNA counts for each of the four genes. There may be multiple cell types present, and we do now know how many there are. Our aim here is not to find how many cell types there are, but to demonstrate how MLE works. Nonetheless, we should have some idea of the properties of the data set we are exploring. We can start by plotting ECDFs for each of the four genes. It is useful to have the gene names around for iteration here, and throughout the lesson." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"98bdded3-a844-4ab5-8994-abd18d41fa7e\":{\"version\":\"3.2.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"GridPlot\",\"id\":\"p1173\",\"attributes\":{\"rows\":null,\"cols\":null,\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1172\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1166\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1024\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1065\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1106\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1147\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1167\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1025\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1066\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1107\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1148\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1168\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1026\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1027\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1067\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1068\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1108\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1109\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1149\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1150\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}}]}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1169\"},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1170\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1029\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1070\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1111\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1152\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1171\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1030\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1071\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1112\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1153\"}]}}]}},\"children\":[[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1002\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1003\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1004\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1012\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1013\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1005\",\"attributes\":{\"text\":\"Nanog\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1040\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1031\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1032\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1033\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"r2dJ0OtZ0j+5OkBWrg7QPxzHcRzHcdw/B8jK1QGy4j8q/k2Nin/TP9q+UJi2L+Q/J5poookmyj8avEVsBm/BP9daa6211uo/vvfee++95z9IHnnkkUfeP7JydYCsXK0/rANk5eoA2T/AqVHxb2rkP0geeeSRR+4/LQl6PUuC7j8gK1cHyMrVP42Kf1Oj4u8/XMRm8BaxqT+vZ0nQ61mSP93JfEh3Mq8/J5poookm6j+Nin9To+LfP/FvalT8m8o/hxtuuOGG6z+ycnWArFxtP4Jez5Kg1+M/9dNPP/304z+fJUGvZ0nQP5vBW8Rm8OY/aEnQ61kS5D+bwVvEZvDWPxDpTuZDuuM/8yHdyXxI5z8S9HqWBL3uP/eFwrR9oeA/i39To+Lf1D+ycnWArFx9P0/mQ7qT+dA/VVVVVVVV5T8gK1cHyMrlPwAAAAAAAPA/hWn7QmHa7j9J0OtZEvTqP3bZZZddduk/BhZYYIEFtj8EZOXqAFnpP82HdCfzId0/HMdxHMdx7D8WWGCBBRbYPxL0epYEvc4/chzHcRzH4T+HG2644YbbP0GvZ0nQ6+k/Zpdddtllxz/SncyHdCfjP93JfEh3Mu8/3HDDDTfc4D+ycnWArFzdP/FvalT8m7o/2r5QmLYvxD+bwVvEZvC2P93JfEh3Mr8/9dNPP/300z8CsnJ1gKzcP1A//fTTT+8/MW1fKEzb5z8S9HqWBL3eP/qQ7mQ+pOs/2r5QmLYv1D/7QmHavlDYP4QQQgghhNA/lVJKKaWU0j+PPPLII4/sPxZYYIEFFug/MW1fKEzbxz9sBm8Rm8HbPxsV/6ZGxe8/EZvBW8Rm4D9walT8mxrVP4cbbrjhhqs/mQ/pTuZD6j+XXXbZZZftP6dGxb+pUeE/MW1fKEzbtz91J/Mh3cnsPz3yyCOPPOI/yMrVAbJy5T/hLWIzeIvoP2Tl6gBZueo/SB555JFHzj9fKEzbFwrTP+ecc8455+w/GrxFbAZv0T9/+umnn37qPwYWWGCBBZY/r2dJ0OtZ4j+ToNezJOjlP3iL2AzeIuY/6U7mQ7qT6T/nnHPOOefcP4wxxhhjjOE/ke5kPqQ72T9FE0000UTjP9DrWRL0euY/XMRm8BaxyT87QFauDpDlPw433HDDDec/5JFHHnnk4T+EEEIIIYSgPwyFaftCYeo/4S1iM3iL2D/Q61kS9HrWP0geeeSRR74/cGpU/JsaxT96PUuCXs/SP2r7QmHavtA/uTpAVq4OwD9NNNFEE03kP4QQQgghhOA/GrxFbAZv4T/AqVHxb2rUP6WUUkoppdQ/avtCYdq+4D9cxGbwFrGZP4QQQgghhLA/+0Jh2r5QyD/rAFm5OkDmPzIf0p3Mh+Q/xhhjjDHG2D9ml1122WXXP1Oj4t/UqOg/S4Jez5Kg5z+8RWwGbxHrP8p8SHcyH+I/pZRSSiml5D8GFlhggQXWP1zEZvAWsek/ic3gLWIz6D8GFlhggQXGPzTRRBNNNNE/r2dJ0OtZoj9S8W9qVPzrP/jee++99+4/zjnnnHPO6T+EEEIIIYTAPwYWWGCBBaY/xhhjjDHG6D+ArFwdICvnP7JydYCsXM0/VwfIytUB4j/VqPg3NSruP/jee++9994/L7vssssu6z800UQTTTThP7k6QFauDuA/S4Jez5Kg1z96PUuCXs/iP0/mQ7qT+eA/xhhjjDHGuD8CsnJ1gKzsP69nSdDrWcI/2QzeIjaD5z8xbV8oTNvXPyLdyXxId+I/CtP2hcK07T+HG2644YbLPyhM2xcK0+Y/UvFvalT82z9FE0000USzP+SRRx555NE/uIjN4C1i4z+8RWwGbxHLP9DrWRL0esY/8W9qVPyb2j8avEVsBm+xP+2yyy677OI/LLDAAgss4D9fKEzbFwrjP0Nh2r5QmOY/qlHxb2pU7D9S8W9qVPzLP93JfEh3Ms8/hxtuuOGGuz+fJUGvZ0ngP/+mRsW/qdE/YjN4i9gM7j+sA2Tl6gDpP0/mQ7qT+cA/oH766aef7j+ycnWArFztP0UTTTTRRNM/snJ1gKxcnT87QFauDpDVP0GvZ0nQ69k/ej1Lgl7Pwj922WWXXXbZP6EwbV8oTOs/J5poookm2j+R7mQ+pDvJP5dddtlll90/brjhhhtu6D8GFlhggQXmP2aXXXbZZec/bAZvEZvB6z/avlCYti+0PzmO4ziO4+g/ke5kPqQ76T/CW8Rm8BbhP8Rm8BaxGew/6wBZuTpA1j+VUkoppZTiP31IdzIf0t0/XMRm8Bax2T9FE0000UTDPx555JFHHuk/XMRm8BaxuT8MhWn7QmHaP6211lprreU/nXPOOeec4z9walT8mxrlPztAVq4OkMU/pZRSSimlxD9edtlll13mP2pU/JsaFe8/BhZYYIEFhj//pkbFv6nhPzUq/k2Niu8/N9xwww033D+ycnWArFyNPxzHcRzHccw/11prrbXW2j8l6PUsCXrtP31IdzIf0s0/77333nvv7T9VVVVVVVXVP82HdCfzIe0/WhL0epYE7T8YCtP2hcLkP6Pi39So+Oc/vEVsBm8R2z8cx3Ecx3G8PxDpTuZDusM/FKbtC4Vp6z/DtH2hMG3vP99777333us/ynxIdzIf0j8Q6U7mQ7rTP69nSdDrWbI/fUh3Mh/S7T+21lprrbXWP8YYY4wxxsg/Kv5NjYp/4z+ycnWArFy9P6EwbV8oTNs/LQl6PUuC3j+on3766afvPzfccMMNN+w/+0Jh2r5Q6D/kkUceeeTBP4CsXB0gK9c/YjN4i9gM3j/j39So+DflP7bWWmutteY/m8FbxGbwxj+6k/mQ7mTuP8O0faEwbd8/qJ9++umnzz/nnHPOOefMP4t/U6Pi3+Q/2r5QmLYvpD+on3766affP/FvalT8m+o/P/30008/7T+0JOj1LAnqPzFtXyhM26c/cGpU/JsatT/dyXxIdzLfP/30008//eQ/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1041\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1042\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1037\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1038\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1039\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1011\",\"attributes\":{\"tools\":[{\"id\":\"p1024\"},{\"id\":\"p1025\"},{\"id\":\"p1026\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1028\"},{\"id\":\"p1029\"},{\"id\":\"p1030\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1019\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1020\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1021\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1022\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1014\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1015\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1016\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1017\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1018\",\"attributes\":{\"axis\":{\"id\":\"p1014\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1023\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1019\"}}}],\"frame_width\":200,\"frame_height\":150}},0,0],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1043\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1044\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1045\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1053\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1054\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1046\",\"attributes\":{\"text\":\"Prdm14\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1081\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1072\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1073\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1074\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Prdm14\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAUAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAA4AAAAQAAAACwAAAAEAAAAPAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAABwAAAAAAAAAEAAAABgAAAAAAAAAMAAAABAAAAAAAAAAHAAAAEQAAAAEAAAAIAAAAAgAAAAAAAAAAAAAAAQAAAAQAAAAYAAAAHwAAAAMAAAADAAAAAAAAAAEAAAABAAAABQAAAAAAAAADAAAAAQAAAAcAAAABAAAABQAAAAEAAAAHAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAkAAAAgAAAAAwAAAA8AAAAEAAAABAAAAAAAAAABAAAABgAAAAMAAAADAAAAAQAAAAIAAAATAAAACAAAAAEAAAAAAAAACwAAAAMAAAAGAAAAAAAAAAwAAAAAAAAADAAAAAUAAAAJAAAAAgAAAAcAAAAVAAAAAAAAAAUAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAEAAAAFAAAAAAAAAAAAAAANAAAAAAAAAAQAAAACAAAAAwAAAAAAAAANAAAAGwAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAGAAAABQAAAAIAAAADAAAABwAAAAIAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAEAAAAZAAAADAAAAAcAAAABAAAABgAAAAAAAAAEAAAAAwAAAAEAAAAAAAAAAQAAABQAAAAKAAAABwAAAAAAAAAAAAAAAAAAAAUAAAAAAAAADAAAAAAAAAACAAAAAQAAAAAAAAAAAAAABwAAAAMAAAABAAAAAAAAAAgAAAAAAAAADwAAAAUAAAAEAAAABgAAAAAAAAACAAAAAQAAAAAAAAAMAAAABAAAAAYAAAAAAAAAAwAAAAAAAAAJAAAACAAAAAwAAAAHAAAADQAAAAEAAAAAAAAAAQAAAAsAAAADAAAACwAAABsAAAAGAAAAIAAAAAAAAAAGAAAAAAAAAAAAAAAFAAAAAAAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAYAAAAGAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAABAAAAAcAAAAGAAAAAwAAAAAAAAAWAAAAAAAAABIAAAABAAAABQAAAAAAAAABAAAAAQAAABIAAAADAAAAAAAAAAQAAAAPAAAAAwAAAAAAAAAAAAAAAAAAABIAAAABAAAAAAAAAAEAAAAQAAAADAAAAAEAAAAIAAAABQAAAAAAAAAAAAAAEQAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAEAAAABAAAACgAAAAAAAAAFAAAAAAAAAAAAAAAAAAAADwAAAAAAAAAIAAAABQAAAAYAAAAFAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAJAAAAAAAAAAYAAAAFAAAAEwAAAAYAAAABAAAABAAAAAQAAAAAAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"snJ1gKxcbT/99NNPP/3kP7JydYCsXH0/XyhM2xcK0z8GFlhggQWGP7JydYCsXI0/r2dJ0OtZkj99SHcyH9LdP0UTTTTRRNM/94XCtH2h4D8q/k2Nin/TPxDpTuZDutM/avtCYdq+4D8//fTTTz/tP++999577+0/hxtuuOGG6z/1008//fTTP7JydYCsXO0/BhZYYIEFlj9cxGbwFrGZP7JydYCsXJ0/2r5QmLYv1D+EEEIIIYSgP69nSdDrWaI/U6Pi39So6D/avlCYti+kP7iIzeAtYuM/KEzbFwrT5j8GFlhggQWmP1Lxb2pU/Os/Kv5NjYp/4z8xbV8oTNunP8YYY4wxxug/1aj4NzUq7j/AqVHxb2rUP0GvZ0nQ6+k/YjN4i9gM3j9cxGbwFrGpP4cbbrjhhqs/pZRSSiml1D+dc84555zjP1A//fTTT+8/GxX/pkbF7z/ccMMNN9zgP0/mQ7qT+eA/snJ1gKxcrT+Lf1Oj4t/UP3BqVPybGtU/cGpU/Jsa5T/dyXxIdzKvP8JbxGbwFuE/VVVVVVVV1T85juM4juPoPztAVq4OkNU/49/UqPg35T8gK1cHyMrVP6wDZOXqAOk/BhZYYIEF1j/rAFm5OkDWP4QQQgghhLA/GrxFbAZvsT+vZ0nQ61myP0UTTTTRRLM/NNFEE0004T/XWmuttdbqP42Kf1Oj4u8/p0bFv6lR4T8l6PUsCXrtPxDpTuZDuuM/gl7PkqDX4z/avlCYti+0P9DrWRL0etY/m8FbxGbw5j8avEVsBm/hP4wxxhhjjOE/ttZaa6211j9IHnnkkUfePxL0epYEve4/tCTo9SwJ6j+bwVvEZvDWP3BqVPybGrU/+pDuZD6k6z//pkbFv6nhPw433HDDDec/BhZYYIEFtj/EZvAWsRnsP5vBW8Rm8LY/N9xwww037D9VVVVVVVXlP0nQ61kS9Oo/LQl6PUuC3j8eeeSRRx7pP2pU/JsaFe8/MW1fKEzbtz/IytUBsnLlP8YYY4wxxrg/gKxcHSAr1z8S9HqWBL3eP3Icx3Ecx+E/Zpdddtll1z9Lgl7PkqDXPztAVq4OkOU/XMRm8BaxuT/xb2pU/Ju6P+ecc8455+w/hxtuuOGGuz/1008//fTjP/jee++9994/5JFHHnnk4T8cx3Ecx3G8P1oS9HqWBO0/NSr+TY2K7z+ycnWArFy9P93JfEh3Mt8/MW1fKEzb1z8WWGCBBRbYP0geeeSRR74/3cl8SHcyvz9XB8jK1QHiP4CsXB0gK+c/rbXWWmut5T/DtH2hMG3fP8p8SHcyH+I/ke5kPqQ76T+on3766affP7k6QFauDsA/hBBCCCGEwD/zId3JfEjnP0/mQ7qT+cA/GrxFbAZvwT/7QmHavlDYP8O0faEwbe8/qlHxb2pU7D8EZOXqAFnpP+EtYjN4i9g/Zpdddtll5z/kkUceeeTBP2hJ0OtZEuQ/PfLII4884j/GGGOMMcbYP69nSdDrWcI/rANk5eoA2T/43nvvvffuP6EwbV8oTOs/dtlll1126T96PUuCXs/CP0UTTTTRRMM/EOlO5kO6wz8gK1cHyMrlP9q+UJi2L8Q/HMdxHMdx7D+llFJKKaXEP42Kf1Oj4t8/ke5kPqQ72T9walT8mxrFPztAVq4OkMU/6U7mQ7qT6T+vZ0nQ61niP3bZZZdddtk/BhZYYIEFxj8nmmiiiSbqP9DrWRL0esY/l1122WWX7T+ToNezJOjlP9q+UJi2L+Q/2QzeIjaD5z+bwVvEZvDGP7k6QFauDuA/XMRm8Bax2T9ml1122WXHP4888sgjj+w/TTTRRBNN5D9Lgl7PkqDnPzFtXyhM28c/It3JfEh34j/7QmHavlDIP7xFbAZvEes/mQ/pTuZD6j8CsnJ1gKzsP1zEZvAWsek/zYd0J/Mh7T9Br2dJ0OvZP8YYY4wxxsg/J5poookm2j9sBm8Rm8HrP5VSSimllOI/33vvvffe6z+on3766afvP7733nvvvec/AAAAAAAA8D+R7mQ+pDvJPzFtXyhM2+c/XMRm8BaxyT8nmmiiiSbKPwYWWGCBBeY/8W9qVPybyj8ssMACCyzgPwfIytUBsuI/nyVBr2dJ4D8MhWn7QmHaPxGbwVvEZuA/hBBCCCGE4D+j4t/UqPjnPxZYYIEFFug/8W9qVPyb2j/XWmuttdbaP3o9S4Jez+I/vEVsBm8Ryz+HG2644YbLP+2yyy677OI/wKlR8W9q5D/OOeecc87pP4nN4C1iM+g/XyhM2xcK4z9S8W9qVPzLP93JfEh3Mu8/HMdxHMdxzD+6k/mQ7mTuP7xFbAZvEds/eIvYDN4i5j/nnHPOOefMP6EwbV8oTNs/hxtuuOGG2z8tCXo9S4LuP9KdzId0J+M/snJ1gKxczT8yH9KdzIfkPwrT9oXCtO0/RRNNNNFE4z99SHcyH9LNP0geeeSRR84/EvR6lgS9zj+gfvrpp5/uP2wGbxGbwds/3cl8SHcyzz9S8W9qVPzbP2IzeIvYDO4/dSfzId3J7D833HDDDTfcPwyFaftCYeo/6wBZuTpA5j+on3766afPP7k6QFauDtA/SB555JFH7j+llFJKKaXkP3/66aeffuo/nyVBr2dJ0D+EEEIIIYTQP2r7QmHavtA/8W9qVPyb6j8cx3Ecx3HcPwKycnWArNw/FKbtC4Vp6z9P5kO6k/nQP1522WWXXeY/NNFEE0000T8avEVsBm/RP/+mRsW/qdE/fUh3Mh/S7T/kkUceeeTRP2Tl6gBZueo/0OtZEvR65j/7QmHavlDoP0Nh2r5QmOY/55xzzjnn3D/KfEh3Mh/SP82HdCfzId0/r2dJ0OtZ0j+ycnWArFzdPy+77LLLLus/lVJKKaWU0j9uuOGGG27oP7bWWmutteY/hWn7QmHa7j/hLWIzeIvoP5dddtlll90/GArT9oXC5D+Lf1Oj4t/kP3o9S4Jez9I/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1082\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1083\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1078\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1079\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1080\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1052\",\"attributes\":{\"tools\":[{\"id\":\"p1065\"},{\"id\":\"p1066\"},{\"id\":\"p1067\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1069\"},{\"id\":\"p1070\"},{\"id\":\"p1071\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1060\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1061\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1062\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1063\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1055\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1056\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1057\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1058\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1059\",\"attributes\":{\"axis\":{\"id\":\"p1055\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1064\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1060\"}}}],\"frame_width\":200,\"frame_height\":150}},0,1],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1084\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1085\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1086\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1094\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1095\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1087\",\"attributes\":{\"text\":\"Rest\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1122\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1113\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1114\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1115\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rest\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IgAAAFsAAABGAAAANgAAADYAAABEAAAASgAAADwAAABgAAAAIwAAADIAAAAzAAAAKwAAADIAAABKAAAAfQAAAD4AAACCAAAAXwAAAB8AAABDAAAAWgAAAD4AAAAnAAAARAAAACgAAABBAAAATgAAADwAAABeAAAAYwAAADcAAABFAAAAKQAAAGYAAABBAAAAKgAAAEwAAAByAAAAVAAAAGoAAAC2AAAARAAAAFYAAAA/AAAAGAAAAGcAAABgAAAASwAAADwAAABGAAAATwAAAEoAAABKAAAALAAAAGgAAABhAAAAHgAAADoAAAARAAAAIgAAACwAAAAcAAAAMQAAAEEAAAD2AAAAaAAAAGwAAABbAAAAkAAAACgAAABQAAAAOQAAAFIAAABVAAAAMwAAACcAAABiAAAAWAAAAEEAAAANAAAAjAAAAFUAAABMAAAAFQAAAFAAAAA8AAAAiQAAAFsAAABGAAAADAAAADUAAABBAAAAIQAAADsAAAA7AAAASAAAAG4AAACKAAAAaQAAAFMAAABoAAAAPgAAADkAAABuAAAAMwAAAGoAAABcAAAAOwAAACEAAABsAAAANQAAACIAAABeAAAAMAAAAEAAAABdAAAANQAAAE0AAABTAAAAOAAAADAAAABYAAAANgAAAEsAAAAuAAAAHQAAACoAAABPAAAAQAAAADkAAABcAAAAfQAAACUAAAAsAAAAcAAAADQAAAB9AAAAmAAAABIAAAAiAAAAEAAAADUAAABIAAAAZwAAACMAAABLAAAAPgAAAIYAAABTAAAAXgAAAEMAAABUAAAAUAAAADkAAABQAAAAHQAAAFcAAACCAAAAIAAAAI4AAABOAAAAXAAAAEoAAACbAAAAnwAAAD0AAABKAAAAXgAAADsAAABbAAAAcAAAAEQAAAAbAAAAIAAAAE4AAACiAAAAWQAAAKIAAABcAAAAZAAAACgAAAAlAAAABQAAAGsAAAAfAAAAWwAAAJkAAABeAAAAgQAAAGIAAABsAAAACAAAADUAAABfAAAAJwAAAEEAAABEAAAASwAAAFMAAAAtAAAAWgAAAFcAAABOAAAAdQAAACQAAABSAAAAPQAAAIEAAABnAAAANwAAACsAAAAoAAAAOAAAABsAAABXAAAANQAAAEgAAABZAAAAbQAAAHwAAAAxAAAAHwAAADAAAABSAAAARgAAAFIAAAB5AAAAQQAAAAsAAACqAAAAZwAAAD4AAAAuAAAAagAAAF4AAABSAAAAXwAAAFsAAABAAAAAOgAAAEIAAAAaAAAAQwAAAE8AAAB2AAAAGgAAAG0AAAAZAAAANgAAADMAAAA1AAAANAAAAAwAAABGAAAAPgAAAHQAAABVAAAAZQAAAFwAAACGAAAASgAAAC4AAABJAAAAHgAAAIkAAABrAAAAOwAAAC4AAABWAAAADwAAAD4AAABSAAAAlAAAAE0AAABbAAAAXAAAAFIAAABiAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"hxtuuOGGuz/rAFm5OkDmP0geeeSRR94/ynxIdzIf0j+vZ0nQ61nSP+ecc84559w/LLDAAgss4D/Q61kS9HrWPzmO4ziO4+g/3cl8SHcyvz+ycnWArFzNP0geeeSRR84/0OtZEvR6xj99SHcyH9LNP58lQa9nSeA/P/30008/7T8xbV8oTNvXP31IdzIf0u0/4S1iM3iL6D9walT8mxq1PzfccMMNN9w/BhZYYIEF5j8WWGCBBRbYP+SRRx555ME/zYd0J/Mh3T9FE0000UTDPwyFaftCYdo/5JFHHnnk4T+21lprrbXWPzFtXyhM2+c/6U7mQ7qT6T9fKEzbFwrTP2IzeIvYDN4/cGpU/JsaxT9Br2dJ0OvpP/FvalT8m9o/O0BWrg6QxT8avEVsBm/hP4888sgjj+w/wKlR8W9q5D9J0OtZEvTqP42Kf1Oj4u8/snJ1gKxc3T/99NNPP/3kP3bZZZdddtk/BhZYYIEFpj+0JOj1LAnqP6wDZOXqAOk/T+ZDupP54D+bwVvEZvDWPy0Jej1Lgt4/r2dJ0OtZ4j8Rm8FbxGbgP4QQQgghhOA/Zpdddtllxz9/+umnn37qPx555JFHHuk/RRNNNNFEsz+Lf1Oj4t/UP4QQQgghhKA/HMdxHMdxvD8xbV8oTNvHP4QQQgghhLA/HMdxHMdxzD/XWmuttdbaPwAAAAAAAPA/8W9qVPyb6j+HG2644YbrP1522WWXXeY/hWn7QmHa7j8Q6U7mQ7rDPwfIytUBsuI/9dNPP/300z/SncyHdCfjP6WUUkoppeQ/EvR6lgS9zj+vZ0nQ61nCP5HuZD6kO+k/O0BWrg6Q5T+8RWwGbxHbPwYWWGCBBZY/oH766aef7j8YCtP2hcLkP4wxxhhjjOE/2r5QmLYvpD96PUuCXs/iP4CsXB0gK9c/SB555JFH7j/Q61kS9HrmPxL0epYEvd4/snJ1gKxcjT+EEEIIIYTQP6EwbV8oTNs/XMRm8BaxuT9VVVVVVVXVPztAVq4OkNU/w7R9oTBt3z/EZvAWsRnsPy0Jej1Lgu4/11prrbXW6j/1008//fTjP2Tl6gBZueo/+0Jh2r5Q2D/avlCYti/UPzfccMMNN+w/3cl8SHcyzz+8RWwGbxHrPw433HDDDec/ICtXB8jK1T/xb2pU/Ju6P/qQ7mQ+pOs/avtCYdq+0D+ycnWArFy9P6Pi39So+Oc/vEVsBm8Ryz9cxGbwFrHZP7733nvvvec/T+ZDupP50D//pkbFv6nhP2hJ0OtZEuQ/Kv5NjYp/0z+HG2644YbLP6211lprreU/lVJKKaWU0j/CW8Rm8BbhP5HuZD6kO8k/GrxFbAZvsT8GFlhggQXGPyLdyXxId+I/Qa9nSdDr2T/AqVHxb2rUP4CsXB0gK+c/snJ1gKxc7T9P5kO6k/nAP/tCYdq+UMg/qlHxb2pU7D+5OkBWrg7QPyXo9SwJeu0/alT8mxoV7z+vZ0nQ61miP0geeeSRR74/snJ1gKxcnT800UQTTTTRP6iffvrpp98/J5poookm6j+5OkBWrg7APzTRRBNNNOE/4S1iM3iL2D9iM3iL2AzuP9q+UJi2L+Q/FlhggQUW6D8cx3Ecx3HcPzIf0p3Mh+Q/7bLLLrvs4j+llFJKKaXUP18oTNsXCuM/r2dJ0OtZsj/j39So+DflP++999577+0/MW1fKEzbtz8S9HqWBL3uP1cHyMrVAeI/8yHdyXxI5z/3hcK0faHgP1A//fTTT+8/w7R9oTBt7z9ml1122WXXP2r7QmHavuA/ic3gLWIz6D8GFlhggQXWP0Nh2r5QmOY/HMdxHMdx7D+XXXbZZZfdP7JydYCsXK0/xhhjjDHGuD/KfEh3Mh/iPzUq/k2Niu8/ICtXB8jK5T+on3766afvP2aXXXbZZec/XMRm8Bax6T/avlCYti/EPxq8RWwGb8E/snJ1gKxcbT+hMG1fKEzrPwYWWGCBBbY/ttZaa6215j/dyXxIdzLvP/tCYdq+UOg/l1122WWX7T8EZOXqAFnpP2wGbxGbwes/snJ1gKxcfT8avEVsBm/RP1Oj4t/UqOg/ej1Lgl7Pwj+HG2644YbbP31IdzIf0t0/p0bFv6lR4T9NNNFEE03kP8YYY4wxxsg/eIvYDN4i5j9VVVVVVVXlPz3yyCOPPOI/dSfzId3J7D+EEEIIIYTAP0UTTTTRROM/S4Jez5Kg1z8K0/aFwrTtP5kP6U7mQ+o/RRNNNNFE0z+bwVvEZvDGP6WUUkoppcQ/EOlO5kO60z/dyXxIdzKvP8jK1QGycuU//6ZGxb+p0T+Nin9To+LfP5Og17Mk6OU/33vvvffe6z/Nh3Qn8yHtP+ecc84558w/m8FbxGbwtj9S8W9qVPzLP7iIzeAtYuM/+N5777333j8q/k2Nin/jP1oS9HqWBO0/bAZvEZvB2z8GFlhggQWGPxsV/6ZGxe8/DIVp+0Jh6j/GGGOMMcbYP1zEZvAWsck/L7vssssu6z9uuOGGG27oP51zzjnnnOM/xhhjjDHG6D8oTNsXCtPmPyeaaKKJJto/cGpU/Jsa1T9S8W9qVPzbP1zEZvAWsak/ArJydYCs3D+VUkoppZTiP+ecc8455+w/hxtuuOGGqz9S8W9qVPzrPzFtXyhM26c/ej1Lgl7P0j+on3766afPP+SRRx555NE/nyVBr2dJ0D+vZ0nQ61mSP93JfEh3Mt8/rANk5eoA2T8CsnJ1gKzsP4t/U6Pi3+Q/zjnnnHPO6T/ZDN4iNoPnP9Wo+Dc1Ku4/3HDDDTfc4D8nmmiiiSbKP7k6QFauDuA/2r5QmLYvtD+6k/mQ7mTuPxSm7QuFaes/6wBZuTpA1j/xb2pU/JvKP3BqVPybGuU/XMRm8BaxmT+R7mQ+pDvZPxDpTuZDuuM/+N5777337j9yHMdxHMfhP5vBW8Rm8OY/S4Jez5Kg5z+CXs+SoNfjP3bZZZddduk/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1123\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1124\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1119\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1120\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1121\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1093\",\"attributes\":{\"tools\":[{\"id\":\"p1106\"},{\"id\":\"p1107\"},{\"id\":\"p1108\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1110\"},{\"id\":\"p1111\"},{\"id\":\"p1112\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1101\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1102\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1103\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1104\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1096\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1097\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1098\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1099\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1100\",\"attributes\":{\"axis\":{\"id\":\"p1096\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1105\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1101\"}}}],\"frame_width\":200,\"frame_height\":150}},1,0],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1125\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1126\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1127\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1135\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1136\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1128\",\"attributes\":{\"text\":\"Rex1\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1163\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1154\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1155\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1156\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rex1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CwAAAKwAAAAFAQAAsgAAAIEAAABhAAAAEAAAAB0AAAB2AAAAhQAAAJgAAAAIAAAAfQAAAKwAAAD1AAAACQEAAMoAAAAjAQAADgAAACgAAAA4AAAAoAAAAHgAAAA0AAAA7wAAAAsAAACXAAAATAAAAHoAAAAiAQAAYgAAAKoAAADaAAAAqwAAAIMAAABZAAAAIAAAAAgAAADWAAAA2wAAAKwAAABhAQAASwEAAOsAAADRAAAACAAAACkBAADvAAAAwAAAAO4AAAB8AAAAowAAAJQAAACXAAAAKAAAAM0AAABLAQAA2gAAAJYAAAA9AAAATAAAAIAAAAALAAAApgAAAGAAAABqAQAAoAAAAPcAAADMAAAACgEAAGIAAACRAAAAPQAAAIgAAABvAAAADwAAAFAAAAD6AAAAqQAAAJsAAAAGAAAAowAAAK4AAADjAAAARQAAAN0AAACnAAAArgAAAJsAAADDAAAAJgAAAIcAAAD0AAAAYgAAALYAAAAKAAAAvwAAAIMAAAD/AAAAIAEAAIkAAADuAAAAZwAAAIMAAACmAAAAEQAAABwBAAAIAQAAVgAAAAgAAAAEAQAAUQAAABMAAAB5AAAACQAAAH4AAAAIAAAABgAAAG4AAADCAAAAdgAAAHoAAAB6AAAAnwAAABcAAAAMAAAAowAAAMAAAAAuAQAAnQAAAD4AAADOAAAAaAAAAIwAAACBAAAAfgAAAKAAAACMAAAAAgEAAB4AAABjAAAABgAAAGIAAACqAAAA/gAAAAkAAAALAAAAmgAAAJEAAAALAAAAWgAAAMsAAAC6AAAAkAAAAEQAAACmAAAAXgAAALoAAADJAAAAcQAAALAAAAASAAAAnAAAAB8AAACtAAAApgAAAGwAAAD1AAAAvwAAAHEAAABIAAAAnQAAADMAAACTAAAAbAAAAAsAAACkAQAAvgAAAJcAAACZAAAAxgAAAJoAAAAwAAAACwAAAF8AAAAXAAAAhgAAAEYBAAB8AAAAaQAAAOkAAADZAAAAAwAAAF4AAACQAAAALwAAALEAAADxAAAANgAAAGYAAACOAAAAzAAAAFkAAABRAAAAfAAAAAcAAAAJAQAAZAAAAMwAAABmAAAAdAAAAI4AAADSAAAAjAAAAB0AAACbAAAABgAAAFoAAABgAAAAjgAAABkBAAB2AAAABQAAAHQAAAAPAQAAEwAAAEEBAADiAAAAyQAAAAgAAAARAAAAswAAACEBAAAZAAAABgEAAOMAAADCAAAAYgAAAIIAAAB0AAAAKgAAAE8AAAAPAAAAwQAAABQBAACPAAAAXQAAAPIAAAAgAAAAmQAAAG8AAAA1AAAALwAAAAYAAAD8AAAATgAAAM0AAADZAAAA1wAAAA0AAAC/AAAAdAAAAIQAAAB9AAAAPwAAALoAAABhAAAAZAAAADYAAACJAAAABAAAAJ4AAACmAAAAtAAAAMMAAACQAAAAQwAAAHgAAAAYAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"GrxFbAZvsT87QFauDpDlP7JydYCsXO0/0OtZEvR65j+ycnWArFzdPyr+TY2Kf9M/HMdxHMdxvD+vZ0nQ61nCP3bZZZdddtk/+N5777333j898sgjjzziP69nSdDrWaI/N9xwww033D+ttdZaa63lP6pR8W9qVOw/CtP2hcK07T85juM4juPoP/jee++99+4/XMRm8BaxuT87QFauDpDFP/FvalT8m8o/EOlO5kO64z8nmmiiiSbaP8YYY4wxxsg/bAZvEZvB6z+vZ0nQ61myP+SRRx555OE/EvR6lgS9zj/XWmuttdbaP4Vp+0Jh2u4/9dNPP/300z/j39So+DflP3/66aeffuo/yMrVAbJy5T9iM3iL2AzePzTRRBNNNNE/2r5QmLYvxD/avlCYti+kP7Qk6PUsCeo/ZOXqAFm56j8gK1cHyMrlPxsV/6ZGxe8/NSr+TY2K7z8Upu0LhWnrP84555xzzuk/BhZYYIEFpj9qVPybGhXvP99777333us/vvfee++95z+HG2644YbrP4cbbrjhhts/aEnQ61kS5D//pkbFv6nhP1cHyMrVAeI/BhZYYIEFxj922WWXXXbpP6iffvrpp+8/8W9qVPyb6j9yHMdxHMfhP7xFbAZvEcs/3cl8SHcyzz/Nh3Qn8yHdP0UTTTTRRLM/wKlR8W9q5D9fKEzbFwrTP42Kf1Oj4u8/gl7PkqDX4z+PPPLII4/sPx555JFHHuk/77333nvv7T/avlCYti/UP6dGxb+pUeE/hxtuuOGGyz+on3766affP0uCXs+SoNc/8W9qVPybuj+fJUGvZ0nQPwKycnWArOw/cGpU/Jsa5T96PUuCXs/iP7JydYCsXI0/2r5QmLYv5D8GFlhggQXmP7xFbAZvEes/fUh3Mh/SzT/XWmuttdbqP/30008//eQ/eIvYDN4i5j/tsssuu+ziP/tCYdq+UOg/cGpU/JsaxT/DtH2hMG3fPzfccMMNN+w/wKlR8W9q1D8oTNsXCtPmP4QQQgghhLA/Zpdddtll5z9IHnnkkUfeP1oS9HqWBO0/oH766aef7j+Nin9To+LfP/qQ7mQ+pOs/6wBZuTpA1j8tCXo9S4LePzIf0p3Mh+Q/snJ1gKxcvT8tCXo9S4LuP5dddtlll+0/T+ZDupP50D8xbV8oTNunPz/99NNPP+0/hBBCCCGE0D+5OkBWrg7AP/FvalT8m9o/snJ1gKxcrT8CsnJ1gKzcP1zEZvAWsak/r2dJ0OtZkj9ml1122WXXPxZYYIEFFug/XMRm8Bax2T+8RWwGbxHbP6EwbV8oTNs/nXPOOeec4z9P5kO6k/nAPzFtXyhM27c/TTTRRBNN5D8xbV8oTNvnP93JfEh3Mu8/RRNNNNFE4z9S8W9qVPzLP1zEZvAWsek/0OtZEvR61j8ssMACCyzgP5dddtlll90/55xzzjnn3D/1008//fTjP58lQa9nSeA/zYd0J/Mh7T9FE0000UTDP3BqVPybGtU/BhZYYIEFlj+llFJKKaXUP1VVVVVVVeU/55xzzjnn7D/dyXxIdzKvP9q+UJi2L7Q/lVJKKaWU4j8avEVsBm/hP3BqVPybGrU//6ZGxb+p0T+sA2Tl6gDpP5vBW8Rm8OY/T+ZDupP54D+ycnWArFzNP6WUUkoppeQ/r2dJ0OtZ0j8ON9xwww3nP1Oj4t/UqOg/FlhggQUW2D/rAFm5OkDmP93JfEh3Mr8/0p3Mh3Qn4z8Q6U7mQ7rDP5Og17Mk6OU/GArT9oXC5D+bwVvEZvDWPxzHcRzHcew/2QzeIjaD5z/7QmHavlDYP0geeeSRR84/uIjN4C1i4z/7QmHavlDIP4wxxhhjjOE/gKxcHSAr1z8GFlhggQW2PwAAAAAAAPA/8yHdyXxI5z/KfEh3Mh/iP69nSdDrWeI/4S1iM3iL6D8HyMrVAbLiPzFtXyhM28c/m8FbxGbwtj96PUuCXs/SPxq8RWwGb8E/3cl8SHcy3z/DtH2hMG3vP2wGbxGbwds/ttZaa6211j+hMG1fKEzrP5kP6U7mQ+o/snJ1gKxcbT+VUkoppZTSP8JbxGbwFuE/m8FbxGbwxj9edtlll13mP1Lxb2pU/Os/XMRm8BaxyT8gK1cHyMrVP4QQQgghhOA/ke5kPqQ76T8avEVsBm/RP2r7QmHavtA/UvFvalT82z+EEEIIIYSgP31IdzIf0u0/VVVVVVVV1T8EZOXqAFnpPwYWWGCBBdY/4S1iM3iL2D/3hcK0faHgP0GvZ0nQ6+k/EZvBW8Rm4D96PUuCXs/CP18oTNsXCuM/XMRm8BaxmT/kkUceeeTRP0UTTTTRRNM/avtCYdq+4D+6k/mQ7mTuP0GvZ0nQ69k/BhZYYIEFhj/GGGOMMcbYP2IzeIvYDO4/hBBCCCGEwD9QP/3000/vP0nQ61kS9Oo/xhhjjDHG6D+HG2644YarP0geeeSRR74/Q2HavlCY5j8S9HqWBL3uP+SRRx555ME/Jej1LAl67T8vu+yyyy7rP4nN4C1iM+g/i39To+Lf1D99SHcyH9LdP6wDZOXqANk/0OtZEvR6xj+5OkBWrg7QP4cbbrjhhrs/o+Lf1Kj45z/VqPg3NSruP9xwww033OA/ynxIdzIf0j/EZvAWsRnsP6WUUkoppcQ/It3JfEh34j8xbV8oTNvXP5HuZD6kO8k/Zpdddtllxz+ycnWArFydP3Un8yHdyew/qJ9++umnzz/pTuZDupPpPwyFaftCYeo/J5poookm6j/GGGOMMca4P0uCXs+SoOc/ke5kPqQ72T8S9HqWBL3ePxzHcRzHcdw/HMdxHMdxzD+ArFwdICvnPxDpTuZDutM/O0BWrg6Q1T8nmmiiiSbKP7k6QFauDuA/snJ1gKxcfT8q/k2Nin/jP4t/U6Pi3+Q/ttZaa6215j9uuOGGG27oPzTRRBNNNOE/55xzzjnnzD8MhWn7QmHaP0geeeSRR+4/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1164\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1165\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1160\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rex1\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1161\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rex1\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1162\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rex1\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1134\",\"attributes\":{\"tools\":[{\"id\":\"p1147\"},{\"id\":\"p1148\"},{\"id\":\"p1149\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1151\"},{\"id\":\"p1152\"},{\"id\":\"p1153\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1142\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1143\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1144\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1145\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1137\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1138\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1139\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1140\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1141\",\"attributes\":{\"axis\":{\"id\":\"p1137\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1146\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1142\"}}}],\"frame_width\":200,\"frame_height\":150}},1,1]]}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"98bdded3-a844-4ab5-8994-abd18d41fa7e\",\"roots\":{\"p1173\":\"f0e0be67-916d-4edd-aa7f-f684ba4b0811\"},\"root_ids\":[\"p1173\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1173" } }, "output_type": "display_data" } ], "source": [ "genes = [\"Nanog\", \"Prdm14\", \"Rest\", \"Rex1\"]\n", "\n", "plots = [\n", " iqplot.ecdf(\n", " data=df[gene].values,\n", " q=gene,\n", " x_axis_label=\"mRNA count\",\n", " title=gene,\n", " frame_height=150,\n", " frame_width=200,\n", " )\n", " for gene in genes\n", "]\n", "\n", "bokeh.io.show(bokeh.layouts.gridplot(plots, ncols=2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note the difference in the x-axis scales. Clearly, *prdm14* has far fewer mRNA copies than the other genes. The presence of two inflection points in the Rex1 EDCF implies bimodality, leading us to suspect that there may be two cell types, or at least more than one cell type." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model for mRNA levels\n", "\n", "In this part of the lesson, we will model gene expression of each of the four genes separately, though they are connected by which cell is being measured. We will discuss that later. For now, we develop a model for the mRNA counts for a given gene.\n", "\n", "If gene expression is a purely Poisson process, we might expect a Poisson distribution. Or, if the copy number is itself somehow tightly regulated, we might expect a Normal distribution.\n", "\n", "Study of gene expression dynamics, largely through fluorescence imaging, has lead to a different story. Expression of many important genes can be **bursty**, which means that the promoter is on for a period of time in which transcripts are made, and then it is off for a while. The \"on\" periods are called \"bursts\" and are themselves well-modeled as a Poisson process. That is to say that the amount of time that a promoter is on is Exponentially distributed. Thus, we can think of a burst as a series of Bernoulli trials. A \"failure\" is production of an mRNA molecule, and a \"success\" is a switch to an off state. The number of \"successes\" we get is equal to the number of bursts we get per decay time of the mRNA. We can define the number of bursts before degradation of the mRNA as $\\alpha$. This is the so-called **burst frequency**. So, we have a series of Bernoulli trials and we wait for $\\alpha$ successes. Then, $n$, the total number of failures (which is the number of mRNA transcripts), is Negative Binomially distributed, since this matches the Negative Binomial story. Referring to the parametrization used in the [distribution explorer](https://distribution-explorer.github.io/discrete/negative_binomial.html),\n", "\n", "\\begin{align}\n", "n \\sim \\text{NBinom}(\\alpha, \\beta),\n", "\\end{align}\n", "\n", "where $\\beta$ is related to the probability $\\theta$ of a success of a Bernoulli trial by $\\theta = \\beta/(1+\\beta)$.\n", "\n", "The meaning of the parameter $\\beta$, and the related quantity $\\theta$, can be a little mystical here. We would like to relate it to the typical **burst size**, i.e., the typical number of transcripts made per burst. The size of a single given burst (that is, the number of transcripts made in a burst) is geometrically distributed (since it matches that story), so\n", "\n", "\\begin{align}\n", "f(n_\\mathrm{burst} ; \\theta) = (1-\\theta)^{n_\\mathrm{burst}}\\,\\theta.\n", "\\end{align}\n", "\n", "The mean number of transcripts $b$ in a burst is\n", "\n", "\\begin{align}\n", "b \\equiv \\left\\langle n_\\mathrm{burst}\\right\\rangle &= \\sum_{n_\\mathrm{burst}=0}^\\infty\n", "n_\\mathrm{burst}(1-\\theta)^{n_\\mathrm{burst}}\\theta\\\\[1em]\n", "&= \\theta \\sum_{n_\\mathrm{burst}=0}^\\infty\n", "n_\\mathrm{burst}(1-\\theta)^{n_\\mathrm{burst}} \\\\[1em]\n", "&= \\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}(1-\\theta)}\\sum_{n_\\mathrm{burst}=0}^\\infty(1-\\theta)^{n_\\mathrm{burst}} \\\\[1em]\n", "&= \\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}(1-\\theta)}\\,\\frac{1}{\\theta}\\\\[1em]\n", "&= -\\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}\\theta}\\,\\frac{1}{\\theta} \\\\[1em]\n", "&= \\frac{1-\\theta}{\\theta} \\\\[1em]\n", "&= \\frac{1}{\\beta}.\n", "\\end{align}\n", "\n", "So we now see that $1/\\beta$ is the typical burst size. Using the Negative Binomial property of mRNA copy numbers of bursty gene expression, we can characterize the expression levels of a given cell type by the two parameters of the Negative Binomial, the burst frequency $\\alpha$ and the burst size $b = 1/\\beta$. These are the two parameters we would like to infer from transcript count data. The conclusion of all this is that we have have our likelihood.\n", "\n", "\\begin{align}\n", "&n \\sim \\text{NBinom}(\\alpha, \\beta),\\\\[1em]\n", "&b = 1/\\beta.\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Maximum likelihood estimation by numerical optimization\n", "\n", "To compute the MLE for the two parameters, the burst frequency $\\alpha$ and burst size $\\beta$, we need to define the likelihood function. We make the assumption that the number of transcripts in each cell is i.i.d., giving a statistical model of\n", "\n", "\\begin{align}\n", "n_i \\sim \\text{NBinom}(\\alpha,\\beta)\\;\\forall i.\n", "\\end{align}\n", "\n", "Referring to the PMF of the Negative Binomial distribution and making the change of variables $b=1/\\beta$, the likelihood function is\n", "\n", "\\begin{align}\n", "L(\\alpha, b;\\mathbf{n}) = \\prod_i\\frac{\\Gamma(n_i+\\alpha)}{\\Gamma(\\alpha)n_i!}\\left(\\frac{1}{1+b}\\right)^\\alpha\\left(\\frac{b}{1+b}\\right)^{n_i},\n", "\\end{align}\n", "\n", "and the log-likelihood is \n", "\n", "\\begin{align}\n", "\\ell(\\alpha, b;\\mathbf{n}) = \\ln L(\\alpha, b;\\mathbf{n}) = \\sum_i \\ln \\left(\\frac{\\Gamma(n_i+\\alpha)}{\\Gamma(\\alpha)n_i!}\\left(\\frac{1}{1+b}\\right)^\\alpha\\left(\\frac{b}{1+b}\\right)^{n_i}\\right).\n", "\\end{align}\n", "\n", "To find the MLE, we need to find the values of $\\alpha$ and $b$ that satisfy\n", "\n", "\\begin{align}\n", "\\frac{\\partial \\ell}{\\partial \\alpha} = \\frac{\\partial \\ell}{\\partial b} = 0.\n", "\\end{align}\n", "\n", "Unfortunately, no closed form solution exists for this. We therefore need to resort to [numerical optimization](https://en.wikipedia.org/wiki/Mathematical_optimization) to find the MLE $\\alpha^*$ and $b^*$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Numerical optimization\n", "\n", "Numerical optimization is typically implemented to find a *minimizers* of a function rather than maximizers. The function being minimized is called an **objective function**. This is not a problem for maximum likelihood estimation; we simply define a *negative* log-likelihood as our objective function.\n", "\n", "Sometimes, we have **constraints** on the allowed values for the parameters. In our case, both $\\alpha$ and $\\beta$ must be non-negative. So, the statement of the optimization problem to find the MLE is\n", "\n", "\\begin{align}\n", "\\text{minimize } (-\\ell(\\alpha, \\beta;\\mathbf{n})) \\text{ s.t. } \\alpha, \\beta > 0,\n", "\\end{align}\n", "\n", "where \"s.t.\" is read \"subject to.\" If we explicitly consider the constraints, we are performing a **constrained optimization problem**. Constrained optimization is often considerably more challenging than unconstrained optimization. There are ways around simple positivity constraints such as the ones here. We can instead define new variables $\\xi_\\alpha = \\ln \\alpha$ and $\\xi_b = \\ln b$, and write the log-likelihood in terms of these variables instead. We then find minimizing $\\xi_\\alpha$ and $\\xi_b$ and convert them to $\\alpha$ and $\\beta$ by exponentiation after performing the minimization calculation.\n", "\n", "Numerical optimization is implemented in the `scipy.optimize` submodule ([docs](https://docs.scipy.org/doc/scipy/reference/optimize.html)). Most of the functionality you need is in the `scipy.optimize.minimize()` function. To use the function to find minimizers of an objective function, the standard call signature is\n", "\n", "```python\n", "scipy.optimize.minimize(fun, x0, args=(), method='BFGS')\n", "```\n", "\n", "The `fun` argument is a function with call signature `fun(x, *args)`, where `x` is the variables used in the optimization. In the case of MLE, the function is the negative log-likelihood function, `x` is always an array of the parameter values we are trying to estimate, and the remaining arguments are additional arguments passed into the likelihood function, which always include the measured data. Importantly, we have to provide a guess as to which values of the parameters are optimal. This is passed as an array `x0`. The kwarg `args` specifies which additional arguments are to be passed to `fun()`. **Note that** `args` **must be a tuple**. Finally, the `method` keyword argument specifies which numerical optimization method to use, the default being the [Broyden–Fletcher–Goldfarb–Shanno algorithm](https://en.wikipedia.org/wiki/Broyden–Fletcher–Goldfarb–Shanno_algorithm). This is a good algorithm but does compute derivatives, so it is only useful if the parameter values can take on any real value.\n", "\n", "I have omitted the `bounds` keyword argument here because we will not usually use them, as we will either do the logarithm trick above, or use [Powell's method](https://en.wikipedia.org/wiki/Powell%27s_method), which does not required calculation of derivatives (so we may therefore have discontinuities in the objective function and set the value of the objective function to be infinity for disallowed parameter values)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Solving with the BFGS algorithm\n", "\n", "We will now solve the minimization problem using the BFGS algorithm, specifying the parameters using logarithms to make sure that the problem is completely unconstrained. First, we have to write a function for the log-likelihood matching the required function signature of the input `fun` to `scipy.optimize.minimize()`. Note that we do not have to hand-code the log-likelihood. The `scipy.stats` module has functions to compute the log-PDF/log-PMF for many distributions. We just need to check the [distribution explorer](https://distribution-explorer.github.io/) to ensure we use the parametrization that the `scipy.stats` module requires. In this case, it expects parameters `alpha` and `1/1+b`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def log_like_iid_nbinom_log_params(log_params, n):\n", " \"\"\"Log likelihood for i.i.d. NBinom measurements with \n", " input being logarithm of parameters.\n", " \n", " Parameters\n", " ----------\n", " log_params : array\n", " Logarithm of the parameters alpha and b.\n", " n : array\n", " Array of counts.\n", " \n", " Returns\n", " -------\n", " output : float\n", " Log-likelihood. \n", " \"\"\"\n", " log_alpha, log_b = log_params\n", "\n", " # Convert from log parameters\n", " alpha = np.exp(log_alpha)\n", " b = np.exp(log_b)\n", "\n", " return np.sum(st.nbinom.logpmf(n, alpha, 1/(1+b)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the log likelihood specified, we simply use `-log_like_iid_nbinom_params()` as our objective function, which we can succinctly code up as an anonymous (lambda) function. I do not have \n", "a good guess in mind, so I will just start with both parameters being about three, so their logarithms are about one. Let's perform the optimization for the *nanog* gene and look at the result." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " message: Optimization terminated successfully.\n", " success: True\n", " status: 0\n", " fun: 1524.928435773547\n", " x: [ 2.338e-01 4.241e+00]\n", " nit: 14\n", " jac: [ 0.000e+00 0.000e+00]\n", " hess_inv: [[ 6.408e-03 -6.576e-03]\n", " [-6.576e-03 9.601e-03]]\n", " nfev: 51\n", " njev: 17" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Extract the values for Nanog\n", "n = df['Nanog'].values\n", "\n", "res = scipy.optimize.minimize(\n", " fun=lambda log_params, n: -log_like_iid_nbinom_log_params(log_params, n),\n", " x0=np.array([1, 1]),\n", " args=(n,),\n", " method='BFGS'\n", ")\n", "\n", "res" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The result returned by `scipy.optimize.minimize()` is an `OptimizeResult` object that has several attributes about how the optimization calculation went, including if it was successful. Importantly, the optimal log-parameter values are in the array `x`. We can extract them and exponentiate them to get the MLE." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "α: 1.2634367438963097\n", "b: 69.4441977772913\n" ] } ], "source": [ "alpha_mle, b_mle = np.exp(res.x)\n", "\n", "print(\"α: \", alpha_mle)\n", "print(\"b: \", b_mle)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, the MLE for the burst frequency is about 1.25 inverse degradation times. The MLE for the burst size is about 70 transcripts per burst." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Solving using Powell's method\n", "\n", "As an alternative to the BFGS method, we can use Powell's method. This has the advantage that we do not have to use derivatives in the optimization, so we do not have to use logarithms of the parameters. We do, however, need to specify that the log-likelihood is minus infinity for disallowed parameter values." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def log_like_iid_nbinom(params, n):\n", " \"\"\"Log likelihood for i.i.d. NBinom measurements.\"\"\"\n", " alpha, b = params\n", " \n", " if alpha <= 0 or b <= 0:\n", " return -np.inf\n", "\n", " return np.sum(st.nbinom.logpmf(n, alpha, 1/(1+b)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We take a similar approach to solving using Powell's method. This time, we will catch warnings because the solver will stumble into regions where the log-likelihood is minus infinity. We know this to be the case, as we designed it that way, so we will suppress the warnings to keep our notebook clean." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "α: 1.2630973722818943\n", "b: 69.34784233306983\n" ] } ], "source": [ "with warnings.catch_warnings():\n", " warnings.simplefilter(\"ignore\")\n", " \n", " res = scipy.optimize.minimize(\n", " fun=lambda params, n: -log_like_iid_nbinom(params, n),\n", " x0=np.array([3, 3]),\n", " args=(n,),\n", " method='Powell'\n", " )\n", "\n", "if res.success:\n", " alpha_mle, b_mle = res.x\n", "else:\n", " raise RuntimeError('Convergence failed with message', res.message)\n", " \n", "print(\"α: \", alpha_mle)\n", "print(\"b: \", b_mle)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This differs from the result we got with BFGS in the third or fourth decimal place, due to inaccuracies in introducing the logarithms, but the difference is not big and also is small compared to the confidence interval we will momentarily compute for the MLEs of *α* and *b*." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The likelihood function\n", "\n", "To help give a picture of what the likelihood function looks like, and what the optimizer is doing, we can plot it. In this case, we have two parameters, so we can make plot of the likelihood as contour plot, which we will overlay on an image of the likelihood function. We first compute the log-likelihood for various values of $\\alpha$ and $b$." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# alpha and b values for plotting\n", "alpha = np.linspace(1, 1.5, 100)\n", "b = np.linspace(50, 90, 100)\n", "\n", "# Compute log-likelihood for each value\n", "log_like = np.empty((100, 100))\n", "for j, alpha_val in enumerate(alpha):\n", " for i, b_val in enumerate(b):\n", " log_like[i, j] = log_like_iid_nbinom((alpha_val, b_val), n)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Remember that the likelihood function is not a probability distribution, so it is not normalized. When we exponentiate the log-likelihood, we may get values close to zero, or very large. It is therefore a good idea to first subtract the maximal value of all computed log-likelihoods. This has the effect of multiplying the likelihood function by a constant." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "like = np.exp(log_like - log_like.max())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can make the plot using the convenient `bebi103.viz.contour()` function." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"373bd8d9-392d-4367-8eb1-8daf89ed285f\":{\"version\":\"3.2.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1188\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1197\",\"attributes\":{\"start\":1.0,\"end\":1.5}},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1198\",\"attributes\":{\"start\":50.0,\"end\":90.0}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1199\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1200\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1195\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1227\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1218\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1219\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1220\"},\"data\":{\"type\":\"map\",\"entries\":[[\"image\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"3DHlyOCi0Dq2etDW9F3lOoHoboRXI/s6GDj2vTQLETt3/AEMhCwlO3L7WAvVBDo70yqi+p+gTzsg2ffNOwRjO3vWdd3xn3Y7o1jTlyWiijsOFIgOAQafO6rEpXhk4bE7UYzaztNlxDuO4nwK1AfXO2QWdabzvOk7qWWlkv94/DtjQftAVS4PPIw+/3on5yA8zxG2AOMkMjzmENdT0khDPCo3dQTAS1Q8v/oTrhgnZTwaupjAMtV1PJgzjiONUYY8lAl15gCZljyc+3YA46mmPKu52CwUhLY88bxeIP4oxjxcV5GNfpvVPFb/fZfB3+Q8eACSVA778zwKQJDJiPMCPVHquULtzxE91tkpIEmXID3JmtMYaqEuPSLpVmEoBjw9isO/vbZpST1L5NrPxNdWPcXFIP2BWmQ97FavYG/6cT00Jkvaknx/PQtgF9cOVos92HpI9NuHlz2k3yDxYRWkPf7MIeBB/7A9aVyt4X+HvD3vAYZCab7HPdOBHTv9mNM9FmcqbN8K4D3jtAdywgzqPbVHZ6hh+vQ9EipKxtjBAD4jA0faX44KPhGH3LLb3xQ+cva08ypHID4xODlA0S8pPtkkce8iVTM+UnP7RT5yPT5pBGfeT0BGPiZgo9Mwr1A+bVzyRAHUWD5C3Hg6FFViPpTUq4TG3Wo+XBIINaSJcz5yecZh3jN8Pghk4sT3M4Q+vhvq5sa6jD7+SkBbuEaUPkBxOprkaJw+7/f/Q9fBoz4W33n+lEerPuB7lYJVsrI+kSBnjoVxuT6LAsHuNDDBPsqQxVmzDsc+YZc8RQi2zj6mnhdD5U7UPscEn8plq9o+hpATrqpj4T4d0rIx3ITmPtvNM83D9ew+rq2me1J+8j5JpP08G3X3Pgq1D/gOjf0+5YIsMcp8Aj+DM57vy/kGP1ScGG2kXAw/WsbbUWZjET91cX2t3S0VP8yAIXctoBk/ofyX7yrNHj+7SWlNzmMiP4f8Q17b0CU/1mKiSEK2KT9OOfZsoBsuP9lLP2GogzE/PEOm3QY/ND+ChaUkSUE3P0iORMqeijo/7cPwqd4ZPj/w5qlwApP1OnKJQ+AfZws7FS8gWKk1ITvK0IcDq2A1O6Jmsb2lQ0o7BWWsw8jqXzvl0cq8HS9zO/1YpdJ60IY7sj5CsdTXmjsMl50J6j+vOziuQAjD/8E7n3I6C6iE1Dsd2klK5iXnO32zzfTK2Pk7jdR01+eQDDzDl8LPaUAfPPxztrRE7DA8V9vceAglQjwuYxa5+EJTPHRI/kfvPmQ8uWx7NHQSdTxL/zIlBbiFPM/SjMtSK5Y8DtEtrHBppjx+cApa9HC2PDedK1kCQsY8/S2yF0je1TxpJcWq40jlPLbf8yc7hvQ8NzxpccabAz0BzHMJz48SPceQqPMpaSE9aFIDy+8uMD1dj7oNbtA9PZgXiu2nN0s9BHJiqkKgWD2rS8UKpxVmPb8CZWmvoXM95MwNfH5MgT1XYs2d2ziOPdsqA60jLJo9nwFd+6B4pj0T1sXeDCGzPYN0yR9uJcA9PkaXbgwHyz2UtvuhiG7WPa+UEvxuduI9lnfg3uoj7j1C39+ZWmb4PT3oXd5ZlwM+eSlwW3I0Dz6okn7elqYYPmkZ1egWUSM+vZC5XDQILj6U25mmASk3PgkEPaM5uEE+4aKAhrfmSj7z9b2gu0JUPsoeZVYVSF4+6Zq2NV50Zj73cDQez4VwPg+EfI1AIXg+YooF0l98gT4SH1tCmyaJPhPvuH2t85E+9V7/gnBvmT40nne4luKhPup+C1ZS96g+EuX6VwlMsT6KwWKHvcq3PhenABhhPsA+/Pdb1gUFxj7dvW3GXKLNPrRFfhRLzNM+BBrjLLtD2j46J3tkSEzhPhLoDlfJn+Y+JlHhgeZh7T59nDg+RfLyPkFP7OuXQ/g+8Ou9i/Hb/j5WISU8AX0DP5zb1Poscgg/hJgVpLB0Dj9ny7DMw9cSP6h8No2RKBc/emcLOXRFHD8zqPM1HiQhP+imHMmvpSQ/bZwSXbC0KD+Q94vSDV4tP5/oB/b8VjE/vGxpwrpXND89pVsB6bU3P7NqqDcWdTs/kb8TPHOXPz9+056UyA5CPy3zm8QRg0Q/aVUr2eQmRz9CTmYtcfdJP20qQcNeyho7KvI1Q9bTMDu4w3tYeudEOyn0/fGdrlk7fkgeLN00bzuqa4Mt5sCCO7xEPjPrS5Y7P8DqJJc5qjuYJ/ZtdIS+O0+vXxuVkdE7tOk4mygE5Ds8D2v8PJH2Ozj65To1Lgk8T8fSu8rOGzxRYvwtZWUuPBheheHFcUA8OT6ScDWdUTxmRi3Ps61iPI+fHntcnHM8iswo7f5ihDxEFPKMY/yUPH4EcFaGZKU82GsslMOYtTwM7mD485fFPAvoYnt2YtU8DbUUnyf65DyOwMryRmL0PJXwytVMnwM9p96iabO2Ej3WD1xWtq4hPb9hTGYNjjA9MxEzJEy3Pj0QWPG3vzxMPYRsMrqduVk9MIGmcw46Zz1jSe/E5sh0PQm68FZsb4I9IVBj5DE1kD3YwrwPFUCcPe+9q3ojaKg9iSwduYnntD37lJ6BVMDBPVQViF4I5M09lJp0jPPz2D1Ud+Y50KfkPcZ7lNKF9PA9md8AtJqa+z0cAehF10gGPuci6kqi1xE+rRYKbnRWHD47LMZ2DlImPkMKv3lgcDE+2URhuvYHOz4RScwTRMhEPge68/bBs08+RKXjPin9Vz7AKSXYfAJiPrMvVq6V1Go+g1VWb5LUcz5EM21dNhZ9PoBuEdsDK4U+aqr7cSaTjj6zra3hv+mVPsExrqpFLJ8+hEr+V5MBpj4Fbwnoa9auPn7h064kcrU+HS5YsrCbvT7afewBv0nEPqy47bOWmcs+SLpwvwSj0j7ZAuvSi/zYPjHxPR0LoeA+cIKx5K355T7mjgduStXsPklQZokEyPI+py4CQ3NL+D4qZcWcsTT/PsnQFw3A5gM/Bp9Owxo1CT8MHuCvDbUPP8qn2n/fzRM/yQH9PteRGD8yJ+4PKkYeP8vLg+9ehiI/+ALPgJWEJj+pa/gfDjArPzHt7C6hTTA/cxaz6ipsMz/xIk73Q/w2PweHMdLJBTs/ulS6UICPPz9AK6+RWk9CP7LOEZhwG0U/FeJwmKUsSD9U+bm4V4JLP+4ZA2t4Gk8/qivd27V4UT9Q9Gkz+IBTP5nZx3uJolU//WGXWojkPzs4zEDIbNBTO+8PtqKyWGg7Qtu5wuKVfTtawlrjcceRO9hvggLRIqU7gUdLqAfbuDviQo9lperMO4ML4V1BpOA7Tszvsc3z8jv0k41DjFsFPA5+FidI0Rc8KRO7bT5JKjxV8AF2dLY8PPwW1iUmC088Zm3hlqOcYDwyHStgiJlxPHkUO/DJdYI80qFo2aMrkzxixkKXRbajPE4Y5BMJErQ8GSHReJs8xDz3MjfQFTXUPI6MuxIE/OM8dPxgblqT8zzi/4bBWf4CPTshzVhlQRI9PG6p4MxhIT17V+AbjmUwPYgj4ogkpj49QzEdBtZhTD1KaBBNJQtaPRnsTYhlrmc9OYIddudWdT0rSEyUrQ6DPbULZCg33pA9FCbHisSYnT1KfJ8Qx7ypPfYxvEOiL7Y92+yq43v1wj3prZL6wQ/QPZeME34V+9o9AhE71Pt35j2SPHlngY3yPdWkU7t6Yf49sAH22quqCD5GUgalWdwTPnE4RkTHtx8+DYTsCWYeKT49q4Mp4rozPn0OLZ0mvj4+BKcyIfzBRz6Nqv71VzZSPjUi/noJs1s+RHgmC5rlZD7Ei7NJ50dvPkY3vhh/Onc+ZThkrj4dgT4Wz4Ck2QWJPhDxsb3WJpI+tUbo/eEhmj4eogrIyaqiPu+NxdVgd6o+U+IK2MOesj68IjY2zwC6PmloybFeBcI+8m8/PtfKyD6iNrmBhu3QPsTZc7Yr8tY+hJnRpj3g3j4QsdKTNZ/kPqKZv23TWOs+JMoiE3sA8j4XyWMbzYf3Pv0g/dybif4+AGJHp8msAz91yhkEciwJP2DQ3i2T+w8/I1MpJ70sFD99rcrBiEYZP3er+4xech8/O2O7FXttIz9CPWcsFNcnP4ZzEPErDi0/g9Mv1eiVMT8MSq4ctyQ1P8XvrC0RQDk/aLp1OAT0PT+ZAcQU16VBP0C+eltjqEQ/lZzSRZAFSD/JfdkyE8BLP8QAsWIs2U8/ER08XDQoUj/y/z2itJFUP/v5rsjZJlc/f8kI1EbkWT/lWntHdMVcPxDA4detxF8/bEVcw4xtYT/a6PWaBzhiO06OGtCvZHY7uZv2v+M3iztC2d8I51ugO/Oq4+H4crM7yvszzh7fxjsRo5kAI5vaO4cPWkVcnu47q5BTzEZuATxj0Mxs+aITPAUdy7q/4yU8lhunX6glODwqFwUBqVxKPHzqHkgGfFw8jjzqMc12bjzgVPKvKyCAPKdqXXxp5pA8mAfIBOOIoTzNNQOtQgOyPMqT3aRLUsI8o+fvRf5z0jxTBtkorWfiPJ8dgsQBLvI8DQrAiPDIAT2KlyGAnTsRPaY7qYIziiA9NA5xoWFzLz2K57H1WJ89PRC0VIEwpEs9/SDXGgWOWT1uz0Xit2hnPTFHzuqFP3U9sG6tB7Ecgz2IkNimPAmRPZAtxi2AGZ49JUSaOpxaqj1k50f04N62PVucQeFprMM9lLnuapHG0D12zDz1elzcPROSEzF1xOc9K0nJPj2/8z0f6kahWUQAPnnv313Ykgo+MulEzMWFFT6ni5bYJkkhPt1VeI33iCs+oiqhQte/NT7NuNAYxglBPkOlXoYOeko+2Wwut6RnVD4LItDtWTJfPhak4psOqGc+1gDdOKDLcT63T492bY96PoprFBsbqoM+k2vHfKrjjD4ZZj/NFw6VPj8gc/zAc54+X2HZB/3ZpT7EXJdNdB6vPj0fbB00/bU+EyakUuDWvj7nYMB4X3bFPn4AnQgGps0+lRQfzUlT1D7SvyrVFanbPudo65KfruI+rk9mqOQM6T6DJ+Rz9avwPga+hx6DB/Y+dc/1WdXl/D7qiiX8NdECP9dhiRecVAg/4xGYCBQ8Dz9uuzPZHegTP4k4ZcPpMRk/T2XjKv6pHz98cx4xCcIjP+syGd1kfCg/0dLC1Z4iLj+8omkokWoyP+/VopnbWjY/xHNSVmzzOj8wfEnPuCJAPwCTu7zGMEM/Aj5aL6OrRj9FGtT/M5pKPyMsL/wrAk8/X6HR2NjzUT8IclbagqZUP8JaX/cVmVc/Lrq86k3KWj/fFZ7RfTdeP/6HHqs67mA//2VwrrfZYj8gn2z4hdpkP93to20r7GY/xU63720JaT9AgjCJZCxrP+Q7MJmj/4M7MmYaNDlRmDsU48/PbT2tOy0HoWa5YsE7XsdKcLVy1DsLYM5I3MnnO58xw/BAYPs7xNTKobwqDzwOHK5Dfo0hPOh9R3/ejzM8oKJ43pmSRTzMEiJz04pXPNh4n80VbWk8kUjmm8EtezytaInQhcGMPBcIaXraHZ48jg5L8HY5rzy6yhEAXgbAPO1jpboFSdA8SIUwuwNj4Dz2Uovt2lPwPFTTDcNCHAA9IQVG3TV8Dz1zVPN6ongePcoUofx2NS09VEQ7PtC7Oz3wvm9G0RVKPdznRZcyTlg9iRDWf9JvZj3Xtwx7TIV0PW7kPrKcmII9tnR/fdOykD2h9WuwtredPcUBW6ykNKo9xk8Spe3mtj06U6nbS9bDPdVK+RfTB9E9QaLum0v83D11RG3keXPoPa5+ONJ3cvQ9lz8ZsJTzAD6KAnZZud0LPuWctMCJtRY+TvYTBpBZIj4FlOZSvGctPv6xbzENXTc+71ZG3qFoQj6/FWudA8VMPmFHsVTMS1Y+cgVIEFIjYT6n32+c2SFqPo9NApktw3M+ui0EOn+mfT5gwLsrrhCGPr6JWd46SpA+zI8O0dbclz5RBWD4LFehPujVYaJTAak+Xl+huYbjsT61FlxKyWW5PizUIHD+48E+Ku2tMi0DyT74ysN2ClrRPg+uDNuD5Nc+1u5kxG9T4D7u3yJs7iTmPsvHVZoP0O0+Mqfz2H3r8z6xhyHYdmz6Pvx/ZUCsZQE/k0EpZtC9Bj/wArnJGIMNP2twgv/eAhM/I4mfb1pRGD+rVe8BN+IeP7dDtFvSeCM//jSuamlhKD9Ul5ol3E8uP2HOIwYktjI/OuP5a7/wNj9S1OTAM+47PyoP5pHK4kA/C6lTaglHRD+/UjopKy9IP8Ty/EvkpUw/V1yYH3DaUD9VJda7J7JTP1E548033VY/R56y14hdWj/VZ5hzkTNeP93hAVUPL2E/tHnpexFtYz8FARZrR9FlP8IXK74aWGg/C0YpKuD8aj90d2aZ2bltP6qMWbUgRHA/Vm6Wni+wcT8dzNQm0xxzP62lj35uhXQ/+qZW5+kcpTvzKHGXLGa5O/rNbwpBN847tFTKQVTG4TsJ0Vvm6a70O76xAJFbzgc8W0zm7M0aGzySQUisnYcuPEA4MrHKAkE8DeVdbKbBUjxjd+n+13ZkPNN3VjdUGHY8yl3N1PCbhzwqJ6+8zveYPLPRXi/GIqo8Xwxzb84UuzxmafxiWsfLPMYCZlCkNdw8BUPP7eNc7DyXcdpxazz8PLjAgQ+q1Qs91DxVGxQsGz3q5dXe8kQqPaTjTa8fJzk9Y8KiGK/aRz3TUvq6kWhWPTSlQdEw2mQ9+Kw4Ngw5cz3cRRIyX46BPW7BbO+gxY89E0lPMmF8nD1jQP/2kU6pPdGRriN4R7Y9G7kP+exvwz0jCK9ZX87QPTspX6ffzdw9ernnRUR36D0kSFDDPJn0Pbrbpiz4MAE+fk+EtkZyDD6cd29rDlUXPor8AeY8+SI+PO+NFnSYLj4eXhojlXU4PpJHj22jY0M+F6P7VaV7Tj6SmNilR8NXPuIVsez3XmI+/mtPTu0rbD4B+u6nfWx1PvdkDZ3sKIA+vN4ow34uiD5O14BfhPKRPi+29vODbZo+w9uZLJtNoz52iwP9x/mrPoX6X/fzHLQ+zsaXQ9SxvD6JFdQUT0/EPquNBAcuh8w+40s99cXh0z7hJe/yK4DbPmiSKUL53+I+bkVakqS26T7Z+DmIFWLxPk6KlRzPU/c+UosYPEcS/z59iEdjPIoEP/1/pW7S9Ao/abIhOBuPET/fF/kodLUWP6AS74j5Jx0/4Z8e9AKVIj9QRfKrFYQnP8iHuUEsjC0/RLWlzWtuMj8j8dK0/tQ2Pzwic32tFTw/W1PGC/ImQT+foroqDc5EPw6VleeWD0k/Lt5eVsv6TT/MfnwtHs9RPxfwpQGlA1U/waxkvcagWD8fhfk+HatcP3YYQRPfkmA/SCirBvUIYz+N/TfxX7dlPxdLNQ18nGg/5T+FwFW1az+TqDy0lP1uP+r9ICu4N3E/5JHNoNcBcz9bpqBY2dh0P2NMKFjHt3Y/KoI6mxeZeD/zu67mxHZ6P78vXWJtSnw/AjM+MnYNfj/iQmhbfXXFOwxp/8bwitk71tXRudcQ7jsZF+MJ638BPFzbDentJRQ8jPzuGf/xJjw+Yv4gSNk5PMK+RYzAzkw8PkqR3oDDXzxW0yHGm1NxPBYvm9BdtII8nwGUDFv7kzwrxv9mLCClPJ+puCwMG7Y8bM3Uxy7lxjyf+2mzEXnXPJnh1Ju70uc8UtBql+nv9zyNDgevJtAHPbzXfHDMdBc9NlDK3OzgJj331hyMJxk2PbQ+PzltI0U9N27b8LUGVD3aOUnMrspiPQqIAmJkd3E9DqtU8e4UgD3h/PyaSVaNPepyxYKtgpo9OuB4TjK8pz1bT++yNg61PZy4xhccgsI9RyPtOjAf0D23s1FvYtXbPeBrIDvQz+c9TKF54Kow9D2c0V4O1fcAPjcfuC4rRQw+PKGgvEBYFz4ryXRHOxwjPjyPzL+kBC8+TH6QIhL1OD7zHjU/5OhDPrY9fcVDf08+jMe5qFq0WD5JO9hz9DZjPuqGXlsWpG0+P6pGP2Gsdj5RlbR1djOBPvVd8w+44ok+RE4Y7rZRkz44jJ8GnZqcPqiSmGteAaU+xtmzoaiarj43pQpZFh62Pr/Grm1Nt78+icouUbePxj5NTvq8/djPPrPH/4SrTdY+aF2mFVz/3j6ouz7I81/lPp14ufzeQO0+BjK6safd8z4is9XVEcf6PhsaaURQ6QE/4ow0h0zIBz/y8Sa1zFcPP5p9nbMtgBQ/mL8t1OKeGj+gRPjQPyghPyq+Syhx9CU/j8A2OPXjKz8WySRKc5YxP6d8+H7CBTY/YLq6LfpgOz8qm4sy7eVAPxJqrlAytkQ/QUkwAiE1ST+s+pKx/HZOP6yv+vf8R1I/a5EfP9TJVT8HUhJpI8pZPyefTyIBUV4/iyLhJYqyYT+b/aM/lIVkP2YOAA/homc/c4dVJFsKaz9DgWzJZbpuP3Iz0h/aV3E/EjScNJVycz9EebKg5Kl1P1iMg59U+Xc/+vq3KIJbej9mK61MKMp8P1CYBCs2Pn8/zkzdr/bXgD8UCi4vhAuCP1BereZzNYM/rUQVymJRhD+Ofij99VqFP0F/cbu/BOU7nhC0NZzB+Dup7XrQqtUMPO2Xrp9vmyA8JkR2WI/rMjyA03lXKlJFPLcu0l1hxFc8VQXPEsY1ajxpXd2QvZh8PLl499H73o48JBTfBwl9oDz2J3otBG6xPEcHK7T8O8I8S78PfVPh0jw+C/e9flnjPNESTy0/ofM8EGoTJcW2Az0iBt9ww5kTPQO95sRuSyM9stn9NGrOMj0Gs9tNoiZCPauokpIZWVE9lJG7/alrYD0ZkmRif8luPSWQDWMilnw9r5rEybJKij3dF9k0LvSXPfM+bl2qnqU92r+bEPtUsz24d7N1cCDBPbUcnNNcEc49eAdHGzgn2j0PpzZ90ormPbzHFFJNQfM9/K288dhMAD4meoOVLVoLPvHCyYwPvxY+T3OYdf6/Ij6NsZIIT6QuPkYs5owi0jg+iutbpa/uQz47xzqlNb1PPn0eisH0DVk+g3+apj+cYz52QBn0oXBuPqQJ/O5rbXc+XuNie2PhgT7GSb/WYxGLPvT5n7/XUZQ+e1ebDCNCnj6gQswtklimPteRvKiKXrA+PmCd+yTKtz7CdpRBEibBPjAJa73fhsg+xT1iELFm0T7kFQUjUH/YPklEey/kG+E+/adEI1C25z6WeoSfE07wPq33vJpCQPY+4bs8KSQi/j5CkNBKuT8EPwj6+sMEAgs/TQZnjETgET8XLp7DmHwXP10iCtT4oB4/qPu0adbSIz9wo/+CuXgpP3Cp75ebPjA/5oMXSLCRND8eU1WaLds5P8Ko0oNLIkA/1+hFyI39Qz8XrcfUjpdIP8BAJvLACU4/n2cq4C83Uj/9JB8M7O9VP3Isf8MHPFo/qPu7gMYnXz9GPUWRIV9iP8w3cdR1hGU/IOiN2noHaT89hS48aOpsP8OcJmXmlnA/Ndq/xybocj8KZ79XNmd1P7W1tMAtEXg/uETike3hej8QH1U9F9R9P0vnlAKIcIA/jmSKXIcAgj+KZMJdmpWDP/pUeiXZKoU/kJbSw/q6hj+88UOTcUCIP/bFG6CLtYk/Dwt0GpYUiz/Wnr6eAliMP128kP2Meo0/dsXWS73bAzwOrtyreyUXPEtV1nnWrSo84A97t15pPjzMYOxpsyRRPCCaNckhHmM8UyiPNt8WdTynH7eC2wOHPFQfMLd22Zg851oCw/WLqjxpFJdLABC8PMWvdjEgW808x/3F3jpk3jxccHWe/CPvPBmN2wgvlf88Y8hu9PS0Dz305Iwx6IIfPcgXgnoXAS89a3M0PeUzPj0bwCEFyiFNPTBW0ST/0ls9y8FFphdRaj0qPWxpjqZ4PXrHfKJQ3oY9S07MpEsDlT3n9DYhBCCjPQiJUtY7PrE9W9xkilLNvj2qoazqhkHLPUb9P6BE5dc9KaXAfeXB5D0psMkq+d3xPbDc4/Tdev494nnxRK7DCT7Us72RaJUVPlim1gOt6yE+FTMDw+V+LT5ykECigA84Ph4ChSyqdEM+zRMgmwgxTz4MsdgqqclYPvynMVeoh2M+TPEUjTqDbj6r9mqTSqJ3PrXW2V/lJoI+gOXiVlWmiz6rTe7MKOKUPiuLYv34SJ8+loSb9rg9pz6UJsD60B+xPto+y0KVB7k+ahvhwvckwj4o2KwjVBjKPgkcbMhmndI+2cMnCcZY2j5NkNNTcn/iPtWxkHUyxek+DZKg24zP8T5WPyXNj234Pn+vtYZXnwA/8CqUa71yBj/j0YufhxUOP6kO5ipnARQ/l0bJtNJnGj/zTMcBqEshP8V0hYHQfCY/uTBfJEwFLT8vvJU4XZYyP7gm6DJ4ojc/SM8MUxvVPT+6izi4zLBCP3Z2nQkaQEc/5goxns62TD8NE9d2jJpRP4Kh6mo5blU/TrC66XbnWT9OvHldKhdfP8bg0wjJhmI/Y386QdfsZT/4HhXlTcRpP77G4cBvEm4/qzABLWxtcT982FIskA90Pw9NSCND73Y/MFTz788Kej/tB70tDF99PxYHKQCgc4A/OUKHRIxOgj8vxLthUzyEP1hk/g42OIY/l4S20Lo8iD8LJ0XvwkOKP+OigZemRow/b+C4klc+jj+ghF3WxBGQP6l31cZv95A/l0pDRI3MkT++3TDVpY2SP3B3/hqCN5M/Vc2P1kHHkz9IvZRDVR0iPEFcfChW5TQ84T/XxxPWRzzIcbND8+NaPE/UiSr2AG48yryEpoqOgDx6FDyzYBOSPPEjD1DChaM8Ub8sil7ctDxFsG0EMw7GPHb62PLxEtc8iAttFGPj5zzBRRxtuXn4PM2l5ijY0Qg93IaUMILpGD23Cd92ccAoPXiCrr9UWDg9hAnMcLS0Rz2ubJSzwNpWPbn/Y6oM0WU9XYe8nDufdD06kU2tpU2DPZPRDOX55JE984+MIeNtoD0up4+iaeGtPc948+lG6ro9zOizaxcEyD3Z+vRFkzrVPSYWhuJAl+I9iCeiA2Qh8D0jQxkzErz7PdxsJJlQoAc+eE/PtbXxEz5PpXI7Oq8gPl/s0bpeqis+fZcoo6q7Nj5i3OUI24NCPqr87j4H5U0+kET2yW/sVz62MWmjqfpiPgn8lICL2m0+NruXW0NHdz7ZKhmmJ/+BPoy5rUpal4s+mcV0J/H4lD74NRoht52fPlRYbrnsoac+EccunNSEsT5Swo5ElMK5PhKRkcLEyMI+z3dmJh4syz4rOMxPh37TPreuIhQuv9s+UZlGOLWW4z7+/mOCU3DrPmtfsCTIEPM+H8O9MHFJ+j77Pk+36foBP4HbigbVZwg/SUnEbohvED9nEinkfPcVP+ZXVtuDIh0/HVZvVZMsIz8e2U0X/gspP1gxyJ5zPDA/XHAAK2HkND8eU1VC6q46P+p54MPr6UA/yFJeINJIRT+hZ42RppZKPxiz4BR1fFA/S5xIldtLVD8yeJFYk85YP4teKddAGl4/vWbwyE4iYj8PzTUAbbFlP3hE/fNyxGk/yTmjJFFkbj8gAc9xQMxxP5dEBYdHs3Q/ilYEtNLodz90O7+yC217P1NrJNt7Pn8/p4jkDu+sgT8/8MGF/dyDP/kBBdDIK4Y/kTPonKeUiD8uE5pZ7BGLP8zHJ/rynI0/QJR/JRwXkD+fpxVWvV6RP0qDStLxoJI/byhWpBzZkz9wFGABiwKVPyu3oHWSGJY/kO0BSbAWlz9VS8HyqPiXPxlQcmamupg/mMN8CFRZmT87RCQr99GZP0uzxYR87z88x5zzUAQ7Ujz2BE+iKJVkPL17pDFc+3Y81nnFyjdhiTwIi/LZH7mbPIRPyCLC9K08/RasndMCwDzSsuTd5+7QPDhTM9wpuOE8967NPv1Y8jxHGB1c4MwCPRjUpR2iEBM9Y2P2LIciIz0j3BUUXAIzPXdHa1hzsUI9FV9DBJAyUj1CyuRtvolhPRA3LTYevHA9GgFBtUKffz0cEn2AiZWNPckibIyNaJs9jWAUesAlqT0Jx5I2B9q2PefO4A1LkcQ9H8gpwCFW0j2WvWX9jjHgPRynboK/Vew90TOQpTyP+D3vzz6MOBcFPoy7DbEd8hE+hKp0meVCHj58RG0LhkgpPhSra3Uh7zQ+LsVPKZYtQT6JvVMa//BLPt7M3lgPhlY+iN9MPD//YT4iyw/OaYJsPuDavgakYnY+46/UGtxsgT4xr3WgXuWKPuBJV3eOlJQ+6fWiAYw6nz6q2/zMcn6nPpw3c7bthrE+ErXLZQrvuT4rW985FQfDPodzjvAXscs+oDkZxV380z6EnuJEMJ3cPriNqXdtUeQ+vbFjonOf7D5hhi7d///zPoVBK3tHuvs+SKpO25gRAz/cTiqJjgUKP/zT5unCnRE/9kw5wqCqFz8iWBYgkIwfP4rDsHzw3SQ/meko33JkKz9vy2N8sdcxP1fdDLOGETc/1Ubat8mZPT+OWTs7btlCPw+dzWHR00c/hJMlG7blTT8BafeVYZ5SP/8EebMZBVc/7bo5sBdBXD+hMlF0uTZhP37OirXX0mQ//kdrP4ICaT/0GAefwNJtP7h92pjEp3E/W9Wto5vBdD8aNFIe/Dp4Pw7ydy6aFnw/XBo3Vb4qgD9T2HEyW3uCPw6j7IyT+4Q/Ef1+06Oohz/PIPGRgn6KPyE0/RHXd40/amutOv1GkD8ZJhUpgtyRPxBRTLTxd5M/wHsNQkEUlT+Sq7KE/KuWP7kJ4w5jOZg//OqqYYq2mT+mlR9hgx2bP2QywOSBaJw/eguP8ASSnT+mWQ0N/pSeP/tdVjH2bJ8/KQy2YRcLoD81Rfmr3kagP4K5k4jQaKA/I8a5TgE6Wzw4Oea1uMRuPNe4ec86MYE8081Y8DwAkzy0lgtJFcWkPNvw7HTndLY8tNZJ67YEyDx0Nxv+3mnZPAQxbtKMmuo87xExmjOO+zyOn+J68z0MPcGzx1PspBw9v3tx8nbALD0KCHgVQZA8PWMPELlKFkw9zEmiXMVWWz09KjMJ2FdqPYvhk61MIXk9kTyTwiy8hz3FZzz8UzKWPVUHmQwAjqQ93PxeLGTZsj3DeC9RRh7BPeNkSZdVy849qv4FOSNv2z3eXySZjjXoPU4fVzOTKfU9H5I89X1TAj64xu+m+3EPPj+oXoGguho+wH1F5QWDJj6UBUUqiMkyPnLr0B3pEj8+yXJ+qHl3ST7n2vvkSK9UPn0jH0K/pmA+V85UIHuSaj546ozKDAR1Pu2g82bveYA++V2zN1aciT5Bozl3pruTPnie7+DjJZ4+2Nem53jVpj6/ZvJr1iWxPp06f5vhibk+Ye6eXcbbwj4k6r1bqJ7LPk9Nw3b0DtQ+GBmaWAzl3D6Jz2s/SKTkPhMJyvqVQO0+nj5XOFOP9D6onS++LKv8PqL4SZr90wM/7hraHaI1Cz++qwzinIUSPwhVgqCqBBk/fdBQT7fDID/Wp0iMAUsmP/2Uaexiai0/VHuXGf5BMz+8DL3JzQU5PwiL2yQSIkA/8MER+V+lRD/CJECK/jhKP+DeJKE6h1A/nwo0fD6uVD9A/TyuTa9ZP+JRytE7ql8/FuAq+TdgYz/cmcE1HopnP12U4zAFZGw/e0T+TVb/cD/n5HYv5TR0PxDpgt2x2Xc/tj01R4zzez8PkfCMWUOAP62uvTK6yoI/teuHtuiPhT+mH64DlZGIP0wcMRj6zIs/QdkRN8I9jz8ZU8Ha+m6RPwN6dyj7UpM/caQ+S0RGlT+KA4gvdkOXP+BoeWGCRJk/ifFcmsdCmz/SkQNbNDedP3al561vGp8/WEkMaoNyoD8lCJApz0ehPyDHUE+SCaI/VPHpOIK0oj9qgFdvqkWjP4Q38ZGCuqM/xMgUQAERpD+OBz47q0ekPzBXlSSeXaQ/3f0NapZSpD8t3O7EAHh2PB4EmU+UIok8A7YxWifOmzxFigc+emuuPLPKnTs4dcA8Xkujv1qd0TwrzRf3N6biPP/GUgd8iPM8aTzDI8M9BD2zlGn05sAUPTtCyAc9DiU9dld0LcIjNT2otiX0LwFFPVSF0hz7p1Q9xLGDfjsbZD3pzFtsf19zPc+kXg2OeoI9WR7tHR1zkT24v4gzf1CgPTmx/pafNK49Qd73YUSwuz1q0sdXbyLJPfbq3wuBmNY9vwSywVQe5D2K4yVn+r3xPea4WJ8c//49IcbxTlrSCj51JIn1Af4WPgVv7AvGhiM+wfv0rhpuMD4OmppYXGU7PqH9dcDZoUY+o+aR5A6HUj44f6HXzw9ePnOq+auQK2g+2/2uh7NCcz7C3WTG4Wx+PjRxnDvv0Yc+i31uVXB8kj47lRfQvHGcPip5zLLesaU+tBq6tbZnsD4Hll9BX5m4PrqLvndpScI+lJ4lKKv1yj5B/lfu5rTTPjyihr/8kdw+cE/GO/2J5D55p6l/vEntPqol+ssUtvQ+XeHz4N8N/T6qH/D52TYEP08xa0Hi5gs/eS6JvU0aEz/rnQweAPMZP0tEMMxKfCE/xPg5Ji9hJz/ib5hsLwQvP5B2lIT3aTQ/ZxcDyfepOj9qbIpkqUdBP2tIPPHPOUY/cCEPSr1eTD8fP14dNfhRP+bRHPC1l1Y/j41+1k8xXD8LAmZBoXVhPzglryUOd2U/VAm59AEyaj+WPw+a5btvP+IUNn/yFHM/Dt0zvCDIdj9c8UnjxQB7P7gX6Onkxn8/J4v/k2OQgj/qa714QomFP2LkBNTHzog/PWIqSSFgjD+OjW8MYB2QP/N3sH0YLZI/H4EFAwBclD98hRyc1aWWP8S7ye9SBZk/ARRrNjd0mz/XwzvLW+udP2oiTjNpMaA/iKzrRgZpoT97FzSmBZiiP9GomuvKuaM/7T7RqLrJpD8Fya/LWcOlP/HBMVhtoqY/k1GNOhljpz8seIb0/AGoP5ji4PlMfKg/0lI+sOfPqD9QLrM1ZfuoP5VAhUsh/qg/0xiIBT/YqD/Q1IslpoqoP9FNJAyS9pE8/0m0UqfkozwdQ4TsI8m1PKB9voxWmMc8jz2IaF1G2TyHKrD+qMfqPHs+T+CBEfw8WrpV7YgaDT3k7O6OKdsdPURKUUn2TS49CLgfeOlvPj2VpI4IhkBOPQagZFzWwV09Z0r79kn4bD13SPbvdOp7PSz7sS+2oIo9LQTqBMskmT0SEm6TV4GnPShUfOZrwbU9dLQwGg3wwz2a99wryRfSPSGNZrBaQuA9lg79M8Dw7D1h/W8KUYL5PfiRVMEsRQY+ERC/li1CEz5E9datVn8gPtLMtwIMACw+cSY+4HqKNz62bGyE9ptDPmju7KI1L1A+HLNUD9t4Wj4iqWx3HXRlPmspAuLiOnE+cd9/ta9tez4YGEa0PqOFPrtTwKIw65A+R5STur85mj4Styr7EiakPrpx0voEsa4+qx8Se4Mstz49pMe3BVnBPqkWNLZjwMk+xeukDI3z0j4+g7EGu6jbPrAi4jbbA+Q+E1dVXuq57D6Tkj9ppXH0PstWQZoj3Pw+8KBbnCc0BD/IRMmmzg4MPxyuN+o+UxM/Q9cdrjJoGj9bNEtc3OUhP5DDifmOESg/cenuCTgOMD8Vne+EkUA1PyzdntRA6Ts/xeoOtJQvQj9hub/97oNHP9G9hOFOLE4/zH1ES741Uz/VYaGcP0ZYP132uRozcV4/C5tlP+3xYj/dh7BMWGdnP4UsOmNVsmw/Iypn6o12cT+6jeAi/hh1P3IRdXNNTXk/00v9p4Qffj9JswcJMc2BPxShqLhm44Q/cHegn6JViD+3HQFcpSWMP50l67e0KZA/jSX223Bukj/ptva94N6UPzCaxd6od5c/48bYmys0mj9u9GoJhg6dP/8NwteX/58/v4mxhIt/oT99Ftzf1wGjP7/EceqXgaQ/fXt1sV75pT8nntFhi2OnP78t9QRtuqg/55MJv2j4qT+yDrQlIRirP7mIKiqdFKw/5loNCG3prD/5QFG2y5KtP9TMl3e7Da4/csSAWhxYrj+D+ai9u3CuP0fU/DpcV64/Ja4ztbUMrj+8PsqcbZKtPzfpTdkH66w/jQuSLMbYqzyV3wuUDYi+PAVlZ4csjdA8+2Xan1y/4Ty6YO2FU9LyPA79vc5hvgM9m/2vnsh8FD18k/pfDAglPTlrSzA4XDU94hAhfQ13RT1moGm1HFhVPUY/yKbFAGU9b0Sc5R90dD3u/PVUzbaDPaTKDmC6zpI9Dt/nmNDCoT1g+oUioZqwPQ81Zg0ZvL499Vlet9opzD2sEK72lI3ZPSU6HzYp9eY9LcKq3ONs9D2ijUSIMv8BPhH9yXjzaA8+CtKfxRAmGz6ORDSJSz4nPkPDhM1qtjM+VR/3/taPQD4WzmwJMpJLPrWt1OTJvFY+X4pJuU2UYj6Gs469JxZuPrJC6PfOI3g+p8zrrL4xgz665jO5QECOPv+88KxkoJc+tHoE5y1Koj4OXlAggRGsPiP4At6DWbU+iqn1zjAZwD7PiwOfehHIPp8ISCR41tE+he7kChI32j4B3cJlrxnjPj6JaBxJmes+/X45yb3F8z5uw5PdYhj8PrGWq72wywM//L8ZL5eqCz/Kzekc2iwTP2JKvPU5XRo/3AOt/Uv6IT8g5iX1LlIoPwH3E73gUTA/yMc+T1G6NT+XCaRfBrM8P2d4R1cRzkI//QgV4XVzSD+RrZsumItPP79fz8oVMVQ/1O1KEHymWT/wngoe9CpgP0uQwAAIOmQ/Hl9oLv8caT+G9QaAKvJuPzf8waeP7HI/VuEqQQP5dj/N0yJRYK57P9D6ThL4jYA/9OOipd+ngz8FicAE/CqHP73lLMwYHIs/Yu7BEl1+jz+Jd+iveCmSP9tnxVZVzJQ/+4imcd+llz80LeSpw7KaP6cdUNYq7p0/OXys2NeooD8NzFu/sGqiP5lUT27qN6Q/h2mitCELpj+Ha0IeXd6nP3klrD4rq6k/C4XmT8dqqz/hsN8RQxatPwTw7IW0pq4/0dQh8LIKsD9fT6/tAq6wPy1M7UBrOrE/O28NQ2ytsT+siFut+ASyP4r57zmFP7I/H/pUMhRcsj8dI/lzPFqyP+UAuaYrOrI/JkWimaP8sT/TWnjx8qKxP5AiCYnpLrE/qDtgEcmisD945kjFPfHEPDrci+P1u9Y8YsD6xrVn6DyIaeVO6Oj5PA4aVTu9NAs9zZx8z6tBHD28/gZl6ActPZSOrffEgT099omKH/arTT3KVYLwt4VdPX8cpJbQEG09jjTLDnFRfD3qIWDM9k2LPSmCrT6TDpo9tYr2y9+cqD04SPTdZQO3Pbkbd/UiTcU9QlxpbBCF0z3QX+mrtbXhPYXzh46U0e89WPQNnNdN/D2dZ1PU0u4IPrYC8FpLwBU+x5dX3BrLIj665ECxQhUwPhPkGOw7RDs+dCEPN1blRj7pdxFNygtTPodYsIiUZF8+POmESxSiaT5Ysuxi+7x0PtWsQfkKoIA+LJFuXBZqij47buLbicuUPuNli52MOaA+Fb3lYcwXqT4P1VNFlzuzPpZES9A7Ob0+QyfpsigCxj5d8AQAU27QPqmsOTiLUtg+B2Q+bgnZ4T6EfoiYafjpPorqMwkcvPI+EsrdmIPN+j78BrI1HwMDP+KLGetsvwo/hVNHL+eoEj882dRXI9IZP8ER2ZYTuCE//aWJNf4eKD++GC3NEUkwP3DbWeJL0DU/RGGjly38PD/5oRHqpRpDPzM++ePv+0g/DiwNU2o1UD+oMfrG391UP3u43IOYp1o/l7EJdnzkYD8Tk72sNT9lPwZHZJr+hGo/Ww9bxqpscD+nBl9S1DB0P0tDQQ9Oong/YDbQK47UfT8j8v7lTu2BP/rZMZo3Y4U/tiuzGw9UiT+Ck53Hj8aNP4XQiGHZX5E/JRUDeyAhlD/RBCWwMyeXP/7K9wGqcJo/Z8Qfd3D6nT/xpW271N+gP96fD07M3KI/E8zRqM7vpD8SiS8GnxOnP1kDhqsiQqk/r8ssj3h0qz82DBnpGaOtP9lZZAUDxq8/fmDQnnHqsD9psP1JqeOxP1ew9IeFyrI/ZqNW2xGbsz8b3lVnpVG0Pz+K/of+6rQ/BKmau1tktT9mAkfRkLu1P33TW3gX77U/wmWogBr+tT/1C/lYe+i1PyPZs5zRrrU/LY9GxmRStT8oZCdfINW0P249vkKDObQ/Ev5KvYqCsz/2IkB3mrOyPxlUzh/fld48OSjYaSdw8DzR9NxpD3kBPZ+bRXUwXhI997hMpewYIz3KWA1R0aMzPXoKsP3a+kM9EO01kqYbVD2k2tCJjAVkPb4bhYOkuXM9nvlaULE6gz1mws1W94ySPbafFKMAtqE9r1A6JlO8sD3WzMbGPE6/PT2jACDM+8w9mBdi912Q2j1x8SH4ZRroPVsMGl4/p/U9VUu7jsVCAz6bvt7CCvcQPg3lDsFamB0+IorYC5WQKT4+cLUcFd81PlFqrzmGiEI+fpsj/qUcTz5eR+MTQN5ZPuncbEKkTmU+FNfhHi1jcT7bgB6+lx18PhtncP/thYY+JLStw/PgkT6BtS5kgyCcPkRGgxYB7aU+Z7gCfV/wsD6yv83LqfC5Pg4PZVDOr8M+PJFqGZaezT4z9uYXYxbWPj5B+Sj0U+A+yiaOeLju5z4U0tVwnmPxPuitHaLrDfk+lx5oIH7lAT9gsPTiFFoJP/S+ropszhE/SbfOWB/OGD9r/GAKdCIhP59rias2eic/3I8TEb7nLz9s+P4uyYA1P9ghNtwgwDw/IFX4Dt4QQz+iY7C4xhVJPzNBe6oEX1A/pdNiUB8zVT9DyI4TmTxbP1mCITAZXGE/GZFErAb1ZT+6zviHtY5rP8FuNN0DKXE/OL2UY081dT89uZ8CEAN6PwkHcGydqX8/RlL/xxsggz9kuzJJpe6GP8FYlgHLSos/Ss3N8M4ekD/rMH9LL+eSPxbcC8n7AJY/YbaK3jttmT86OLD2SSudP6BDaWhNnKA/jbAzdkfIoj8nRu6qKBalPw3SJHJjgac/BFi0PkgEqj/S6BEkEZisP8NEAW74NK8/R8KAHy3psD8YKQpacDOyPz33c79cdLM/jY/ar+mmtD8Hn9m2EMa1P2/eu9zwzLY/luv+RvK2tz+5Qwa56H+4PwgxMYczJLk/HOzko9mguT8Z2rWVoPO5P/Okz14dG7o/ewVgo74Wuj92N1Csz+a5P94jcjd0jLk/tZj1WZ0JuT8iCEoI+GC4P7DcsBvWlbc/UeAy5RKstj9Y1MKF9Ke1P5aUfFkLjrQ/yap3uqGz9Tx7qfPdeBkHPTc3S4pnUBg9IT/YUmhPKT0CsmXM/g46PTCRYImViUo9wKNnM8O7Wj2HQO4dcqRqPShyqOTnRHo9+/iIDa2giT1QQZD/Vr2YPefYQbQ4oqc9w9LLKwBYtj1S3gC6R+jEPQp+Fq0iXdM9C22ul6zA4T0LqXvAoRzwPcuIcAAM9Pw9Fe7cpLvBCT5tS39v968WPnwO9NPEySM+Svpn23UXMT4HVqRzcT09PtmgrKiJxUg+TYfcaTzJVD6tL04k0EZhPtCmGlT9cmw+uDacCls0dz6BKSP5PcCCPm1hl6xOBo4+uZkwilzRlz7i57vh0biiPhnIN0GOKq0+kS1FXZuDtj5caYHWRznBPlNCKZ5vHso+EgJNMwmh0z5L/VqSmj7dPpmOZFtYmOU+3sWDWNCd7z4Yhily1vH2PpiSofo8ggA/Lpb/dsiNBz+dazSiFKkQP7mOnyrpXhc/sKFuvDRBID8vRRf0OGwmP4XWk4fwrC4/9qjsl3fPND9bUZiNRQE8P07Rrpe1sEI/gX9rKfG+SD8a7TWDB0BQP4y/O6z3K1U/2agMaGddWz++wS+CiothPyp3dQlLUmY/e44M7iAtbD88g6P/LqVxPyVJ1jYD7nU/zjGp1Y0Lez87cBTbp4yAP2Oij66SGYQ/UMfcFD46iD+OWdRjsfuMP7vDvjLeNJE/QyV69jBHlD+zW9rUnLiXPzEbdHRni5s/qgmhgwHAnz8LTBrLXiqiP55FpFrIoqQ/XlLEXfBFpz/a3X00Mg+qP8npZFWM+Kw/IyEM8qb6rz9HZ6/Gc4axP5yHcvPIErM/XuGs/vqctD/I/EAgVR+2P6FUXDDok7c/0yK4RbH0uD99gKgtwzu6Pz+YMyxxY7s/CT1SUXlmvD/EA3ilLEC9PyyEoHyT7L0/DddsY4xovj/Bc3pU5LG+P24inDBnx74/nJ0Q0Oeovj8ZQPxlP1e+P1AWAlZE1L0/+5nC/rgivT9CUh1WM0a8P8Hm+n/+Qrs/eBbcwvcduj8o+N5iaNy4P9wFVPzdg7c/lGVt8QIatj8GwM4M5/ENPRA7GDKbkB89wyVayIlzMD0QgvGImfVAPSViXkaqSlE9/CZpI1VwYT0J01dWu2VxPbBgbFmNK4E9ezWAwfzDkD1MZX0hmjKgPQ8oq5hD+K49n7ukzXZMvT1SEQDyYW7LPRGXOv9Ea9k9LUQdw3VQ5z04ogJd1Sr1PeiaPX5YBgM+vb0em6ftED7CgfUNtNMdPuljWJCZBCo+R6CB8yd5Nj7PgbrlBzlDPk/R5n2cSFA+EX9y+LZSWz7YkQkadLRmPtIRhCFJsHI+XvOXh+N5fj588ULi752IPh/PDc0Vs5M+6bgbHuo8nz6yPhgNS4qoPszJr55WGrM+V0Vr5ah4vT5eOJ//d4fGPhu/kvt7EdE++dQs1OKh2T79hdPqphPjPuZ11LZ2Jew+wIXjZjCV9D7M0IEVptf9PvwNlbyFcgU/gMo33FSQDj/oXl5HmZcVP6n7OBL4Px4/XS1kztwCJT+aUeuuqvEsP6nwQPgnxTM/ptY2Q9rIOj9OQE2Apf5BP1ijaUAv+0c/hze6PRSzTz+qHumaHshUP1J6ZgiIB1s/p8yQF/FvYT+EKtr30VFmP2plgy/iV2w/DqP2Dt/acT/NpuZE41F2P4GeFio+r3s/RZwXwmIJgT+2D3bZns6EP15125XCN4k/2qJMRMlUjj9d48MEUhqSP6WuMKRIcpU/x3dbCLM3mT8/DuTBZ26dP1KRGeEkDKE/8yEDT3aaoz814su2oGCmP1VMT5qoW6k/mD751wSHrD/k7gWIkNyvP7cohiBFqrE/+s9VHtFysz/otk8djEK1PxmghaV0E7c/7eugcAbfuD9yCRzhX566PwDcoUxtSrw/0VhypBjcvT+wdmK7e0y/Pwf9vZmJSsA/fQQ+APjXwD/kiBa28kvBPz4E4NJYpME/fenQjo/fwT9h0POfjvzBP87tXMLn+sE/qlBjIMnawT+7XUmN+pzBP1FfjcHVQsE/7qqsATrOwD9W95HKe0HAPzZ7oo+iPr8/AsLw6XjVvT+RJJy35028PyWJAcmVrro/+tpsRzX+uD/wbZT7V0O3Pzt080UVGiQ9BvYur0X8ND3bJY7/EapFPfpWbsxTHlY9RWd+xLZVZj1MNLmu4E52PWRU4el9CoY9bXBe8zGLlT0Aa1KUbdWkPWeAaTgu77M9zB6MeKvfwj1bIzzr+K7RPapy9MSiZeA9XVWRdJcY7j3BI4bzo1b7PZJyNxsAlQg+dV8IT5rhFT6U8s/OXUgjPkEK6Hz60jA+20eVBJ8RPT6LJnGa6t1IPi62+6DDEFU+UELC5UGsYT4GIF4Ma15tPp1yqcuEK3g+SvcI4f6zgz49tuvgQNKPPnpizqDGdJk+p7crJNMspD6OiAbNJa+vPsHogzm3prg+Opg84jABwz4mZHJvognNPsvD8Kzp+9U+iy/Fvrl+4D7vRFx+d4joPiasgTU6FfI+vNDQhVps+j7HiuGsAyMDP1fU+G+Xegs//3YWTQaPEz8syJSSp5obPwvyPopJUCM/RSmISB3MKj+eKjZtGG8yPzj5huw+Jjk/nkz8oE8DQT/0gL79ytNGP4F4y9iFYE4/GhYdafELVD8dXnnXYD5aP4w9EY0UCmE/nU6CdeDyZT9DKzFC9QtsP1UrLBHvxnE/POQ2k4pbdj+JgoSZveV7P0JgyrLdRIE/Qm+C36s2hT/i+Ya/l9uJPx/u71HNRo8/DeWBVlrFkj8h68cmHFyWPzGaGaH7bpo/uikgjLQDnz8EB//N/g6iP5cttT6M36Q/ub2URLTypz/WCGrsCkarP0fdS01h1a4/My2aFFZNsT+089+K/EazP/8nRyW6UrU/qt4OScBqtz/58yEKcYi5P64SI+d9pLs/T6rITA+3vT8XCGjW87e/P8KX2uZqz8A/984Mg7qxwT+pWD1w8X7CP7ht2AdfM8M/QQYO0bXLwz92UThxJUXEP7xZOulwncQ/zZw4KQDTxD+CexQ67OTEP7IcXXwF08Q/sOi2w9OdxD+oiPBekEbEP2raxmQaz8M/E9tK3uU5wz9YNnKf5onCP/6v7sh3wsE/ostlCkHnwD/7Ha+QNfi/P0Ha6YvkCb4/KXuwwl0LvD/prkalMgS6P4qswWyL+7c/6XPXYPJGOj3NrGYngCtLPVDZkXTjx1s9NNWS+pEXbD1Rz8YVghh8PcU0MTw/y4s9DgJHd9oymz1q8eisuFSqPTSx0vlCOLk9c8D7Z3/mxz2OO0i0mWnWPRJTnoZkzOQ97MFjc9sZ8z0rpSFkrVwBPpBiDn6rPQ8+9ST6+JHSGz6rqqn/bocoPiqhUFbPaDU+pXmm40yAQj7vLCsCMalPPnSYgw9M01o+pk0Ou+WBZj6ENW+CvbNyPhhwFhY7yH4+sJ8LrUwXiT40XLnNJ0KUPo9ESZLlM6A+ClXzofmsqT6xbiRakye0PqCb+YF1Wb8+3K5mZV4oyD65DBBCN3LSPtFkTh446ts+w5NFqJru5D4EBLvYdRzvPqvb0WQr6vY+ebrhmoe6AD9nS3ib8DUIP/kRsnjkXRE/P5Tw2u2yGD8o33kVeGkhPz10EKLpVig/EJS2j+HdMD8Rsjz9uS03P0lA43GilT8/mXq5q+JWRT/xDIQjXphMP16evZsoAFM//H0TsQYLWT/eAJmIYF5gPz3xYsFQOWU/86E1qwFMaz+4Fa2nrGlxP0tGagCzCXY/s/IeSX+rez/xPIHVwDuBP4/FT4FMTIU/GnTOY6Adij+u2BbGP8aPPwI3pmElLpM/JqhrgVv6lj+e1r+nNlGbPy9pyWRUHaA/6I0zOk/eoj+5vNfhPO2lPxiv24RISqk/DxnG0dvzrD+kIhH1NXOwPwrzdSMpjrI//sGoa9rGtD+TxWobQBi3P7WfDR07fLk/FhMyIanruz8L5hHngV6+P4Ef7an/ZcA/03ndu2eVwT9DEgeIp7jCP//mEUnlysM/z8qUrWHHxD93Zn4nm6nFP7MqaYBwbcY/YPUrPEEPxz/FwtljCozHP8YF0Hd+4cc/WrxOfhcOyD/0LIVpIhHIP7Zjb2DD6sc/uDnLy/Kbxz8sOlFfcybHP9vaKKnBjMY/dEKr+v3RxT8X5pm40fnEP+EeMkxRCMQ/ZipmB9wBwz/owNRU++rBPwUoQ4BCyMA/3xMvkWA8vz+cpVSFJuK8P04SqsHjibo/37zQce06uD8w9WTXibtQPWVxM2EHI2E9yJcEUhVbcT3YSn4qNmKBPTv37Q6KOJE9krNu/8ffoD2Vj/JFIVuwPaX1kTUjXr896LRwqz/CzT2cw9rnJ+/bPXO54HJP8uk9dNMxdW7Z9z2Nq+Vg7LEFPtzhoGlciBM+ueYN9hFoIT4Nmhm9obUuPhZCnNw10To+ATwx1TMvRz6VSgMYR9hTPsD1POWm0WA+Akb4+dg6bD6ipzpdAnZ3PjmZrA80T4M+6TOrNN96jz57GwpSjWqZPkFnwWOAU6Q+aMaz4EIasD7dwCKTVka5PpFUb9bKpsM+9yjOVNtGzj6W+22NDxzXPnZ56Wx1euE+ToTndAAz6j6jUNgSg3XzPlfy2c2zpfw+ABsoYk/mBD+PxzhftDkOP5zcU9QVqhU/ehIgoRPJHj/K3JGgA68lP/GVYitJSC4/3wA6+Nz2ND8cwXyTncc8P8wUsX5PlkM/JIXPj+tvSj94KcPhMLFRP3aI/kWVe1c/PMMQWC7pXj96DJtNVS1kP+ezQ1c7IGo/bQO3EODGcD95BxCXX191PyZeo3gmAns/LuehIcrtgD+BbxpDrg2FP+sdpczh+Yk/EzZK20nMjz9+bifYcU+TP65BpmZ6RZc/+aYnLQzUmz8o3n2my4KgP9zg+m1NcaM/RcNzcYW4pj+rnuQE21mqP0axnQLZVK4/s6E0o3VTsT+gJc29k6WzPxwG354SHbY/57EFn/S0uD/I4vpH82a7P6WQWjiMK74/bnWRdQ19wD/nru63f+TBP3pwQLzoRsM/7m9vO8+exD8rig1vmObFP3u7xASvGMc/UdyI6asvyD8ebJdIfybJP9gO/gaY+Mk/+XxGCQiiyj+sLnutox/LP3vTyhcbb8s/zgyWNwyPyz87HW/CDH/LP8nLUMSrP8s/h0rTymrSyj9TN2wVrznKP7OotJGreMk/D/jpuUSTyD99dnaq743HP/T+w+yNbcY/IljPiUc3xT9lFvj0ZPDDP1IdOEkqnsI/rhmUKrVFwT9Rym/OvNe/P5R1sWVAKr0/Ds7SIQOLuj+3+TV1DgG4P4Zn6jUgxmQ9bg/GZ0ATdT3Q/hGTqSSFPWowCWc5+pQ9NvqhZMWVpD3lzWk++/qzPfNqW8goL8M964tDCPA40j3iBAc47R/hPUTEQHiq2O89i7QXVyZN/T3uedol1q0KPmNHAmVOChg+XCOiaqdwJT4E41HdFu0yPvugcl6tiUA+GYQwhG+cTD4F/+CvgYBYPlxVmvxdxmQ+VwUKIe9wcT73Avfzhv98Pr9OBnZJ34c+MJbDzmt2kz4kZp1QNm6fPnBdmWwSI6k+5hJbzs7psz7iiQgL5UC/PpYtKV3tS8g+zhTskn220j7p39q8B4/cPnZsRbO6l+U+8oS/rFQt8D5H1ws8HwX4Pr/z9MoWrAE/xLtbkHzFCT84YbbT0J8SP9n+b1dFrho/opFL0IHxIj8a3A/DPqoqP4uczTK1mjI/0xmHO6e8OT+1WBduRqZBPwl1+bIvAEg/1DQkLTouUD+99ctxIaJVPxLOWaB/rlw/48upwOPaYj/834QL1JVoP/ilLXsey28/tfjqibNjdD/u73qRffB5PxjSYWzgXYA/XhwM7Mx8hD/c4M3u4XCJP+mujiNQV48/wsFrSvomkz+Pdqw+QzmXP+9Ia0zN8Js/0taF4F+toD/Re09iPsGjP2RmQdp5OKc/nGvRCvcVqz8IOghMr1qvP57OV62uArI/38yNCRqJtD+td3DpUT23P2JLhIqZGro/0ZEKNLcavT/Z9TrH/BrAP+TSK8GlscE/hUNgkytMwz8UtVjG2+TEP/zQYzecdcY/T4JDAhH4xz+fehI/x2XJP6hxvwVjuMo/89IT6s7pyz9W0BD8avTMPwEfB0w5080/1QSFAQaCzj+VOGVAif3OP76Dq1yBQ88/DRWoOcRSzz9dWDgcRyvPP02Gcq0czs4/VM9fYmk9zj8hbUHwTnzNP/QNhNvPjsw/HPExhax5yz8QBL9ZO0LKP+znJ+s97sg/CEzDzLSDxz+NJxD7swjGP9f1eHY5g8Q/Q1OHgQf5wj8goZitg2/BP+ZGySQ3178/eNRfcl/jvD+M/IDkCQu6P9VJwPt3VLc/GVChB3IoeT2dbzP8pEiJPW+h0ee0IJk90gr0z3yyqD2okmw2GwK4PSaicyeyFcc91JG5Ig711T2SHGTMOqnkPQwXxUYNPPM9MMfZT6y3AT5knHrHHSYQPki4ZGrAIR0+iq3SzSoBKj5FvusCg/k2PjkjVBRAF0Q+NDRPcB1kUT5GSHWHMc5dPvlFX9skSWk+t3C01RI9dT5eOPy91amBPj3UWIu1F40+NXJ1UcO5lz5NUH2+cSmjPgFZ+Reyp64+gfbQ0oNJuD7rzHLoUg/DPilXyIlBos0+NJ3En1fS1j4AbK0aiGnhPo4QWwgpU+o+EzxT8p638z6lbmnNbUT9PghWa6VXhgU/4KIfLkpgDz8cIpne46kWP9ZHuQCWOSA/4VJj4pkGJz+qyq4D+jEwP0tK9khHlTY/0/Gw87A3Pz8N8uFaAmRFP76k5N8rEE0/vhyPfGGTUz8vI6bWwCVaPzvSvjPWUGE/nmaHKgq+Zj8fWdWcAZ9tP6+1+BB4IXM/704mDgmCeD8hB1wu1CN/P4gFBulen4M/Fh0Nz7OHiD/zhfQIK2uOP+ocnlKutZI/jeMsxTTVlj+B0Bcy/qSbP34DQ5iGmqA/MAyRMPLJoz+7uUDp42anPx9+XXf5das/xuL8Q+X5rz+qRKcDhXmyP3SIwAaPL7U/XKdJx20cuD94+r7G4Tu7P7+T1jT8h74/UsAPK438wD+taeFn+MLCP6PME/3TkcQ/zfp9ygRjxj+1Apys3y/IP1sneH5Q8ck/Mi10rAegyz9FsS/HrDTNPzZYsS4UqM4/W+rerXXzzz9pb6HdUIjQPzv+dYgZ/dA/ALicNd1V0T+JwA8+8ZDRP318pT1FrdE/vwlqFmuq0T9QST5dmYjRP/qciyKoSNE/NrPDTgjs0D/63qkKtnTQP5UlcsdNys8/IJWSE2mAzj+J5k9FChLNP/5KkIHkhcs/vgcjGN/iyT+b0ws+5C/IP2Ki3AKzc8Y/44mVDLa0xD9RxO1P4PjCP4g9d5yQRcE/y3Cw5vg+vz+/3OaCRBW8P91eAoGFFLk/f8oS8sFBtj9EjkqVf7yNPT4EtfBdm50928MKA4ImrT17tvS4ZGK8PUtD5VTzVcs9XhRLQCkK2j2J49eikonoPa7q6RjB3/Y9BNoGS7wYBT6ny623d0ATPow7IdRVYiE+BOc62H0RLz6p8ooooHk7PuI/fqFIDEg+QOng72/VVD5XgC4Kyd1hPpwe73/GVW4+mT9snNx+eT4VaaUwLjeFPvWmZxjnepE+QlwIcNOFnD7V1QunYQunPvG9GC5FcLI+IOR1/y85vT5ZdjW1/O/GPiTLP6RI1dE++PhBD/J32z7MQPpHEPXkPsCUGsWVru8+duNuEPu59z6/wzi2EZsBPya7nirP4wk/73x1iRjdEj8mw51xwD0bP5QSOblpfiM/pKMgic6mKz9kc7H2PHAzP/4ScK3zFjs/uMoT8Sm2Qj/KGXqsBKBJP2ZUwnUuZVE/NpRGdStqVz9MShinsT9fP4KbCTHsrGQ//0cDSBUhaz917LX0W6ZxP3hDLvo+xnY/VtU0+NMkfT8OeqKPen6CPyAOw3OuR4c/p0QsFPsQjT8MLnFesv+RPwHgfY2fHJY/6gTbX5rymj+M61hgRUqgP7zM27MbiqM/iBboLr1Apz8RF8easXSrPx30cpNTFbA/+lddlH6ysj93m62vqZG1PzKyC9oRsbg/Js9FXjYNvD+TCyaauaC/P70x4AwossE/PGyGQ2Cnwz/luJ4ie6rFP4CktOETtcc/wJDFUQjAyT/rdZRmn8PLP8EPeTu4t80/tUIgGACUzz80qW3DFqjQP99mdxgfctE/JEEce1ok0j8TnTLMarvSP1zYe61tNNM/Q+80FBSN0z8bz+IPtcPTPwl5BfBa19M//0/AOMrH0z+hXE4jgpXTPwbETre2QdM/eP/E10TO0j9ryR7moD3SP7/E6NnAktE/qQFe2gLR0D9eOdEJI/jPP7S/LDGOL84/3lLTcyFQzD9eRe3cpWHKP9KgWZuga8g/bgmvbyZ1xj8xiT5htoTEP4dbFYYcoMI/S/brOl3MwD8CDph+URu+PyCtHpmtzro/7Xog4dK3tz+GuZtxLNq0P4PxXTd5KaE9MIrCLertsD2VVIIApoPAPbcBrN373M89RjBRVQVn3j1YJvIVebHsPVYKZD+1yfo9C0fK1by9CD4B8Xypk5sWPtyK4pmocCQ+455EIFZJMj51rzWjfjBAPuIOBPOOXkw+vcrF++WZWD6n0xS2rx1lPhWpV+Tj8HE+Td5rEiAufj5yGpWDgiGJPjqt9dECuJQ+4TLl3bnpoD6z9eaioFerPhbqkpjy4rU+HE4SbqRZwT7MfjxWgz7LPrtF1FixL9U+LA+EysRR4D6UDjTokOfoPvmSVQ9P0/I+AUTnSjIy/D5WuVYytOsEPwAPxSCzwg4/zjNSB35oFj/rAPrjCC0gP4QCV2vVJCc/E+ftPp1oMD+YTiMpaQ83P0ntWU2ZD0A/uvGPkgItRj8bevMGClpOP7/eRNVCl1Q/VEVwfn6yWz9Ncjsn8HdiPyPnsIV6a2g/c57uCP8BcD+tOK1sdc90P12Jv3TW03o/khiThPslgT9J4txF072FP6HdTEyaVos/SKuOTSQMkT/WoTp2fhaVP+eEmUgK4Jk/ikJVEYF+nz8px9breAOjPySvgDh3xqY/N/z4e88Qqz9mISoqYemvP0i8lDBpqrI/ha+C1oWqtT/daYhTXfS4PwFX/jBxhbw/LX8LNKAswD/ORB0JlDTCP33vtKIqVsQ/AKK0X+WLxj/ArYUePs/IP5ik1DLAGMs//rfsiyxgzT/dkJpaqJzPP+wrMXZ64tA/hGz3cNfn0T9enKY0ydnSP4VK9eHgs9M/f7ZikQVy1D9S/O5nlRDVPzvQwFmDjNU/GAPDQ3Dj1T+Ce9Q6vhPWP9QuiDWdHNY/S/oJiBD+1T9fTd8D7bjVP6r/aejPTtU/yUGkKA/C1D90lz/YoxXUP03ti9IPTdM/RLI/3D9s0j86O+2ca3fRPybXX9T0ctA/TBMkSY7Gzj/4oDpXc5nMP/0HafvmZso/QoErsac2yD8rP6VZvQ/GPxYS0bJb+MM/aqosb871wT/kguu1bgzAP7NijN5Cf7w/THJw3bojuT/qAS6icAm2P3PLxXzxMbM/Y4ybeiZbsz2NhmUnFuvCPT2zyZDySNI9UwnRRlN64T1cpIYP/YXwPbYpd0ML5/49uWOmpuSVDD7qlbScsCgaPu8Qbm8Iryc+9kitNFw3NT5MqkkQes5CPtZglr04f1A+bOoKhYykXD5JoucHMpxoPoI1a5X+7XQ+8XUjg4+egT6ib8hf8l2NPjpg2+qqOpg+AMWNmbvKoz6Cvq1MDAKwPhGdOQI+pLk+78r4YC5WxD5uUtcka/LPPgPEtNYh2tg+mX61cAom4z5BQ+k6izrtPl7QsaYBGfY+o2wLL+CMAD9nNKt0kY8IPyK487tbDhI/8T7F6ANOGj/PlpoAfPwiP68WQ5HiKCs/T9DrtUdAMz+FktzX9ws7PyGIChqu1EI/uc/riVT9ST/RtbJRC8dRP5uVo4O9G1g/02uJOII0YD8qrwhnAZllPz5kAUvCiWw/wBRd8aGxcj8ubzhFk0h4P9xX8E5sR38/jTRyBvH5gz8M59H5tU2JP0to5tpRyY8/HfNDrgvNkz/GWVafyHeYPz0FWGY2/Z0/w/5mn8Y6oj+w9jiYCfylPyhiiKATTao/pWYUmxg3rz9DSPOEn2CyP9qF/QMFeLU/u0cFvmLiuD8EHAr2fZ68P8QRIHt/VMA/2S6H0yB+wj+ykVh2G8jEP7RytiItLcc/eD1sON+myT8ZmMF8mS3MP1CLpKrBuM4/uP7VwXOf0D/Hn4E0/trRP0AgjWvKCdM/gGzev5gm1D+1sBCcRizVP+wvbEb2FdY/0n26yjXf1j+iCo1MI4TXP7a63B+NAdg/bQkPMwxV2D8Jb7WYF33YP4bEQlQQedg/m8tO7kRJ2D8Kd2S87O7XP0t+zS8bbNc/4m8L36vD1j/2WwJSKPnVP+rIc9uoENU/57DU+LEO1D+BiS3JD/jSP8JI8iyx0dE/ddA/DISg0D9RuuUzqNLOP1AB+2ZaYcw/fGkUeYT1yT9kbRIcspbHPx4np493S8U/V8+xHF8Zwz+Ru6D94ATBP5Pcc7vJIr4/KdO6ipeCuj8Ik10cAiy3P6S+DLEhILQ/C8X84oResT+pd8q9jlfFPZuDy3NFq9Q9VOV3z3bL4z05CIFvlb/yPZgBbjsVkAE+ClxG/PxFED4aEt7E8NQdPmkh1dviDCs+JnnvAG5EOD6sI0GraYpFPlSZXcZ+61I+GZk11OhxYD73iD64vUpsPpsWV/o/Fng++xbpMjtMhD6I3Lznd+6QPt96Lu+G9ps+nQqwJz3cpj6jpept3ICyPhJCpN2RqL0+gb2W42SJxz4mF/jCNX/SPiU0isexytw+wqyf1ngx5j4apGWmpfHwPuBX6cWhoPk+p5j1LcIyAz/iEIKuv34MP5irtYha8xQ/h9TG6d+FHj8Gd7eR1AcmP3+tMp8ogy8/go6QC1tVNj/BJmbHF18/P4d/NlIm1kU/+d0rMAshTj+Xrj4/EZpUP/XxsGpa7Vs/0fGg33DDYj8oAgI0nf5oP5TlrU0IgXA/27t3E9CbdT9878/7Fw18P9PQ0WeXDYI/cne0CaUKhz+3nQrblymNP0n3QZ8aTZI/MZ/RfL3Hlj9pNt6EVB+cP42ml4Z+N6E/s892P8LopD+SA8WBOTCpPxX65Rd5Ga4/C8CcpSXXsT//YnGHBfu0P9zOcfF9erg/OpsSAtNVvD9oYUrcj0XAPxjUKLYKi8I/O5YtZeX3xD+Re8FUT4fHP9RpJjsZM8o/LnAvj7/zzD+zCbwhg8DPP2b24wnIR9E/itqZURmr0j/2OY9BjATUP7pFBFpOTtU/9sRIkY2C1j+A6oRipJvXP3LnJEZGlNg/SF9Opapn2T9Y9jVdtBHaP5diiQYUj9o/3SggcGPd2j9/EyYOOfvaP/FrzYMy6No/GMpq3vWk2j8HjKGOKTPaP7SeSp9jldk/uaJ+ExHP2D/WXGquVuTXP7Nrkqzs2dY/0r1fIve01T9L2rjG3HrUP16zhekdMdM/oBzkNy3d0T8opku9S4TQP/0VIZ7SVs4/nOv3hRSuyz/nQsIAZhbJP1B/y1KzlsY/BUqEm7s0xD8szL2oC/XBP5fchEQGtr8/hix0RsXRuz/F9Ao9wj+4P7YxsJ2NALU/uv3I4hcTsj+G3hN55umuPy0fi85cBNc94BIA+dEW5j3r4e37ifb0PeSgQ9LErAM+QorZuH5DEj5lhTgI9MQgPk/dHfVXdi4+WdJVWiJfOz4hMSf6OVVIPque/94xZ1U+16+4ve6gYj6kqWylhQtwPviVb4mHWns+ZEu7fbEThz4U2+dIN0WTPgQWZVqI258+4JiBRYURqj7H9GSpRh61PpAESTM58MA+E+mtrmPnyj7SDYvRNyjVPgEY+aHieeA+XsUysutp6T5KzE2VbGnzPnhVLL0+X/0+QZHRj9MCBj/sdopE8VYQP+8YKUpDCBg/rsyMu1mCIT8feVtRI0cpP9rjDZtWFDI/dTpT3U+gOT8U94jdRf9BP5FfpF8aDUk/HzfCE3VHUT+eqyQ09p9XP/PeeFgEAmA/V68mt8aAZT/hyym076FsP3t06YHO5XI/PoP07u26eD8FVh398wqAP/sDLhEWo4Q/ohS3AYFSij/ikIEGRaWQPyV9J+Rc4JQ/PPmiBQD3mT/2UJ9fZAOgPzq+6GbalqM/9hanC5zEpz/KaYaokZqsP+qIkeyYErE/mxaBBmk3tD9MYf/Wdr+3PwKxoKG1rLs/D/DpJ/T+vz8tzxBqxVnCP+MwEJ+L4sQ/+3HaD6WVxz8fKrE4Zm3KP8Fje9qfYs0/hv7WGlc20D+QqiQYzMDRPz7+rjofS9M/wnvp4UzP1D+yx8thA0fWPxs/Q3LOq9c/lAYOh0b32D88eSopQiPaP9kliTkHKts/KqwD8XkG3D+ePmt9R7TcP+k3m0cKMN0/rOiiN2Z33T9RxiyvG4ndPz5htWcQZd0/dBZv400M3T9UDvyj9YDcPwOHT9krxts/3OHrrPnf2j9xJUisKNPZPxd2TRoZpdg/wHulGZVb1z/0lZ6tovzVP3yHtn9WjtQ/OphNLqkW0z9d/ZGqUJvRP1VPCd2eIdA/yC3R38xczT+VGeeDzIvKP3KJN1V318c/M4YnybZFxT9VGxJYIdvCPx56C8cDm8A/Y/xOoOcOvT9QecqL1EK5PzlJdXLF0bU/NVPjYP25sj8pkK1vqvCvP26AipwLEas/ApUKufVK6D3R1x6LfRr3PSXBTSdpugU+1S9+B5Q1FD6xiXlHO5ciPijUStl56jA+YGxjOKVzPj41h4XbnB1LPrSQt1tk41c+1Xn78ZzSZD7YLHOS0fVxPktpi5/vqH4+LmLdAjHmiT7pQGYiL6eVPhdDIhwj66E+d1sy8BZbrT4Rx5CcEM63PkFghUFiHMM+ruJoRWVhzj64qZEV7ujXPlY+6koeouI+QGKUuIvC7D5xyp6xEfv1PkFDFNFpowA/8YxFLN/yCD/uRZd1IIcSPxFa0WeRQhs/1RFtm83dIz+z/nSH968sP+xxPeR2hTQ/Xjqh/ScXPT/XZfWXV25EP3WxE/VOcEw/IV4BQkedUz+I9vXxfNBaP2RKbt10KmI/21A3bGdlaD8ufrBV3zxwP2OwNFpDbXU/XGz76GUHfD+b0OuesyyCP99IC9UnXoc/qauw7vvJjT99D/09nNOSPzzIc7C0mJc/1R6iT9ZTnT84Rc3+1xKiP+yOvhqaF6Y/VZ29zUTIqj9YCVfW8hmwP/GVH+rnM7M/5rG/pGu3tj+VHJSoQai6PzExhCYgCL8/3RBhxybrwT83R41BpIfEP/vL3eE/Vsc/wJxE2Q9Syj9lchZHfXTNP7P2NuqjWtA/odFTKU0F0j8nZGeOmLTTP6FuJQxJYtU/wTXPnaoH1z+0DqvFvZ3YP3t0IspoHdo/3/HY0Kx/2z8duJ+p3L3cP1HAvevS0d0/tgwt+iS23j9ystaZUGbfP+aJM/7h3t8/G11eRcgO4D+dI9J9qBDgP70RXjBc6t8/kpNRZCp63z9SLFs1Y9PePxFuoGLD+d0/KAVfqPnx3D99lGR/fMHbP9e+Usxabto/1qikrwn/2D9RslysMXrXP62Em0B95tU/NX3p1WpK1D/xUgKjI6zSP3orcL1YEdE/UXW/aE7+zj/+m4pOB/TLP1oYcM9aC8k/hL4vuVFKxj+rHsAggbXDP40FUzIYUME/Q2LnfO83vj+tbtC9ojO6P0R2swGYkrY/SljmZVdSsz+bhth/9W6wP1y/aGvJxqs/7Jtir4VTpz/DSksYfBr5PY/ivIsmqQc+kfZjRZcNFj49H4Dd8VMkPu3Ab3JRiDI+xwUzbES2QD7VjmLTudBNPrBAAF21T1o+wSgq9eH4Zj5tLhfCUNhzPleTQVm19oA+uZLxLhWzjD7/K1y9tgaYPnwlMApK6KM+tjhGZpJTsD7Bb7bDFoK6PpTUGQaoTcU+hKAdlRHz0D75e7XmDbTaPoM0StLs0+Q+TRvXhAsW8D70386qMpv4PuqkUGdHowI/aiTdtpf2Cz+SaxVWBMcUP5hCUEF8lR4/f+FiVDZMJj/Sx/4ExBowP62E19cKDDc/oAY86shWQD/kKholUvRGP/MbCqhS9E8/aSM4WkoKVj8+PlC2YyFeP6T15t43aWQ/dAQOHnJoaz9biJTaQD1yP7H+GWz5D3g/UdK4QLt3fz8MlIR8yGWEPySkSbQ/N4o/XcFIUNazkD+NA7RAABqVP/vtlkb/bpo/yi0StMhqoD+FH8koxzikP96eVvh1s6g/ET4acEXsrT/zVQWgs/mxP93k7RyCa7U/6si61TBRuT+3Gqohf669P9kUJBJsQsE/TEX5HHTpwz9HgO9uH8rGPzJgq7CB4Mk/+SujTOEmzT/OYUrC1krQP7IwMgLDEdI/O5qEvKri0z+IrLbnP7fVPxGLXN6RiNc/0nm9DzdP2T85mgRcfgPbPxf0YV2mndw/2bhjdBgW3j/EvB0fpWXfP0DP03rfQuA/UMk70Fi44D/Y+2kf6RDhP/OqP37TSuE/5GptAAJl4T8PBqg0Dl/hP3eqaU1DOeE/TZgs7Zn04D/h0ererZLgP9FC8k6uFeA/63CqsZIA3z/brrLjJ6vdP54zELLeMdw/2hX2i9qb2j8OBDQaaPDYP6/YWbrHNtc/vVj5MPx11T/fAd49n7TTP/DzhFO9+NE/xwvzQblH0D/1FjlmcEzNP33koNcrMMo/BSbryMFAxz/1Fvf7uoLEP5YH7rUe+cE/1PTX8x5Lvz8+yn/H3hC7PyBtvm0TQrc/TTWto37bsz9H1hHZZ9iwP5S8WEDpZaw/IvFdL/jIpz9C2pYRpsujP3iIfok/aQk+L4SJtdq8Fz7ghcyElO0lPt12X5FqCDQ+yuY3Z+AZQj64vstegi1QPjohniMGm1w+1IqOI+0EaT5/G6vuV6Z1Pg9vLTNHiYI+zMPtrHlojz5lts/eBlWaPocmVjYn2aU+kM6YChjxsT7tRqSjxiq9PtxM3sO8d8c+jWUgwTCx0j7QTKR4t3rdPjmfKmjsA+c+FEIAQKjK8T75KZ/S4zz7Pnt/7C2ipQQ/jzzcnuj/Dj+anUzeXwwXP0PYcswi+SA/mx+Q6RDDKD9sdc0/fuQxP4XARH6wnTk/Wek9OZUqQj8WEOS7VYdJPx9drcvbxVE/LPMw43GFWD8FvIp/SsNgPzli0j5OtmY/PEDbcml/bj9OwbyRSkt0PyhWA14mxXo//SsaIVmAgT+1+n3TFK+GP4d5rAFtJY0/ZsNP8zeQkj8yNSPTj3GXP4DJS6/OWp0/3Cs6bvk4oj8pppdZBW+mP3T8nEAMY6s/7XPGSu6TsD+Dt26WZOezPwDQk1hks7c/UaaMJ8L9uz83I0erF2XAP4dSj5DfDMM/kk5b7jn1xT/7ADKEbRvJP8e2n5rfesw/+8R/nX0G0D9V8zjQlOTRP4FK8hxv0tM/f3tn4NvJ1T9Wotxy28PXPy0Q7/jEuNk/VYRhxnWg2z8UJELViHLdP7h4tEuUJt8/KiFQTTVa4D+Q/os3LgrhP3ON6UO8n+E/u58gQeMX4j/CavHwPHDiPx5HwXYNp+I/gO8ivlG74j+oY6kzx6ziP/JTgYHse+I/X524W/sp4j+VG9jA27jhPybv+GMRK+E/V7WhOaSD4D/CKYOoCozfPxk5Wrvi690/IrmoDqQu3D9KAX2HP1zaP+ppjQSKfNg/AShC+weX1j9qiJDyv7LUP7p7khwV1tI/hg2S0aoG0T+6XQBmopLOP8WeQpL1Q8s/GWZEE3UnyD/jNrTGkkHFPw1vG18klcI/WpkMhoUjwD9EPzglg9m7P89BbF+E37c//6eo7ABVtD9pxiWEbDSxP0XF8G437qw/y2L20zkrqD9g1MdPERCkP0lK3bePjKA/JdIPr201GT6AvvB2KlcnPqnFCBfcXjU+DtzsS9tZQz7fdGifllRRPnO6VsJGtF4+BHUDhdvnaj63Na+RElN3PvmqiItAAYQ+ILcC5/35kD7Vneto1YKcPmj4yyEpsac+GDAXo+V7sz5vYbQjtre/Pr2lA3KVjck+HU06CNBg1D5CdXN+fRbgPopp+o3bJek+e1gT0Mh18z76AQB6GtL9PhCuAs0DoAY/xUhe1bH/ED+4QW6W70sZP+N+7RJTpCI/DHA68rc2Kz/A8iFy6qwzPx5kDrnULjw/d0cMWu7+Qz/6XUNbURxMP40M8eizk1M/h9yzMo4EWz/xKWL2N3liP1wfB3mvCGk/JW5b2DfPcD96i2xEQ192PwxvAkbTgn0/PbGgesZKgz/X+XVPhQCJP88jnA1FD5A/WXGe9tBzlD9jyijKfNKZP1/o2ghKKaA/gQjx0q8OpD+mWpjpla6oP6+BBDMFHq4/Z6H5jZQ4sj/UbBKLON21P0jm45XMBLo/Qg7KwVC1vj9gaPHGL/nBP46UEYpU3sQ/xSvrCrwIyD+yBt04JHXLP72Pq1E7Hs8/If3x4EN+0T/vc9elMYPTP1m0RfEFmNU/ejag2+W11z+hEmVmHNXZP5Tt7pVF7ds/u2ETvoP13T8VEfFCveTfPzn8FD/w2OA/iSGGgRWq4T8kGy2WuGHiP0E3BV0x/OI/kkoVqWR24z/E02r63s3jPwwHHm/pAOQ/sCG08ZcO5D+M9CUD0PbjP8wXkt9HuuM/f/9oIH5a4z/IAXReqtniPxrpVaynOuI/jw7nCNqA4T+pLOkcELDgP/+TYGzFmN8/pvSp9Sa03T/mHdyD2LrbPx3qcL5Atdk/n7OC/WGr1z8TEerjqqTVP6dysxjQp9M/Aunn0a+60T8g12S3fsTPP6bgwpcERcw/w7Y6UBX9yD8EcG7jAfHFP7bEnZxlI8M/OufWw02VwD8ZL86N0Yy8P7F8n/dzarg/uYB4rZ6+tD/x1HB67YKxP4rzlQfEX60/q80t/IN6qD83DdjM1kSkP4rARK46raA/Q8luNNNEmz9IJAIy9oQoPsthMCK7gDY+xxh6KzJsRD73V5pJi1RSPnVuHT+mRWA+8bt8426TbD4v4V1LHdJ4PpcKgof9U4U+Ajq7Fcchkj5movtlAYGePgW+l8XIY6k+rP4yy7rptD4fvproJwzBPpkXxWnvgcs+tFhGr3P31T68kRUrOl3hPv0uvPgNLes+CjS/GrwN9T4VhHJCFiYAPwK7jU5yhwg/Y5awQmNyEj/sWiG+yHkbP2B5uempQyQ/xDgJX8GaLT9F3X+iNWs1P2LDJycMsz4/KV5X9yzLRT9tl8jyU6dOP5sItcGIW1U/+z+s4JN8XT+UHpzoEitkP7j9pFyGVms/mq30ckpccj8zZ688vHB4P23INOYNH4A/hY4cMS0UhT/lwW1nQlGLPxDT3LS8i5E/WHyVg7RXlj8T7vmIOTScP/KS1U/rpaE/L0tE/JDlpT+X/5Uu0++qP+RZZZ6gbbA/9xPzG7Desz/4mqEx29S3P5wRQkNeWLw/23EzgK+3wD+i1Y7IrI7DP5aVk+ZIscY/D48QIsgdyj+xpcKsWdDNP+eO4i534dA/k+8/vZD20j8cntdwGyLVP2F6+YyYXdc/5lSaWYCh2T8suZaSZuXbP6CBsfgqIN4/qaI7WBok4D8zIDU22ynhP23QqmJ8HOI/n+fz1FP34j9iYGy/D7bjP7P1rDXbVOQ/vtowMn/Q5D8fUStrfiblP7fezaQqVeU/w8CrgrJb5T/o/iw8JzrlP2i2JQN68eQ/L3IJWHGD5D/wn1zulvLjP4n/tR4fQuM/VGxaLct14j8/xkLgx5HhP+qaqPuJmuA/ry08gFQp3z9kOCrkhAndP7PoNZaZ3to/1t2B+g2x2D/seqZas4jWP3Z95PyJbNQ/qm2g+6Ri0j8OvgPqGHDQP5B9SKDpMc0/TwctN4nAyT/+Qq6YN5DGP5IQINhNo8M/fRCQfIT6wD9bDdNHUCq9P4BzTrGk4rg/ugfPmUcYtT/t2MQV+8OxPyYfI2Tcuq0/e971GEC3qD/ql5wjb2qkP0DaRiydwaA/p956Dr9Umz8znxsWHiaWP8JUR+6vZDc+TCL1nDBIRT5H7R0NYyVTPq75vHPRCGE+MvE9ncL6bT6TL1syIBh6PtAm6UCld4Y+GjbtcCgjkz6RHjtSoiCgPrxq0awZ5ao+Q/PE/sAwtj5FdwXvRB7CPsI4qanfR80+KVsjPdNq1z7OSd5geoniPjDFQu/sDO0+2hjXN9OI9j49/P1OL04BP5mrREDYUAo/DjJ40sjPEz+Win2AxYkdP+aI6apNziU/cRUPX2riLz/ORurqRBY3P1wsvUC9jkA/fSuHdlOGRz9o51PP9Y1QP7RHTTPTFFc/7YurQvDhXz9ebO2UFNFlP9E5PEd5lW0/qDYjDBrgcz+s64/ZzHZ6P2x/rti8dYE/0j0/vSrVhj9uwrh+65eNP66AvDc3ApM/7xTsmIc0mD+VUGRlr42eP1FSfZK6HaM//VGj0tu2pz+IIv32nCqtP65DoNSHyLE/3c05pYaAtT892UwWlse5P8CPObxMpr4/I7JRbngRwj9Cxlg2bSDFPwn8UjLtf8g/AQQZ9tctzD95rf4W5RLQP1aCesB5MNI/QuUSPABr1D+veW32jbzWP+hNhkcFHtk/3San8TCH2z/SKxRY7e7dP7Rx/FKvJeA/yp4OLBlJ4T8blQXwdFziP4exNLqVWuM/of0f0oo+5D8zR3v6yAPlPzDUrF1RpuU/p1fXQdQi5j8zznfczXbmP+2TVeaboOY/akMt7oqf5j/Xd9nV2nPmP5TfxFq6HuY/4Hf5/zmi5T8gceMdNwHlPwQQojtAP+Q/1iP9IHRg4z+ktNVDXWniP2or9UzLXuE/iAAmb6xF4D+2F3xj0EXeP07mUUF69ts/vf/VJ0Wm2T9GNljqXl3XP23scDANI9U/LI1l05H90j81sajTGvLQP/FE5ZJ6Cc4/4VhchPRwyj91MG9OmB7HP8lrkSR2FMQ/ve3RsexSwT/6adRdxrG9P7+81moOSLk/wgrvvBZitT/0kUFNyPexP4NPbi0EAK4/kwW1XgHiqD9ZG1pTcoGkP2eINChMyqA/25v19BhSmz/3CNtINhaWP+QBnNQjvpE/JCTj6+XmRT6r14mwm8BTPlfurGWknWE+XbwjjPESbz49BrhuXht7Po1ZqVykY4c+L85oBbD2kz7CI76nb9ugPrQ5b7pWKqw+B/qBof1Htz7f44tJzgrDPmz2cgRj084+DTpMEEqx2D5yjW1MmJPjPprUVdJ7ue4+qER0YcXd9z6RNE6fPFoCP8lXH5hy8Qs/q1f6S9QPFT/4/UWd+G8fP1ZisaaCOyc/WnIwBIYAMT8qdOAIB6U4P6zIW7+hsEE/6XwZT1snST9Izh1Kx7ZRPwZwYlz0tlg/FYFql3MUYT+Z9nGWVGNnP/Q+w8f6um8/jiz/xa1TdT9cOMpcVWh8PzMq186Mv4I/ctH75yeGiD8+Zixv2cqPP3GjsAOgbJQ/DeUWbrMCmj8mhGruvWqgPxfXAN/3iqQ/3SSPD5V7qT/6NxamjFavP3N0e+i1GrM/x/BojywYtz9fG22/ea67P3m2DTJFc8A/bWRxtmBjwz8pJvVZJ6nGP6X16kdGRMo/h6SCqTYyzj+idnybADfRPznRWrIJeNM/UPZESRXX1T9S0890rE3YP0mQV0QT1No//jw8JWhh3T+adevz0evfPzM6m+NdNOE/TH43Vo5m4j+aeIRh5IbjP4DgXT3kj+Q/S8YPG1l85T9/u7kjgUfmPxxd9pY27eY/m560FBRq5z9VfzxUkrvnPw4Uc9wd4Oc/9oV5uiPX5z86m5SrFKHnP6Xry65eP+c/f3SgcF205j+0DP93QgPmP8weOl/2L+U/I74xsfQ+5D/A8Ac1JDXjP8RR74itF+I/7C/v5dHr4D/UwNSLh23fPxcva9wF+9w/4APLMXqJ2j8uJdlGaCHYP9o3TKFUytU/7PzLqKmK0z99S/sZqWfRP5kZSB7Sys4/+vvmyLYNyz8IzJnQu5vHP9h37iWjdsQ/GleW1G2ewT94dGruNiO+P2LSBszZmrk/do8IHE6ctT/WxiGuph6yP2kODxruL64/IMOHYH77qD9J3f05koqkP8FFEOLux6A/dXVrsBI+mz8QuZX1zviVP1u205LLm5E/VyKeupILjD9VcKw0gyFUPrZmVsml/2E+HP9PYaHTbz4dUZgzMdR7PsTGaeEXEYg+X1jwTUWWlD6nrcQXmWuhPhe3FXViKq0+9WBFQbsnuD5xjk5fVsvDPpvolinzDNA+WWHV1ELC2T7LA7Vls3TkPkLkpYTsE/A+d3vpAxIE+T4w9kIOrkMDP++1dEA+Xw0/EdfAfPkqFj9OcH4qkZAgP+G38yP/gig/BYGQXkn1MT+xeqlOyA46Pzog987/uEI/NUOgcYWlSj+6UH9ZBMhSP2GxyYJ/OVo/UiqZ1foiYj+GG2oiCtpoP5I8JIVP3nA/0NRAwx2wdj/ZdKEKRjx+P0A3/c6a9oM/EbtlzpEfij/sANXcMvCQP3MLCjzgxJU/qjYNcJu6mz942twVGYGhPyn0Bmnb56U/UKVkXrYsqz/Awxl6lrWwP9vC6zwfX7Q/a2y29KqfuD9o+NF3iYK9PyxS71Z9iME/iJhKyL2oxD8wweUSiSPIP5HeDr9Q+Ms/XnY97hMS0D/X+j4fwlDSP0V+jIcJtNQ/xF9nsFI21z8nWm9KnNDZPxVUAaGOetw/+B7C6J4q3z8A5fIWIevgP6cCfGAXOeI/og8MDlV54z92bAMz8KXkPyMarAIhueU/QHfRmHGt5j+uxaeT7H3nP+plf01IJug/CBRwowyj6D9jsWx1sfHoP3LjFWm0EOk/bPLu66T/6D9DW+L0Jb/oP87QG47lUOg/9RkJt4q35z9sciypmvbmP7fYT/JWEuY/porfJJYP5T8QrYYQmfPjP+K5Bofew+I/XZRZpfeF4T95lSNxXj/gP0L0Lreg6t0/2qgL1VtZ2z/+PP3ZwNPYPxphZYKMYdY/ZUqHp0sJ1D+xBttUTtDRP0nI1gdOdc8/cUBWMGmWyz+SX4C/agfIP2yS2VfCycQ/sbvSBBHdwT+Q0fLS236+P4U7kDtb27k/KHDpFFLHtT8IQp8zAjmyP8vinp50S64/KDaZwYoEqT8YM4U8lYakP5EN5XE6u6A/OT4Bfu8Zmz+nXGHzAs+VP0Ke9tAMcJE/tSeixWe1iz8LGrmfIuCFP2+GtiQbLGI+E7un8bQbcD5pcYC7ZT18PhrxVh8he4g+sxZUwnL9lD6KV3q6Hs2hPvQmMosy3q0+HBosW+PJuD6sZNyyr1rEPpBIdxxfidA+T0qUS5eW2j54h3kB/CblPqbidNlZp/A+D4ZVOFv0+T4y9kjGwwQEP1PrayBfkQ4/0h1WkXoaFz/5qPsckEkhP+Tgp1A8nSk/vjcyAvnJMj/q7m+ehEs7P7XMxHMXokM/FTihuan4Sz/Q7Okr9LtTP5b7r9ODlFs/YFnWbBoXYz9QEn6xzS1qP9P1MhA5yHE/Bry/Rsvudz8xhlNz5+l/P0KoLKo4FYU/a2xlGhSaiz+k7TWtmeeRP7fEJNgLBZc/8ktSodRUnT8sBt5QT4WiP7LbShe+Lqc/V/pBw17DrD9VGHOWGbCxP6+QcXbQkLU//RR3mCYRuj90+Zck6Dy/P0ZuSqDSjsI/eQ2i4PncxT9yvag6WIrJP+mmJeUkls0/MOdfoof+0D8uLIP0flzTP+LONEtx4NU/Q+hyIlSE2D/iacqIn0DbP4DFpmxkDN4/xmr/5rlu4D+3oNA9S9ThP53YogbqMOM/SpuCa2N+5D+AInzZfLblP8RpLeEl0+Y/iSCv4KrO5z98yQAh5qPoP25r1xFtTuk/gnjdc7fK6T8Z9O2JPhbqP4cxctCSL+o/nvrpOGcW6j/LOgV1kcvpP5DcSnD/UOk/QLzapaKp6D+N1iWBUtnnPyU0mGOn5OY/m2egONDQ5T9f2LqwZKPkP1Uwcko2YuM/F//XPSIT4j8vQiEw5rvgP6KOlJvyw94/N35aItYU3D9AcrAwkXPZP9f2AQ0S6NY/ewVxFAJ51D++bwyPuivSP8s7yDBGBNA/QA1EadsKzD+6qIlXm2HIPyBHC9jmDcU/myDd+f0Owj+gN0HUH8W+P70EMZINCro/FQgkn6TjtT/Or2EcXUeyPxe4dL+SU64/lpDfIBH+qD+uH344UXakP3X2raXtpKA/iXWTbP3mmj9Qz2ay8ZmVP5hLePfaO5E/SlA1oMdSiz8V7L9vwIWFPwtJqKeW2IA/N6srrwgecD7OgsAxeFR8PrJ8BUAdn4g+/73FzpgplT6KPYn9ff2hPmoTdMcfQa4+IB/QCEMquT78By/NJrXEPpxZ25TD29A+hzX2nN4o2z5If9c48qXlPlqcr5lXE/E+aoWrbrOo+j5rbhwDypgEP3+gRth6gA8/wjpAFKzYFz8OkVPoqN4hP9ecGcy/gyo/7DHnXcd5Mz8pqoouM1Q8P4UcAeXRZkQ//JiWbYEZTT+QV8WJco1UP9QYkmnSwFw/6jn6M9zrYz+ill//11drP5Q2kJWllnI/Q+HUBJcJeT81TzJWkLSAP944beoZFoY/Ujsm7dHujD/92/IUO8eSP3aAXfSNJ5g/shVwF1zKnj/+MsR9BHOjP/NsjIVBWqg/ZFuPZAI5rj8chmfc25ayP2eRwJwPq7Y/g+mQXgZnuz92Wu9BgmvAP2kHYjF0gsM/cVOmf7D7xj/Dpjx7ktjKP4agpAYaGM8/8rqNtkvb0T9cI40YtFbUP3lyQ0ll+dY/b7PMeea82T+YRrWgLpncP+ZiXJC9hN8/q6azeWM64T8aLg5dt67iP4O65r0KGeQ/IG55Jtly5T+3MjVPm7XmP4ZTK/z72uc/kHDwbA3d6D+CLz3ifLbpP1tVUsHBYuo/WKV2CUbe6j/vNOYghibrP1Q0w28mOus/hVq1yP0Y6z9e+Iw3FMTqPx6ntWqWPeo/qWR0g76I6T+ZkXyfs6noP1WbJd1hpec/anA560yB5j9kJOdiX0PlP876BjS58eM/9ELUU3+S4j9unnWnrivhPzDRy6nnhd8/ferXhxK73D82t4lcOADaP6opMWJyXdc/KAXg0oDZ1D+3KAiPwXnSP/5vd+wzQtA/n4to3g9rzD9zcZq4barIP05aoddFQ8U/CSzCsXc0wj/dkXufmPa+P3nNy7SMJ7o/DIegkODxtT8JLE/XS0qyP/Kg1ypdSa4/EPgZXA3pqD+0ULrSplqkP+a6RjzNhaA/gPVvao+mmj8Fe9miulqVP5yUijsmAJE/Oyv7Hz7lij+cqX68nSOFPxqjObFkgoA/M9Clwc2feT+1yPc0qBl8PsMrB0i9fIg+LwknNwcalT71z9PQyvuhPuVx0rsVUa4+Jm2Dh7ZGuT5a7OXSqNjEPh/ciws0AtE+eC4urKV12z45MY2IlO7lPhhfTnpXVfE+1O+O59kc+z7cXdGQSPwEP+zSiBqBExA/p+hS4yxhGD+BM5FOdkwiP/ZzNOpZMSs/VktvDs0AND/0TgA2CCM9P0/MU1fwAkU/0NhoGukBTj/RyN6fHThVP6XvIDo9uF0/LGnRBfKcZD9vRW5yO1JsPx5G2kuMRXM/ovT+NBP7eT9WKBsvXFmBP4T4JaJ99IY/qDU7DJsXjj8DsTblGouTP3JkQYFSJ5k/wZz5L2UKoD+ReWGOOUakP2Ry3ul1Zak/KSR04JeHrz9c8TXoNWazP2Tol5h7qbc/iN5a3xecvD9fYtafYSXBP3VVKXTUX8Q/XSmScskAyD9vMIWFiwnMP8SkYO9zPNA/z4j3LWul0j8DDX8YGjzVPy0KMHJL+9c/cWaygB7c2j9l0VRmENbdPyTUKvGLb+A/yQst+On14T/r98Na5nfjP41aRIni7uQ/vLvlDw1U5j+UnmVxlqDnP19EruDozeg/26vIVuDV6T/6Bk9iALPqP3/sIhelYOs/QgTftyzb6z+f1IcMGCDsP4Rk5tQfLuw/6n4XWT4F7D/9Uzq9rKbrP/IdrWPUFOs/JWpRRzVT6j9p/gHEQmbpPyg/jrQ4U+g/Ep7xHesf5z+vv4nKktLlP5Iwoz2ZceQ/xFsjSWYD4z+FbHBRMY7hP2ZNe/TXF+A/tc0WwXZL3T+pCIJqSnnaPwoJHKxowdc/euIWUKMq1T+jgMqnWLrSP682LKh5dNA/LooqbDe3zD/L/FTTJ+LIP6cX/9MyasU/r/2TAtlNwj8VPcCnABS/P8EC4TiQNLo/CKJKAbXytT8ccqsccUKyP2YXbLr7La4/gTtgP4fGqD8UoGsxfTSkP/sxuYWgXqA/0CIUDPhZmj8Klq8/eRKVPzAC3rHYvZA/DrLwpUhuij+SqgQT7bqEP53sAmbJJ4A/u4GJ0EgFeT8NBWfMv0BzP/jlWbz9FYg+HXRy2PvPlD46zcg0s8ihPtHxw8ufDq4+cUztYTkfuT6lINvA1MTEPgObfh4a/NA+iWCIa4572z7AwJure//lPvMyyycDbPE+lVZXyGJO+z4XLkaGIy0FP6MvZsGyQBA/UWl2Mw+xGD8ngfmlnZAiP2d5iYVVois/sgPCgSxcND/lTUs/qbM9P49pHNkxc0U/uhZ/nBatTj9O4W4LfLhVP/hw8PjLdV4/6wBGDNomZT/hrJtPFRhtPxF7ZwOR0XM/62vdL6++ej8Xpt/qRuCBPzU8YVVTrIc/MHuQGBsPjz+1uXexxC+UP3FugaLr/5k/9KXM4UCXoD/KZt/caPukP/oH3Wr8S6o/eeTcveBUsD+2VVcv5Rq0P5APfesoiLg/YhFVzbCrvT9F00SwUsnBPz+jxAG/I8U/d5hIi5HoyD+8msusCBnNP6LOR4/i2dA/LZw5fzda0z9h1UsttwnWP4NIosje4tg/yhNlk23e2z9E+J/Bb/PeP/eSZluuC+E/sJ1diCSf4j+6Rg/qlS3kP+bKq3MasOU/p0N59Jgf5z/rhGW2/nToP+J1k+15qek/RErwT7S26j/O4eINC5frP83WeXLBRew/IQlRqyu/7D8/TH+azwDtP9jq1Bl6Ce0/TYy2tEfZ7D+3Ha6KoHHsPzN9orsn1es/jxq+ZJ8H6z8hmhTGwg3qP/FAnJ0Y7eg/vmIQFMCr5z8IvW/BOlDmP3QJoE824eQ/LpRpHVhl4z/PsMn+DOPhPwuMHdleYOA/TGp/0qLF3T/I6wESjt7aP+AK25/bE9g/NdTt8mls1T+b+JoslO3SP9jteHk6m9A/CGjqu6zvzD+otWMfMQnJP3yHZLQbg8U/aIyzJZFbwj8x6WwaMR6/Py1lMzHmMbo/20Av5ODmtT9qRNhDejCyP8HafXKjAq4/LtkksI2XqD8fwjkqvgSkP5G5Fm0uMKA/1LxmDYUCmj/LNlS6QcKUP7CTEOnTdZA/laOiyVLviT+mRNepz0yEPxscboxPk38/8qdLdXVmeD+V88CPYbxyP6H3eC5Vl2w/VHTMrYdOlD7w6rSSbWahPgpcbr3TfK0+ff1I+Nq1uD6rW77P9nrEPgYq4mo1ytA+6HXf7VQ72z6hjaB94tjlPqBx6TtFV/E+UJ+H8Mg8+z5rB0uzqyoFP3PEhKIYRxA/ao3osfDGGD9cuVt84qkiP1tmah6X1Cs/nuS4DiqKND+M7TixUQM+P+vz5IButUU/qYEI3sAXTz+PbDdvGQxWPwz0YpLk9V4/DR8B//qGZT90v/2WtKVtP2KsoYUeOHQ/BTtowtpQez/gSqnd40aCP5sw73pZOog/EYNe6QDRjz9XNX7lZLKUPz4jh0qxrZo/JPNb0moJoT8MTGNpno+lP3wpsKQkCqs/NnKPV3jNsD8gKIMtIbK0PyyRyqO6Q7k/fpZlDMyRvj+Db4ft9FTCP/Slx8dry8U/iQy7PtCvyT+On2wOWQPOP7LRxxBBYtE/EafeL1f30z8hcW0L77zWP8J3f1BArdk/4fJNkbPA3D9o0r187u3fP3EJhy/6lOE/M+kSqS004z9rhqGsys3kP8vzvralWuY/YuWSqWPT5z+sWugBtDDpP2M9u9CNa+o/IalsrGx96z/I7tSvimDsP52wRK8UEO0/QUkbC1aI7T9VWmLy2cbtPxObrnWAyu0/49G0coaT7T9ICPwWgCPtP/cg8m9Gfew/iasJK9mk6z8sPCo/Np/qP79j564pcuk/vUKk4xck6D9NtQtIxbvmP2hPIMUdQOU/X7iNmv634z9AXwu/BCriP46YX49hnOA/vt6fNm4p3j9j8Ou/+S/bP/khnIDaVNg/DoTbLPee1T/BNJ2hpBPTP7n2lnewttA/CcLXau8UzT9ldBk6DiDJP+qJ5OWEjsU/TS5ZUSBewj/41t8FHBa/Py/gMTpuILo/PcN25y7PtT9EtaHhGxWyP4MTnw6RyK0/XmB/XDJdqD9sR1/oUsyjPy0qfNh19p8/guC7iXuhmT/XOGRAHmuUP6MicAPvKJA/TYhj0rNpiT8UZ2fOU9qDP5MpYaGj0X4/iijWdJXEdz90BqYVljZyPxb7x2d8vGs/TSwVC2P8ZD95cGDAk9igPuxOolocoaw+igV3CZkOuD4A0oP77v3DPjwA5uWKbtA+5tYxtLq32j6Oh28FmnzlPurtGx5DGPE+50/CK2np+j7yp8xHnvUEP7RsFzAJJxA/NRaw4gCjGD9WSIaJLZgiP7JCEQ2qxys/l6wjiTeKND9HXS8R5hA+P6G4DNGmyEU/k6YOqTdATz840jxmmDFWP+CaRZhlNl8/mRjpMLe7ZT8OVcT5tPhtP7ijBVR5d3Q/hqJj0x+vez/zdKJPe4uCPwF58Go0nIg/a+AYSA4tkD/a+TMm3BCVPzo2JuzZLZs/8QEwyBRfoT+C1LAmiwCmPy01qVgEnas/MI4ecMErsT+d11GarCm1Pz+A6b522bk/9I5qjyFLvz9C8viXVMbCP59O9NaOVMY/aNc3iNlTyj/tG8WVacXOP4n1c4nP09E/YWaK8dF61D8vBqP9j1PXP7CL1hIFWNo/5gmzrk2A3T8fmGtgWmHgP/1lVRTrCeI/zIp2W2uz4z+if/ds2FblP2sZ2+rJ7OY/4V7QF6lt6D8YftJu7dHpP8VgL/ZbEus/AeK8XkYo7D+COxDlxg3tP276mP/1ve0/liOAKhc17j9u2QKUunDuPyeGOgPSb+4/7NM6BLgy7j9yAtQjKbvtP9Vc3sQvDO0/2l9bzAMq7D+1k0j83xnrP7AqNk7P4ek/CKyH7nSI6D8uM/Cd0RTnP/zb3DYJjuU//GuV5Cr74z/dhgpH/mLiPyv6SlHXy+A/HV85ZOR23j/DLwshsG3bPz9Te8OZhNg/liEjSIzC1T9Z9ubA0yzTPxtKTgAqx9A/sL6/HZ8nzT+LC8KIXCfJP14LVYsFjcU/ksg9cRRWwj/9EsvLxvy+P/TwntgUAbo/KEKgp3GstT9ZkTu3DvGxP4XNlCQEga0/4OOR8oUYqD8LGtEKIYyjP9FdQ84JgZ8/KmBl4hQ4mT/Un9DRDA6UP8ZzR4vqr48/MJdP6qzeiD/nXP3ic2SDP4WknCAQDH4/40KEs8wgdz8T47xAN7BxP91Wa4Yu4mo/eI6XfrtMZD/+xPrlhnZeP8OAoLvogqs+phQVjSMvtz6iXEYEBVLDPkhCip2K2M8+7/2hXFr12T6k+nUL6+3kPioxFqxIsfA+ZHZ5xmdX+j6M+qhEFJAEPyrrjUDCww8/fZHh8fVGGD+AdE/1hlwiP6Fmfp+7fCs/jdXDF/NcND/UQRGF9dw9P2nTVuIGrUU//1kb1WomTz84JkVCuShWP5AR0cKxNl8/O/F4yXXEZT9zV38ADRBuP1+mriPKjnQ/Z5vfezHYez+/OEgYFa2CPyCAG/V80Ig/ibGdgjlUkD9qxYFZzEmVP4P5M3SLfps/hoNsgQOXoT/BCaW5kkymP7M6XouIAqw/2cYZM2tusT+wfk8k4n+1P+oBm2FVR7o/eQGrTjjVvz/MMD0t9RvDP8XZiW5kvcY/ta7cmZvSyj/hMJpa1FzPP73RRHwuLdI/Th+69xnj1D8Ae5/+3MvXP3KADelA4do/eFiB2CEb3j+UVfx5vrfgPwszn0hKaeI/d/azU5Ub5D8Mbq1PaMflP5mySCIlZec/rm+sKADt6D8yjJb4PlfqP5VlmNd5nOs/HT7/2dy17D8skVqAZZ3tPyuBnMMZTu4/l96hyjXE7j+2Wlv9Tf3uP6OUo8hj+O4/ZK4PIOy17j+/sWSSxzfuPwtq84wsge0/BoNRI4WW7D/CxzpQQn3rP+dTIh+nO+o/VZSEfo7Y6D97DsScLlvnP6bBM6bcyuU/NdYrhdMu5D+qXU/s/43iP587RX/T7uA/UtL80kCu3j/+BqBN/JfbP9C+tXFvo9g/yX56DIbX1T+pl7lpgTnTP9/KOvYGzdA/ADfvnnYozT8cuZH1zR/JP8C4GdNDf8U/1UKsCwZEwj/fCXnyRNO+P+g+ezfP1Lk/6UJ4PoB/tT+dmlv2DMWxP+M0T+E6La0/lcGM35TKpz/Hr1Y3CEWjPwuQgNOIAZ8/P0OjSHzHmD9TuHmb/auTP0Ddkh1KB48/nLSM9WdPiD9FHQDaFeyCPxH/Rw3zQ30/kY9VmSF8dj+sMXyeBipxPwDwsv6DCWo/Go4NoGSfYz+Fc0vlmWNdP8oM006C3lU/Z9/6hI4etj7w+CJXrXzCPi0xq28Sj84+F14zQGf62D5uQw25ZzHkPnGuUWCnJfA+t8V604KL+T79uk47Y/0DP6BdGPXc8w4/K9V3MvG1Fz93EjyxBPkhP7vwfgSF9io/DL/vyhkEND/8oC4aqmk9Pz2ZL5XdY0U/wHipAuHLTj8004agVfJVPxnJDHas914/HsH9DKKhZT9Vgq8kD+xtP0stSuAffnQ/857uPfDLez9Pt0JPfKuCP33Xq0PG1og/QjwDf6NdkD/4l1kAn1yVP8si/hvknps/uSlTqJSwoT9pTexR03KmP8Nwl6J/Oaw/W6cMqquUsT9OG55hvLO1P8WX4ogKjLo/e/aV9TgXwD8bTqpJ2FTDP0kdxP+4BMc/T8xID6gqyz9dce8I68fPP+x8FqdkbdI/pDspWRIv1T+lk7CjlCTYP3h69eCNR9s/FNzxfKaP3j/hdS3mTfngP7j4PMMysuI/+Jx9Hrlr5D+PwJPsfB7mPys5AuOxwuc/kYlojl5Q6T/SfwD/nL/qP65mRiveCOw/8ZRI3Swl7T8A7tDlbA7uP7jZoWuTv+4/vplKfdU07z9lhEuLymvvP4+VGheBY+8/46g7pYQc7z8f7XnQ1JjuPyf5eyrO2+0/NqBOVQbq7D9GeolkHcnrP8o0+hGHf+o/uZevoU4U6T8vAcdx2I7nP+Zb0CKk9uU/ivSLCxJT5D/3WtFLLqviP/NKwFiDBeE/FnD4ourP3j88N4O1Ta/bPxAdNWTPsdg/0hoPUVne1T//KKqMIDrTP9br3we2yNA/zbRSHkcYzT9fJRjaJArJP2ddw4DxZcU/nTsiXZUowj8Nepxis5q+P9go4E2XnLk/hwVFMjNJtT+xrDPcz5GxP0hAsV5uzqw/zNKfkmR0pz/FDvMc4PeiP7XHuYRSeZ4/Z6R13cxQmD9LTELJ0UWTPzYuo1teWY4/DgA4+Pa8hz8JbbIbC3KCP9dXZMiHenw/WD9u433XdT9b/vZorqRwP48CpexvM2k/aZ2IHgj1Yj/TfohFvlZcPwLWFj0bDFU/KP22W/MQTz/BVXoUQ4TBPmpx45V/Cs0+taennl3O1z7sk6yZsEzjPmQlJLQW8+4+jW1YfdSL+D6APXGu8UEDPxErwGak5A0/ITAAaVX0Fj/CfeRKrnAhP/HJ/NIlOSo/LJRpGm+CMz9WJZRBqbo8P6smIKuI70Q/35318p4zTj+YrPdyUZBVP3AMfwCoe14/RrDFF6FUZT9gwZ9IXo5tP19lsGxpRnQ/lH98jWOLez/JsewoPIeCP9Epbhqbr4g/fQGneYtJkD/HZNDdhEmVP5RcDQX7jps/rAroy7+roT/b6I6FJ3OmP8fGQmOcQaw/ZSsk70GesT/YLqLa2MS1P8+HXxEKp7o//S4J6wcrwD/Qr+nbgHDDP1mrog7tKcc/9NeQhDhbyz//zS0Z3gLQP9GpWwfik9I/o4ACbBJe1T+W8PrH9FzYPx5HqSoQits/7Ausq+bc3j9H+2tHgiXhP08GvlUT5OI/+C9eOjyj5D/on8RQdFvmP7xBjQPJBOg/FLCMbRqX6T+nS1yvXQrrPxdv6ADiVuw/QDH1OZV17T9nmtdyRGDuPzGCmnzVEe8/I1JBQ3aG7z8s9mayv7vvP43/XWHKsO8/RfBrFTRm7z+lvh3/Fd7uP6tLFW3sG+4/g0H2cnEk7T8J4VmqbP3rPwrbrbJ6reo/sfNpZc876T+HUlDS9a/nP/tNWwWREeY/0oe8WCBo5D98YMCxybriP99UuIcrEOE/nJcoCHDc3j9K92/pM7TbPzAGjHBHsNg/7KfPj4/X1T+02PQkNC/TP5HbPgyyutA/yOq9p/P3zD9a5cwlMOfIP92rJLXIQcU/kvCMsWcEwj+z4osaNFS+P2z0QHFoWbk/3IOpxmEKtT9vYF+iDVixPwrLuI3PZaw/ZiQrPfEWpz8ORFjedqWiP0ZilOCz6Z0/sYqKWBDVlz9br93BWtySP6e90Q9tp40/qmOo9VMohz/XgJPEEPeBPysWlf7nsHs/yMEsy68zdT/95SLAwiBwP/ktbnfCYGg/k+KpcDROYj8qLDXAsFBbP7n75YrvP1Q/GWLW7k3VTT8b/QlTWNZFP6PkVZ63Vcs+bBYFo6h51j4eUe/oMEbiPoGwNEWSY+0+njPWgIlf9z6l4LP+AWMCP7pEksG0nQw/DxTIspEHFj9a6WwhWMcgP0bOBr/xSSk/HFCL/ZrbMj9bEwG55tQ7P67egDVXU0Q/DvsCSwFiTT+LQcSfggVVP/dWBvhGxl0/p8wr5b7fZD9Al0CR1vlsPy7Bobpn6XM/fjqOXakYez8Tk+VklkGCPy5SWOVyXIg/3tw8a8gYkD/8X6UxbxGVP215V+rYT5s/b7QQhRKJoT+O5e1ZIk6mP2bSVPtxG6w/eOffQ3SLsT8lI6pFdrO1P6wocCyGmLo/0/DaCRkmwD9glA638m7DP7UDkfz0LMc/n8NDny5kyz93xd3LCQvQP0i5nx6AoNI/eorLJuZv1T87YhsEu3TYP0TiXJ52qNs/I2KKnoIC3z/Zw23GJDzhP6AdDd6u/uI/VEslM9zB5D+QurD6B37mPw1LJX4hK+g/bwBF/unA6T/nl4xrODfrP7Q4euc/huw/e9G4stWm7T9giNMSs5LuP+CA4divRO8/xZAfivK47z8zPsq0E+3vP7JtDa8y4O8/lqQWzfqS7z/IDM34mAfvP7eZa3CiQe4/Y1gsO+5F7T8tuZuNYxrsP8XNldi/xeo/ouN1jldP6T9MnXDH1L7nP2I2ptj2G+Y/Xk0Or1Vu5D8q03NWK73iPxmNr5AlD+E/06YRmIHU3j+SIuZaWqfbP3j4T5x7n9g/bnrwisPD1T+DM11MTBnTP079U39/o9A/GZOO3mzIzD+Z4M7Lx7fIP6hHFPyIE8U/eV6s/yTYwT+8VUdb6gC+P88wUVU8DLk/VQb2rd/DtD8rRg/DdxixP7TkZa2E9Ks/UOf0Byyzpj+j/pvbj06iPwmcFr7lU50/J/LMJj5Vlz/cypa+WXCSP2O56weg8ow/ZuPkNGGShj9ZZ5or0HuBP2VyefgM6Ho/ExNxbWuRdD/TtXgUhj1vP9YzB18rkmc/ZQzVGl+rYT8F0hA9CFJaPxU5l7NaelM/ofMxRRClTD9Z2gI44e1EP9joq+T6Yz4/w/gmy0MF1T6HrutZ1iThPtC50JJOp+s+fTvgWpAO9j7t4Esrd2YBP/ocVLyuJws/6F0HU+T1FD+CV6tFeAEgP14s05s0Lyg/IG6UuQAUMj9+iwOxbL46PyMAnzNkk0M/zN/MKotcTD8crffCkFVUP/6caqtS3Fw/qQZR3RNGZD8GTeMnbDJsPzpQFCiZaXM/4tmH0tx2ej/8og37c9yBPzOLyGKf34c/8B5gZXyZjz8DQXYQA7aUPxAcWIVp45o/+eJPIqhJoT+NwoHfBQWmP8eKKIlpyKs/SaupSgpdsT89uQs5boC1P+KYRo9oYbo/T9/f9ucIwD9TX36wrlDDPzKMau5UDsc/pNwHvw9Gyz+9R8qldfnPPyGBb5Z/k9I/mWuSqMtk1T+YlaQXImzYP55I6AL4ots/+4lV16wA3z/NGAuJTD3hPzAyEaEaAuM/YhPI26zH5D/IBGLuSobmP4NM4FrONeg/yCwMSOHN6T9lu+NTQ0brP0pRo0IRl+w/EB2SGwy57T85J9Up3KXuPxu4v3dMWO8/+LE/tHvM7z8AAAAAAADwP1d+S9f78e8/R51NIyOj7z9wFdNfsBXvPwtoZqNKTe4/pWqTJd5O7T/vHqqNaSDsPzR5WdfCyOo/eh3661ZP6T890ZMr57vnP8H7dglIFuY/3F8EmiNm5D/Z1QCDwrLiPw0t0zbdAuE/zSEblO243j9gGVoohInbP2ognGgigNg/hAiiEp6j1T/G8Fl0A/nSPxb7bCaqg9A/Za8YCq2KzD9I/Td/yXzIP222fKT028Q/rhysyHWkwT/AaEBQ96G9P2bI03cItrg/Hg6rF3t2tD+a3hWMudOwP79s9USne6s/5gOKs/lJpj9HEfPR4vOhP/n+AsoLuZw/vLpA8TrSlj/Nv5OxfwKSP0F9l18FPIw/Pbxv1+n7hT8MfCGh3wCBP1cLVTXRIHo/GP2LX0zxcz9ZgC7aNj5uP66VV588yGY/TxID+OYMYT8t/7qsOVtZPzsGjSmfu1I/2yPYU3uASz8WFX1JIw9EP5J22mJTEz0/6BrPHm/wND/ryLrvkN/fPkHhSelNyek+yuXszEWh9D6o0UzNllIAP9zZVavciwk/Movm6RjGEz8dbQ/+7kceP4PKORzw7yY/6Ks4w5AwMT+YGetjHH45PzmwFYVrtEI/9EeWbawpSz+E9s3rzoRTPxcNQguJw1s/UIzhbmSLYz/0Hm/OAT1rP0t3xFMfynI/gykAkvWpeT/wc4nsUFqBP1b4C/4zPIc/nrzFZp3Ojj/P5LqchzmUP/IkeItmTJo/LqR3Xh3voD+4kZL4tJmlP2Jbhc2xSqs/bORkxUMUsT9gR4bBKi21P685cNZGA7o/qKLLG6uovz+jk0GUqxbDP8WvYx8Zz8Y/QSjCrvwByz+kXL6EFrHPPz7wwXeDbdI/h1QiIG491T+qqWqA3EPYP/KW7FRNets/rcFsFiTY3j8PXvWEWynhP2YXVPS67uI/adt/zhS15D8UBNELpnTmP2znEdw6Jeg/qyaxJG6+6T8fwrkh7zfrP18V7P7Jiew/+chH6q+s7T+C0IoFO5ruP0fYrbsqTe8/qPyjWpXB7z+sJqRhDPXvP9/Aa7Cx5u8/F/YjnTyX7z8SSdne7gjvP+ObTx96P+4/SWzF2dc/7T/obnXdFRDsP0ZZelAat+o/utyUYWI86T/8RnbzvqfnP6yCD3MSAeY/DYfzwRJQ5D8V5NWtEZziP1EpKeLN6+A/o81HR5uK3j+D40cIiFvbP7OnF0QBU9g/W3Eu9tJ31T+GM8PM+87SPy7WJuLCW9A/WUx1erQ/zD+8pJzCFTfIP342pmTOm8Q/zVNFPAFqwT+60Y4vdzi9Pzc/jPS7V7g/ikkzF/sitD8p2oD7doqwP/SUZZZC/Ko/US1fmTHcpT/j/aVHG5ahP/PZLPozGpw/tfnkfNhMlj/y1+htbZORP4x34CiQhIs/XY07saJlhT/D29ZYw4aAPzbB9jryW3k/fo+pYddTcz90YhqpTERtP5d3khdtA2Y/mxdReRZzYD8RunDBm2xYP2b1nVrpA1I/wPPwmrBnSj/zUlCTHTpDP9BQH+Rx0js/oStwpX0AND/I3zoS+ZMsP/S4I6Kc1Oc+QdtMIiMg8z5CzC0xl1v+PuE73jTX0wc/5cbclkV/Ej9HkIDsAWgcP3Vo2NmWkyU/KoJhKJg2MD8P7Jt9ahs4P6Tf6nmbu0E/a4jZo4LQST/vFkBcEZhSPxP+DbBkglo/5EppavyzYj+kKJp0OR9qP/f5TsmgDnI/YpOyZ6G2eD8YgudHJL6AP2TRUSXodYY/mdU8X4/VjT/zxKEP0J6TP/VKmV49jpk/a9onyIB7oD/S/WoLoQ6lP/5r/uUppao/D2Y6V8yysD/Yb/5rmLu0P7HMFr5SgLk/bqk1FT4Tvz+rcWJSTMLCP1GDLg3LcMY/8ERGzKWZyj9iv+k6zT7PP0xxmTqKL9I/DMEMXN761D+Wz92NDP3XP80LnmGpL9s/sQuhgSqK3j/W4v3b+QDhP/g9P2Y+xeI/rq17ZMiK5D9GHufZ0knmPzcyACEl+uc/9vRlv1KT6T862VGIAQ3rPzZiOtoyX+w/lhEubYyC7T/oED4JnXDuP27sh5sZJO8/I7hvew+Z7z8V2/tDCc3vP4SRfWMkv+8/YtdkYRZw7z+NJYvFIeLuP+KwGXb7GO4/060lN6IZ7T/6gSasKurrP0ql3MKCkeo/zy/zwi8X6T9dDFhZCoPnP/Vghdz73OU/LtRSvL8s5D/2Fridq3niP8wtfxOAyuA/XuJrioZK3j9yQP1hTB7bPynDHi/pGNg/xKHMKB5B1T8u8QLe3JvSP+C67LFdLNA/D2UiSoboyz/csItMjefHP97xy0rXU8Q/F8jwn2spwT+OWTjOfsW8P6oPl7s98rc/1fHYXB7Ksz+1iY/fSz2wP9RPmn1Sd6o/V53FAp1qpT+NAaA62DWhP37Xv2VWeJs/7Fhz1dXFlT8DAGwFtCORP2X9uF8ZzYo/y0lVUivQhD9kKrZy7g2AP6iaiogSmng/bDM3IXy5cj89z0X4W1BsP1QgKSgbRGU/hkbUpUu8Xz9vTQ56aoZXP+fyjYRSU1E/lXJylrZaST8QtdmNvG5CPxrc4PMToTo/ZjZj8NwcMz8Hyq5j/0IrPx4A/e7ZUSM/SadjJHKT8T7Tlvi61vz7PqXxohsuCQY/GpdiTYooET94KYDNpW0aP6gnGQnIISQ/BC/bzx9XLj9zfCWqGp42P2Uc10plrkA/9ZZT4ZdYSD/N7bFegZRRP3A0OrzhH1k/tuQd6ofEYT9A9vIdQd9oP2cINf4nO3E/a+IWGxqidz/SWr2IRQuAP0O+IAj2kIU/pPa+e5yzjD8ESimeIumSP6CWY7HwrJg/WgLULoHinz8yK519tGakP4uSWxBI26k///4R3aw6sD999RRqFS60P4k8K+xG27g//npBX6ZUvj8vMYvaU1XCP8T1JP5j9cU/P7gyMzwPyj9sUpF6A6XOPyKxzf/k2tE/y57OWome1D+uDUlNOpnXP1kdphauxNo/USN6YXoY3j9Hufr2D8XgPyv3vZuXhuI/a/FbXcNJ5D9PhJP/1AbmPyNU1niXtec/rBRoyp5N6T+lAEBWjsbqPwdFo3piGOw/jzwB4bk77T8T8tfMGiruP9GRi9Qw3u4/48Edyf9T7z8Cpv4jCYnvP7WazBJifO8/PQJnGLku7z+LlD0qS6LuPzqhLB3J2u0/HtRzDy/d7D+S/r40kK/rP5qzpPPZWOo/J8eYmJHg6D/q0jr/j07nP9qNWHi+quU/5k6O59f84z9A7TCfMEziP7tw7e+Gn+A/USkifrv53T/xd+2fw9LaPzmnhpqz0tc/sbRMIEEA1T8df4JaUWDSPzSJW9Yf7M8/bSsVfiWGyz9RMr/ADo/HPwxJOfjMBMQ/CW6X9lTjwD/lwwSiGUq8P/44eiNrhrc/LvT8OZpssz9wNRFnltmvP8iw8a/C7ak/Urjyyvb1pD/85RgIrNOgP5rQiHJV1Jo/CZaAtd89lT+rB4dR1bOQP7o41RZhFoo/SLzPNA88hD87YEMxiC1/P9iw4py723c/lTL7/5Yicj+3ogvo22JrP/GLcDyPimQ/HkTYHnqcXj+aEcx2yqhWPxliJFXjqVA/Q2skz3xZSD/Du5423axBP+h95enifjk/Ay4byzJFMj+mwOoLqwQqP+2+SxmKaCI/KmJ8VUniGT+3p18bBpX5PiXSyPIYNQQ/5NsldaqRDz+ZpLToJGMYP/uhwu0OoiI/4B081twpLD9SHsVm/Q01P+QIbEadJD8/QoUjV6LJRj8yajI0cX9QP68JKEpCo1c/OdkQjOvBYD8eq8FonoNnP/o/2RwBVHA/eJ6hWvlxdj/AZUsHoYp+P22WbTn3kYQ/MwLgg5Fuiz+oXdVVHRySP4XN0nP3rJc/8nJVeC2mnj8LQfnmOqWjPybDUo398Kg/nsWN+nVcrz/giEGJXoezP/+QLBxRF7g/MNgCwYtwvT+EBXUn19HBPw+jbnA9X8U/dPsUh2BlyT/iFkPEoubNPwv35k8tcdE/OeUjPC0q1D8Bb3G1RxrXP91/D/NfO9o/jQ4L5TiF3T/LpHCZv3bgPwb16x72M+I/rmRQc0Hz4z8r/oKo8qzlP/bey6PgWOc/O77aqKfu6D9CpJyU72XqP/jKe4+1tus/Bj+YoJXZ7D9b3WNnEMjtP43Tx1vJfO4/pO4CTrrz7j/zDtBxWSrvPzeQ3QCwH+8/y1xyYmDU7j9yYDG3m0ruP9CsBpgHhu0/Dx2bs5WL7D/H8MiwT2HrP5ub0kgaDuo/gFsp43KZ6D/lCwgaKwvnP7TQiXUla+U/m0ijXhbB4z+QGHzWSxTiP7gRs+t9a+A/nW6ChlKZ3T9L+SrE6HnaP8cTGYc/gdc/cUpPcQC21D8e44IpBR3SP11iu0ndcs8/C+6vg5IZyz+CXN27dC7HP/I15SNor8M/mgoh5VeYwD+RPFUpSMe7P7wzJM8WFbc/EZ5h6RkLsz8LJTll/TKvPzdEWFBuYKk/xxSFQet+pD9cWnKEHHCgP4j6Mkj+Lpo/MizdH5G1lD/sECmdRESQP75qvs4PYYk/ay8BA8epgz8DoMZPMUN+P37PRwNgIXc/NU/D1nKPcT/Uazw2KXxqPzHp7jf+1mM/4c14CeyGXT/V0mgSzNNVPzfdY1OWB1A/pwE7i99jRz/T6N3WT/RAP5NWGQV4azg/G8uIXRt5MT9CxRCxRdgoP4zc3Kn6jCE/zB2+14OjGD9C5Rvldy8RP1MjicEyYAI/ENtcHV3NDD9EBxXNSFIWP1UHyKmoGyE/BN6nDPrvKT9b5yDOsnIzPwTNZVKM2Tw/z6DgZ0crRT9KopjkY7xOP9oAqOPUE1Y/8ymCUTtiXz+oPPrm+hJmP2ibphUwu24/TqENkgwsdT/FskYREuB8P42NB6vAfYM/TRfnopAMij/Hh7sMmjuRP4Bv/F8ak5Y/OW7g5udHnT81mmjwx82iP4dFvcCY6qc/muFaKQ8grj/zTCW7esqyP7rJjoX6N7c/6jkSUQVrvD+SBHgCLjrBPzxkgggAscQ/ToqgARCfyD/qllGQ/wbNP8A0KL859NA/uwPs+cyf0z/+/PR9Y4LWP/nwlAoYltk/kmSKYufS3D95wMIqXBfgP3dhHV2+zuE/kVD+GraI4z/04hYVrD3lP1kEBEKL5eY/kL3fy/936D/tmMfhvOzpP7NfNTnGO+s/iEOpqLld7D8gRD8dFUztP89QCER1Ae4/r1SQlsl57j+iOFQKe7LuP9M3bWODqu4/VtNNDHRi7j9EaKBHbNztP7jMzoL/G+0/Xkl4bw0m7D9bDQhHjgDrP6c1SCtWsuk/YpZ379JC6D9mDBu1x7nmP+jtpa4JH+U/VIjLDkF64z8mksS1sNLhP4a4f5oGL+A/IVc3kWwq3T/KlRRFvBTaP4TvZeluJdc/9sICqyFj1D9gmMWro9LRP2Haoq0a7s4/7cHdCcmjyj8Ye1sulMbGP9DCc2BbVMM/bo2WzwhJwD8852iw/j27P2en0t8Hn7Y/QYTwEz6msj+3SnY0zYeuPxGhAswf0Kg/Q0meQxgGpD94Kt06owugPyRA23sJiZk/cs0gH3QtlD9kS4POzqqPPzVbpum3rYg/sn8z7LkZgz9UwDC+ZV19P+l1fFxda3Y/i4NprEoAcT8Aj/gSiZxpP0qZasGLKWM/GDkrTrx7XD+DZqI8bgdVP7ZzoSK02E4/KkjpH6t5Rj/2xjB72kRAP3P9IgZgZjc/oORmwSu4MD/yAucJEr0nP734y6+JviA/N0CWlpJ4Fz/ZC78PelgQP5i3DAp5nwY/BKX8uBoQCj/uQr43GEQUPx9NZ9ekKh8/DA7nB2azJz+/qAWYdNMxP7xB3jv5hTo/8iAVe+SEQz/6c17M2WtMP3D5BDG/eFQ/reLT/wMuXT/18kxC85NkP0dLFO6vuGw/Whv7WyrWcz//zieifh57P0c7h2E/WYI/qs37vuSTiD/uWVB0kkuQPxXsWHJRZJU/3L+/VtXNmz+knyzNHeShP3Fm8KimzKY/SIJSSpnFrD/9FsbspfqxPwWaX1UPQbY/zO8lUn1Iuz+CiDAI45DAP9fwB5eR7cM//HKDa5C/xz9EDaM0wwnMP2tdOtgRZtA/1kSfUKMB0z+KLDsQ+9PVP5L6gQ5119g/ZFD6i1ME3D9kPfrkxFDfPxcb3RKBWOE/eaqtrsML4z9MTjCVsrrkPx31ZK9UXeY/oiRAgW3r5z+1379EwlzpP3i56PJiqeo/vFmCqPPJ6z80DMWn8rfsP5cFUkv3be0/NKyskebn7T+88CR2GiPuP9KujAp6Hu4/KHimJoHa7T+sRzF1N1ntP23rBJoXnuw/sGTLDeit6z9HmC0MiI7qP7vdvoKzRuk/i4D1SsHd5z9ICdUaX1vmP0HJGIFOx+Q/aH8L9yUp4z8GR9WdGIjhP6+Sy1KN1d8/IUbxqy+u3D/RgKo1QaTZP43Rs1MkwNY/kASccmkI1D9x/U851oHRP4OQs1b5Xs4/KOd6Mb4lyj/P7cYBO1jGP+7T6CBS9MI/5M8vVOrrvz9hKQ1rJK+6P9XkiWr5JLY/rBaiipw+sj+yJYgq89itPxBM1vSQPag/woIhgg2Moz8uAGGaW02fPx+Kjecb45g/yVG2oQKmkz/sf1xsLM+OPynPtTDX/Ic/HGJI/z6Mgj+/QEgVmnx8P933a1v+uXU/RdXEW0t1cD+IskfPK8RoP45K0mdMgmI/B6XQcPB6Wz8vqw8VoUNUP1imuk0msE0/6e5Q556aRT8NMaBAdjw/P18Nn1IebzY/pkglOvQBMD81U3fvTrImP8kbMc8p+R8/KywEK2tgFj8I4pUV/h4PP3JFiFAGgQU//jLtY6iH/T5ieX8jo0ASPwcGMb1CKhw/zLy8my59JT+yN/Tw6DYwP8iYtpyHMzg/SnFmV1/dQT8KCjCFAxdKP08cPKjO2FI/iH+ULZLwWj/F+CnX6gxjP1qJ3RsbqWo/5Zv9Bwt2cj/fOqJcbE15P1R0txpXKYE/3v6N69YKhz9lxXWNCqCOP9Lf936iJZQ/2tG03zQ+mj+z+xUuFOygP/zAorbUm6U/nOS1w7ZSqz8RzMThOxuxPylpMQuGNrU/ZNrGypQNuj/XhyPmRrG/P+jXlskCGMM/k410olvKxj+on6w31fLKP5zL41nDkc8/ZrUyPRVS0j/jC8P9qxHVP0oE88xLAtg/YUgVDYcc2z+dIJwH4FbeP0AxRmPy0uA/B1dyQjJ+4j8fLK4r3yXkP5mil4kjwuU/uoq9b+FK5z9MF3ez9rfoP+xX8TWFAeo/xnhK1Tsg6z9oJnBJnA3sP4BdUz86xOw/epBlU/A/7T+xXxcWCH7tP0qCxQBTfe0/JMn+IDM+7T8XwBwzk8LsP5hHq9jODew/M3p5eowk6z819BIoiwzqP0GJX1tnzOg/Hxs15Vlr5z8y331s9PDlP3AqotTeZOQ/P/Wyl5jO4j8zil6tQDXhP8ujzwrMPt8/7JlX7sMl3D89+hy7einZP2bg+eVAUtY/SvaG3Zmm0z88YWTWQivRP9VwtAGTxs0/I766D1+gyT9hlUMDL+TFPwqNpfbvj8I/Pops8UU/vz/sXIPZkhu6P+Yo4iiap7U/IwVHLsDUsT8XQ+yTSSetP5+w+E5rqac/9N+n7EwRoz9mJuLZPIOePzbl06LHPZg/mTLVaacfkz8L+GjrOvaNPzPVLGHYToc/3u2AhJ4Bgj9Jz4lVLKF7P1ZCRK98DXU/TAGfSCrdbz+M9N9gL/NnP//RnZ5H4WE/WCespnuEWj/xINpGSIhTPwMGfO87lUw/YxA332/GRD+uDuAzUwA+P6xKT6ovhTU/YG8hMASsLj/sCk3uObclPyWqENv2jB4/IIvEsQhaFT+8UdL7bacNP+g+CeoEdgQ/wv7EqYAO/D5Oww67Th3zPipI+y/KQBk/ld7qrlJVIz+110Zl/kUtPw/MSUro6jU/cl1eQf86QD84AHQI1cZHP57hK5JQOlE/dvZwdKiyWD/zlAMY5YNhP3mDAnSZlGg/DWZ8aiURcT8Azm2KF3R3P5YPreCH5X8/0d6WS4d3hT9vKwTMupmMP4Va7O8B3JI/vy9qCTmfmD87+9vtANOfP3tklPXTXKQ/QqLUzRXNqT/bwtm5oy+wP08PWnlnHLQ/y+Wjswe/uD9D5Z1PXii+P06n3RB9M8I/1DZIRQvDxT94j+63RMbJP6S29c7aPc4/Lp8pcaST0T9IByxiNT7UP3au15GXGdc/dFHSAbce2j9ZcOwidUTdP71P0dTgP+A/ioQTXObh4T+Z9/gUKYHjP/DIAhr+FeU/18d9+WyY5j/MW9WCcgDoP/UHBQxIRuk//3qnsati6j+Bmg3dJU/rP9mVbmRIBuw/C6TD4eOD7D/f8NdhMMXsP26uskTnyOw/HZZaBU2P7D9k1iyQKhrsPzVX8MK2bOs/DkaUlXGL6j9WlyIv83vpPxdYhMGxROg/CeaxaMHs5j93ADhxkXvlP08R0liq+OM/SNjdlW9r4j+3RpvB59rgP9a+D2Aam94/5UrSuFCS2z/QTRfPaaXYP+R/l4Ki3NU/ipoVCHE+0z8enxsdi8/QP7S+0jD4Jc0/4m+xfI8UyT+erEoNLWvFP/C3TQPQJ8I/FC0H8iCNvj/BsZtvFYS5P50tKl2MJ7U/m7hZ/ihpsT9rRJ0JmHOsP++BFohIFKc/KldSOUuWoj+87PnOmLmdP8sVnxKNmZc/dxcyCr+akj/X9BW0fCCNP9gKibkUpIY/c2POUBN6gT/Prj8fZst6P0i7FNYCZnQ/gGenRXrYbj9NyAW4oSlnP9zcwJB5RmE/nlrTo0GYWT8rGRonPdVSP4/IIo2gh0s/dM/69cr8Qz+dt9lxstQ8P/DlGHgMqDQ/k1dFnsJnLT8QhbtlEcskP5kNwjg+Nx0/9mzQfG1kFD/mLPxWs0gMP9Dr9zY9fQM/8e44nuGv+j7qcAL31yfyPp5CtMcQjOg+KA9y96JCIT+SuhjbrTkqP/3GaoyyszM/5hWSIZ9GPT/IkDg4S4NFP+czlIXkRU8/B2+/kj18Vj/TEvhOy/xfPxbbxzK1gmY/aELDviFZbz+WuxzpSpl1P9spEZL/c30/Ihcldsrfgz8KMa46t4uKP3HaIIw2jJE/fFpGceT2lj8xRRHCP8CdP/YaDlU+FKM/E2K9MVA6qD/9hlRleXauP+cI9RK49rI/vMB7gJJhtz/XDCPmkoy8P+MfVzkxQ8E/67MmEUWtxD8l0laAMojIP+W3oV0K1cw/5/ecFeLI0D9jM1uPaVzTP5vWt8xqINY//bJwrDMO2T8qrA2+Dh3cP3tS39JYQt8/YW+yxNc44T8/SaVmnM7iP+52v9gAW+Q/1dhxuDjW5T9fVF/yZTjnPy7cfL/eeeg/G9/O9nST6T8JKigKu37qP27cCgZDNus/gahfL9S16z+1oF1YlPrrPyTsobgiA+w/lkpb7aLP6z9KKVm1t2HrPx9rcu9tvOo/oTaNRhnk6T8Ur0a8JN7oP2hlst3ZsOc/bHJl0iFj5j/HM8ehQ/zkP+rYcPyig+M/Ii6FlYIA4j87mZapzHngP6jdn4TH690/SyBFR/r02j8YSS5NCxnYPz5mGkUiYNU/SL7B5afQ0j+UNlBYS2/QPynEb9wufsw/4DV2JymDyD/CKqZq6O3EP+Zz35iEvME/rAXb4GfWvT/Z8AV1aem4P+XYXeJlpbQ/f5psSEz8sD8CWhj2k76rP/4Ltg+zfqY/f/SsgnAboj8L3MN/CfGcP8IWcQjc9pY/01Ed6ZgXkj8CjAOHX06MP+MdP4DV/IU/KjJmDsz1gD9lWtHQfvt5P598rdStw3M/wz2DYJ3cbT9BN1TmgmdmP/fvDsrUsWA/po4BIhm2WD+LjGqYUCpSP2ImsjD1hko/gzGxC1c9Qz9wQ7Bs9Lg7P7DPacgq1zM/acObkzs2LD9yX6FCFu0jPyz41UbL9hs/8uSCXaR+Ez9OBv5ITgELPyRUPrSGlQI/gGYoyQZq+T6eVhVWNUTxPqAacDQVUOc+lMLJMRhH3z6AlSNNYlEnP37ThnRLlDE/HprW0hc2Oj8a1gkrTVNDP/+puNVTL0w/GObGQFpUVD9G+ApprwJdP1vdkCM4emQ/BZcBM9qZbD8ibEemPsNzP9aqdltYBns/4r1XJwxJgj/BtQAUB32IP6V5P/PAOpA/89BYvepKlT+JZqMoCKebP8QaS7l+xqE/4BXaI86fpj8FoPFAmYKsP3dNuxdjybE/t2FMq9n5tT/3Sg2xVeO6Pwb5WSNHSsA/QCRyaaiMwz/p0O1PvDzHPw0fSU/zW8s/8JGJWMTozz8fNb9XIG/SP70o2lPgGdU/Nh0xx1ju1z8R0879ReTaP3XrZAR88d0/bp/cpAiF4D/rt2r4UBDiPyGrQThVk+M/u9jiQnsG5T/+WhwAEGLmP/+WItSLnuc/sU/Pxti06D8eUpjDlp7pP0kxJlJaVuo/Alo6YuLX6j83p8Q9QiDrP/LLKWD9Les/DnrTxRMB6z/HBYsy/prqP49gJ96a/uk/5m562wsw6T8vixZViTToP2fjC1gqEuc/pumtTafP5T9f5r50GXTkP3VWLqG6BuM/tbUqS6iO4T8k+kWMrBLgP8ctYjseMt0/pcarld9O2j+qCVJIVoXXPy7Y1DeT3dQ/UzQ/R/Fd0j/9YkHMGQvQPyPZPHAx0Ms/5Xg26frsxz+ZfmhsCm3EPw2NhQKXTsE/HqfdNPcbvT+fOqEWPky4P/WLsmCwIbQ/UU9g8pSOsD8h1gNA4QirP5rk4cgm6aU/P9eL9RihoT+Nc4+jFSqcPwF9pOkUVpY/62wLRXiWkT/+dBk+PoCLP411HH9VWYU/+NhCd+x0gD9Oq2GHnTF5PwVqftGOJnM/Gr2uS5npbD+UwSEWx6xlP7wLC7hDI2A/PRBdI87dVz/UAxK3TIdRP2b9ENfSkkk/9kqgrbaHQj+A48nRdaw6P+Foju7/ETM/W0MV/4gWKz+MAXFijRwjP016Sbtyyho/LWPflsGnEj9UEimA0M8JP4PadlHIvQE/8vBj3kU7+D6t4QUUJ3HwPsUfEYe3K+Y+pBgVrbK03T7wTbKidMbTPlpBQGq1Iy8/jTLflitMNz+5NjQ2mjxBP+uA7fVPOUk/Bj0mYgJBUj8BLn6H+SFaP4dtIF0SgWI/fXy2FKDsaT/ArSgDf/dxPzLRMboBpHg/YsiWvje4gD/xHukJGHSGP8Oero2O140/0Ekgepagkz+D4rA4BY6ZP0vHr1W8d6A/A5nN2KwCpT8pIsv74ImqPyUPBREomLA/goZhyVOMtD9PbEGE6DG5P+/CQ+mdl74/xQcjcL1kwj88MAjG6efFPxyd+Z8i18k/h4TTo18xzj9v8h4/KnnRP2FVLJENCdQ/wDexwX7C1j8PSqoMs53ZP2LtHXH+kNw/vlOsKvqQ3z+0dafAYUjhP7U+BuMoweI/IK+NYHAr5D+dkzurtX/lPyZUMG2YtuY/fQJJSh/J5z+r8Ngv+7DoPxrM6ZzFaOk/dgPEgDbs6T9wazy9TjjqP3Hft/90S+o/z6uVcYMl6j9NDtinxcfpP5XIPCjnNOk/eCXFvdNw6D8G7gufi4DnP+iwZAjuaeY/Vd7PV30z5T8OUzHtH+TjP9gmTgzhguI/2DQYxbQW4T+5ijIBg0zfPwI+1pJib9w/RwkRkxih2T9WJ4qkOuvWPzj9DkTBVdQ/p0xxEvnm0T9YLMZRDEfPP1rTXg3uHMs/jDhZUMhSxz9XndgsMunDP83+tnCH3sA/Y8QLZJtevD+nOM+gNK23P/11VqDpnLM/jmDr2WMgsD/54foRE1OqPysxYM4RVKU/tZqniZUnoT88I+PyMWWbPxOiE9mJt5U/N3M8NpUXkT9lNMOBYraKP+ihXW/CuYQ//G6L/hzvfz8qPwL/2m14P8T2WZGsjnI/LR6qDGX/az+J7WJTWPlkP0s/AwdUNV8/IlLs9CMPVz+K10NR9utQPxe+dYzMqkg/4FJSkonbQT9eVkGUka45P7gd+eEBWDI/OtkWrcgHKj8Y5w2qwFgiP/sgk+YTsRk/TPajhePeET+2HbfC3bIIP36c1YX49AA/GV+PYw4i9z67UmGyBFvvPqmFfS8+HeU+io/0hSpB3D4h2cqO6cjSPiyo0U7x0cg++IzvlOWOND8I96Dfh4c+P9fbXl2hakY/8bODLClHUD/cm291xWFXPzotYnhKnGA/3vsOynNYZz9zrPi62jpwP4+Z5nl+U3Y/yRIqhk1jfj9DOst1pnaEPyWM8IgKRos/kzYYQ7T8kT9lW+v0TnuXP3QCdUuTV54/wv/CQqlnoz+Io7uvHpKoP0QHbekVza4/RkKQkDYdsz9K+MeXR323PyPYWhNolbw/keD//uU4wT9+77BNm43EP9Z7yM/9Ssg/rvbaMoVwzD9emU/NRH3QP+p2ZNj18NI/9bRWLO2N1T/yIsSz3kzYP/Of/aClJNs/7i6GkGYK3j/NQObH5HjgP7eCRo6l5uE/yGkR0lBH4z8nRBXGmZPkP4EkCz9MxOU/XjM51o/S5j/oH00VKrjnPzHq8SO8b+g/zIwZmvj06D/eQ4GBzkTpP5B4rC2HXek/U2bWWNU+6T+grsjV1OnoP9hRlBH7YOg/86F9gvmn5z9MOIvqk8PmP/rbzPVsueU/5bbOLMyP5D8KYEdsYE3jP+g8BBQC+eE/Ab/96neZ4D+fKemrgmreP3vv9vTPpNs/UpmenrTs2D8WHWLwn0vWP0rlcVhwydM/QiHLp2Ns0T+oxM1DMnLOPzSM8glGZco/BHAaXUm1xj/hPll59GLDPy3/lwPNbMA/0B4ZJBGfuz/g96Pb4Ay3PwdnU/SDF7M/s0CPiSBkrz8YvLi3rJ2pP1CNqUPVv6Q/wQt7wCyvoD8JcAp7wqKaPxojSt5/G5U/Jz0+qh2bkD/WyrNtBvGJP+ggzVM+HoQ/0X2O2Ib7fj9bpBNRQ7B3P6ZYqdUE/HE/mUVEGesdaz88mXYnGE1kP+HezInLL14/YSuh9NZJVj+GjIIvDlhQP8Zn/z1xzkc/IL6K3G04QT/Ul0Ohor44P5o0AlyoqDE/E3q9rh0JKT+dtTDb/6AhP/zGdZuZqRg/zZl3CjMjET+5SlsoLKkHPzWS0jAdOgA/2F0VFukc9j7Faxn4YPDtPpljq00PI+Q+hyXOcSrq2j5iJNdOSN/RPsfyRISylcc+meS0nTjtvj7ZmmzgZdg6P6Odng16yEM/MqLT3V7VTD9/7TpuwcdUP+CGN4rtn10/AFJW/B3jZD9hBDbosSJtP/r4JilVGnQ/vUaoyypyez/PMyTvrImCPyZid8aBx4g/exJwWoNjkD9+HE/mVXSVP37z9GIuzJs/+88gNg/ToT/gEax/n6CmP8X9JkmOb6w/WzvfEGewsT+wvUGsFsq1P3vJs7Fjk7o/7pFgvFAMwD8kI59LezHDP6Ydaxqyu8Y/w/1KU+qqyj8jxDFiIPzOP+LJ7Bd/1NE/IaSahs5T1D+axcZbNfXWP7mror8bsNk/gHiwzjh63D/s7TWgx0ffP5O05X3pBeE/CrMzxkpc4j96EqRx9Z/jP2HzliXmyeQ/2difsGnT5T88RHLfXbbmPzAr+WNubec/qenseUr05z8hoQFS0EfoP/IP++ArZug/Ty+qbudO6D+1hXMc7QLoP/lIbIF5hOc/iCh6WgDX5j94pQ0WBf/lP9I886bpAeU/xe2Ufbbl4z9bhBrF3rDiP0feAAgEauE/qVseMrwX4D+0JIAVuYDdP3e7a4eX09o/a4ixSbky2D/0ZiF5ZKfVP50F08BbOdM/Onu9cM3u0D+W0ZNQqJjNPxA8zqYNqsk/WeD8aCoVxj90I8bd29rCP57Ri92r878/tuz70AXeuj85+EiCyWu2PxegVbjmkbI/IUBiutCHrj82pTmKIumoPyWBbi3GLKQ/D5mwZhs4oD/6jrPvG+OZP4Y+aQYwgpQ/lvqpVjYhkD8iUAAiVjCJP4+t3b7ghoM/5W92tikPfj8QtxiQ1/h2PyHRapyNbnE/0Rc0QQtFaj+1z/oJ4adjP/BxPSuhNV0/4LhsH56NVT/d9BNipJZPP3rmsUdN/UY/cjHqKgGeQD/eolZIBdw3P2xH/L1tAzE/B/JxcbEZKD/S2t0xofQgP5UWK8r6shc/XI3TwONzED9R7JkRhLEGPz2fKKOWGP8+eUC5IHcq9T7FHARRXKDsPoZxRRWvO+M+zUfoOIut2T4gI/xfBAjRPuK5ZPXWcsY+4aTmr7VmvT6HUf+oxyGzPmCmiXmEVkE/jzrcndVcST+6R8AANFhSP/7X5Fx9Plo/ltrJKS6RYj8XXvJ5bPxpP2ZfIZoJ/XE/K68RfDmjeD+Q/wAKW7GAP4IrWLSGYYY/T9Z2PFexjT8jujYo1X2TP8NqMkhUU5k/QyC6B61IoD+9yYCpH7qkP6K5bMaKHao/XPM8Rm1JsD8rU3DrkRy0Pw+n6sqVlrg/I9rn4NzDvT+yxyO78dbBPyIXrUgmLcU/YHEJd/rkyD8pNEqoDPzMPyJ/vAhottA/eFvUliUX0z/mUMKe+5nVPwQA0n/jNtg/km/DeSzk2j/vaN6Kq5bdP1YbRM8AIeA/I4z6EXts4T/6GatW8abiP+PD63GVyeM/ukSchd3N5D9P9aVMw63lP2nR+g4AZOY/BgUr9EHs5j/L5OC+V0PnPwFwloVQZ+c/K0I0s41X5z/lbBNuxhTnPxBZnGX8oOY/mj7642L/5T9qVTzKOTTlP8L738KeROQ/u2Vxblc24z8TR+eQlw/iPyQjBlPG1uA/tC/cBosk3z+aztvcepDcP5JhXdbe/Nk/q0CeWSF01z9aj4aUXP/UP4V5jKo1ptI/982mkspu0D+Qve+CYrvMP4G9M/QL7Mg/xeETMwxzxT+0J+PLaFHCP8iMbGQPDL8/48bt8Rccuj9mUbjPaMq1P0mRi9xuDLI/NyonbmOsrT9M3v7k2jWoPwurj00um6M/w3bJqSqFnz+y10v2hCaZPzSyuXvI65M/oI5VQvdTjz94mjI+cXSIP/tapAO484I/TuzIYwsqfT/oMkpBj0d2Px8NokI25nA/p09MZpx0aT9wtwGphwljP2obWwGBRlw/luDAayzaVD97gZmA/IpOPy+wg8XrNkY/sbwNeuELQD9pEX1gGAY3P6EO/MbPZzA/OHUAkrQ4Jz8+aoLSAVMgPyPPnts6zBY/CCkiGGigDz9R7yzqv8oFP9J9Oz1N1f0+cYqYLXFJ9D5moKfrFGnrPvf3kSS+ZeI+yn6/2VCJ2D6jUl2ssUHQPt9hRRlZZ8U+GpHqQzIAvD4zajlNCTOyPpYNZtIcgqc+kurOKGkoRj/rXt5sDBZQP8gi3IfGGFc/OvgwzAJmYD9Fzm+5zwdnP4VSIz09/m8/k0OrmGT7dT9m4VGBJeJ9P34hOZ2sGIQ/kppAM3G+ij9VSXCnypuRPx2u5TAt8pY/76tzHJeXnT9WYym3v+KiP8tO9Xkp3Kc/rlCgDtbWrT9ITRiSgniyP0dEGZyDo7Y/EM1wV9N4uz+LDjRQGoHAP4cKETjvosM/07BGE8oixz/LJhXo5v7KP8BHued/Ms8/X8TgZMTa0T+SOj+GRD7UPwth7rBNvNY/h2osbctL2T/F++QPMuLbP2JOVTS/c94/nkyHOud54D+x07+qn6rhPwD+4fxzxeI/CREimQfE4z/irKTPc6DkPyfLOqyCVeU/ZcmJ0OPe5T/QGWJiWDnmP2fRu5vTYuY/yH0hNo5a5j+ygnu3CyHmP432WIERuOU/6sX7XZAi5T+2V/wNgmTkP0pajQC9guM/dZWW28CC4j98ECnBfmrhP6DCi1IgQOA/s91ooaAT3j/fo7jXDpvbPyD3IMS+Idk/eSNNA9yx1j+QUMsaUlTUPxFfc9CmENI/kPLag83Zzz82AiXwRdvLPxTq2d76K8g/ucU2C4TPxD9lHybaEcfBP9ijDsh+I74/l2dy1tdZuT9LQ3sbLSm1P4FEi3tvh7E/5NdRtVPSrD8YD78fL4SnPxvV4f5MC6M/sU6qWoydnj+yVXVnN22YP3AhuJFtWJM/agfU9gRrjj9sH9tEbL2HP2+oEVHKZII/mgdT+iVMfD+fhYS0WZx1P/kaeoroYnA/22DBBW6saD956mYL3HFiP5CObqoRYls/q3AR9TEvVD/veq9GmoxNPyAgFa7XekU/4X29vFsDPz/R1NwyPjw2P4gSkD+gqi8/Y192dV9lJj8hXokgDHcfP+5779dp9BU/rzVQBdpuDj8bt/7By/MEP1P3LgvCqPw+SYV1X6Z48z4cQjHky0jqPsfRqtf3n+E+PEiRt6d71z5LygV+BBbPPnQmedNfccQ+Ne1vdRW3uj7/qoYgPVixPiVS668DYaY+qmYfDiqxnD4Is/ES9wVMP1w/WmSbMVQ/mIviN7PHXD/EfU0sSUhkP4tSTes9Rmw/7n79Vlh+cz8S6qO115Z6PxZ06pOJ8IE/Cey2kjLzhz8tjxRK6qKPPxjo38T6rJQ/+9ZFmlS+mj96SEiX/h2hPyIcM5bMr6U/NeIvdiwyqz808I5RN+GwP24tRuAovrQ/EQymeEE8uT9CdgBBemW+P/A2zB5HIMI/zCZ5bQxoxT8la6uQ4AjJP/fj1S/A/sw/D04a5ESh0D/+cRWE6eTSPzBUV5ZwQ9U/v9DqlWS01z+UDlAu3S3aPwCIGeK5pNw/RYqEs/AM3z9jqgEK96zgP9pvnAaBv+E/SObQvOq34j9tuimrcJDjP3Ar4ufwQ+Q/eY9IWh/O5D/NWhq7sSvlP/bVROSAWuU/dmWNmp1Z5T8VX4C+VynlP9ZL0KY3y+Q//8uaO+pB5D/kpWcwIZHjP8afm2JpveI/jgS74PnL4T8j50NsfsLgPzlggsLATd8/Uq2FqiH+3D9YbMvxrKHaP7dNabdCQ9g/648KW8zs1T+pmoMLBKfTPzpkuUlOedE/yMT6YUrTzj/osG3FKPnKP72a3V6Hasc/VlLjFhwrxD/61UYVRDzBP4tjeg+kOr0/TxFeRciXuD/SHuaBeYi0P+A6mXYyA7E/aqe6ow36qz/hH2mIbNSmPzGm7A1YfaI/a4fFKKS5nT+qWRmEYbeXP63408M6yJI//tgKZLKHjT/jAtLmUQuHP7dFUrcW2oE/vqS0eGl1ez8zNtc7H/d0P5870gwTyW8/StSVlUnsZz/S4/KPquBhP+lH57r1h1o/qCCr/FyMUz+Z+MJX8ppMP6B3Gr2cyEQ/FvAdNQ7+PT9LS4Ey3X01P4qKDIbpli4/11SSsPKeJT+MR54kM1sePyH53mGkKhU/jywjfcRRDT/GiF/GpCsEP9duwjN0kfs+fzP8Ovu28j5VlQdS4z3pPmi2954w6eA+3yx+3OGC1j6j+aMgiMXNPtW+If86j8M+eUus1gGJuT4IMCdQvo+wPj0yvX+GWKU+Q5H1o21Wmz55fb1/JGWRPhnsAsJEilE/3aaRqMwXWT+sflPC479hP4xpgHhY1Wg/A6iWdZIucT8VqEEBeYR3P/m8WPt9138/kWRyGEhThT8WUn3OrkKMP8OleQcah5I/44Hh5f4JmD8PBv6FcN2eP8Mq20UXnKM/qYG9TmypqD+uy+J4ALOuPyNgtRjy6bI/kPOSvkMStz9o+R2Gk9y7P3vo1H4HqMA/gFcxTAy4wz/EPxtlux3HP9eB0lrN1co/y47Tmgbazj9d5YoohJDRPyUx+QQhz9M/HFC9hwQh1j9gHKFF7HzYP3qaU4hd2No/BwNGw+0n3T+ooVNSnF/fP2n9j+acueA/HyzzDGyr4T/96E7Knn/iP10t8JMqMeM/bmN2lcq74z8aYDSfKxzkP4RBvBkOUOQ/oV47G1xW5D8hCp90Mi/kP8RrSVnc2+M/HZvDFMJe4z/RxGcFTLviP+BJzru79eE/UyQjoP0S4T/SZCzRdRjgP4pxViGWF94/dXev/WTl2z/AtFdPfaXZPxBU2wFoYtc/wqmw8sgl1T/8m0lYJvjSPwTiBnfB4NA/JOVsLgHLzT/twYV60hXKP0ge0sJRqMY/F8zXqlOGwz+W+6xgY7HAP/N2Jd8ZUrw/ZHLqOF/Wtz9JG62TpuizPwt3VhX5f7A/bg9MbO8jqz+Nyz9a1SamP8gBRIx88aE//HjUxKzZnD83yAEcJwWXPy9p6KVDO5I/+YvlWxCqjD+bigc2JF6GP9vAoBeWU4E/XD8ENL2lej8uFCxEwld0PyeYAdb01W4/tCUjufMzZz8Fy0LMvFVhP1T49PjMt1k/RTU4xFrxUj+qcfyUebVLP5S8PTPIH0Q/R/NnLiAHPT8y1FCIYMo0P+z8yI2Qky0/nYDrRbfkJD/t4pG7XlEdP5OJuY8TbhQ/SpRbMeNHDD9vjKGjWHEDP8clvO78jfo+LJw7h2gD8j4hFdpU3EboPuFmb15UQOA+Eas3VXSd1T4pEWjcvY/MPmfWei5gv8I+VClsedBzuD7fHg4OHrCvPjMOGPWXZqQ+Y0iVFMEZmj6zMQpQLJeQPoY/zf439YQ+MRWMo9y8VT/WSYBL0t5eP4e/FjglrWU/LiMW+vEabj/cEBoiTK10P54EslUPGHw/p01kRTzhgj8dOwLNfxqJP3qzR9EKg5A/T9paevZ9lT+LBm/2UK6bP0wUe2Xvo6E/MJKCLUdApj+xIvT2W8erP9WitpK6KbE/UbGWGFP+tD+gqUOMqWu5P4vzs1JLeb4///uKb6cVwj9O8I3Ww0DFPzFzKv1mu8g/ctxVPzSAzD8gIqaNaUPQPw/kd0DtYdI/1l3D12+U1D+U4tX9VdLWP30GckzNEdk/zrrieQ5I2z/NE0i+sGndP1tmbRYLa98/C93Qc0+g4D+1SJNUw2/hP6jhQFnxHuI/f7XqF5+p4j+DP9RGcwzjP1aLlDMYReM/DiRODFNS4z/wBJa6DjTjP095NNRZ6+I/Eele8Fd64j9y/ghxJ+ThP/D9J3i9LOE/FoYkRbpY4D/FQvYbcdreP1D7Qxw139w/uWnl9a7K2j+dzrSsl6fYP7y+qngdgNY/VLWxoJtd1D8vEybQYUjSP3RRjAmMR9A/fdzll9bBzD/OXu0i/DHJP910gxHu5cU/oBYItZ/hwj9KthPiyibAP2CqLkpsars/+LovowYWtz/XEIsJA0qzP6aqTEz5+68/iZTxeUpQqj+YyVCvoXulPyJQvZzfZ6E/WJR8m9T9mz83w7ikolaWP17vqsWUsZE/D6t1UCXSiz9Hfvi/3bWFP5zgNP870YA/cR8fJgHdeT+Gt8RQIL5zPz0YM5Iy7G0/2GcFUC2DZj+qTCtO2tBgPxb+12o18Vg/HBvgRdhdUj/B9KYQpttKPxwGpnDpf0M/SOlRf9wdPD8GvWl5OCE0PxVkDBq0nyw/E8yqwf41JD+mdVSTg1gcP8xOtKjsvRM/qmmJqAVQCz8E8NbVBMQCP/I19TsOnfk+WvMFK/pc8T50fU8oVWLnPk0YL7PJSN8+ih2jqvTJ1D4toHQDpXLLPgQB4J9nAMI+8dKOU4x1tz6Xdh/7qV+uPrHm0fdciaM+dD43UZ34mD60BrlVyLaPPgFWCSDQAoQ+RCO8k/oXeT4hhK64D61aPxTjYeS/zWI/1nE0t+s2aj9kMWqRShJyP5JRx7mUpHg/o4EmKIyegD953ctlqCyGP7bsZvb3RI0/hnRyi5wckz+wC+8m4rGYP8ZU3AQHk58/TEHyC5f5oz8cOMjrJwOpP7145aWb/64/IQgvXkUDsz/xaBecLha3P4d/YEtjwLs/iyYupUyDwD8TH1cuznTDP5OrMf3LssY/7TVIZ784yj9op3/MTv/NP3hWDogZ/tA/DxYULh8R0z+3Lu7owzDVP8QqT9neU9c/63WNkE5w2T8aj4ICRnvbPxgd6Imnad0/Qw0J3mkw3z9Qf2n5gGLgP1vTfxTmDuE/vSTjgTeZ4T9khEPpGP7hP31+Uy8hO+I/cxbx1fJO4j9HdHuQSDniPyudjnL1+uE/qEZf49iV4T+W8+08xwzhP3jiOaZoY+A/4GZjeyA83z9vgMEKHIPdP1SmYV78pds/HB8eyjCv2T+udOrzAqnXP7xMbzlDndU/336CagGV0z8nXBonVJjRP5/VyD9gXM8/oPSB5J64yz+QyuPXUE7IP9Ltq33kI8U/NMbrMms9wj/chYjqmjm/P6u4GK0ZhLo/Or5NNx1Xtj8DoOt41KyyPyOykDre+q4/0OSNgmR/qT/9NklqANOkP2W5FDef4KA/PKP+Fz8mmz+ZjMI/5quVP4y013w0K5E/9O8ToO7/ij8wa4eQchKFP7LcCG73UoA/INqfGg8beT8U2GvbEipzP7/0PWSDC20/CfGMYrTZZT8CLGpCyVFgPy9KYzzMM1g/daLtzYLRUT8dLIfU7wxKPzDZBm+S6EI/gGy8j5NBOz+EJ5Wt2oEzPxBBrLl8uis/eR0FOSOSIz8M92bBpG8bP+HOCs1wGRM/6rplfQ5pCj8kzmvu1SICPysiDJNxvfg+ci7CC87C8D6AXaNDB4/mPgoZil7wKN4+r1MjfBYH1D5uE5DmaGzKPvYXA2gJUcE+DXKA/G2Mtj5WXZWirCutPkFR3wQov6I+COhB37rwlz6msoQphWCOPiuU0SM3JoM+uSXJjlz9dz7y2kyiId1tPvUsZGL6NWA/Aiz6oSuwZj8UkwQdk2ZvPxZIUSpffXU/2TbqLIEXfT84IIiLPnqDP+T1ip62zIk/420PZmTnkD8+b5JnRuqVP0oBJfGoHJw/4oqV+2fXoT8qppwXGmmmPwYZGP7X26s/ovYNMVEjsT8O2OxK4d60PwUCgYauKLk/MwykfvgFvj87P9RPNrzBPwG/kYm5vsQ/YV8UksoGyD8lx00vBY7LP+FdZnY8S88/DZvp9zyZ0T/UUwfJj5rTP2dvk0MXodU/x0B8NFmj1z9GC5kTJ5fZP0DVvajycds/VS9IHy0p3T8lw+zYq7LeP47vltiGAuA/m1sGkA2M4D/rx/3mjfLgPznQw1mOM+E/HG1vYpFN4T9lt7GsI0DhP/wMUHHeC+E/YoJ7/12y4D/xPekyLTbgP2vsvXdONd8/3vv8TKPH3T+2g1/dYSzcP5X8F0M0bdo/JpBCJAiU2D/i6hwCtarWP7aGSZWqutQ/ri2DjarM0j/u2kYVkOjQP7PFMepMKs4/uN8hZB6wyj/x1vM1bmvHP0Q1JeexYsQ/+Ri7sBeawT80MS1KbCe+P6OIyY2Tn7k/ckXkM/eZtT+CcEkHWBGyP2PkkWH3/K0/W6a/kXixqD93reoWGC2kP0jGG+LSW6A/xAp61AVTmj8ObNqv/ASVP85KD7QjqJA/jVHaxmEzij8hmPod0XOEP7R8LBVnsX8/lWdfvLtfeD9PbGUbcJtyP1PJhJCaM2w/KF/S7kQ3ZT/dzoQGnrBfP5kBKoAuf1c/iDxoeQhMUT/XKuaA0UhJP+9LdB9YWUI/izvtvJtxOj8Q5LVawusyPwrP3tcc4yo/ciypMof4Ij8IHKRq05UaP0hs6Y3sfxI/rxe3jfKRCT/5AwfTBo0BP+kitJEG7vc+stsp8RI08D76hDaJxcvlPqTpOM5uH90+M21CPKlT0z7XANZaXXvJPiLDYdAasMA+KfgcwNe2tT50Rh9B7RGsPnCohvh0BqI+XButyAsAlz66EhJwyyiNPjSa6E2UXYI+U2Zw4ar8dj4ogtn7uJZsPm1zzjpgqmE+fxllbVKEYz8jr2gvRB5rP+vCBiJzoXI/7vCt/hRReT+ehUzoQwOBPzVyd6HQnYY/ddVQB9G9jT+DxITqlViTP6ix+/6D5pg/XDBf4gq2nz/N+TXyBPujP7Ni66eh6qg/e0BxrCnArj/2yjUA08eyPxX+DSvCtLY/z/8TWZUsuz9gL4zP4RjAPyIhl5Vs4cI/Y55C2O7sxT9cE0d87jXJPyJFYe9OtMw/0s5YnaQu0D83C61fwhHSP2csMnip+9M/EKu8HYfj1T9MOG77zL/XP+E8QGN/htk/iWj7Vo4t2z8nVhATNavcP8iMThxb9t0/T/rkffEG3z/QP1PyRtbfP5G/QxGnL+A/xsD++GhP4D908JpzykngP0QB3wYtH+A/MuYhGNeh3z8kxvXukMLeP5JKAiOlpt0/259dyoNV3D84KbcYntfaP0yzcnUONtk/mmz76z561z8oYIWWkq3VP/efEh0W2dM/zXeLoToF0j++S8iJnTnQPyTRezy9+cw/QyIV+AmpyT8Jmznp5InGP2Hv3GXIosM/5+lvzv33wD8CuchOkRe9P+3TEH0/vbg/CysuLN/etD8+YCwaw3exP6hV89+OAq0/1LVkCbjmpz/0Bh3AB4qjP2c9W8cYs58/58tQtzmEmT+svgw96mGUP5DWtJZeKJA/dvM/dm1siT86kUUf49mDPyQZIoewxH4/dD/ahdeqdz/1tvq0CxJyP1NuyHgoZGs/iBRtmZmbZD9r7gojYchePz5hYtD50lY/Dgb2nBjNUD91PELJyI5IP7JWBbDS0UE/aIopnFGtOT9Nq6pZcF4yP9AUgq/QGCo/0EK8fJVoIj+ghyJVLsoZP31BjXm38BE/p6NaHrjJCD+wQor53wEBP6oX/qzBLfc++7xv4Q5g7z5q79yIehflPqrNPyS6Ktw+oZpnEJau0j60dzh8+53IPhQqN+iLHMA+iBoIA1LztD7bSSbMaBCrPhul6jrlXaE+morLILYklj6SxbUDHw2MPu6lYqM/p4E+hJA9S7QTdj5tx/zQ325rPt4YVdSp72A+YmsUtYrHVD7MhfhOtEdnPzD4X9S6DnA/uzatI8LndT8B5HH6ko19P12nW+eRt4M/F/4NgwQGij8MOEB6+fyQP1if8Osy8ZU/Do8RwhQKnD/XR6vm6LmhPyunQ2R5LaY/XePBDD91qz80+btYcdKwP6cF6yZ6ZrQ/3BYXz8l8uD/c+KoqiBi9P+fespClHME/crqjHT/twz+Hd+/vc/nGPz5nPBssOso/hFAOMcalzT/xZMClE5jQP9m6NRZ2ZdI/dCV1D94y1D/SiMsHXvfVP9gtcgCPqdc/BY2xZ+M/2T/6sdYqAbHaP/zpPEwe9Ns/pgMu7loB3T9UaPq7E9LdP1eufvInYd4/V879+y6r3j/pgEySmq7eP0havZLDa94/cjOLBuHk3T9+kcc96h3dP0B07x1mHNw/wYMm2Crn2j+Tr68JEobZP16AncelAdg/CJSnPsti1j+RtVllb7LUP7F9cck5+dI/Vlvi0Eg/0T+WefHa8xfPP8E6Vqd+y8s/MaG9qgekyD9oIE1EOarFP4mnF9uP5MI/OC79x21XwD8ZAJazgwq8P6CzufZ33bc/xThqzRYmtD+LDjoCROCwP6PakarjC6w/niOblksfpz+04Ke65+miPy6dTMyws54/4EdS/eO5mD+M0/uHrcKTP2QWXXC6V48/VtEOlPqqiD/4dsNNjkSDP8rXx8GV330/+fGPli/8dj/y4b5Tt41xP/UionbbnGo/6/69RGwGZD9GgsL0ZepdP5T9RtPMLlY/yf75FmRUUD8RdF/TVt5HP3JJqrydUUE/Tr8SIRj0OD994lwoa9kxP/UneSbeWik/YNI39MDhIT8Lp6Bp4QsZPweSIZ8zaxE/LGJB+XUPCD8eCgyktoAAP0aqU+mqe/Y+BJE3xfFr7j5I4vnWJnHkPgZ16f1nSds+3hSa090W0j5VJ0ar3tLHPhFJt4vKKr8+N9Hd84dAtD41bGsgTSWqPpbFfEc8xKA+eRFfEQ9dlT6mWbBHRAuLPq9f0Ae9AYE+3dY7uIJAdT52acZzA2NqPnZNyq3SRmA+nB6LhPrzUz4M4xatKE5IPlgrcrRxhGs/BH8NIEHYcj8wEQUmKYZ5P50t59Q+GIE/vt5edMalhj+vFVMAj62NP7N/En5MPJM/BEl20eaqmD+LejdWEEyfP1B8rI7+pKM/3cuhZvlmqD9clii4I/+tP3GISiEFP7I/cBZM5Cz4tT97mj91yC66P9zP9hFc474/OiL2WU0Jwj8gjsyddNrEP/D4YkQD38c/6ymUkHEOyz+r1iSP2F3OP9N+GZEM4NA/NeDdoBGT0j/iaIU9rj/UP46m/0ER3dU/uV7eSDJi1z9HRBkfJsbYP7Z+Wah2ANo/AQZUbXkJ2z8ZLFjxn9rbP1OvoCy9btw/AmCpITzC3D+6QVBqRNPcP02ffrrKodw/nqE5m4wv3D9wZ7Tu93/bP8ztYgoAmNo/y3IiRuN92T+5t96z5DjYP2fRkzv+0NY/NAJwjo9O1T953itJDrrTP7sOWDq7G9I/qDyUIWB70D8OiLTkMMDNP9BP3oVNoMo/XHnXUq+hxz9ZGfzd48zEP2KqLoZmKMI/vbjG/F9xvz/hITB7sAC7P7b2cT2NALc/QlDQntdvsz/iEwWgAkuwP0hwXqMqGas/WDMnGlRbpj9o1i9kykyiPw5BKyZ+uZ0/GcsAMQf0lz9195hMQCeTP2dCX1YoZY4//pvlIe3uhz8cqL4TtbOCP33GMgrdAX0/2l2qb45Tdj+lGGExQw5xP+jNHZhg3Wk/CwVhkXZ3Yz+oaGZYNxZdP2xPbaZHklU/jkpHHzvDTz/dNdB8ADdHPxNqaG5Y2EA/kj47rFhFOD8N7m7cPlwxP/dat5WUqCg/xhYJQYRjIT9fv98oJVoYP3bWXw3N7hA/5LkQiVJiBz8HqS4f7AgAPyg6rJvc1vU+SRFmw4SK7T71IGV539fjPuI5YQQseto+9rayO5eL0T6+px7EwRjHPnzfPOyLM74+ssqZhESdsz6LrZKf9E6pPqytT4hcOKA+uYE+ZJanlD7xKx/iOSGKPqPvh963a4A+EupqOFWBdD6yN0Mo2HBpPomWTUK5XF8+Uf3TsCk1Uz6+MTiHxmBHPnG0MBYtRjw+1mc7k1EecD/HvSVvh+t1P5CjSA2Ben0/TME1p16agz/dzb+GRMmJP2o4/hqGxpA/SnB4l2SXlT/xLLbC+H2bP5kC38EGUaE/4+1Pg4GVpT+CzLfy/p6qP0p2QIzyPrA/c13sGqGfsz9LvKKnyHW3P4EVZ8u/wrs/Plz8ozFCwD9CO5MsTNrCP+Riua93pMU/OzeOqziZyD+2xOl70K7LP+jlvOxa2c4/IpB0K4UF0T98vOzuQJrSP8dSmKWlItQ/8ke9+DGW1T8b100ObezWP3BMWIo5Hdg/p6lqXSgh2T91K/K1xvHZP6bS/pPiido/rTOT/sHl2j/kZ0imSQPbPzYfHMsQ4to/GgX/a2GD2j8jFWQGJerZP6hNvV+/Gtk/JQYk49ka2D/UtLj1IvHWPwoVhDYFpdU/Fe7J4lo+1D9n7u2NIcXSPxO7mwkyQdE/DNpvmf9zzz8agjjZxGzMP/BkRM7VeMk/VNo4Pouixj8KltMyUvLDPyn6KJqhbsE/ogeX/wo4vj8iqrziePq5P8RvkjDGJrY/IBZ+ulO8sj+cM2kDQnCvP2oWG6KPKqo/2xqqg+uapT+V+SHWvLKhPzbMk0aJxJw/4sonD6Aylz90KhAVmI+SP8xtQhfqeI0/2RjNDiU4hz+7dw8pNyeCP9eB90BJK3w/3kkImrywdT8/RPqKfpNwP5S1aEFkJWk/E6dySnLuYj9/TJp4YUtcP0fQVDQM/VQ/2ALDUvPoTj9MMq2KTphGP/AltYulZUA/BVAWBoOgNz/PHVQJfeYwP0voL4JMASg/SjuhiWHtID+/asQYPrQXP6xNTk75ehA/TmeA9YLBBj+qQBgJ2jP/Pma2BDaCPvU+eC22rpe67D7uv9ZqzErjPgK/26TVu9k++DQcIO0L0T4pmfqLfG7GPoq+BS7DUb0+Cftep28Isz7inm404ouoPnvntvyIcp8+BTW9fvIClD5VpIAbM02JPuByS0b+x38+hCWpoJrUcz58m8nQUZZoPrAY9SfnSV4+ii6tvmGJUj5iMxjBTotGPlLjCox9Pjs+8XUwZaJbMD6/G/Bj5bdyPxe+UqWgRnk/vamxXi3ggD8h4ljFLEmGP/4keiOuG40/bxYNK4TNkj8vtdt1mgeYPypqPt1tYZ4/oBhsdy0Aoz8W/teIEoSnP8KFOYmEzKw/VHp5xGRzsT8rRDKoE+60P8YGysxb2Lg/WCYEVCUxvT/gyMIl2/nAP/FRTaKoi8M/FnlQBn1Hxj/loF+3tCTJP1IvWF6bGMw/Inq/cp0Wzz+d6I9SSwjRP+30HaOde9I/mR3yY0zd0z9TVHfMUyXVPzhukInzS9Y/kyDRj/1J1z8PyyZcIRnYPxqB7EkvtNg/bnlQDFAX2T/ZNGcMLUDZP+Xa314HLtk/XID1ILzh2D9WuoE7tl3YP7OYXrXOpdc/tJDdyh2/1j/59Gnbv6/VP+Rr3NiRftQ/F7A2Neky0z9lQSRRS9TRP6B89SwoatA//GTDQDf3zT9xQWxlbx7LP/O3vcqzVcg/g26/4BinxT/VZZZH5xrDP6miONKNt8A/PkvlGVEDvT/Omy5OM/i4P2ZY/xlhULU/UTJTfrYLsj/Nu2Txd0+uP2J1Rm42QKk/WPk7nyXepD/dDJCMxxuhP7lqmMjT1Js/cj56WaZ1lj8TEXjdpvuRPx3wEPjdkow/+3Qx9H6Ghj9ob0Uf8p6BPzCCK66aW3s/4GfXN4ETdT9L640GOB1wP4hsm7aSdGg/GTHovxlrYj8J+EY/colbP+7o7Ha+blQ/YefxR14ZTj+vNMXGzQFGPwlKvvhW8j8/aXW5SQ0FNz8B0WCcvHcwP3Sh+UlnZCc/gM5nIOJ+ID87LiksfBkXPwqQIuI2DxA/hMK7QkosBj+FFjQFYWb+PrVbXSDXsfQ+K+FmJxL76z4t5dM0J8niPvsDre9NDdk+pzqw4ByX0D6U8JdSAdPFPn78Rjb9g7w+nd3eyQuBsj6yk/m1vdqnPtuGimAYjJ4+Vwd/xOxtkz6vPjnUko2IPjAjpdoD034+4IWSw+w4cz4lPfxundFnPt2UQyzSUl0+MgbygB3vUT4tAj/Sz8tFPsS9vlMwUjo+sGq+sWiVLz50ixZQWtQiPt2ceNpCjXU//BwSHrvlfD9/zxJacSiDP+BVQR43H4k/BU7/i3ZKkD+/MqLYDuaUP0A1BjA6hZo/k/b0FJ2loD9k617pI62kPyGpnWvqaKk/R7OSPUfmrj/2hr56jZeyP9z5ESpaJLY/8Da0h14Zuj9U4TgHIXO+P0vVNMc6lcE/81iJch0axD+OOURMocDGPzW8uiw1f8k/Tgf2m3VKzD8Juy7tbxXPP0CrK8b/6NA/0LUDJKE40j8dVD9ID3LTPwURIovqjdQ/SAnqBkuF1T/snsfgCFLWPzcahgz+7tY/jdi4rT1Y1z9jO2nTPYvXP7h3xCTxhtc/WVoVHM9L1z9BdkKMytvWPwkJjks3OtY/SUdv5qBr1T/+JssZlXXUP1R0j3VlXtM/T2uI5eMs0j8DHkvzHejQPwFGGsg0Ls8/sMwX0ziBzD/GaHYE3tXJP7IcPtd0N8c/aN1WhMmvxD9IR3RK/EbCP8/zNwNwA8A/AWJsNZrTuz8wX44rLPq3P18O7XKUfbQ/3x7NMyVesT9xKOlN1zOtP7N1j6k7Wqg/v7he1RAlpD+LSQ4B74egP1gTPmdZ6po/TArZlw29lT8HSiypW2uRP3IYMy7esos/hHjsv9TZhT80gpfewRqBP6gtqbWPkno/sRavg6J7dD/25u8UfFZvP0HVP5CYymc/YXo4ESjtYT87owOw+c9aP1821KkE51M/Pl1C6O1TTT+Gm0YND3NFP49JRYYoJT8/lq96wnNyNj9DIOywmQ8wP5zKqMhO0SY/GeHlLJYXID9fegooOokWP4+adXUZVg8/ij6tdfihBT8xTtpVb6j9PsPPKZ8lMPQ+2NDv5PFK6z4VAOqfOVLiPk6y5ZyVbdg+Lj5R63Qs0D7mgFbEWkXFPgi0L2bpyLs+c/GnijMGsj44rlWhUDqnPjICC7PFu50+0mVNWG7nkj6454IB5+CHPsDQNaqY9n0+IVNaMgytcj76Y5ZiGyFnPgoe6gZhdVw+hfqq7wNlUT6Ts4FwkSBFPvxyny8Xfzk+qORewLWSLj6UV/8/xTYiPgyWaHGbkBU+kQ7ojiibeD+zaeE+hWGAPyisq7VskYU/N7B4A54VjD9vSJihphWSP1gUPfuTCZc/22F7Mq0HnT8zbzZiPxiiP1LinQM9UaY/XNfyZBI8qz+0iKykhnGwP7dVf7o9prM/g0U3m9E8tz/oJZBV6DK7PyQ1o0TFgr8/RSuEVYARwj8liqmgMoPEP0w1xHb9Dcc/oq6MxaGnyT8U9oTZVUTMP9gG6QIX184/15GC9Qip0D+miLaijtPRP0Qd93wg5NI/QH2tWCHU0z+tL437l53UPwUYBv1uO9U/QebDs6up1T9vpVLvmOXVP0wIAv7i7dU/UPEfcKPC1T/h0EIWXGXVP5/w38rh2NQ/1zajmDgh1D9RUrirY0PTP7AsdSMsRdI/hTiFQeIs0T/ZieSWHAHQP7fLRV/xkM0/YQ4Qx8ASyz8rh/3OrJPIP5SZsiCYHsY/rcbF9wK9wz+cA/ww4XbBP/aHolELpb4/CP0unUKpuj+nTADMpgC3P+ChZZ6PrrM/xJNcrr+zsD9fs/8GiB2sPxHou6q1eKc/cTI73bZvoz/J3cpzaO6fP/JSIuAQBZo/8O0kycUIlT+nZZgKo96QP7CvuqzB2Io/Vt+1TP4xhT8M2BAVgZqAPzl8rnXlz3k/3WctP+bocz/dlpUQvnpuPzKKLh0jJ2c/hwhDall0YT/WzL4uih5aP3fMi26HZVM/Rlb8ohiYTD9zrVBNp+tEP3RUqt0aYz4/3QUIvzjoNT/ReKe8alsvP3guRvV0RyY/Vv+rpChuHz9X++sH3QIWP3a3+nETnA4/UcVrvukhBT+OwCqPGfn8PgoomMfFuPM+GhnzGEmp6j6w75Z5XOXhPphUBDXD29c+YLwIvaaWzz4YuhrqqcTEPrDOFLRWH7s+tpP2oxeXsT6DKn4jg6mmPl46c6gZAJ0+7sYdMn1ukj5WsKmk5EWHPgQa8VsJMX0+xQxxd9wvcj5sfU5RWoNmPtHvwjO3r1s+YLu0nePpUD6p+MiRDohEPuS+HLpFwzg+6gFtssCsLT4cQ2+u0KohPlrMnts+5xQ+qoWRcmyTCD6EMvjNs9x7P3f5Ykdha4I//J2YO1EViD8pNbrcKiSPP3c+DinU6ZM/C5OcvsUwmT/cPZAFr4WfP37Ob3LpgqM/yb/756blpz8p9o4YoPWsPxLL7P/2XLE/VVfg/ZuatD/aGn0CZDK4PwFsSIDfH7w//Yx1yZ4twD/rRO5hkGzCP9Uv21ZOxcQ/xVEO57Auxz+hCqQXDZ7JP5/eaTV7B8w/GoJWjjNezj/QtW3dfkrQP8Bt/aFWT9E/rsP0mlI30j9YPPSvrfzSP5+0l9tpmtM/smJETIYM1D+4SZe7KlDUPzIUwGzFY9Q/Bg+NHBpH1D8SAPsnQfvTP9InjTKXgtM/A02Xj57g0j/f0U+M1BnSP34qcGR9M9E/ww0RHGoz0D9fuUZUdz/OP/BCkJ5N/cs/4G7RVXesyT/hVrhMZ1jHP/D6MGOPC8U/ki4WOiDPwj87vVhR3arAP0qFItoKSr0/kVDy6puEuT9/7jox3gu2P90yBJl747I/o2Kv36AMsD8ATw6sqgyrPx0d4ki1m6Y/Z1p7YR2+oj/NRbKbKtOeP+o+PcPsJJk/FZ9vBLxYlD+nWl+eZ1WQPxJSV91cBIo/I5WQ6tGOhD84mSCZCR6AP9KrNVJYE3k//qK/EhJbcz/zPkl506ZtP3yI/7PgiWY/mGlUNGsAYT84KVi1uHRZP33xzeTx6VI/iCXreFnlSz8B1dd+L2tEP4QBVAmQqz0/1x1OXORlNT85atACa6MuPxMH7ntTxiU/bBi9qfK5Hj865ypj04UVP2k/5FmI7w0/KKjgqYWrBD9dJMVvhVf8Pggc6oEcS/M+NKvj6jwV6j7geCZv9oHhPlbH21sBV9c+l3LDjknmzj5JFr5TJFDEPh617gUxhro+CyOQB/0ysT7HSvVrWSemPklxk3DDV5w+O1w+gjkCkj5N+30wZLuGPulghx/SgHw+A2IIvmDAcT6RmpKlEvdlPlQgsO0uAFs+b7nmuq58UD7cFu8q8ABEPpJiJogKHTg+s5qyWmnhLD5c2WAfKS8hPqNkCHq4URQ+mCFXzKnfBz5hbei2bN/7PRqXRytdS38/SnkGWZKLhD+Lr8OhNa2KP4My1pO6IJE/kF/X9NDAlT+I534px1ObPyknpXvF+qA/ZoRkbMrfpD8gcNWvnWOpP4jZXITyja4/OE/j8Usxsj9+7NmySnC1P2EZ46+wALk/ALVanCDcvD93vlcbeXzAP6B8/jcSpcI/xue/67zfxD+miU5I4SLHP/H4Oh6qY8k/8iTch1aWyz+ABtkGnq7NP+7MAa0ioM8/vSUEw3Wv0D99PXRK8G/RP+QSJqegDNI/x/P8SoeB0j+ro4v1sMvSPzyqb0hW6dI/jHnUhO3Z0j/7IYiDLZ7SP2DU3e4BONI/xTIAtnGq0T/SJ1+JefnQPzz9PN7cKdA/Bflu4eCBzj+q+t7wwojMP7jlEYf5c8o/GsxGZPFOyD+PNoVFiSTGP3BS76S//sM/d0QFIXLmwT9zGwnrX8a/PxSEMVM/9rs/ahLF5+1luD/BFcHOBRy1P0ySRJ17HLI/Stquw77Rrj9tbAtTWQGqPyOIPJdGw6U/WeX8l0YQoj/FWQi6G76dP9HogjDcSZg/skeOC9uskz9Ovmb1JJ+PP4zuoEaCNYk/gBqI2CTwgz9Bj7iBaUp/P8MV4G6kXHg/4itp4OvRcj9yUHbKWtpsPwfqSPaA8mU/ZZHdPByRYD/8V8L6HNJYPyDd1bjxc1I/Gt+W+i87Sz9MurmPRPFDPxnOI8rw/Tw/mBn2SQTrND89zjcFifYtP4LBv1RrTSU/NTgJfc8RHj8nf3DUlBEVPw53q7KyTw0/+wgqWz4+BD+YAbmp6ML7Ptnwp5ma5vI+q2jFCwSO6T4rM4f8eifhPn2T2juN3tY+AGoO8sVGzj6xtxJqEufDPgFy6sd+/Lk+vva0JzvZsD7actVB8bKlPmj7HlaVwZs+DRE5WtuhkT60qhFSXkCGPp2UD0ua5Hs+AGYH27hdcT6LU6STIntlPrnQTuFTZVo+2+2eknccUD4gMbuVCIpDPsHX4inpijc+aM0S4NIuLD5dSmyRpcIgPgFeE5mYzhM+L+pWkR5CBz5yhiwpOSP7PU/6KV7Edu890op8FoJvgT8GOVNGULyGP+NjmZI0UY0/sFTrcIqxkj8rVBsp+ZOXP/+rPONfap0/P+kmGbAmoj/NhArBHymmP0BdQNGexKo/gc6ILe39rz/wbYPeyOqyP0gNyDaKI7Y/ywhghi2kuT+B4s9hnGS9P3FQEqjPrMA/KB74NHa6wj9pKy4OsNLEP+QwrqKw68Y/gyBbdrf6yD+fK8VkafTKP+2HKmk4zcw/WagmxdR5zj8Kr55toe/PP+wZLpCSktA/qdx0vjgJ0T8eElT6vFjRPy4hKa0qf9E/XLLjGbN70T+HjTnLs07RP5DORRGv+dA/2j/QPjd/0D8AX0lTnMXPP6qF+UJ2Uc4/uaFDIbSrzD/kIymDzd7KP0CBO6WO9cg/vWMFbbH6xj+hc8KPf/jEP9k9SuyB+MI/YqAo+T8DwT//OBjPIUC+PyIWWMP9qbo/c/DZXndNtz9ihzM+SjG0PwpLPrytWbE/ikk27huRrT9wYfxrqPuoP/aRu5Fx76Q/s2PezDFmoT93xGH+Lq+cP1FRgITLc5c/CFLfzwsFkz9nM50nF5qOP8fAMyEDbIg/up8nsctVgz/4lRJet19+P/5CgRmGq3c/ZfLxCjpNcj9JqO7c8xRsPz4Adwe1YGU/8fpv0ywmYD8iqNaNUTZYP4EGVCk3A1I//R5kOyCZSj8NQdFJh31DP64UqlisWTw/LZZFiit3ND/MZt8zIlQtP2mSl1lE3CQ/GctXCQ91HT/tvTpkoaUUP1nKM/bZuww/OqcyzY/ZAz8mG8K6hzr7Piczftu7ivI+oVXtYOUS6T48GyBuadXgPk/cnw+1cdY+1/Ks9ye3zT48FGnlzYjDPlr8Tbpegbk+f0U2aTqJsD7Q7nvVf0ulPrjttLWBPJs+7R7LlLBMkT69/MgS6dOFPnJ/I3YwW3s+uAgfrR4HcT5LwJ6Wig5lPk3/AIPe3Vk+38Nl8dqQTz7ky4uKTyJDPtHJke+UCzc+KWIi/VyTKz5LXSgqQ2QgPog80D2fXBM+ErnMnEG5Bj43lVgZzH/6PVHsFyC6tO49RVlBuIqt4T2L2x1IBUeDPyxq5tQD94g/sc6JoJb4jz98ZGNh8D6UP0OvFnZeXJk/CoBTLDVsnz8/CQ+2tEGjPyMRMVdgWac/vyRo55oCrD+Aj+l3l5+wPyLAyus5hrM/GqXa1lSxtj/rDPv7Pxq6P0YbB85qt70/XQSLcC++wD/my9OE9KzCP3xGNIg1n8Q/FA3AlyqLxj9f5eTVYWbIP+Lq4wIdJso/YHplW7m/yz8uGBc6HCnNPyDg8VweWc4/5ikShe9Hzz8kmux4bO/PPxxfzBuxJdA/X0tkLd0s0D8ckcIQRw3QP1ZC7kgfkM8/NCMFjbe+zj8r9zlGcazNPzm9wffsYMw/yww2rfjkyj+SgCypLkLJPyivdhyRgsc/f4hZaCiwxT+A7DDaqNTDPwqjfe8j+cE/eejOHsglwD8O4VnsYcO8P0ota2mQZbk/N5j64W47tj/xZY3m0UuzP5Jvk2orm7A/178h/3dXrD/8RtGCp/unPxgk67o6IKQ/hyM+4du/oD8xkn1QVKabPzz80fSkopY/8SRM6jVhkj8Mc5csdJuNP4CINN2vp4c/bb/iypq/gj+GQxgur3t9P5ct9Ca6/3Y/TSgFs8PMcT9u+U4zQFZrPxRkKbkv1GQ/2vNzwL1+Xz+bx/nl86BXP3zSeAZ1l1E/f8DQu7L+ST9Oa3kznA9DP+te/h84vjs/JbemLvIJND/VskAjnLssP1csi9tsciQ/HI+1XQvjHD+uWyz3gEEUP2DwS6pRMww/iKWeHP98Az/GrMDTtL36PmyvNkAGN/I+dvvQxDaj6D5svXH0S4vgPszR8MfWD9Y+FJViJZI2zT6028ZlwDTDPvCt9vEFFLk+AAMmu3JCsD56OSnJT/CkPo12jUSYx5o+0+mm9hoCkT5Oq+xKNXWFPnVDdgWH43o+aBXVyuO7cD5Jk3JYarBkPozEbPavaFk+OyKaMLT/Tj7E9eGc3shCPs1yl1vsnTY+1ulJI54NKz6SDKp2IRMgPrQNgmO3+hI+FDPvD79DBj5rbugHh/P5PaTw04o2Du493fnFLEJL4T2FXRdGt8bTPYhgOnK/JoU/KBPmaGk0iz/QNJLoAk2RPzJruAMbw5U/QZmdhvcSmz87fxzZgqigP94m5o8iR6Q/YRwJRmZrqD8PCm61IxitP7I9XwohJrE/k+b4gwsBtD9Tvy67cxe3Px/Zx/BMYbo/4z23EtPTvT8IjMXn0rDAP3CmoqyEfcI/ypk5ciZHxD9pC60gKgTGP7qQU5yfqsc/1FbLa5MwyT86/Ytnc4zKP0D27NRztcs/yJklB++jzD+DtInLuVHNPy/tBoNnus0/ZIynzXnbzT/fWW0BebTNP6h6KC70Rs0/Swu3C2mWzD/4pu67FajLP3kvrqW3gso/4VILwDsuyT92PEBZZbPHP9RLZ7JwG8Y/rVLNsLZvxD/6SONvVrnCP/4MIb3oAME/wiDIHYGcvj+GYa3idFC7P+9D2JE3Kbg/lHVYfwMwtT/yMQ+WvWuyP71TcAMUwq8/Sh0iyeskqz/dpi3wYQGnP4MzfaujVaM/FPFTvj8doD/JLP8FeaOaP9t9ix1R1pU/tt9WB0DBkT/R2IVwCaOMPznSf5lY6IY/v+62jWYtgj94KmHxA558P2ao7EP+WHY//OZ661BQcT+gGcc5451qP9XHg66lTGQ/V86t6Ou4Xj90aDRrpBFXP45EeatgMFE/AX+VTHRrST8Pot1rK6dCP1X/6nMPKzs/HQcZEvWiMz+SLXsQZCwsP39eNzl5DyQ/y09W/idbHD+HC7jAwuQTP4eFB4F4tQs/qRkP2hkoAz8myvjOzkv6PnfuTiQJ6/E+cTuI3Fs+6D7TnHbItkjgPlyU5cteuNU+4C0hqTvEzD5hW/gpYurCPtJqKQe+s7g+BcixUGoEsD6kdZFrv6CkPsj1CZ8DYpo+fUuNgo7BkD4XpXhcjCOFPq4sfxuxfHo+fVRNdm97cD7Po2n5/V9kPtn5h3fOBFk+UxnIMz6ETj6wl+kr7nxCPt/h5S31QDY+bTiwZl6cKj7P2yRd/pwfPicibOHypxI+vxlMKHPgBT4ZdrSbBn35PQhvGlmLge09ZGyryDf44D1Ra3i6NWXTPU65fLIfB8Y9zL+1uqoIhz+F7cV0u2yNP//7THTklZI/mm+HhCM4lz/+jeq10bCcP+mcmd5yiKE/JHf1oJ0ypT8zAUBWlVqpP2QJJ3KUAK4/VDXp3GGQsT/SW1/SW1m0P0MzngaMVLc/2hMb/L54uj9+4KNsSLq9P+uIJVCahcA/KdMhoc4twj9p290CEM3DP2UO9m45WsU/z8uAkAfMxj+5CfxudRnIP4B1BBgbOsk/DiCFy4gmyj9jEFY2mdjKP0lzo7u1S8s/SjZ9pgh9yz8v6I1ImmvLP0tfuXBXGMs/70mSJAGGyj+Mg5MCB7nJP/Qh1QhPt8g/mHkeku6Hxz8zRncd2TLGP6M7/NeJwMQ/e/Oe4qw5wz+6i2D1zKbBPx1VnlwJEMA/s6Xm3q75vD8hWow8o+e5P13/8lsq9bY/ojqdaF0rtD8po/gOKZGxP2tdQWu2Vq4/8Wab9Ir5qT8xpHh53wymPyYJIpSrj6I/hvKZeq38nj/HC1iGiKaZP6gvXYC3DpU/8UcpSBAlkT+ORLoDpLCLP0eF943NLYY/B8wFvwOfgT8Ym42pacZ7PwnfMjsRt3U/aKQK5qrXcD9BUgZ7gutpP9VnAHjNyWM/S63UqW76XT9n9oV3BohWP8aamPOxzVA/pWVt7PXeSD8BYiiE4ENCP0WvB0Sznzo/x713ktVBMz+ofa9l7qUrPx2OenYDsyM/FqXKOdHcGz9FYFy6/I4TP4OjNoK3QQs/MhmXZHXaAj9qwJA0QOT5PiL2fYtcpvE+JFrSAMXj5z7OzX9fRw3gPsd7cNHGatU+ekt1sW5fzD5oj/HiOKnCPir7hG7jX7g+71op9Gidrz6T8JYfP1ykPnAvUxgHC5o+fuiW+4+KkD7jFAovTt6EPnotpOPfJXo+7hqjzzxFcD6nGgStmxxkPr0oPzdisVg+VwZ1LWgdTj5PZii60j1CPgSLU/fY8zU++5YIHJM+Kj4VR8PUbisfPnfgCuWGYxI+FnGE02WOBT7xbX4dHRv5Pc6wnqdLDe09OR6rKJCz4D19SSrPihTTPcEMn/fYqMU9NbzyraduuD3I7CvgVuaIPzEg5C3jl48/xYRpGQLSkz+Yn928NpiYP598Pv9CL54/JubgmDxSoj9SP3W/PgCmP4VPxK/8Iqo//lPtvDK4rj+sXimEwNyxP7DchaYFjrQ/y81t3yNotz+cGf9MA2G6P3MLWIhcbL0/6HwBm/49wD9CCSpuFsDBP/p8QmQXNMM/UfQcu22RxD/qLpzvpM/FPwg5XsK/5sY/JdWKio7Pxz81xxux/oPIP/7gGX5e/8g/BOLDEZE+yT8t+9hnL0DJP4vm2oSUBMk/zpdBUdSNyD/yV8QNnt/HPzbz45gM/8Y/4bJX1WfyxT+Zk5BO28DEP3PFya4mcsM/c/k7tUwOwj8JYC8eRZ3AP1fercxqTb4/9DPqHmdjuz9pQFRGKom4P7qDN2+XybU/HEtYi54tsz+k1TqHK7ywP/siRP5a9Kw/zpOAr2TVqD/de+3gJB6lP9EGIbJPzqE/5OsdCTLGnT+/0bHdbK+YPyoCkva+S5Q/e2pVmYyMkD/GKEscEcSKP/TsCmrfd4U/tmrHxEcUgT/WhKy2lfR6P1LtujKzGXU/7TBsGZxicD+BPQvMxT5pP84K9ahfS2M/ASclBNRCXT987K9SwANWPzL42ysjb1A/s5nGocxYSD/2aqBWauVBP16+98ypGzo/0Ed4STnmMj9R2W8/ticrP+LdPtaqXCM/jwrtgntnGz+hYMYfyz8TP4Soxj2B1wo/Owg4TK6TAj/bqp1Mfob5PrMidW+gaPE+CTQ+Oe6S5z6FWedaR7HfPqvFKcyUJtU+nrIy6IYHzD7GjeGg1nDCPp35VvjjF7g+acZQM+FBrz7fE+rsTyKkPqstk8T8wZk+m9cokbNckD5Mkj9m76SEPkes1C5g3nk+8Sk1P9kYcD5XSFWjseVjPhNnWp+ybVg+GxEfo0nKTT5zZweh+gpCPl/v6SXitTU+OK4yFFvzKT5vGBWAftAePubPhe/ILBI+45he6sZMBT5ftfjGzcz4PRm4ridGsOw9SSD57JN84D3UzxF029PSPSSGL8AiXcU9H8vc3n4WuD0gjqw02/yqPQylAwQRuYo/Y2Zj2NbWkD/9EHCdfvyUPwXey3a+3Zk/FHWaFhqInz89HAN/lAKjP31YSLGvrKY/k05xXnLBqj82QjkCRzyvP2DXSaZECrI/gc3RgaSetD/kEeB9n1K3P6CQq699G7o/qIaolKjsvD88XDZW/7e/P77baKUjN8E/tIcRGtp/wj/ryzPZQK7DP5Zj1+HKusQ/qRb/iJGexT+xLpu3oFPGPx1LaJs51cY/jw4psQcgxz9euxTsRDLHP604k9zKC8c/XCZU/g+uxj+JnR6oERzGPw8xtVgsWsU/u1RxMuVtxD/KmsVMqF3DP58ipgmAMMI/65gKzsntwD9cQPy02Dm/P2tgYCYnirw/iyvwu+nZuT9JbpjUPDW3P/bzyqClprQ/ByUKG+M2sj9K+eo2sNmvPyTAqfYYm6s/L8GZSoS4pz9eUCpmNDWkPwZraLeLEaE/W/WrtfuWnD/Lcvs/D76XP+ganBZOjZM/+r9jADbvjz+qbFSJHt2JP8Qds6hfxoQ/rozu4AiNgD+k1HsoPyh6PxGEs+ClgHQ/MTvmw+Dhbz+DeEZwV5doP2N+/+cW0WI/TZX7dK2RXD/d89wpe4RVP29aLwJxFFA/CUXNUZHYRz+RtG7ceotBPzaGBkl+njk/QwgDxsmPMj88ai30PLEqP871tXYTDCM/T5oJ0KL6Gj+mR9jvz/YSPx5wGgdRdgo/E+71u2dTAj+gRBo+CDL5PjgWGxl8MfE+9y0eSF5L5z4IRYDo8lTfPvoXkfBZ69Q+SuAuDPC7yz5bUbvX2EDCPgnPl3I927c+7C3rZJL1rj6p1IQ1gvKjPmhTGLhThpk+bDZdsJs3kD7+Lb3M93aEPlJQJ1mYpXk+Q76FJMbrbz6wwco2xLpjPhUN+PIjOVg+E69PWh+KTT7KjW8W7ONBPrUeGX15hjU+57ySZPu5KT7lY+J0R4sePqto1EcsAxI+NmwyAOsaBT64jTXNSJH4PS9TejyAaew9Hc1DuqxS4D0DxLAudKLSPb5yLvAnI8U9z6AHpcbStz0gh+xuJ66qPQLnXUPssJ091lLzCQ96jD9aXXzBAdORPwa1clyvEJY/ArCZKYkDmz/4LtdZ5VqgP/9x3+WolqM/ttXqG0I1pz87MKSspzOrP7Nxgoori68/7knvRpoYsj/4HgjrkYu0P96U1r42Fbc/WVnarnSquT/3to6Drj68Py/YjgcexL4/gOoc5yWWwD9y6RCNTLTBP+QialxqtcI/lKxgPemSwz/QxA4t/kbEP1kSlT/qzMQ/FaWaDjAhxT/a+h9KukHFP2rZThzxLcU/T0bHOL3mxD/z4raqeG7EP+TKhqjOyMM/YFCQxYz6wj+0aVC1aAnCP3IFyGe++8A/GOhWGJWwvz+EqXb5yku9P/dQPIeE1ro/Rv9csWlduD9csAD6A+y1P2gXf4l0jLM/wGtHDUJHsT/AikJrfEauPx/KuoACS6o/YQHmxPGipj+8svk3DlKjP720kCZaWaA/wxCb4fdumz9vYeZ8WNKWP5BjI45L05I/lIrNvkPMjj+nskQZm/uIPw9WwtogGYQ/t8DrZR4JgD/8csIFH2F5P4/Mwrms63M/eszQOuoEbz9uA4I35PRnP3ThT/uvWmI/tmne+I/mWz9ZnSUE4wlVPwJcuOW0ek8/Mau6leBdRz8ByesCxzVBP94a6aDAJzk/gZGQRjQ+Mj8SxDWeCUIqPzCxafDlwCI/s/xn/8mVGj8G9KlysrMSPxug8jiqHQo/ZHtH60oZAj9T9885Zub4PgV6j4OdAPE+XALrxaUM5z6GWr4++wTfPnoX5cmxuNQ+O/9EpyR8yz7eG9545xjCPuL3VWp8qbc+c7ZaG+a3rj4PI2+MdMyjPjTDBHaOV5k+xIkq9/cakD6fDHLuAFSEPpEaMXEGe3k+pxZOiRC4bz4RNINXbJtjPuoX60E1E1g++Q/HtEhcTT7Pouh7Q8hBPr53ju4jZTU+l+ZFrdyRKT7uwnREEFsePkHd/tQ/5hE+ohG+tkj4BD6ZMOAR6Gf4PRWmI+kxOOw90kY3vGI14D0i/5wSxn/SPWSAtuI++sQ9PMsqpLaitz2iLudm8HWqPb0zQgh8b509Xgh97dhEkD1yEofinCKOP6ATISCQvJI/6Dzs/TwKlz8EEDSU7gScP9PJVybK2aA//rjpFTUMpD8ByfN9AJinP30FNbI1eKs/eo4451Gkrz8BJB1sDwiyP0RMmnPcVbQ/AEqgDOSxtj+q+jYY9xC5P0fxJT60Zrs/QqVvC/ClvT8fb2C9L8G/P7ZzVkOY1cA/4vQa7LmrwT9Jzig+ZF3CP64FoRvk5cI/Sh5iFaFBwz9MUgGyRW7DP7tfxFXYasM/LKBHYMM3wz/haDM3zNbCPzqGWxj6SsI/DQfYmG6YwT/cOLWTMsTAP55EDtT1p78/HWgamtGbvT92gHSuknC7PxFXrfyvMrk/4dJg5A3utj+QnyCtn620PwjGEA0de7I/FKJhiM1esD/1AeXP076sP/vaC1AlBKk/LiTgRbKUpT+f4/7XsHSiP6QN+EZpS58/R8YnQxNOmj9oBN5lMeyVP63bO3GeHZI/9IXWZhCwjT8DqR30Vh+IP/EunOj2b4M/RjTkycEQfz8M1B6L8J54PwVLVBmNWnM/82AAhvItbj88rZqWG1dnP6K0zNHp52E/3eCpCRRBWz87Bf60ppNUP+Js5WlB004/BOd+j1roRj/J9/WABuRAP/lpph0Ftzg/K4zpdCnxMT9rUuioqNkpP0fxUvjOeiI/Hsx0QXo4Gj8vMGTEHnYSPwr2r4EXzQk/XEBflgblAT/KdYuwKKP4PlLqFci41fA+PA/ZSl7W5j5+EqRU18DePvZVz2BBjtQ+HkbV3axHyz691tgftPjBPu6dSgk7grc+Mlem6ViIrj4Yt1Oq0q+jPtm51IlBNZk+a7XSRYQGkD7SMGrdtDuEPmvSXJo+Xnk+WkBu5gqWbz6XY+0tVodjPgcg16Z++1c+diBgcEVATT42/PLvsbdBPhxH58mAUTU+hXWC0Ih6KT7ouUwfST8ePqJG61Ws1RE+YEywiHbkBD5XthpqLFD4PeZVonnCG+w90FPnm1ok4D1DOntIZGvSPbaX7m3m4cQ9wRF1PbaFtz10rkSWglOqPSJ3yvXHRp09hZy5euYskD1uOoYt1MKBPaZEfvxJrI8/zddtH+SPkz81WHKbQeWXPxsHLsfv3Zw/ZHIN5dA+oT++rDtxj2GkP7XQ2a2406c/XlAg2qGOqz/NusToPoivP9CjXneM2bE//24/IDn/sz+3X7+yTSu2P5DzpGO8Urg/toWetpppuj+TBoq/jWO8P0YDbAFENL4/Dus5VfbPvz8+haYz9JXAPwNzUIdwH8E/H2/Ih8mAwT+pA3Lhd7fBP2ajaUMvwsE/Xi0G2uqgwT+s2ZDx6VTBP/CstDid4MA/t6OuG4ZHwD/ydrEcFRy/P/Zd/IOAcr0/bzrqU2Wduz86ET2kTqi5P+KeFc7Hnrc/K0eY4PGLtT8ENCBfJ3qzP9dzM9OxcrE/ofCtiib7rj+eKtd4yEKrP9JCYSGLxqc/6MJyh8iNpD+yU/hwGZ2hPzpVRnIo7Z0/uLdmVTo0mT/9NK8mgwuVPz6gl38ubJE/Ro3njmuajD+BZsvqI0iHP+MqAUy3yoI/SLuXrVQVfj/xSjFiceF3P3Ev7mQOzXI/wF4M8JpcbT8svDq8r71mP5iLwYmFeGE/TBAsmtWgWj/px1fNdyFUP/grmUwOMk4/+V2CvqJ3Rj9hcfes85VAP3n1KBzkSzg/0JzVI12oMT9lkGhhq3cpP9xIPAV/OSI/MF6FiELiGT/7x+xkxT0SPxupeTcqhAk//3rzfE62AT83lqGT52f4PjF2RJKHsPA+twEtpSmo5j518yMiCojePixwMXG2a9Q+CI0nVR0eyz7U90ZQ+d/BPp19wQwgZbc+HT66/Hhmrj5+qux8VJyjPpBmMkcSH5k+tM8n1w/0jz7nXs4czS2EPqTubqTpTnk+FpBb5UmFbz6u90/vP35jPlvFm8iv8Vc+6XcwwbM1TT5zcREb/LFBPr+1ATtISzU+zlI0EKlzKT5e/ut8iTcePjcYsu0y0RE+LV2J/yjfBD4p22Zsu0n4Pd8dbtTFE+w9HUCr3lMf4D3kanIVAmXSPY9dlYPD2cQ9Ymfft1l7tz3F58b7XkaqPZJwK986Np09E0kGuY8ikD1x2YAWCLaBPezyXZl5UXM9c8qAi4qIkD/IYOYIvUmUP9NsjS9jnpg/dUugbFGLnT8SoouMkIihP2zLXT2ylaQ/GFlvq//npz8sRxmDWnerP0wGcrZ9OK8/3wUKyIeOsT9YfY8d8ImzP6scNeCqhLU/E1RmnAF0tz/lX1nLsky5P2MBeJ5eA7s/C+izdfyMvD8ywhVSUt+9P/l3eSBn8b4/XCC00ei7vz9wEgbvvxzAPyz1cX+FM8A/aP9ZwN8hwD/WwBJuLNG/P1wl8s8gE78/P0XJK3cPvj9QQdIbys28P+wHWjYXV7s/32BbXVa1uT/DOv3zC/O3P9PzLlvcGrY/SMbFhSY3tD+2Yg6EqlGyP8viULM/c7A/Q3pLyzlHrT/fVKzzZtKpP7oxJCo6kqY/iKGGMDWOoz/gp0YgRMugPzYtSSrjl5w/hXINuFkhmD9TXrqRNzCUP5mOPmDkvpA/L4XjxiaLiz9y2U681XWGPzQNxEI5KYI/CTRtf6wffT/DNEnSYSh3P05MLSv6QnI/NvLYQ4iQbD/HKmWiVShmP+GO5HVGDGE/kpIREHQFWj+vRVCMCrNTPwBuS2+mlk0/sT5K1V8LRj8lSwRUS0tAPwJgOMP55Tc/IQryDoZjMT9nAVqLpxspP0S4dPip/CE/RDxX/raSGT/V0DDMWgoSPyOW9bN5Qgk/Fm4D59qMAT8PjgWfQTT4PsydnpvIkPA+hdM2G7GB5j7Oeq+SIVrePnP1i63GUNQ+gKEyLhb/yj64qOvCec7BPvDkC9PdUbc+yWS31eRRrj4An1FOvZGjPjPVNKy1FJk+0gVn16nqjz6cn0WuESqEPjgW0NLDTHk+ljowD3yFbz68jFff+H9jPi+Hw5iO9Vc+NMVNvU48TT4RyB8z+bZBPti5kg9KUjU+U8i7iAR9KT7ujcU7jkMePsh07/yr2BE+Oa85SzHoBD5sVKm5XVT4PYmvwmX6H+w9EjcqpCcm4D3MeXFXcWzSPTPnBmCf4cQ9dB+wFGCDtz1dM4+GOE6qPcg8B4p5PZ09YXtFyp4lkD04CIg2OLiBPdmbMapwUnM9CzyK8K/vZD3SlTZiyiWRP++WyANN55Q/DxIGVOkymT94zhlnrwqePzat/vQotqE/TFrq5j6opD+QocPhLtWnP/21oDmsM6s/hZD9/4q3rj9bxxtp9SixPxE2FNDF+LI/wJDDtaXBtD+H/9JxZHm2P2hTmduRFbg/QLrdZOiLuT+lTZ44u9K6Pwcbhdlh4bs/HaPspJqwvD9Lvt0P3jq9P84GImOdfL0/PWnSF2l0vT/oZp6f/CK9P1eGYDYvi7w/6FEKLMuxuz/5UAG/Tp26P+IyWPyaVbk/fvGuE5bjtz9FhmMPx1C2P0aPiOzwprQ/GnK0p7Lvsj+uD+4NMTSxP6WgtCec+a4/pve5e+Chqz8/0mi9tm2oP0RmqHY1Z6U/zZXtIPeVoj+9NvZmWP6fP5XBQ3OKS5s/HSf7f14Vlz9rlGRgOVqTP5QIcdSpFZA/nOER5xWCij+f1aZRQqiFP4sj7fpVi4E/PkTAnYMvfD+MnzjrhHN2P1AzNj8cvHE/nv1M7GLJaz9uKLwdxZZlP1llOiHyomA/hSwyPZJuWT/8QvbPFUhTP672p7KYAE0/5j6TkDujRT9/Z4mSzANAP3JuRrzlhDc/P3kVnV0iMT/JLMT5NsUoP99REcoGxCE/TdEaf3BJGT8hVvsCl9sRP4AoEreiBwk/hOw4L2hoAT84wQes2wf4Po9K8y0/dvA+eUyct6Ri5j70xbOHtTbePuaaVA4vPdQ+7haMEkLqyj4S70jA/8PBPq6A7XwxSLc+GIGQIUpKrj7pbpgB24+jPhu7NGLvFZk+exvZsI7wjz5nUhg+WDCEPpZ5+M6bV3k+mmgKeGiWbz5c6nt6YIxjPq3vQ0n2Blg+aiEDE+1TTT7MOh0wksZBPgv4Cr5sZjU+cLzEAH+WKT5k640vOGMePt1ZvUEG7BE+ofqcM3z/BD5jaGC3/W/4PcdsV5hHQOw9rWnyu8c44D3vyBVtoYHSPaxURDxm+cQ9JRhzgrGdtz37ykg/8mqqPQzu24FgXJ09wxzo6f01kD26Z9bRScmBPUpMwiftY3M9S0+mgkEBZT2oNhMbNZxWPVkyaoyNq5E/1iKpCEtmlT/OYCeTzaCZP9VwuzSJWp4/Wx5zqkXHoT9P1J7We5mkP5gvJEFbnKc/XLBJWLDFqj9k+fKLuQiuPzohPa0zq7A/glG2ZOFOsj8AUPvCO+azP2ViWAW+Z7U/00dFxOfJtj+qBEyZoQO4P4mGlJShDLk/aVldYcnduT+9p2Q1eHG6P9Umwl7Lw7o/FLlmZsnSuj/7IlEzdZ66P01zrUHIKLo/3QWYtJR1uT8eedWiUYq4P4m5llzVbbc/JdqCbgIotj+21ezDbMG0P/17Snf8QrM/QmKLoZO1sT86KZPbuyGwP2SGXny+Hq0/dJhuKx8Lqj+7CdWluhSnP/htPDh9RaQ/UKCxrwuloT+yORC1mHGeP1fyB0wPCJo/fZVVeTYQlj/LLXRodImSP4oIcMTT4I4/m5DjUg9/iT9OugHxQd+EP9aW8rjo8IA/wu6685dEez940COroMJ1P8dvBtFCOHE/a2m7ENcGaz+GFgjruAhlP9jYc1JQPGA/r3bnWNbbWD+PqdYGU+BSP8+l4NF3b0w/CwuLkOI+RT/0T7tdcX4/P9bIlu9KKDc/9vZxpZ/kMD/hkoIs93MoP5cksDhPjyE/w20sGgwGGT+yCRJANbERP3xLlNBG0wg/EKtnUrZIAT80sAIMYOL3PmmGvKuyYPA+evHenrpK5j7gaPvoZh3ePtUh6iuzMNQ+4oUbUVXfyj5IExyHXMDBPlJOlSDiR7c+uqp9qmRPrj6SPk1ihZajPjy95dmQIpk+A0ZQwcQCkD7tvgJrg0CEPmi7isFRb3k+k+xdoO23bz4x22fFZaNjPptZvHTWJVg+rFYBA4B8TT61EWouweBBPoZLe6ishzU+GuPRBxjAKT6P9WUVi5YePoICRjlGCxI+gchYXRElBT5+0iCzppz4PdF7t9G8dOw9oz+tDD5X4D0cO86BnqTSPQIQP3omIcU9G9eTY17Ktz03zm8inpyqPURa8r0Ck509zPA3obZTkD2d0VDsRemBPRJ5JNj2hXM9opXj9hAlZT0Nj86ncMFWPZuDAuCgVUg9KwCvnukXkj+LvZJvAMWVP3/45tLF5pk/gegx20Z6nj8fRUNEHLyhPx/48itNaqQ/7tUP2UY/pz/WSwYZNjCqP/2JJpsRMK0/xtxkrfUXsD9/jvkKso+xP/HAl0ee9rI/pXNB6P5DtD+sNBu/V2+1Pw1Gyd7IcLY/kqFBuGdBtz8kKJvTjtu3PxSp+hYfO7g/ugKde65duD/DwP1SoUK4P1LRobks67c/p9yTZ0Jatz+mHzOVZ5S2PxHX3QN6n7U/IWvMSWeCtD8ZXQcz20SzP/c/vlXq7rE/0pHM3b2IsD/A2R05ijSuPwZcPFDhVas/qpBQvfOCqD/ebaIhccelPxvARAQPLaM/QoCS3G67oD9racmePfCcP7KWNe5izZg/chIdXNARlT/6X/LG1b2RP5sYOu4hno0/GHZFMOyBiD/6r91orxqEPyk0YPjOWYA/nsQdKateej8Dwb4ffhV1P9wKOIM+t3A/Br2IrpRIaj/6bcK77n1kP6pSMx5WsF8/bWA7+ulMWD/jrrkifntSP6QKxEDa4ks/FGSHNATeRD/1CTjspfo+P9eUGETPzzY/g868NwqqMD9RNmDyiCcoP7uY53w/XiE/WU1BmCrIGD/4SpGJ84oRP4yJ2c8LpQg/xavUg4gtAT/ctBvqfcP3Pjbo4R3uT/A+mIzsbK455j5ZXErB3g3ePnPXpqEcK9Q+ULKlCA3eyj6AEhO9Z8PBPrSG8wvAULc+JIQBYP1grj4oIHmEnaWjPraff394Opk+6iEBs7sUkD4p7a8mglqEPlNhZo7Wk3k+vKzshgDqbz7HcCW+BsVjPsPuz3QyUlg+GqUimRK2TT4jJev6kAVCPheWLZcbtjU+KAvkXer5KT6O5lPnrN0ePmfbnL6FNhI+LN4f3RJZBT52rg1phNr4PW7/r+qQvew9uUxXSKyB4D0B/8o4kdXSPaShsUQQWcU9lLLT4J4JuD0rCiiifOOqPaQAtw6p4Z09xckscfF+kD3SnXnjWBiCPbuD+I69uHM9Bvk5A1FbZT0vIF0m2fpWPbNf87XKkUg9Hkl0JGgaOj3Fi/T2a2mSP4os0LRRApY/8tBmp0gEmj8xNWp3NmqeP4V1FYVmlaE/PF/E5SgcpD+sbB/NTcCmP/KWXk6ndqk/ePJvtywyrD+t/t1EWeSuP0ZOhPfTvrA/tRhWcRP3sT+GyGuJDROzP1enCVZVC7Q/QGdVG0LZtD+8Q00DPHe1Pxavlh/94LU/4wptkcITtj9hOo3Eag62P1wA5Ph+0bU/KLbTxidftT97RbG5Dbu0P3kJJWwo6rM/tMg8pn/ysj/2UInA4tqxP+uJ5/WaqrA/+jT3qDrSrj/kyrBWgTusPwWkQGj2nqk/OjeBw1UJpz/jKOyM1IWkP7EDhAXmHaI/+7lg6zaynz+W0nnnOnqbP/pybf52m5c/42Lf8xsalD+W4jMBTPeQP7Se5AYaY4w/Xi8mlIiKhz8yTY0zaFqDP+m9ug7Ri38/vz9Sy4J9eT+slpWD6Wt0Pwh5fX7iOHA/TivPsE+OaT8XTPVBJ/ZjPydhEj6d7F4/e69UE3rBVz8ngBaNVRlSP4EfFw1aWks/3jDJeVKARD9i7vM2wXs+P3pxaWMbezY/yf+FZ11yMD/H3iQQkN8nP+abXwCWMCE/hDAdB3CPGD/QbkJakmgRP6jQnTmbfAg/cTjFxaQWAT/8iXiz6Kr3PoIWLca/Q/A+3DW+mUAv5j5momdlzQfePsQM1Hg6LNQ+AqwLXi7myj7+vl7o/szBPp1WIBSkYrc+F6mOcul+rj4bIxAzDb2jPqkABQSRXZk+kJFARiMukD7dCUUsT36EPjQ8AzArxXk+y/p+81UWcD6Le/rrT/FjPozw8OIgjFg+bUzoHskATj5BhCvGHDVCPtCwNGfg8TU+w+TYnytEKj73f22J5TgfPsVbtuPzbRI+7xk/Fb2bBT6r477o4in5PUyXLx4iG+09JfI06ku44D2Y0NCyvhTTPeZsC551ocU9TfokAtNbuD1XZIHJ/D+rPbYc/UrSSJ49gJ2O7fW3kD1MauOM0laCPbQ7h02Z/HM9bytyiWGkZT2JjZPU1UhXPedMt0lP5Eg96aNWRvVwOj3l7WWj4OgrPR7tHB4hn5I/wpcHScIdlj9UKMGfi/mZP3Er1duCK54/5G+rsVhUoT9r0rkrB7GjP+zzX6RPIqY/C0RyFOqcqD8RLMGKDxSrP6cyWhLiea0/AWNxauy/rz/frYek2euwPw3GMBao2bE/oGDMTAajsj+35lgbekKzP0v4XT+qs7M/BBan8pDzsz9Ovjb/nQC0P05riUPG2rM/NmnZ4H+Dsz8lAcSjq/2yP1DlpXptTbI/7Z1G4fZ3sT+dCNP4RoOwP7PbcP/I664/kCFsASytrD/whCW+OFiqPyURvtLm+ac/uonEyzaepT8pf5Bf20+jP7eZziD7F6E/SlaNZBb8nT+kOuPKgw+aP6AtVK09cpY/Gc9sOwopkz/R7HYcxzWQP4LLMR2bL4s/pkuzpMOYhj9XgIiTTJ6CPzsisjovan4/8whTcOigeD/rmZxXssVzP5+aeAYJem8/cVNUBsDXaD/hw/E7JnFjP8Aq4SATLV4/EjHP7jY5Vz8HZnkdmrlRP4vt38OU1Uo/1I6W3YElRD9ODuc0UQE+P2VpN4LaKTY/N/cDG1s9MD+Om7TsspsnP5FxsRgTBiE/sf6uSoNbGD8laeNK1EkRP7sQP8OhWQg/GkUZhtMDAT/ADRSFV5j3PuhR6bX4O/A+C07x4zUr5j5kexCk6QrePlFRLJrgM9Q+0HBwvIX3yj5RN6HwBN3BPgn18O9ufbc+dTC0fwmprj4eg9NqxtyjPv5w3bjQi5k+HoFxvPpOkD7xZnmK8KuEPmSC8y5gA3o+sss8zwdAcD71iW0LXChkPuHjJUDL01g+UDW0w+BcTj7Hnun7j29CPin8++k2OzY+b1zNNCyfKj59fI3MnqgfPmGK5wHVsRI+gau42mbtBT7xJhTVLov5PZNUAWv2je09Ks9YfG774D2MHZDsiGLTPZmLttvK+sU9Cvr/SoPBuD1HM6v9vLKrPfsXizk0yZ4982sqRyv/kD16gMXWJqWCPeRJ2vkKUnQ96NNUZNAAZj0frK06AaxXPYARr0DVTUk9Mq8UkFLgOj2RwJfbcV0sPUtJbQxFvx09RZ4DJ5i4kj/Brhx5cxeWP++SvOB7x5k/7YLa7SPAnT97nU2vlPqgPzL2NIlPK6M/vfaYB5ZopT8kpfHPQKenP3hJqU0D26k/gC5F2dj2qz9KIPRQhO2tP6u13FUbsq8/mEobj0qcsD/eJb4RKjuxP6FoZ/5QsbE/1qrzuYr7sT+7NiYl7heyPxrUUQryBbI/so8s8G/GsT8os7BmlVuxP3Y91xXFyLA/nu7i5WkSsD/GUgngfnuuPzPtkugmoaw/ghh1ngiiqj9tsEWsgIqoP+hPdkmTZqY/2/pZnoJBpD89iwBVeCWiP0NZWw5FG6A/qCXfhm1UnD/RVyQVC7CYP1zahMqpUZU/f5smbY0+kj8+4GlZcfKOP+wsEImHA4o/h+/asX+shT9wHNioP+aBP9ucMtqBTn0/0Im906nIdz+/kmB5qyJzP1azzPL5hm4/uA9UtqEkaD9J0QmAsu5iPwpeQnlZcV0/PjU2L9SzVj9I9VESD1xRP3oJ51orVEo/vfscQ0nNQz884PE354o9P8wkcS262zU/0/Jr3cYKMD8jRY5CmlsnP68tFMZ43iA/8EKhsw0sGD91JzO/fS4RP0fdVdPOOwg/VSt/Pt/0AD+NdL6ehIv3Ppk6BWhsOPA+t0iDwFYt5j6DMzb97xbePiOUykTnQdQ+QZheHeYRyz7BT/GlYfPBPlkiqpsIobc+4IhEzEjfrj44fZzfwgSkPg0fPPs4xZk+yJfLJ0l3kD7qm+s+d+OEPoOQgjKVTno+ItwbHDBycD4WafPTU2pkPszF/sBtKVk+CoAFd6/KTj5vdQQ9JrVCPnZcSfNvkjY+QIu9eVcLKz70Q6FhshYgPiKfOgCDAhM+rDfm34FOBj4BIB399f75Pf4vEWa8Fu49qfTLI35L4T1MaHN0b7/TPdPo0YynZcY9OPRa2WE7uT1qUY1cjDysPR1sXja9Y589odIZRRlVkT1ixqHq7gODPXFFCq29uXQ97s7t4lpxZj2nIxDUKiVYPTlgh+E9z0k9HIslVnJpOz0RI/zYme0sPb75AEShVR49ylAIdrmbDz1Cd0MS4rWSPy03b64e8JU/QLOymbFvmT9q5aWrySqdP+VtlZMaiqA/T0ZS/MONoj8xkL0IupakP4guTsYpmqY/saA0PHCMqD/QHkYriWGqPxmUa/yKDaw/vUad2SiFrT8netMZM76uP+5UlPENsK8/XIakZQsqsD9OMKHe+FKwP2K52BjdUbA/5BlC7AknsD931/s2G6ivP1EPvGc3t64/PIt/rtCCrT/aXB038ROsP/iYCY/WdKo/LIdxDnuwqD8KIN91HtKmP92wx4fU5KQ/Hr9XcR/zoj98LgSJmgahP7m1+NFwT54/fVy2tyu7mj/QWhIrw1uXP0g2ZMquOZQ/EQavCJlakT/Y7Qy2J4ONP+/3+vnE3og/GWBXRKLFhD96Su5/JzKBP+rfqmSXOHw/iNZK7pj0dj9AZP01q4JyPw7Thv1NmG0/0qA69LR0Zz9CVKMIlm5iP0tJnZsWuVw/V+AR0QgxVj9pm0UMegBRP7MVDx/C1Uk/HC9E3WF3Qz/n5c69Fxg9PzLpdhxqkDU/3Mw6asu0Lz9KXbrW8B4nP7wn/3WKuSA/OXRSm7oAGD/LTLuWVBYRP8gnSAfUIgg/aWQOGJTpAD+SIo3aLIT3PknZUF7wOPA+UFerzm415j7I2zbfoSvePt+5U4kqVtQ+i3tIVyg1yz4/SptMARDCPuPhBsRfzbc+DDmkiZwhrz7tUFqKAzWkPo0tqKzVCZo+m/ChHR2nkD4wDoDg/iSFPpizoqf4pno+6EV4S/OscD6ybS7VbbdkPgPa9zpXjVk+DvbN8aNKTz5Aued5KwZDPmcPy5Px9zY+TVwhKTSJKz71kmUz82MgPluBZs5tYBM+MCatY5u/Bj4MUhlN6IX6PXFQ53xMtu495HItc/6o4T3tUVF4ECzUPaHsD83H4sY9HnKZCEzKuT1Jnri6bN6sPUqFSEvLDKA9ua7nrmm6kT2WsH7U6nODPekqqJuINHU9jnmZ9e/2Zj27xSWDWbVYPRrGAtCnaUo9R+BIXooNPD0bPO9wpJotPYrCkEm2Ch89TgQBseMrED3TyZsHKL4APdDS42eNl5I/VcHsdQuplT+bPigOX/SYP/RexOzCbpw/1O0/XjcFoD/XDMrAatuhP6FAewWJsKM/lgObgD96pT/j0Z1Rui2nP7wB03gRwKg/KxYuJL4mqj+ieYA+EVirPztpj+GjS6w/VXeteLr6rD+hfcEnlGCtP2393Vmheq0/zaVIFp5IrT/CiHq5jsysP3d/PMSfCqw/z6BwbOsIqz9iKddOKc+pPwpNJ+tNZqg/W56RXSDYpj/QwRIIzS6lP5B9W5d7dKM/G2RTEu6yoT+rZ00WW+afP5Yz3miPepw/tmT2Xj4wmT9+OFgEnhKWPwRj4b9AKpM/FYefziF9kD/l3jzImh2MP+dYFXk8wYc/eA/FIxTkgz9x1gUa7YGAP8pSDHZDKHs/OujNB4wkdj+r3/ZZi+VxP/hWdefArWw/YqqFMr7HZj9RgagAnvBhP2QA5Iv1A1w/BjafL4+wVT+7GFUMo6ZQPwjdoacAWkk/5bPeHIcjQz88/sxHeqg8Pz9wrwicRzU/FrZ6+/tXLz8cZoQ1Y+UmP3+wxMkMlyA/5WZdBTfZFz/eckDhHwERP+I3t71kDgg/NID6kb/hAD8BOlsoD4L3PrtVRMFbPfA+xswqT0xD5j4NE4roxEjePsXzXsiJcNQ+pqekcCphyz6JRXAs1DLCPon2tDZpArg+tV3SIwNwrz4v1eE9kG2kPrClaLa8WZo+GuMIcYzekD7S2cZWrXCFPvFLfnvHDHs+CunA3n/wcD5xMLZp7g9lPjFVBzHp/1k+mroB7EXdTz4aFxQs/GJDPnUHfX43bDc+EaMS/WQZLD4Bnk1Fe7wgPqV98BMczBM+dJb3JF1BBz4eEuwX2SD7PTHOI6mqbe89i9/ZhI0U4j0UnmksKqnUPXOpOAYOc8c9cMy7m0xvuj1tLkNFlZmtPTxIZ+gTdqA9OA10K+ovkj2fLWOzA/aDPZjKMp5xw3U9eYq9E7OSZz0lvazYzl1ZPbXvebhyHks9pP1h8BfOPD1zU4V9K2YuPdVy9PM44B89pbsfKwubED09cNakBzEBPZrbzv2Gr/E8cckaXZ5ekj8iixPiAUSVP0QxpxA8WJg/IXglCeGPmz+mfzM15dyeP2q7Ybh3F6E/NPBYIuq5oj+fVOcEG0ykP3uMg1IhxKU/DcQoZUIYpz/6nuVPXj+oPwZwqjdZMak//R+U/XrnqT9rMJkFv1yqP7K2peoOjqo/dZbAZWR6qj89PAJw0CKqP7Nxeoxniqk/yN4FBRW2qD9f6Q+QWKynP5JlwCrzdKY/0yGV2IgYpT8URu5hPaCjPypafhVSFaI/6TFbCMqAoD/mkInUMtadP5IeQrjGt5o/RQUX2JCzlz8pU9kYjdSUP9ZpHEtUI5I/a9X3ZTtMjz9fyYcet8GKP0m2pF/aqoY/s23uU8EHgz+9SZ/e+Kp/P4o40dheHXo/3oDYw11YdT9fh/E9KUtxPwjQPg0Ux2s/Be3LNIYdZj/Zw3LQmnRhPyFQlw2mUVs/+el5DCUyVT+CG950VE5QPxQB/86R4Eg/bPtLo3bRQj+laek5qTs8P4ASn4oDATU/TYkKja7+Lj9/Kh91n64mPzuEXWHFdiA/CKKpRjG1Fz+gTuqWp+4QP+orlKU1/gc/8QE4KzDdAD+GENQM7IT3Pt+I+gGHRfA+v5sunr9W5j4wEdUsIm7ePp9s9zLnkNQ+jWsw9s6Vyz5cW2MizlvCPihlmFYfQLg+I/GQlYPKrz6sseZAd66kPvHUVpUNtZo+q/Vm9LMdkT4VyUGcssaFPl99OOdMgHs+w2SvWA49cT5mm4m9J3RlPt7bIv2XgVo+R3gOPptBUD7h/WitBcxDPp770JfT7zc+ZzDKiqm8LD4I0PKOxiAhPo9XaRMsRhQ+BokJm47UBz5qmTK6wND7PaIHt0sEH/A93jFiXuWO4j3y8ZmOnDfVPQ5wDySFF8g9XlVTdJ4ruz2NpJTOdW+uPfFTwjmN7qA9iOZUmo62kj2RtUl6TouEPad7LWKwZ3Y9k8Ww5P9FaD1Fp5Q6CyBaPWUhavlD70s9xL8yBeWsPT1CMvCRHFIvPcVhKGUcbCA98EVlwGocET0QEJCZBLcBPTibhNBHOfI8YZaxIvig4jzBje76gwySP/THGvg5w5Q/WEOd4G6elz+STCObWZKaP2Z8akP3kJ0/sHCAQjZFoD/uAo09xbahPx5EocM4FKM/UFeQ7qRUpD9uAWapg2+lPxm2QE0WXaY/jTHJxsAWpz/9/epbWJenPwiLp+tg26c/eiJRszThpz+oey4pFKmnP4eLpTEdNac/IHNfsCqJpj/R+c4Tn6qlPydeeNIdoKQ/htHeyzhxoz+4nZsJFyaiP8lZU3Max6A//W4wYBO5nj9Ox8pzhdybP3l3KlfzBpk/dqMPVwxFlj+GebJCgaGTP1xGB37eJJE/5IAXjgerjT86poE8bG+JP6+4XkKOm4U/wQGqCZkwgj9KBOTViFl+P39fq4fHF3k/w/zgKO2PdD/n507QZbNwP1OV4XoO5Go/sSrfINp1ZT9omCMrYPpgP8I/JbbcoVo/eGYpmou1VD8mXVcbtu5PP9VEuLAjaUg/EUzZOfCAQj/cCWfBQdE7Pwfj7/xVvDQ/Vv+zaXSoLj8eKpP+VHomP+Nveap6WCA/didLsliUFz8s/RVUtN4QP1QJ51H88Qc/PpbiDrXbAD8EXb4jhYz3PghU8n1LUfA+tmY0r5pv5j7Sbgl8hZvePn/8aEwnt9Q+wj2qUvzSyz5jGGQz5orCPhafEZKBhrg+jEwrYJYYsD5Uo1jrzPekPmHo3+vwG5s+VOlRQLdkkT444LKJSCeGPvhfNEriAXw+T/wiOuGScT52m1/meeRlPtQYvBTrEls+WMA2T5ieUD5tETSsxkFEPvUBj61ugzg+XsAMV99zLT6g64FdZJEhPnmBXMJUzxQ+VZHccxZ6CD633VeZvpb8PUDatCJklPA9iF8roN0Y4z1vX6yJa9jVPZIPSkBj0cg9dDZq3a8AvD1kh/zPumGvPZvnjXovd6E9w49973NPkz0j1RhLDzWFPYexkE+yInc9wRakuW4SaT3icgD70v1aPcZ+EV4M3kw9qnUQqQ6sPj3XFXADYDAwPT3OidyT+iA9fYnC8U6xET0u6LtRfVECPVF08E1h2PI8hSFEmKdD4zxVe0poeJHTPKIUltEKo5E/jX1K6kgplD8vn01lc8qWP3A9O4unepk/n5ktVC4snD9iqo946M+ePwBNOxPsqqA/x2Ev4+DWoT+0uLiB7eOiP3974ti+yqM/yNeksOmEpD/wtzRENw2lPxlG/J3jX6U/tD7Dpsl6pT/VD/sdel2lP4uFizM8CaU/XxDqE/iApD+mD4w/DcmjPwEVg90X56I/gFbtQKnhoT8fJ3J/+L+gPzeBzGUgE58/6WDsp/yLnD/LRMYlFfmZP3rcf4PtZ5c/WFzswpfklD+QuHOWanmSP8f797fULpA/faOxNpgWjD/DPmJtrCaIP3UpF9JKk4Q/tuN9l41egT8MmgTCbQ99P5a7r6ZgF3g/ZvD5oR3Lcz/ZznabJR5wP6yg+/t8BGo/5N/XjovQZD+4QlQcxYFgPxhDgQFT9Fk/Q5eeiYc6VD9fLg4WDENPP8e+Y61n80c/rEPrzbUxQj9Xf1bD42g7P4TfgGVKeTQ/0g/51uBULj9mwRRdNEgmP3m8F7TzOyA/0RBKTF12Fz+vhv8YD9EQPzT7JtJu6Qc/LiFhwx3dAD+TTDClnJj3PkJ9UySDYPA+JftCirCN5j6hXqSqvNDePpauTGww49Q+W1zFJpwYzD7DsTkfFsDCPq62tdmT1bg+sevDYgpSsD7EWIZFq0mlPrWq0BeYjps+1l9AfsCzkT6ls12ospKGPgh6mRDvkXw+dDQDCUXycT5ngi4MU2FmPvfZQmZ9tFs+6TYU8QQGUT5+ahW7z8REPs2121bJJzk+a0UwIwNALj4t78lC+A4iPjhlyhZnaBU+/xh+WvwyCT75x8OBG3T9PSoh5Y2/F/E9QlLShG2z4z1yvwV+wYzWPdP4k80Mosk9NiEFdCbwvD2PCBIWKTmwPbpdETcZEaI9uv35muP7kz1CVsx3vfSFPTl9SzEf9nc9lMpL6tn5aT10byl0NPlbPQxalQIP7U09Aep3rgzOPz1nwnW/YMowPZ5V7LPxnCE9kX/lOz5bEj1MotImDgIDPftgMHODjvM8sUWDcS/+4zya0F7IJE/UPNfCTJ4FgMQ86at9000kkT9ekyTpDHmTP+FaHrwB4JU/e0nxgGxNmD/gVLV8G7SaP1zt3YjdBZ0/dYb6RQw0nz9X8LdeE5igPzasDL45dqE/jp+GElAuoj/0NZQfKruiP5iSes7WGKM/O3+JFs9Eoz+O1IGQEj6jP1P4T/wvBaM/bpIWcTmcoj9xwbNfpQaiPxh+et0eSaE/B2dTvEhpoD8nfK1h79qeP2CKUEbQuJw/8GYchOh5mj8cCuohnSuYPwsHKgGJ2pU/2e8miBeSkz/kY/AyOFyRP73ltfJYgo4/M1L2NN+Oij9VfF2KbOeGP2kYSLIFkoM/4DdRUpSRgD9jlAb9kMx7P9XmEHQSHHc/8F7W+tYJcz/Y4IORoRZvPxCgZygyKGk/Tj7hl3AtZD8HXewVpApgP/1txmjHSFk/zbaFGuHAUz9VOKUvTplOPzpXEnQSf0c/wDsqcovjQT9SQCXTMQI7P6Ci2GSZNzQ/q/bT7IgDLj/2PD4U7xcmP4eVvwb4ICA/4Uizgu9aFz+8t1INgcUQPxEDX09D5Ac/Ya4p3DnhAD8KfJnt9Kj3PmxJbRwIc/A+yc8DytSw5j7nv/vZlg3fPi2WHUDqFNU+CAHIn5pmzD60U3DyWfvCPsXGsxVeLbk+/fpdL6yRsD6Wf0SnMaSlPrYessk8DZw+4ON3NQALkj4ftFMJPgmHPiA4dKPoMH0+/NjJX5Bbcj5WXw6gL+tmPo1P6839Zlw+BzI0nVl4UT6hYO37w1VFPuC74vu83Tk+3tL+cjIiLz4XjSQsO5oiPhLzrYtPEhY+H8rWB2sACj4OhWVoTGr+PUpZWsX8qfE9jmv3NK5f5D32ggo28lXXPdh4cUoYi8o9POqzuOP7vT24r9RguNGwPSO3MKiSvaI9iQzqiFe9lD3oZp84CMyGPdLF77Le43g9BqTsKWT+aj2TcuJCjxRdPVfIiX/pHk89v4Giad2KQD1N9CkFnXgxPbRFdS7gVCI9GoAVJ/8bEz0aCOTpl8oDPW0shNymXfQ8mOqNIJ3S5Dx79tabcyfVPMgsaPG5WsU8zoHL0KBrtTw=\"},\"shape\":[100,100],\"dtype\":\"float64\",\"order\":\"little\"}]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1228\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1229\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1221\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.0},\"y\":{\"type\":\"value\",\"value\":50.0},\"dw\":{\"type\":\"value\",\"value\":0.5},\"dh\":{\"type\":\"value\",\"value\":40.0},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"type\":\"object\",\"name\":\"LinearColorMapper\",\"id\":\"p1187\",\"attributes\":{\"palette\":[\"#440154\",\"#440255\",\"#440357\",\"#450558\",\"#45065A\",\"#45085B\",\"#46095C\",\"#460B5E\",\"#460C5F\",\"#460E61\",\"#470F62\",\"#471163\",\"#471265\",\"#471466\",\"#471567\",\"#471669\",\"#47186A\",\"#48196B\",\"#481A6C\",\"#481C6E\",\"#481D6F\",\"#481E70\",\"#482071\",\"#482172\",\"#482273\",\"#482374\",\"#472575\",\"#472676\",\"#472777\",\"#472878\",\"#472A79\",\"#472B7A\",\"#472C7B\",\"#462D7C\",\"#462F7C\",\"#46307D\",\"#46317E\",\"#45327F\",\"#45347F\",\"#453580\",\"#453681\",\"#443781\",\"#443982\",\"#433A83\",\"#433B83\",\"#433C84\",\"#423D84\",\"#423E85\",\"#424085\",\"#414186\",\"#414286\",\"#404387\",\"#404487\",\"#3F4587\",\"#3F4788\",\"#3E4888\",\"#3E4989\",\"#3D4A89\",\"#3D4B89\",\"#3D4C89\",\"#3C4D8A\",\"#3C4E8A\",\"#3B508A\",\"#3B518A\",\"#3A528B\",\"#3A538B\",\"#39548B\",\"#39558B\",\"#38568B\",\"#38578C\",\"#37588C\",\"#37598C\",\"#365A8C\",\"#365B8C\",\"#355C8C\",\"#355D8C\",\"#345E8D\",\"#345F8D\",\"#33608D\",\"#33618D\",\"#32628D\",\"#32638D\",\"#31648D\",\"#31658D\",\"#31668D\",\"#30678D\",\"#30688D\",\"#2F698D\",\"#2F6A8D\",\"#2E6B8E\",\"#2E6C8E\",\"#2E6D8E\",\"#2D6E8E\",\"#2D6F8E\",\"#2C708E\",\"#2C718E\",\"#2C728E\",\"#2B738E\",\"#2B748E\",\"#2A758E\",\"#2A768E\",\"#2A778E\",\"#29788E\",\"#29798E\",\"#287A8E\",\"#287A8E\",\"#287B8E\",\"#277C8E\",\"#277D8E\",\"#277E8E\",\"#267F8E\",\"#26808E\",\"#26818E\",\"#25828E\",\"#25838D\",\"#24848D\",\"#24858D\",\"#24868D\",\"#23878D\",\"#23888D\",\"#23898D\",\"#22898D\",\"#228A8D\",\"#228B8D\",\"#218C8D\",\"#218D8C\",\"#218E8C\",\"#208F8C\",\"#20908C\",\"#20918C\",\"#1F928C\",\"#1F938B\",\"#1F948B\",\"#1F958B\",\"#1F968B\",\"#1E978A\",\"#1E988A\",\"#1E998A\",\"#1E998A\",\"#1E9A89\",\"#1E9B89\",\"#1E9C89\",\"#1E9D88\",\"#1E9E88\",\"#1E9F88\",\"#1EA087\",\"#1FA187\",\"#1FA286\",\"#1FA386\",\"#20A485\",\"#20A585\",\"#21A685\",\"#21A784\",\"#22A784\",\"#23A883\",\"#23A982\",\"#24AA82\",\"#25AB81\",\"#26AC81\",\"#27AD80\",\"#28AE7F\",\"#29AF7F\",\"#2AB07E\",\"#2BB17D\",\"#2CB17D\",\"#2EB27C\",\"#2FB37B\",\"#30B47A\",\"#32B57A\",\"#33B679\",\"#35B778\",\"#36B877\",\"#38B976\",\"#39B976\",\"#3BBA75\",\"#3DBB74\",\"#3EBC73\",\"#40BD72\",\"#42BE71\",\"#44BE70\",\"#45BF6F\",\"#47C06E\",\"#49C16D\",\"#4BC26C\",\"#4DC26B\",\"#4FC369\",\"#51C468\",\"#53C567\",\"#55C666\",\"#57C665\",\"#59C764\",\"#5BC862\",\"#5EC961\",\"#60C960\",\"#62CA5F\",\"#64CB5D\",\"#67CC5C\",\"#69CC5B\",\"#6BCD59\",\"#6DCE58\",\"#70CE56\",\"#72CF55\",\"#74D054\",\"#77D052\",\"#79D151\",\"#7CD24F\",\"#7ED24E\",\"#81D34C\",\"#83D34B\",\"#86D449\",\"#88D547\",\"#8BD546\",\"#8DD644\",\"#90D643\",\"#92D741\",\"#95D73F\",\"#97D83E\",\"#9AD83C\",\"#9DD93A\",\"#9FD938\",\"#A2DA37\",\"#A5DA35\",\"#A7DB33\",\"#AADB32\",\"#ADDC30\",\"#AFDC2E\",\"#B2DD2C\",\"#B5DD2B\",\"#B7DD29\",\"#BADE27\",\"#BDDE26\",\"#BFDF24\",\"#C2DF22\",\"#C5DF21\",\"#C7E01F\",\"#CAE01E\",\"#CDE01D\",\"#CFE11C\",\"#D2E11B\",\"#D4E11A\",\"#D7E219\",\"#DAE218\",\"#DCE218\",\"#DFE318\",\"#E1E318\",\"#E4E318\",\"#E7E419\",\"#E9E419\",\"#ECE41A\",\"#EEE51B\",\"#F1E51C\",\"#F3E51E\",\"#F6E61F\",\"#F8E621\",\"#FAE622\",\"#FDE724\"],\"low\":2.150183939783842e-25,\"high\":1.0}}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1223\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.0},\"y\":{\"type\":\"value\",\"value\":50.0},\"dw\":{\"type\":\"value\",\"value\":0.5},\"dh\":{\"type\":\"value\",\"value\":40.0},\"global_alpha\":{\"type\":\"value\",\"value\":0.1},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"id\":\"p1187\"}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1225\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.0},\"y\":{\"type\":\"value\",\"value\":50.0},\"dw\":{\"type\":\"value\",\"value\":0.5},\"dh\":{\"type\":\"value\",\"value\":40.0},\"global_alpha\":{\"type\":\"value\",\"value\":0.2},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"id\":\"p1187\"}}}}},{\"type\":\"object\",\"name\":\"ContourRenderer\",\"id\":\"p1247\",\"attributes\":{\"line_renderer\":{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1244\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1241\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1242\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1243\"},\"data\":{\"type\":\"map\",\"entries\":[[\"xs\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AJw73p2P9j9LgVq/UqD2PwrU+pUCtfY/yiabbLLJ9j+JeTtDYt72P0jM2xkS8/Y/CB988MEH9z/HcRzHcRz3P4fEvJ0hMfc/RhdddNFF9z+klMyWWFf3PwVq/UqBWvc/xbydITFv9z/Zf11+qn33P4QPPvjgg/c//lDIqqWN9z+O204695P3P0MZ3Bp5lPc/zOmIMgeR9z8bbF62nor3P4QPPvjgg/c/s1Vi2teB9z+5BecAY3f3P8W8nSExb/c/DH6JvUJr9z+2mea75133PwZq/UqBWvc/+o96dZBP9z9GF1100UX3P6+H61gmQPc/h8S8nSEx9z+pWd9q0y/3P6YN8H30Hvc/x3Ecx3Ec9z/BJ6t6fw33PwgffPDBB/c/lpGM3Wv79j9IzNsZEvP2PzFi037N6PY/iXk7Q2Le9j9UGZnatNX2P8omm2yyyfY/WOQPpy/C9j8K1PqVArX2P4OcDk1JrvY/SoFav1Kg9j+cpi5JC5r2P4wuuuiii/Y/JMpRen2F9j/M2xkS83b2PzPdUGGmcPY/DYl5O0Ni9j8HRMBUi1v2P0422WSTTfY/EygVqzBG9j+O4ziO4zj2P3bE+NyZMPY/z5CYtzMk9j83CjahyRr2PxA++OCDD/Y//7JhA8IE9j9Q61cK1Pr1P/dsIXaE7vU/kZi3MyTm9T+zVMfhEdj1P9JFF1100fU/FaXRr2rB9T8S83aGxLz1P+8lwNOOqvU/UqDWrxSo9T9UX5jRfZP1P5RNNtlkk/U/1PqVArV+9T8HXXdvgXz1PxWo9SsFavU/TrBrdVdl9T9WVVVVVVX1P+GNAE/7TfU/lgK1fqVA9T9grs7tajb1P9evFKj1K/U/fL573aMe9T8YXXTRRRf1P+4x0j+jBvU/WArU+pUC9T/HDFfHZe70P5m3MyTm7fQ/2WSTTTbZ9D//e6cqQ9b0PxoS83aGxPQ/LHn2D/C99D9av1Kg1q/0P5+8U/JZpfQ/m2yyySab9D8CqbaOe4z0P9wZEvN2hvQ/+jbp/k5z9D8cx3Ecx3H0P1100UUXXfQ/LPmVuR1a9D+eITFvZ0j0PxxxJRC8QPQ/3s6QmLcz9D8bJB4i/Cb0Px988MEHH/Q/Ze7/s9QM9D9gKVDrVwr0P6DWrxSo9fM/9A/hO4Hy8z/hgw8++ODzP2WrftPo1/M/IjFvZ0jM8z9zcAZryrzzP2LezpCYt/M/o4suuuii8z+KWUgKNKHzP+Q4juM4jvM/vmnen0+F8z8k5u0MiXnzP/yanLeyaPM/ZZNNNtlk8z+mQK1fKVDzP84RSMp6S/M/5u0MiXk78z+Mgj+NgC3zPyebbLLJJvM/aEjM2xkS8z/U/KnPiQ7zP6j1KwVq/fI/VLqwAXju8j/poosuuujyPypQ61cK1PI/5yCwAubM8j9q/UqBWr/yP6uqqqqqqvI/qZQy8XKp8j/sVwrU+pXyP+IuqRM9g/I/LAVq/UqB8j9tsskmm2zyP/PNi3rPWPI/rV8pUOtX8j/uDIl5O0PyPy+66KKLLvI/XO37G+gl8j9vZ0jM2xnyP7AUqPUrBfI/8MEHH3zw8T8xb2dIzNvxPzhDaNK00fE/chzHcRzH8T+yySabbLLxP9fMxHe2pPE/83aGxLyd8T80JObtDInxP3TRRRdddPE/GgxOmS1u8T+1fqVArV/xP2CtsJRGWfE/J94s2K5M8T/2KwVq/UrxPxDBBivLRPE/YoohOdk/8T+KN3TMGT3xPxJ+rywZPPE/IbmaJIY88T8iZ2ONKD7xP4hyeBjbQPE//xaqPIdE8T/wsXmbIknxP/YrBWr9SvE/nto0SGtO8T+SJomNYVTxPzJGOqEuW/E/tX6lQK1f8T+X5sgeoWLxP8hlTTuJavE/rBl4NV9z8T900UUXXXTxP1Wbo/JlfPE/h1rEuFKG8T80JObtDInxP95YzpeMkPE/IvL3hJ2b8T/zdobEvJ3xP5wi76PipvE/sskmm2yy8T9rN87wIrPxP8Q3viZsv/E/chzHcRzH8T9JHY4RiszxPy7BzJ1P2vE/MW9nSMzb8T81+dYbPOjxP/DBBx988PE/oND+APX28T+wFKj1KwXyP74qGxlpBvI/dNEFdxYW8j9vZ0jM2xnyP0yY/7FTJvI/L7rooosu8j9GtmkYQTfyP+4MiXk7Q/I/d5geytVI8j+uXylQ61fyPxG8Ll0LW/I/bbLJJpts8j/SNkC43W3yPywFav1KgfI/LAVq/UqB8j/Fm3g1PJXyP+tXCtT6lfI/MAWSceGp8j+qqqqqqqryPy02Hu8/v/I/av1KgVq/8j8rUOtXCtTyP6INlsM21fI/6aKLLrro8j+WJkQi3+vyP6j1KwVq/fI/LSuW20kD8z9oSMzbGRLzPzK2+EGIG/M/J5tssskm8z921FYJsDTzP+btDIl5O/M/JJ7hH9xO8z+mQK1fKVDzP2WTTTbZZPM/UziNhpZp8z8k5u0MiXnzP/g3KgFUhfM/5DiO4ziO8z9DQzQWZaLzP6OLLrroovM/Yt7OkJi38z/fGw2vB8DzPyIxb2dIzPM/ocuFpjTf8z/hgw8++ODzP6DWrxSo9fM/fEo4hz7/8z9gKVDrVwr0Px988MEHH/Q/ZJqsMuog9D/ezpCYtzP0P/2loPS/Q/Q/niExb2dI9D9ddNFFF130P67gEKonaPQ/HMdxHMdx9D/cGRLzdob0P8yfE3JWjvQ/m2yyySab9D9av1Kg1q/0P4WeFXxstvQ/GhLzdobE9D/YZJNNNtn0P8cWhDSl4PQ/mbczJObt9D9YCtT6lQL1PxgzWa5bDfU/GF100UUX9T/WrxSo9Sv1P1qyg38RPfU/lgK1fqVA9T9WVVVVVVX1PxWo9SsFavU/nEv6lVpw9T/U+pUCtX71P5RNNtlkk/U/U6DWrxSo9T8VqfUnT6j1PxLzdobEvPU/0kUXXXTR9T+RmLczJOb1P2G5J7S65vU/UOtXCtT69T8QPvjggw/2P8+QmLczJPY/Hsajgqsv9j+O4ziO4zj2P0422WSTTfY/DYl5O0Ni9j/M2xkS83b2P40uuuiii/Y/AJw73p2P9j8=\"},\"shape\":[289],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CjPhHkES9j/PkJi3MyT2P47jOI7jOPY/TjbZZJNN9j8NiXk7Q2L2P8zbGRLzdvY/JFAhJl199j+MLrrooov2P0uBWr9SoPY/nhHVRfeo9j8K1PqVArX2PwhObY7qtvY/MwZmNrG69j8nBrcC87j2PwrU+pUCtfY/4OSd7nCz9j+izU1gN6v2Pxf9dlfWoPY/S4Fav1Kg9j9GtVuN2pT2P4wuuuiii/Y/n4FrvWSH9j9VFy/fwXj2P8zbGRLzdvY/Gw0hOjVp9j8NiXk7Q2L2P5fcRbG7WPY/TjbZZJNN9j8QETeLdEf2P47jOI7jOPY/G1OYhHk19j/PkJi3MyT2PwhLTM/fIvY/uj95U7wP9j8QPvjggw/2P6q/JF8o/PU/UOtXCtT69T9/7VkcGuj1P5GYtzMk5vU/MgG5HpvT9T/SRRdddNH1P2qLlBizvvU/EvN2hsS89T+KRqMbaKn1P1Og1q8UqPU/SpDSzL6T9T+UTTbZZJP1P9T6lQK1fvU/OCvby8t99T8VqPUrBWr1P2gzX8yMZ/U/VlVVVVVV9T9sdQbO/FD1P5YCtX6lQPU/m3G3+xs69T/XrxSo9Sv1P+IMhZfpIvU/GF100UUX9T+eNKsCZAv1P1gK1PqVAvU/GqP7wIjz9D+ZtzMk5u30P3NQCHhU2/Q/2WSTTTbZ9D8aEvN2hsT0P8Pol8LdwvQ/W79SoNav9D9+mmMPKqr0P5tssskmm/Q/lr28qxKR9D/cGRLzdob0P6r/uzWQd/Q/HMdxHMdx9D+4Imcfml30P1100UUXXfQ/nSExb2dI9D+s0kSiYUP0P97OkJi3M/Q/DNxAmqgo9D8ffPDBBx/0P7bdoJtbDfQ/YClQ61cK9D+f1q8UqPXzPx3/546H8fM/4YMPPvjg8z/MsN5zEdXzPyIxb2dIzPM/EPAU5s238z9i3s6QmLfzP6OLLrroovM/zKYoea2Z8z/kOI7jOI7zPxBB6qV8evM/JObtDIl58z9lk0022WTzPz3iyQ3dWfM/pkCtXylQ8z/m7QyJeTvzP5EyE8aKN/M/J5tssskm8z8U10nE2RLzP2hIzNsZEvM/qPUrBWr98j92tEXoVeryP+miiy666PI/KlDrVwrU8j9q/UqBWr/yP+PmLHTouvI/q6qqqqqq8j/rVwrU+pXyPy0Fav1KgfI//TJNmg528j9tsskmm2zyP61fKVDrV/I/7gyJeTtD8j8vuuiiiy7yP7eH4tc7K/I/b2dIzNsZ8j/ducBuEAfyP7AUqPUrBfI/U1XPxIn48T+U3qBomPDxP/DBBx988PE/wLwemwft8T9jHKZCIOzxP7JAq4JI7fE/jqTtgh/w8T/wwQcffPDxPz+HsKFj9PE/Isetidf58T96VWNZZgDyP7AUqPUrBfI/1wuxt/gH8j9ev5zOYRDyP6ZWV6fLGfI/b2dIzNsZ8j/mC0WJ0SPyPy+66KKLLvI/GOcNtNcu8j8D1NwbYTryP+4MiXk7Q/I/KugHmtVG8j/hju8X71PyP61fKVDrV/I/As4pTrNh8j9tsskmm2zyP4DBuYNMcPI/5VW1aZN/8j8sBWr9SoHyP9ZdY2Bqj/I/61cK1PqV8j/fU5HjCqDyP6uqqqqqqvI/fbzpAW+x8j9q/UqBWr/yP288th2Tw/I/KlDrVwrU8j+jiuTZddbyP+miiy666PI/iYPhFRjq8j+o9SsFav3yPw1Cwvh8/vI/aEjM2xkS8z+wrMsMqhPzPyebbLLJJvM/KsAVbacp8z/m7QyJeTvzPxJR0AeAQPM/pkCtXylQ8z9HfKT4QVjzP2WTTTbZZPM/DN7a//5w8z8k5u0MiXnzP3tUbhzNivM/5DiO4ziO8z+jiy666KLzPxnupv+cpfM/Yt7OkJi38z+kDY6wcsHzPyIxb2dIzPM//tPSqaTe8z/hgw8++ODzP6DWrxSo9fM/HRW75P/88z9gKVDrVwr0P23XD6DhHPQ/H3zwwQcf9D/ezpCYtzP0P2DC+mQ1PvQ/niExb2dI9D9ddNFFF130P++eVvhbYfQ/HMdxHMdx9D/cGRLzdob0P9wZEvN2hvQ/m2yyySab9D+sIbNfyq30P1q/UqDWr/Q/GhLzdobE9D+blTpj1df0P9lkk0022fQ/mbczJObt9D9XCtT6lQL1P2qB4lg5BfU/GF100UUX9T/XrxSo9Sv1P4z2GO8CN/U/lgK1fqVA9T9WVVVVVVX1PxWo9SsFavU/BvZwq/du9T/U+pUCtX71P5RNNtlkk/U/U6DWrxSo9T/2EEV6nrH1PxLzdobEvPU/0kUXXXTR9T+RmLczJOb1P1DrVwrU+vU/ED744IMP9j8KM+EeQRL2Pw==\"},\"shape\":[221],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Zg8crilf9T8VqPUrBWr1P9T6lQK1fvU/lE022WST9T9ToNavFKj1PxLzdobEvPU/0FM8ynPC9T/SRRdddNH1P3jRPCEk2/U/sK00sz7g9T+2YbES1N31P34157Mm1/U/0kUXXXTR9T9ajs8+es31PyY5m2KVwfU/EvN2hsS89T85KSVs7LP1P1Og1q8UqPU/rVmghuOk9T9XMt+wpJT1P5RNNtlkk/U/8b/vZFSD9T/U+pUCtX71P0zOmlIccfU/Faj1KwVq9T8b3+UNE171P1ZVVVVVVfU/WLe5iUpK9T+WArV+pUD1PxIq7cnQNfU/168UqPUr9T8iCVxusCD1PxhddNFFF/U/QNWdHvEK9T9YCtT6lQL1P7LnF9yX9PQ/mbczJObt9D82r7w+p930P9lkk0022fQ//vetnx/G9D8aEvN2hsT0P1q/UqDWr/Q/yX24Fvyt9D+bbLLJJpv0P/TmTI83lfQ/3BkS83aG9D9ks0DhzXv0PxzHcRzHcfQ/FzFw57Vh9D9ddNFFF130P54hMW9nSPQ/Wuj8MNlG9D/ezpCYtzP0P4yT/J0KK/Q/H3zwwQcf9D96ufbbVQ70P2ApUOtXCvQ/oNavFKj18z8GH4CmW/DzP+GDDz744PM/e9XDgPTQ8z8iMW9nSMzzP2LezpCYt/M/j8saGoOv8z+jiy666KLzP+M4juM4jvM/gko8eIuL8z8k5u0MiXnzP2aTTTbZZPM/fXt3/Bxj8z+mQK1fKVDzP+btDIl5O/M/ziD6drEw8z8nm2yyySbzP2hIzNsZEvM/qPUrBWr98j/poosuuujyPypQ61cK1PI/av1KgVq/8j9X31A6M7vyP0+d9IN0rPI/q6qqqqqq8j9gTdxMvKfyPziqLTW0p/I/q6qqqqqq8j+rqqqqqqryP+DsiG0vsPI/jhJikWO38j9q/UqBWr/yP3u0MakOwPI/+LRDaUfK8j8qUOtXCtTyPyXAujud1fI/vplrTTDi8j/poosuuujyP0tzhWDX7/I/qPUrBWr98j93vKnFg/7yP+WJjKU/DvM/aEjM2xkS8z+WUxCJAB/zPyebbLLJJvM/eCTykMMw8z/m7QyJeTvzP1Im0UeLQ/M/pkCtXylQ8z8OyxZ3XFfzP2aTTTbZZPM/IP37PD5s8z8k5u0MiXnzP18MWDQ6gvM/5DiO4ziO8z+BGKqwXJnzP6OLLrroovM/SLGTEbWx8z9i3s6QmLfzP5zl7jFWy/M/IjFvZ0jM8z/hgw8++ODzP7Z9srhp5vM/oNavFKj18z8/6GKC/QL0P2ApUOtXCvQ/H3zwwQcf9D96J32APSH0P97OkJi3M/Q/mAZUp31B9D+eITFvZ0j0P1100UUXXfQ/5U8TwPpj9D8cx3Ecx3H0P9wZEvN2hvQ/Y1HbcB+J9D+bbLLJJpv0P1q/UqDWr/Q/wCwTkcux9D8aEvN2hsT0P9lkk0022fQ/9FgG+oHf9D+ZtzMk5u30P1gK1PqVAvU/+fl0H+AU9T8YXXTRRRf1P9evFKj1K/U/lgK1fqVA9T9WVVVVVVX1P2YPHK4pX/U/\"},\"shape\":[147],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"il3n1RGe9D9av1Kg1q/0PxoS83aGxPQ/2WSTTTbZ9D+ZtzMk5u30P1gK1PqVAvU/ltDzJR8G9T89z95qQQb1P1gK1PqVAvU/qQL7Y3v+9D+o/nxclPL0P5m3MyTm7fQ/eP+ieb/j9D/ZZJNNNtn0Py5k63Lw0vQ/GhLzdobE9D/xbo/xWMD0P1q/UqDWr/Q/jWY24Bys9D+abLLJJpv0P/kS+HlUlvQ/3BkS83aG9D+92Sy7DX/0PxzHcRzHcfQ/zl26Uk1m9D9ddNFFF130P+dJ9icPTPQ/niExb2dI9D/ezpCYtzP0P/FWVyecL/Q/HnzwwQcf9D8BQXECehD0P2ApUOtXCvQ/oNavFKj18z9wma4+S+3zP+GDDz744PM/IjFvZ0jM8z+jCDNQj8HzP2LezpCYt/M/o4suuuii8z/kOI7jOI7zPyTm7QyJefM/T75UdR9y8z+4vGAWJm3zPzD7/i0ZcfM/ECWkEwx58z8k5u0MiXnzPyrv2ULthPM/5DiO4ziO8z8YCdDxqJLzP28sCYJmovM/o4suuuii8z8lTsmderTzP2LezpCYt/M/c1/7LVfI8z8iMW9nSMzzP94q0YIL3vM/4YMPPvjg8z+g1q8UqPXzP6DWrxSo9fM/YClQ61cK9D8Dq8odBRD0Px988MEHH/Q/9iYPB7ws9D/ezpCYtzP0P54hMW9nSPQ/Zlu47ZpM9D9ddNFFF130PzE4TePlcPQ/HMdxHMdx9D/cGRLzdob0P5tssskmm/Q/il3n1RGe9D8=\"},\"shape\":[73],\"dtype\":\"float64\",\"order\":\"little\"}]],[\"ys\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"YClQ61cKTUBbjBVlQANNQOQ6byDu+0xAw6csxxX2TEDul3aM0fFMQKt8QYNP70xA8dA+AdfuTECoi9PJ0PBMQMbMo3DT9UxAJqTfW7b+TEBgKVDrVwpNQNa7CGH5DE1AMaMS6DklTUA++OCDDz5NQMZWjXwmT01AHMdxHMdxTUD7lQK1fqVNQNpkk0022U1AuDMk5u0MTkCWArV+pUBOQDoGcBGJZ05AdNFFF110TkBSoNavFKhOQEmVmAI1yk5AMW9nSMzbTkAQPvjggw9PQGWUSK4/G09A7gyJeTtDT0DckO+lTGNPQMzbGRLzdk9AYF4+01imT0CqqqqqqqpPQIl5O0Ni3k9AZd972JjlT0A0JObtDAlQQO5UuP4VEVBAo4suuugiUEBIa5lqVC5QQBLzdobEPFBAX//8xrhKUECBWr9SoFZQQIQ06sxoZlBA8MEHH3xwUEARk8a8gYFQQGApUOtXilBAOzzmbxqcUEDQkJi3M6RQQKglmthEtlBAPvjggw++UED854ccD9BQQK1fKVDr11BAekvAZoTpUEAcx3Ecx/FQQPe6wIWtAlFAjC666KILUUBLDGdjkRtRQPqVArV+JVFAmC2/YDU0UUBq/UqBWj9RQJpPvpydTFFA2WSTTTZZUUDotwsrzWRRQEjM2xkSc1FASkmVPsZ8UUC4MyTm7YxRQO5ItEqKlFFAJ5tsssmmUUBXJfEcGqxRQJYCtX6lwFFAeojx8HXDUUAFav1KgdpRQDuiun+d2lFA2YhRFuzxUUB00UUXXfRRQPdt2iwTCVJA5DiO4zgOUkCK/BvRDSBSQFOg1q8UKFJAJhF3P9o2UkDCBx988EFSQH7AVFt2TVJAMW9nSMxbUkD9+aGv32NSQKDWrxSodVJA9ji7bRN6UkAQPvjgg49SQGqY5moOkFJA31cr+kimUkB/pUCtX6lSQO6HqxFivFJA7gyJeTvDUkBsDRRBQ9JSQF100UUX3VJAm1SvOOjnUkDM2xkS8/ZSQKROgzxM/VJAPENi3s4QU0A2QIAaahJTQLnjNSeyJ1NAq6qqqqoqU0AcrVa+7DxTQBoS83aGRFNADiEV8txRU0CJeTtDYl5TQP3HswB8ZlNA+OCDDz54U0AJB01/wnpTQLJGjP8aj1NAaEjM2xmSU0CGhBofbaNTQNavFKj1q1NACgeenVy3U0BGF1100cVTQP8Wx6vfylNA09O/SCPeU0C1fqVArd9TQBvlsJiV8VNAJObtDIn5U0D0BF+higRUQJNNNtlkE1RAS2mBCvUWVEDWZIulTClUQAK1fqVALVRAlkmWEXo7VEByHMdxHEdUQF3sq6gBTVRAeU36bCleVEDggw8++GBUQNDGeWRAb1RAUOtXCtR6VEDWUCksi39UQEbfZYmHj1RAwFKg1q+UVEAI27oVGZ9UQJc3BjO9rVRALrrooouuVECHpOmXU7xUQJ4hMW9nyFRAskGhRb/JVEBmwmC46NZUQA2JeTtD4lRAnZQeD9DiVEB/ZcjVTe5UQL4SR6d0+FRAfPDBBx/8VEBSHnIVqgFVQMLs9oaeCVVAOau+hwIQVUA2pu1WshRVQOxXCtT6FVVAzwQkCXUXVUCBUUtlxBdVQOxXCtT6FVVA4t84vP4UVUCGplLAKA5VQK5gbHynAVVAfPDBBx/8VEBSFZZ8/OtUQA2JeTtD4lRAniExb2fIVEA4u/wpksNUQC666KKLrlRAwFKg1q+UVEBQ61cK1HpUQOGDDz74YFRAchzHcRxHVEACtX6lQC1UQJNNNtlkE1RAJObtDIn5U0C1fqVArd9TQFa5jAcU11NARhdddNHFU0DWrxSo9atTQGhIzNsZklNAAjscC/yCU0D44IMPPnhTQIl5O0NiXlNAGhLzdoZEU0CH+w983UFTQKuqqqqqKlNAPENi3s4QU0Ax2v3QQApTQMzbGRLz9lJAXXTRRRfdUkDiBq2Rd9hSQO4MiXk7w1JAwpXahfaqUkB/pUCtX6lSQBA++OCDj1JAApNsKLGAUkCg1q8UqHVSQDFvZ0jMW1JAl8x4JSZZUkDCBx988EFSQAKg6oO3M1JAU6DWrxQoUkDVnsIiXhBSQOQ4juM4DlJAdNFFF130UUDk9Bz2fu5RQAVq/UqB2lFA/FmS0hzOUUCWArV+pcBRQJpKZqYkr1FAJ5tsssmmUUBsljyhbJFRQLgzJObtjFFA2Jxvn9F0UUBHzNsZEnNRQNlkk002WVFA2WSTTTZZUUBq/UqBWj9RQIV6GtNqPlFA+5UCtX4lUUAQcHn9iCRRQIwuuuiiC1FAGMrnY4MLUUD09PTeI/NQQBzHcRzH8VBAkS7JlXHbUECtXylQ69dQQERlYndrxFBAPvjggw++UECCBFKLEK5QQM+QmLczpFBAyO5efGOYUEBgKVDrV4pQQGkm6NJqg1BA8MEHH3xwUEC36SZSMW9QQIjSlB8NW1BAgVq/UqBWUEDxbM3faEdQQBLzdobEPFBAUj+Rr4I0UECjiy666CJQQDxI6MBxIlBA5uhsSBIQUEA0JObtDAlQQI3C+Fva/E9AiXk7Q2LeT0DgXnZ9Z9tPQIjH5QxfuU9Aq6qqqqqqT0ByYPyhtZhPQHHLhLmyeU9AzNsZEvN2T0CJbXIq3FlPQO4MiXk7Q09AUcHvNDY8T0DTI53tVx5PQBA++OCDD09AcEFCRKcBT0Dn3SA9zeVOQDFvZ0jM205AdYLIIjPKTkD4WY0sALBOQFSg1q8UqE5A0iXl0KWVTkCAlOBuz3xOQHTRRRdddE5Aqjkd+eZjTkAO/gszMUxOQJYCtX6lQE5AakBAZvc0TkB8LIKhMR5OQLgzJObtDE5AkoCNLPAITkCEdQDI8vJNQJVMDi0A301A2mSTTTbZTUACp9bjrcpNQBz6KI9ct01ATmXzbq6lTUD7lQK1fqVNQBJnhfv1kk1AXWEpTuOBTUAQEebVMnJNQBzHcRzHcU1AFoZtKMphTUB2iOa9zVJNQJFL35kURU1APvjggw8+TUAF1XWUyDdNQD6xpZn8Kk1AXUkO4HcfTUAZbfjbHhVNQILaMb/gC01AYClQ61cKTUA=\"},\"shape\":[289],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"lQK1fqVATkCfRUUk+DpOQA+j4X7ANk5As9IcKTw1TkAwh+dREDdOQPtLmT05PU5AlgK1fqVATkCOIWsYzUpOQAp280k3ZE5AdNFFF110TkDx64KO+J5OQFOg1q8UqE5AMG9nSMzbTkAQPvjggw9PQOz56taVM09A7gyJeTtDT0DM2xkS83ZPQKuqqqqqqk9AqE2zAMOsT0CJeTtDYt5PQBZ4geCXAFBANCTm7QwJUECjiy666CJQQCVDU1/OJVBAEvN2hsQ8UEAMaSM6b0dQQIFav1KgVlBA0xB3+iBnUEDwwQcffHBQQFEKZFJRhVBAYClQ61eKUECJdk0nUKJQQM+QmLczpFBAPvjggw++UECOzIfpWL5QQK1fKVDr11BAQHKGCZ3ZUEAcx3Ecx/FQQOrmYhQ79FBAjC666KILUUBvABJpSA5RQPuVArV+JVFAQ7X5otUnUUBq/UqBWj9RQM5BBp7vQFFA2WSTTTZZUUAFuIo4oFlRQK8s14f/cVFASMzbGRJzUUAXHmfdEYpRQLgzJObtjFFAgMCvNtahUUAnm2yyyaZRQFH7IHpPuVFAlgK1fqXAUUAiubZCf9BRQAZq/UqB2lFAyPLmDGbnUUB00UUXXfRRQLIuyFcD/lFA5DiO4zgOUkBW4fK8VRRSQFKg1q8UKFJAvQ7zAFsqUkA1ARubNkBSQMIHH3zwQVJAQOL9r/hVUkAxb2dIzFtSQBLJNVdwa1JAoNavFKh1UkA6OBWomIBSQBA++OCDj1JAGuSt/muVUkB/pUCtX6lSQMd25vLjqVJAFn0KF2q+UkDuDIl5O8NSQOqXGxSg0lJAXXTRRRfdUkBQ+OC+cuZSQMzbGRLz9lJAMJMVwdj5UkAF12yVGg1TQDxDYt7OEFNAIh7gYSUgU0CrqqqqqipTQDnUniCzMlNAGhLzdoZEU0DGd7WYtkRTQB+ntGDBVlNAiXk7Q2JeU0ASWDgUOmhTQPjggw8+eFNAk1dPGgx5U0Cud+ezwolTQGhIzNsZklNAkmrEsM2ZU0D8TQv5NalTQNavFKj1q1NAGY0JPD+4U0BGF1100cVTQMobS99axlNA0+GLpA/UU0C1fqVArd9TQHa00/S14FNAnPBNc7XsU0ClEWGghfdTQCTm7QyJ+VNAlpTfelgBVEAnx5V9ywlUQAuhMmazEFRAk0022WQTVEB16rhV0BVUQEMa7UOlGFRAQvQW05cYVEBDa8b4thRUQJNNNtlkE1RAPnUF18wKVEAj5u0MiflTQCVcJuoY91NAtX6lQK3fU0BGF1100cVTQBC4r7UmxVNA1q8UqPWrU0BoSMzbGZJTQPjggw8+eFNAiXk7Q2JeU0BKinPeS1xTQBoS83aGRFNAq6qqqqoqU0A8Q2LezhBTQFnwig/SAFNAzNsZEvP2UkBddNFFF91SQO4MiXk7w1JAor3nsxPDUkB/pUCtX6lSQBLMiuk9kFJAED744IOPUkCg1q8UqHVSQO6jF+l6Y1JAMW9nSMxbUkDCBx988EFSQBiUyQ6gOlJAU6DWrxQoUkA2ItR+5xRSQOQ4juM4DlJAdNFFF130UUBEFpeUnfFRQAVq/UqB2lFAuY34c2jQUUCWArV+pcBRQDo+9IXvsFFAJ5tsssmmUUCi6xrN/ZJRQLgzJObtjFFAmzR5a2Z2UUBIzNsZEnNRQMD3KqUDW1FA2mSTTTZZUUAKC5IPtkBRQGr9SoFaP1FA2Z2T52MnUUD7lQK1fiVRQAjFj4r4DlFAjC666KILUUDqoe8OZPdQQBzHcRzH8VBAY6Q9+prgUECtXylQ69dQQJ04xROWylBAPvjggw++UECiIspTUrVQQM+QmLczpFBATOmM8NCgUECVEwji4oxQQGApUOtXilBA0wum8GR5UEDwwQcffHBQQECUdOyaZlBAgVq/UqBWUECVy1N7klRQQGXPl2XOQlBAEvN2hsQ8UEDhf8aOljFQQKOLLrroIlBAXrBZEyohUEC2gwBP4BBQQDQk5u0MCVBAO4YKQDgBUEAmUinxXORPQIh5O0Ni3k9AoHMnXJrGT0CrqqqqqqpPQKuqqqqqqk9Asx/+xYOOT0DM2xkS83ZPQIZs2BE+dE9AetO5mAFaT0DuDIl5O0NPQEorJm2GQU9A7GgPDgcpT0CUTjnbRxJPQA8++OCDD09AaPLOTaP7TkB/sCt6c+ZOQDFvZ0jM205AzjjBsQDSTkA14ANRZL5OQIDPzVMmrE5AU6DWrxSoTkBIQon5bppOQEDRJm3ziU5ArblGBsF6TkB00UUXXXROQJOlxcZ/bE5AQxuP8IFfTkD8ZNUA/VNOQLKRjPXySU5AblFLXXtBTkCVArV+pUBOQA==\"},\"shape\":[221],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"q6qqqqqqT0BgsnnOPqVPQPHtlAMnnk9A7lXpscCaT0BOLH7ebZxPQLO0VJKdpU9AqqqqqqqqT0CC9Sl9ScJPQIh5O0Ni3k9ANCTm7QwJUECjiy666CJQQBLzdobEPFBAiMqm1aRLUECBWr9SoFZQQPDBBx98cFBAmReKQVt5UEBgKVDrV4pQQALAYUSNnlBAz5CYtzOkUEA++OCDD75QQAaMFx7iv1BArV8pUOvXUECn8TjBYN5QQBzHcRzH8VBAZILP2U77UECMLrroogtRQAJe+fv6FlFA+5UCtX4lUUDiZKc5njFRQGr9SoFaP1FAJY0ZaGJLUUDZZJNNNllRQOWuK05mZFFASMzbGRJzUUD3Tgl+wHxRQLgzJObtjFFAFIsAUIGUUUAnm2yyyaZRQLMOzUe0q1FAlgK1fqXAUUCmOjoTYcJRQFpnA/qK2FFABWr9SoHaUUDSOqsCPu5RQHTRRRdd9FFAYnHI4X4DUkDkOI7jOA5SQJA4beNLGFJAU6DWrxQoUkAmVXtyoSxSQHKJ4298QFJAwgcffPBBUkAUL+vK5VNSQDFvZ0jMW1JAnqgfpNRmUkCg1q8UqHVSQJIkEuU+eVJA9G9kSh+LUkAQPvjgg49SQF5NbvZ2nFJAf6VArV+pUkBkLlrjNa1SQGHuEiJKvVJA7gyJeTvDUkBAL1Z4ssxSQDv9zAtZ21JAXXTRRRfdUkDqXVh/GulSQM0WeYj+9VJAzdsZEvP2UkDJeoG9qwFTQAdJdpsuDFNAPENi3s4QU0CTGaGQMBVTQC6JM9Q+HFNAARaBLg4hU0D4oHEywSJTQBBvQve9H1NAU63Jp+kUU0A8Q2LezhBTQMzbGRLz9lJA7hMWxSvvUkBddNFFF91SQO4MiXk7w1JAf6VArV+pUkB/pUCtX6lSQBA++OCDj1JAoNavFKh1UkCM38zF8V1SQDFvZ0jMW1JAwgcffPBBUkCGNXiVvCtSQFOg1q8UKFJA5DiO4zgOUkBAAM6M8gFSQHTRRRdd9FFAqYAHPHjcUUAFav1KgdpRQJYCtX6lwFFAblFdZL26UUAnm2yyyaZRQMQOCHt8m1FAuDMk5u2MUUCywgFaMX5RQEjM2xkSc1FATxyJpphiUUDZZJNNNllRQKqXca16SFFAav1KgVo/UUAwIpHdqS9RQPuVArV+JVFANEf5hgEYUUCMLrroogtRQJAv+dZkAVFAHMdxHMfxUEBG7YsKvutQQK1fKVDr11BABUxo0v3WUEBlDjerKMNQQD744IMPvlBA/90h5hawUEDPkJi3M6RQQN1QeinAnVBAGCg0nyqMUEBgKVDrV4pQQAbyq9ZPe1BA8MEHH3xwUECVHsnsF2tQQIaIVEGYW1BAgVq/UqBWUEDz48VMu0xQQMJy0KaCPlBAEvN2hsQ8UEAWqIpw/jBQQBs97dwPJFBAo4suuugiUED5R3LB5RdQQISjL2VWDFBANCTm7QwJUED8OiRvigFQQHo9aUAD709Aink7Q2LeT0BpBRrIM9xPQDAhlfGjy09AmwnNjcC8T0AhlxU9pK9PQKuqqqqqqk9A\"},\"shape\":[147],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"z5CYtzOkUEAKIQc1gpxQQOdLW9I8lVBA1kPU+mmQUEBBIzBWgJBQQBKAID7SnVBAz5CYtzOkUEA++OCDD75QQP4cmPv7yVBArV8pUOvXUEAcx3Ecx/FQQDaZ6wLK+VBAjC666KILUUAmUWzEtxtRQPuVArV+JVFAk34EVXk5UUBq/UqBWj9RQGaKktBpVFFA2WSTTTZZUUDeOBDuU21RQEjM2xkSc1FAJBQSlbOEUUC4MyTm7YxRQM9bUpDWmlFAJ5tsssmmUUDQ9E8T7q9RQJYCtX6lwFFAdUM8qRjEUUBP/gLr6tZRQAVq/UqB2lFAjH7EmW3oUUB00UUXXfRRQJePr6o9+VFA9JolPYUIUkDkOI7jOA5SQKj5dT1eFlJAK34CXrQiUkBToNavFChSQCDXQBLrLFJAKPrxvOgzUkBcib2XxzZSQK9mwYGOMFJAU6DWrxQoUkDkOI7jOA5SQHTRRRdd9FFABWr9SoHaUUAI6eMWctlRQJYCtX6lwFFALNojIievUUAnm2yyyaZRQLgzJObtjFFAOwCWdTOMUUBIzNsZEnNRQDmd93wAb1FA2WSTTTZZUUB61QC1flRRQGr9SoFaP1FAWCYZGSE8UUD7lQK1fiVRQPuVArV+JVFAOxeL7SoRUUCMLrroogtRQL3yMmcN/lBAHMdxHMfxUEDQDzlS7OtQQHH7Lzcm21BArV8pUOvXUECZuCksG8xQQD744IMPvlBAkw8dXXm9UEDKbuDrW7FQQDvzxDCTpVBAz5CYtzOkUEA=\"},\"shape\":[73],\"dtype\":\"float64\",\"order\":\"little\"}]],[\"levels\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"U19+sK5Qwz9ZtEXxBZjVP3oSpHH1n+M/F2/oAOJW7D8=\"},\"shape\":[4],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1245\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1246\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"MultiLine\",\"id\":\"p1240\",\"attributes\":{\"line_color\":{\"type\":\"value\",\"value\":\"white\"},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},\"fill_renderer\":{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1237\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1234\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1235\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1236\"},\"data\":{\"type\":\"map\",\"entries\":[[\"xs\",[]],[\"ys\",[]],[\"lower_levels\",[]],[\"upper_levels\",[]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1238\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1239\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"MultiPolygons\",\"id\":\"p1233\"}}},\"levels\":[0.1508997308526384,0.3374037605452194,0.6132762164639438,0.8856058137639334]}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1254\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1248\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1249\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1250\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1255\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1256\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1251\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.2630973722818943},\"y\":{\"type\":\"value\",\"value\":69.34784233306983},\"size\":{\"type\":\"value\",\"value\":7},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"marker\":{\"type\":\"value\",\"value\":\"star\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1252\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.2630973722818943},\"y\":{\"type\":\"value\",\"value\":69.34784233306983},\"size\":{\"type\":\"value\",\"value\":7},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1},\"marker\":{\"type\":\"value\",\"value\":\"star\"}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1253\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.2630973722818943},\"y\":{\"type\":\"value\",\"value\":69.34784233306983},\"size\":{\"type\":\"value\",\"value\":7},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2},\"marker\":{\"type\":\"value\",\"value\":\"star\"}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1196\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1211\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1212\"},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1213\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1214\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1215\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1216\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1217\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1206\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1207\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1208\"},\"axis_label\":\"b\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1209\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1201\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1202\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1203\"},\"axis_label\":\"\\u03b1\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1204\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1205\",\"attributes\":{\"axis\":{\"id\":\"p1201\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1210\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1206\"}}}],\"frame_width\":300,\"frame_height\":300}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"373bd8d9-392d-4367-8eb1-8daf89ed285f\",\"roots\":{\"p1188\":\"eb11e703-9d2b-4c47-9b6d-15aa8668731b\"},\"root_ids\":[\"p1188\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1188" } }, "output_type": "display_data" } ], "source": [ "p = bebi103.viz.contour(alpha, b, like, x_axis_label='α', y_axis_label='b', overlaid='image')\n", "p.star(alpha_mle, b_mle, color='black', size=7)\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Graphically, we can see that we appropriately found the maximum." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A quick visualization\n", "\n", "We can do a quick visualization of our MLE to see if the model holds up. We will talk more about graphical tests of model predictive accuracy in coming lessons, but for now, we will simply overlay the theoretical CDF parametrized by the MLE. We can conveniently use the `scipy.stats` module to generate the CDF. It is probably overkill, since we have such a wide range of mRNA counts, but we will take care to make sure we plot the theoretical CDF as a staircase, since it is for a discrete distribution." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"590a7797-db8b-406f-84af-77d1adb50eb6\":{\"version\":\"3.2.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1267\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1268\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1269\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1276\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1277\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1274\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1301\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1295\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1296\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1297\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,3.0,3.0,3.0,3.0,4.0,4.0,4.0,4.0,4.0,4.0,5.0,5.0,5.0,5.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,8.0,8.0,8.0,8.0,8.0,8.0,8.0,8.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,12.0,12.0,13.0,13.0,14.0,14.0,14.0,14.0,14.0,14.0,15.0,15.0,15.0,15.0,18.0,18.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,20.0,20.0,20.0,20.0,21.0,21.0,21.0,21.0,21.0,21.0,22.0,22.0,22.0,22.0,23.0,23.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,25.0,25.0,26.0,26.0,27.0,27.0,27.0,27.0,28.0,28.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,30.0,30.0,30.0,30.0,31.0,31.0,32.0,32.0,32.0,32.0,32.0,32.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,34.0,34.0,35.0,35.0,37.0,37.0,37.0,37.0,38.0,38.0,38.0,38.0,39.0,39.0,39.0,39.0,39.0,39.0,40.0,40.0,40.0,40.0,41.0,41.0,41.0,41.0,44.0,44.0,44.0,44.0,46.0,46.0,46.0,46.0,47.0,47.0,48.0,48.0,49.0,49.0,49.0,49.0,50.0,50.0,51.0,51.0,52.0,52.0,53.0,53.0,55.0,55.0,55.0,55.0,57.0,57.0,58.0,58.0,59.0,59.0,59.0,59.0,60.0,60.0,61.0,61.0,61.0,61.0,62.0,62.0,63.0,63.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,65.0,65.0,65.0,65.0,65.0,65.0,66.0,66.0,66.0,66.0,66.0,66.0,66.0,66.0,67.0,67.0,67.0,67.0,67.0,67.0,67.0,67.0,68.0,68.0,68.0,68.0,68.0,68.0,69.0,69.0,69.0,69.0,71.0,71.0,72.0,72.0,72.0,72.0,72.0,72.0,73.0,73.0,73.0,73.0,74.0,74.0,74.0,74.0,76.0,76.0,76.0,76.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,78.0,78.0,78.0,78.0,79.0,79.0,79.0,79.0,80.0,80.0,80.0,80.0,80.0,80.0,80.0,80.0,82.0,82.0,82.0,82.0,83.0,83.0,83.0,83.0,84.0,84.0,84.0,84.0,84.0,84.0,85.0,85.0,86.0,86.0,86.0,86.0,87.0,87.0,87.0,87.0,88.0,88.0,88.0,88.0,90.0,90.0,92.0,92.0,94.0,94.0,94.0,94.0,94.0,94.0,94.0,94.0,96.0,96.0,97.0,97.0,100.0,100.0,101.0,101.0,101.0,101.0,103.0,103.0,103.0,103.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,105.0,105.0,105.0,105.0,107.0,107.0,107.0,107.0,108.0,108.0,109.0,109.0,110.0,110.0,113.0,113.0,114.0,114.0,115.0,115.0,116.0,116.0,116.0,116.0,117.0,117.0,118.0,118.0,118.0,118.0,119.0,119.0,120.0,120.0,120.0,120.0,120.0,120.0,121.0,121.0,123.0,123.0,125.0,125.0,127.0,127.0,127.0,127.0,127.0,127.0,128.0,128.0,128.0,128.0,128.0,128.0,129.0,129.0,130.0,130.0,132.0,132.0,132.0,132.0,134.0,134.0,134.0,134.0,136.0,136.0,137.0,137.0,138.0,138.0,139.0,139.0,140.0,140.0,140.0,140.0,141.0,141.0,143.0,143.0,143.0,143.0,144.0,144.0,145.0,145.0,148.0,148.0,149.0,149.0,153.0,153.0,153.0,153.0,153.0,153.0,154.0,154.0,155.0,155.0,156.0,156.0,156.0,156.0,156.0,156.0,160.0,160.0,162.0,162.0,168.0,168.0,171.0,171.0,174.0,174.0,175.0,175.0,175.0,175.0,176.0,176.0,181.0,181.0,186.0,186.0,187.0,187.0,190.0,190.0,193.0,193.0,194.0,194.0,195.0,195.0,196.0,196.0,200.0,200.0,202.0,202.0,212.0,212.0,227.0,227.0,228.0,228.0,231.0,231.0,239.0,239.0,246.0,246.0,252.0,252.0,263.0,263.0,408.0,408.0,408.0,408.0,408.0,408.0,293.0,293.0,293.0,293.0,274.0,274.0,274.0,274.0,263.0,263.0,263.0,263.0,263.0,263.0,252.0,252.0,251.0,251.0,246.0,246.0,246.0,246.0,239.0,239.0,236.0,236.0,231.0,231.0,231.0,231.0,228.0,228.0,227.0,227.0,216.0,216.0,216.0,216.0,212.0,212.0,202.0,202.0,200.0,200.0,198.0,198.0,196.0,196.0,196.0,196.0,195.0,195.0,194.0,194.0,193.0,193.0,191.0,191.0,191.0,191.0,190.0,190.0,187.0,187.0,186.0,186.0,181.0,181.0,177.0,177.0,176.0,176.0,175.0,175.0,175.0,175.0,175.0,175.0,174.0,174.0,171.0,171.0,168.0,168.0,162.0,162.0,162.0,162.0,160.0,160.0,160.0,160.0,156.0,156.0,156.0,156.0,156.0,156.0,155.0,155.0,154.0,154.0,154.0,154.0,153.0,153.0,153.0,153.0,153.0,153.0,153.0,153.0,149.0,149.0,148.0,148.0,145.0,145.0,144.0,144.0,143.0,143.0,143.0,143.0,141.0,141.0,141.0,141.0,140.0,140.0,140.0,140.0,139.0,139.0,138.0,138.0,138.0,138.0,137.0,137.0,136.0,136.0,134.0,134.0,134.0,134.0,132.0,132.0,132.0,132.0,132.0,132.0,130.0,130.0,129.0,129.0,128.0,128.0,128.0,128.0,128.0,128.0,128.0,128.0,127.0,127.0,127.0,127.0,127.0,127.0,125.0,125.0,124.0,124.0,123.0,123.0,121.0,121.0,120.0,120.0,120.0,120.0,120.0,120.0,119.0,119.0,118.0,118.0,118.0,118.0,117.0,117.0,116.0,116.0,116.0,116.0,115.0,115.0,114.0,114.0,113.0,113.0,110.0,110.0,109.0,109.0,109.0,109.0,108.0,108.0,107.0,107.0,107.0,107.0,105.0,105.0,105.0,105.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,103.0,103.0,103.0,103.0,101.0,101.0,101.0,101.0,100.0,100.0,97.0,97.0,96.0,96.0,94.0,94.0,94.0,94.0,94.0,94.0,94.0,94.0,92.0,92.0,90.0,90.0,90.0,90.0,88.0,88.0,87.0,87.0,87.0,87.0,87.0,87.0,86.0,86.0,85.0,85.0,85.0,85.0,84.0,84.0,84.0,84.0,84.0,84.0,83.0,83.0,83.0,83.0,82.0,82.0,82.0,82.0,81.0,81.0,80.0,80.0,80.0,80.0,80.0,80.0,79.0,79.0,79.0,79.0,78.0,78.0,78.0,78.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,76.0,76.0,76.0,76.0,74.0,74.0,74.0,74.0,74.0,74.0,73.0,73.0,73.0,73.0,72.0,72.0,71.0,71.0,71.0,71.0,69.0,69.0,69.0,69.0,68.0,68.0,68.0,68.0,68.0,68.0,67.0,67.0,67.0,67.0,67.0,67.0,66.0,66.0,66.0,66.0,66.0,66.0,66.0,66.0,65.0,65.0,65.0,65.0,65.0,65.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,63.0,63.0,62.0,62.0,61.0,61.0,61.0,61.0,60.0,60.0,59.0,59.0,59.0,59.0,58.0,58.0,57.0,57.0,55.0,55.0,55.0,55.0,53.0,53.0,52.0,52.0,51.0,51.0,50.0,50.0,49.0,49.0,48.0,48.0,47.0,47.0,46.0,46.0,44.0,44.0,44.0,44.0,41.0,41.0,41.0,41.0,40.0,40.0,40.0,40.0,39.0,39.0,39.0,39.0,39.0,39.0,38.0,38.0,38.0,38.0,37.0,37.0,37.0,37.0,34.0,34.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,32.0,32.0,32.0,32.0,32.0,32.0,31.0,31.0,30.0,30.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,28.0,28.0,27.0,27.0,27.0,27.0,26.0,26.0,25.0,25.0,24.0,24.0,24.0,24.0,24.0,24.0,23.0,23.0,22.0,22.0,22.0,22.0,21.0,21.0,21.0,21.0,20.0,20.0,20.0,20.0,19.0,19.0,19.0,19.0,19.0,19.0,18.0,18.0,15.0,15.0,14.0,14.0,14.0,14.0,13.0,13.0,12.0,12.0,11.0,11.0,11.0,11.0,11.0,11.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,8.0,8.0,8.0,8.0,6.0,6.0,6.0,6.0,5.0,5.0,5.0,5.0,4.0,4.0,3.0,3.0,3.0,3.0,2.0,2.0,2.0,2.0,1.0,1.0,1.0,1.0,0.0,0.0]],[\"y\",[0.0,0.0035842293906810036,0.0035842293906810036,0.007168458781362007,0.007168458781362007,0.010752688172043012,0.010752688172043012,0.014336917562724014,0.014336917562724014,0.017921146953405017,0.017921146953405017,0.021505376344086023,0.021505376344086023,0.025089605734767026,0.025089605734767026,0.02867383512544803,0.02867383512544803,0.03225806451612903,0.03225806451612903,0.035842293906810034,0.035842293906810034,0.03942652329749104,0.03942652329749104,0.043010752688172046,0.043010752688172046,0.04659498207885305,0.04659498207885305,0.05017921146953405,0.05017921146953405,0.053763440860215055,0.053763440860215055,0.05734767025089606,0.05734767025089606,0.06093189964157706,0.06093189964157706,0.06451612903225806,0.06451612903225806,0.06810035842293907,0.06810035842293907,0.07168458781362007,0.07168458781362007,0.07526881720430108,0.07526881720430108,0.07885304659498207,0.07885304659498207,0.08243727598566308,0.08243727598566308,0.08602150537634409,0.08602150537634409,0.08960573476702509,0.08960573476702509,0.0931899641577061,0.0931899641577061,0.0967741935483871,0.0967741935483871,0.1003584229390681,0.1003584229390681,0.1039426523297491,0.1039426523297491,0.10752688172043011,0.10752688172043011,0.1111111111111111,0.1111111111111111,0.11469534050179211,0.11469534050179211,0.11827956989247312,0.11827956989247312,0.12186379928315412,0.12186379928315412,0.12544802867383512,0.12544802867383512,0.12903225806451613,0.12903225806451613,0.13261648745519714,0.13261648745519714,0.13620071684587814,0.13620071684587814,0.13978494623655913,0.13978494623655913,0.14336917562724014,0.14336917562724014,0.14695340501792115,0.14695340501792115,0.15053763440860216,0.15053763440860216,0.15412186379928317,0.15412186379928317,0.15770609318996415,0.15770609318996415,0.16129032258064516,0.16129032258064516,0.16487455197132617,0.16487455197132617,0.16845878136200718,0.16845878136200718,0.17204301075268819,0.17204301075268819,0.17562724014336917,0.17562724014336917,0.17921146953405018,0.17921146953405018,0.1827956989247312,0.1827956989247312,0.1863799283154122,0.1863799283154122,0.18996415770609318,0.18996415770609318,0.1935483870967742,0.1935483870967742,0.1971326164874552,0.1971326164874552,0.2007168458781362,0.2007168458781362,0.20430107526881722,0.20430107526881722,0.2078853046594982,0.2078853046594982,0.2114695340501792,0.2114695340501792,0.21505376344086022,0.21505376344086022,0.21863799283154123,0.21863799283154123,0.2222222222222222,0.2222222222222222,0.22580645161290322,0.22580645161290322,0.22939068100358423,0.22939068100358423,0.23297491039426524,0.23297491039426524,0.23655913978494625,0.23655913978494625,0.24014336917562723,0.24014336917562723,0.24372759856630824,0.24372759856630824,0.24731182795698925,0.24731182795698925,0.25089605734767023,0.25089605734767023,0.25448028673835127,0.25448028673835127,0.25806451612903225,0.25806451612903225,0.2616487455197133,0.2616487455197133,0.26523297491039427,0.26523297491039427,0.26881720430107525,0.26881720430107525,0.2724014336917563,0.2724014336917563,0.27598566308243727,0.27598566308243727,0.27956989247311825,0.27956989247311825,0.2831541218637993,0.2831541218637993,0.2867383512544803,0.2867383512544803,0.2903225806451613,0.2903225806451613,0.2939068100358423,0.2939068100358423,0.2974910394265233,0.2974910394265233,0.3010752688172043,0.3010752688172043,0.3046594982078853,0.3046594982078853,0.30824372759856633,0.30824372759856633,0.3118279569892473,0.3118279569892473,0.3154121863799283,0.3154121863799283,0.31899641577060933,0.31899641577060933,0.3225806451612903,0.3225806451612903,0.32616487455197135,0.32616487455197135,0.32974910394265233,0.32974910394265233,0.3333333333333333,0.3333333333333333,0.33691756272401435,0.33691756272401435,0.34050179211469533,0.34050179211469533,0.34408602150537637,0.34408602150537637,0.34767025089605735,0.34767025089605735,0.35125448028673834,0.35125448028673834,0.3548387096774194,0.3548387096774194,0.35842293906810035,0.35842293906810035,0.36200716845878134,0.36200716845878134,0.3655913978494624,0.3655913978494624,0.36917562724014336,0.36917562724014336,0.3727598566308244,0.3727598566308244,0.3763440860215054,0.3763440860215054,0.37992831541218636,0.37992831541218636,0.3835125448028674,0.3835125448028674,0.3870967741935484,0.3870967741935484,0.3906810035842294,0.3906810035842294,0.3942652329749104,0.3942652329749104,0.3978494623655914,0.3978494623655914,0.4014336917562724,0.4014336917562724,0.4050179211469534,0.4050179211469534,0.40860215053763443,0.40860215053763443,0.4121863799283154,0.4121863799283154,0.4157706093189964,0.4157706093189964,0.41935483870967744,0.41935483870967744,0.4229390681003584,0.4229390681003584,0.4265232974910394,0.4265232974910394,0.43010752688172044,0.43010752688172044,0.4336917562724014,0.4336917562724014,0.43727598566308246,0.43727598566308246,0.44086021505376344,0.44086021505376344,0.4444444444444444,0.4444444444444444,0.44802867383512546,0.44802867383512546,0.45161290322580644,0.45161290322580644,0.4551971326164875,0.4551971326164875,0.45878136200716846,0.45878136200716846,0.46236559139784944,0.46236559139784944,0.4659498207885305,0.4659498207885305,0.46953405017921146,0.46953405017921146,0.4731182795698925,0.4731182795698925,0.4767025089605735,0.4767025089605735,0.48028673835125446,0.48028673835125446,0.4838709677419355,0.4838709677419355,0.4874551971326165,0.4874551971326165,0.4910394265232975,0.4910394265232975,0.4946236559139785,0.4946236559139785,0.4982078853046595,0.4982078853046595,0.5017921146953405,0.5017921146953405,0.5053763440860215,0.5053763440860215,0.5089605734767025,0.5089605734767025,0.5125448028673835,0.5125448028673835,0.5161290322580645,0.5161290322580645,0.5197132616487455,0.5197132616487455,0.5232974910394266,0.5232974910394266,0.5268817204301075,0.5268817204301075,0.5304659498207885,0.5304659498207885,0.5340501792114696,0.5340501792114696,0.5376344086021505,0.5376344086021505,0.5412186379928315,0.5412186379928315,0.5448028673835126,0.5448028673835126,0.5483870967741935,0.5483870967741935,0.5519713261648745,0.5519713261648745,0.5555555555555556,0.5555555555555556,0.5591397849462365,0.5591397849462365,0.5627240143369175,0.5627240143369175,0.5663082437275986,0.5663082437275986,0.5698924731182796,0.5698924731182796,0.5734767025089605,0.5734767025089605,0.5770609318996416,0.5770609318996416,0.5806451612903226,0.5806451612903226,0.5842293906810035,0.5842293906810035,0.5878136200716846,0.5878136200716846,0.5913978494623656,0.5913978494623656,0.5949820788530465,0.5949820788530465,0.5985663082437276,0.5985663082437276,0.6021505376344086,0.6021505376344086,0.6057347670250897,0.6057347670250897,0.6093189964157706,0.6093189964157706,0.6129032258064516,0.6129032258064516,0.6164874551971327,0.6164874551971327,0.6200716845878136,0.6200716845878136,0.6236559139784946,0.6236559139784946,0.6272401433691757,0.6272401433691757,0.6308243727598566,0.6308243727598566,0.6344086021505376,0.6344086021505376,0.6379928315412187,0.6379928315412187,0.6415770609318996,0.6415770609318996,0.6451612903225806,0.6451612903225806,0.6487455197132617,0.6487455197132617,0.6523297491039427,0.6523297491039427,0.6559139784946236,0.6559139784946236,0.6594982078853047,0.6594982078853047,0.6630824372759857,0.6630824372759857,0.6666666666666666,0.6666666666666666,0.6702508960573477,0.6702508960573477,0.6738351254480287,0.6738351254480287,0.6774193548387096,0.6774193548387096,0.6810035842293907,0.6810035842293907,0.6845878136200717,0.6845878136200717,0.6881720430107527,0.6881720430107527,0.6917562724014337,0.6917562724014337,0.6953405017921147,0.6953405017921147,0.6989247311827957,0.6989247311827957,0.7025089605734767,0.7025089605734767,0.7060931899641577,0.7060931899641577,0.7096774193548387,0.7096774193548387,0.7132616487455197,0.7132616487455197,0.7168458781362007,0.7168458781362007,0.7204301075268817,0.7204301075268817,0.7240143369175627,0.7240143369175627,0.7275985663082437,0.7275985663082437,0.7311827956989247,0.7311827956989247,0.7347670250896058,0.7347670250896058,0.7383512544802867,0.7383512544802867,0.7419354838709677,0.7419354838709677,0.7455197132616488,0.7455197132616488,0.7491039426523297,0.7491039426523297,0.7526881720430108,0.7526881720430108,0.7562724014336918,0.7562724014336918,0.7598566308243727,0.7598566308243727,0.7634408602150538,0.7634408602150538,0.7670250896057348,0.7670250896057348,0.7706093189964157,0.7706093189964157,0.7741935483870968,0.7741935483870968,0.7777777777777778,0.7777777777777778,0.7813620071684588,0.7813620071684588,0.7849462365591398,0.7849462365591398,0.7885304659498208,0.7885304659498208,0.7921146953405018,0.7921146953405018,0.7956989247311828,0.7956989247311828,0.7992831541218638,0.7992831541218638,0.8028673835125448,0.8028673835125448,0.8064516129032258,0.8064516129032258,0.8100358422939068,0.8100358422939068,0.8136200716845878,0.8136200716845878,0.8172043010752689,0.8172043010752689,0.8207885304659498,0.8207885304659498,0.8243727598566308,0.8243727598566308,0.8279569892473119,0.8279569892473119,0.8315412186379928,0.8315412186379928,0.8351254480286738,0.8351254480286738,0.8387096774193549,0.8387096774193549,0.8422939068100358,0.8422939068100358,0.8458781362007168,0.8458781362007168,0.8494623655913979,0.8494623655913979,0.8530465949820788,0.8530465949820788,0.8566308243727598,0.8566308243727598,0.8602150537634409,0.8602150537634409,0.8637992831541219,0.8637992831541219,0.8673835125448028,0.8673835125448028,0.8709677419354839,0.8709677419354839,0.8745519713261649,0.8745519713261649,0.8781362007168458,0.8781362007168458,0.8817204301075269,0.8817204301075269,0.8853046594982079,0.8853046594982079,0.8888888888888888,0.8888888888888888,0.8924731182795699,0.8924731182795699,0.8960573476702509,0.8960573476702509,0.899641577060932,0.899641577060932,0.9032258064516129,0.9032258064516129,0.9068100358422939,0.9068100358422939,0.910394265232975,0.910394265232975,0.9139784946236559,0.9139784946236559,0.9175627240143369,0.9175627240143369,0.921146953405018,0.921146953405018,0.9247311827956989,0.9247311827956989,0.9283154121863799,0.9283154121863799,0.931899641577061,0.931899641577061,0.9354838709677419,0.9354838709677419,0.9390681003584229,0.9390681003584229,0.942652329749104,0.942652329749104,0.946236559139785,0.946236559139785,0.9498207885304659,0.9498207885304659,0.953405017921147,0.953405017921147,0.956989247311828,0.956989247311828,0.9605734767025089,0.9605734767025089,0.96415770609319,0.96415770609319,0.967741935483871,0.967741935483871,0.9713261648745519,0.9713261648745519,0.974910394265233,0.974910394265233,0.978494623655914,0.978494623655914,0.982078853046595,0.982078853046595,0.985663082437276,0.985663082437276,0.989247311827957,0.989247311827957,0.992831541218638,0.992831541218638,0.996415770609319,0.996415770609319,1.0,1.0,0.996415770609319,0.996415770609319,0.992831541218638,0.992831541218638,0.989247311827957,0.989247311827957,0.985663082437276,0.985663082437276,0.982078853046595,0.982078853046595,0.978494623655914,0.978494623655914,0.974910394265233,0.974910394265233,0.9713261648745519,0.9713261648745519,0.967741935483871,0.967741935483871,0.96415770609319,0.96415770609319,0.9605734767025089,0.9605734767025089,0.956989247311828,0.956989247311828,0.953405017921147,0.953405017921147,0.9498207885304659,0.9498207885304659,0.946236559139785,0.946236559139785,0.942652329749104,0.942652329749104,0.9390681003584229,0.9390681003584229,0.9354838709677419,0.9354838709677419,0.931899641577061,0.931899641577061,0.9283154121863799,0.9283154121863799,0.9247311827956989,0.9247311827956989,0.921146953405018,0.921146953405018,0.9175627240143369,0.9175627240143369,0.9139784946236559,0.9139784946236559,0.910394265232975,0.910394265232975,0.9068100358422939,0.9068100358422939,0.9032258064516129,0.9032258064516129,0.899641577060932,0.899641577060932,0.8960573476702509,0.8960573476702509,0.8924731182795699,0.8924731182795699,0.8888888888888888,0.8888888888888888,0.8853046594982079,0.8853046594982079,0.8817204301075269,0.8817204301075269,0.8781362007168458,0.8781362007168458,0.8745519713261649,0.8745519713261649,0.8709677419354839,0.8709677419354839,0.8673835125448028,0.8673835125448028,0.8637992831541219,0.8637992831541219,0.8602150537634409,0.8602150537634409,0.8566308243727598,0.8566308243727598,0.8530465949820788,0.8530465949820788,0.8494623655913979,0.8494623655913979,0.8458781362007168,0.8458781362007168,0.8422939068100358,0.8422939068100358,0.8387096774193549,0.8387096774193549,0.8351254480286738,0.8351254480286738,0.8315412186379928,0.8315412186379928,0.8279569892473119,0.8279569892473119,0.8243727598566308,0.8243727598566308,0.8207885304659498,0.8207885304659498,0.8172043010752689,0.8172043010752689,0.8136200716845878,0.8136200716845878,0.8100358422939068,0.8100358422939068,0.8064516129032258,0.8064516129032258,0.8028673835125448,0.8028673835125448,0.7992831541218638,0.7992831541218638,0.7956989247311828,0.7956989247311828,0.7921146953405018,0.7921146953405018,0.7885304659498208,0.7885304659498208,0.7849462365591398,0.7849462365591398,0.7813620071684588,0.7813620071684588,0.7777777777777778,0.7777777777777778,0.7741935483870968,0.7741935483870968,0.7706093189964157,0.7706093189964157,0.7670250896057348,0.7670250896057348,0.7634408602150538,0.7634408602150538,0.7598566308243727,0.7598566308243727,0.7562724014336918,0.7562724014336918,0.7526881720430108,0.7526881720430108,0.7491039426523297,0.7491039426523297,0.7455197132616488,0.7455197132616488,0.7419354838709677,0.7419354838709677,0.7383512544802867,0.7383512544802867,0.7347670250896058,0.7347670250896058,0.7311827956989247,0.7311827956989247,0.7275985663082437,0.7275985663082437,0.7240143369175627,0.7240143369175627,0.7204301075268817,0.7204301075268817,0.7168458781362007,0.7168458781362007,0.7132616487455197,0.7132616487455197,0.7096774193548387,0.7096774193548387,0.7060931899641577,0.7060931899641577,0.7025089605734767,0.7025089605734767,0.6989247311827957,0.6989247311827957,0.6953405017921147,0.6953405017921147,0.6917562724014337,0.6917562724014337,0.6881720430107527,0.6881720430107527,0.6845878136200717,0.6845878136200717,0.6810035842293907,0.6810035842293907,0.6774193548387096,0.6774193548387096,0.6738351254480287,0.6738351254480287,0.6702508960573477,0.6702508960573477,0.6666666666666666,0.6666666666666666,0.6630824372759857,0.6630824372759857,0.6594982078853047,0.6594982078853047,0.6559139784946236,0.6559139784946236,0.6523297491039427,0.6523297491039427,0.6487455197132617,0.6487455197132617,0.6451612903225806,0.6451612903225806,0.6415770609318996,0.6415770609318996,0.6379928315412187,0.6379928315412187,0.6344086021505376,0.6344086021505376,0.6308243727598566,0.6308243727598566,0.6272401433691757,0.6272401433691757,0.6236559139784946,0.6236559139784946,0.6200716845878136,0.6200716845878136,0.6164874551971327,0.6164874551971327,0.6129032258064516,0.6129032258064516,0.6093189964157706,0.6093189964157706,0.6057347670250897,0.6057347670250897,0.6021505376344086,0.6021505376344086,0.5985663082437276,0.5985663082437276,0.5949820788530465,0.5949820788530465,0.5913978494623656,0.5913978494623656,0.5878136200716846,0.5878136200716846,0.5842293906810035,0.5842293906810035,0.5806451612903226,0.5806451612903226,0.5770609318996416,0.5770609318996416,0.5734767025089605,0.5734767025089605,0.5698924731182796,0.5698924731182796,0.5663082437275986,0.5663082437275986,0.5627240143369175,0.5627240143369175,0.5591397849462365,0.5591397849462365,0.5555555555555556,0.5555555555555556,0.5519713261648745,0.5519713261648745,0.5483870967741935,0.5483870967741935,0.5448028673835126,0.5448028673835126,0.5412186379928315,0.5412186379928315,0.5376344086021505,0.5376344086021505,0.5340501792114696,0.5340501792114696,0.5304659498207885,0.5304659498207885,0.5268817204301075,0.5268817204301075,0.5232974910394266,0.5232974910394266,0.5197132616487455,0.5197132616487455,0.5161290322580645,0.5161290322580645,0.5125448028673835,0.5125448028673835,0.5089605734767025,0.5089605734767025,0.5053763440860215,0.5053763440860215,0.5017921146953405,0.5017921146953405,0.4982078853046595,0.4982078853046595,0.4946236559139785,0.4946236559139785,0.4910394265232975,0.4910394265232975,0.4874551971326165,0.4874551971326165,0.4838709677419355,0.4838709677419355,0.48028673835125446,0.48028673835125446,0.4767025089605735,0.4767025089605735,0.4731182795698925,0.4731182795698925,0.46953405017921146,0.46953405017921146,0.4659498207885305,0.4659498207885305,0.46236559139784944,0.46236559139784944,0.45878136200716846,0.45878136200716846,0.4551971326164875,0.4551971326164875,0.45161290322580644,0.45161290322580644,0.44802867383512546,0.44802867383512546,0.4444444444444444,0.4444444444444444,0.44086021505376344,0.44086021505376344,0.43727598566308246,0.43727598566308246,0.4336917562724014,0.4336917562724014,0.43010752688172044,0.43010752688172044,0.4265232974910394,0.4265232974910394,0.4229390681003584,0.4229390681003584,0.41935483870967744,0.41935483870967744,0.4157706093189964,0.4157706093189964,0.4121863799283154,0.4121863799283154,0.40860215053763443,0.40860215053763443,0.4050179211469534,0.4050179211469534,0.4014336917562724,0.4014336917562724,0.3978494623655914,0.3978494623655914,0.3942652329749104,0.3942652329749104,0.3906810035842294,0.3906810035842294,0.3870967741935484,0.3870967741935484,0.3835125448028674,0.3835125448028674,0.37992831541218636,0.37992831541218636,0.3763440860215054,0.3763440860215054,0.3727598566308244,0.3727598566308244,0.36917562724014336,0.36917562724014336,0.3655913978494624,0.3655913978494624,0.36200716845878134,0.36200716845878134,0.35842293906810035,0.35842293906810035,0.3548387096774194,0.3548387096774194,0.35125448028673834,0.35125448028673834,0.34767025089605735,0.34767025089605735,0.34408602150537637,0.34408602150537637,0.34050179211469533,0.34050179211469533,0.33691756272401435,0.33691756272401435,0.3333333333333333,0.3333333333333333,0.32974910394265233,0.32974910394265233,0.32616487455197135,0.32616487455197135,0.3225806451612903,0.3225806451612903,0.31899641577060933,0.31899641577060933,0.3154121863799283,0.3154121863799283,0.3118279569892473,0.3118279569892473,0.30824372759856633,0.30824372759856633,0.3046594982078853,0.3046594982078853,0.3010752688172043,0.3010752688172043,0.2974910394265233,0.2974910394265233,0.2939068100358423,0.2939068100358423,0.2903225806451613,0.2903225806451613,0.2867383512544803,0.2867383512544803,0.2831541218637993,0.2831541218637993,0.27956989247311825,0.27956989247311825,0.27598566308243727,0.27598566308243727,0.2724014336917563,0.2724014336917563,0.26881720430107525,0.26881720430107525,0.26523297491039427,0.26523297491039427,0.2616487455197133,0.2616487455197133,0.25806451612903225,0.25806451612903225,0.25448028673835127,0.25448028673835127,0.25089605734767023,0.25089605734767023,0.24731182795698925,0.24731182795698925,0.24372759856630824,0.24372759856630824,0.24014336917562723,0.24014336917562723,0.23655913978494625,0.23655913978494625,0.23297491039426524,0.23297491039426524,0.22939068100358423,0.22939068100358423,0.22580645161290322,0.22580645161290322,0.2222222222222222,0.2222222222222222,0.21863799283154123,0.21863799283154123,0.21505376344086022,0.21505376344086022,0.2114695340501792,0.2114695340501792,0.2078853046594982,0.2078853046594982,0.20430107526881722,0.20430107526881722,0.2007168458781362,0.2007168458781362,0.1971326164874552,0.1971326164874552,0.1935483870967742,0.1935483870967742,0.18996415770609318,0.18996415770609318,0.1863799283154122,0.1863799283154122,0.1827956989247312,0.1827956989247312,0.17921146953405018,0.17921146953405018,0.17562724014336917,0.17562724014336917,0.17204301075268819,0.17204301075268819,0.16845878136200718,0.16845878136200718,0.16487455197132617,0.16487455197132617,0.16129032258064516,0.16129032258064516,0.15770609318996415,0.15770609318996415,0.15412186379928317,0.15412186379928317,0.15053763440860216,0.15053763440860216,0.14695340501792115,0.14695340501792115,0.14336917562724014,0.14336917562724014,0.13978494623655913,0.13978494623655913,0.13620071684587814,0.13620071684587814,0.13261648745519714,0.13261648745519714,0.12903225806451613,0.12903225806451613,0.12544802867383512,0.12544802867383512,0.12186379928315412,0.12186379928315412,0.11827956989247312,0.11827956989247312,0.11469534050179211,0.11469534050179211,0.1111111111111111,0.1111111111111111,0.10752688172043011,0.10752688172043011,0.1039426523297491,0.1039426523297491,0.1003584229390681,0.1003584229390681,0.0967741935483871,0.0967741935483871,0.0931899641577061,0.0931899641577061,0.08960573476702509,0.08960573476702509,0.08602150537634409,0.08602150537634409,0.08243727598566308,0.08243727598566308,0.07885304659498207,0.07885304659498207,0.07526881720430108,0.07526881720430108,0.07168458781362007,0.07168458781362007,0.06810035842293907,0.06810035842293907,0.06451612903225806,0.06451612903225806,0.06093189964157706,0.06093189964157706,0.05734767025089606,0.05734767025089606,0.053763440860215055,0.053763440860215055,0.05017921146953405,0.05017921146953405,0.04659498207885305,0.04659498207885305,0.043010752688172046,0.043010752688172046,0.03942652329749104,0.03942652329749104,0.035842293906810034,0.035842293906810034,0.03225806451612903,0.03225806451612903,0.02867383512544803,0.02867383512544803,0.025089605734767026,0.025089605734767026,0.021505376344086023,0.021505376344086023,0.017921146953405017,0.017921146953405017,0.014336917562724014,0.014336917562724014,0.010752688172043012,0.010752688172043012,0.007168458781362007,0.007168458781362007,0.0035842293906810036,0.0035842293906810036,0.0]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1302\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1303\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1298\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0,\"fill_color\":\"#1f77b3\",\"fill_alpha\":0.3}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1299\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"fill_color\":\"#1f77b3\",\"fill_alpha\":0.1,\"hatch_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1300\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"fill_color\":\"#1f77b3\",\"fill_alpha\":0.2,\"hatch_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1313\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1304\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1305\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1306\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"r2dJ0OtZ0j+5OkBWrg7QPxzHcRzHcdw/B8jK1QGy4j8q/k2Nin/TP9q+UJi2L+Q/J5poookmyj8avEVsBm/BP9daa6211uo/vvfee++95z9IHnnkkUfeP7JydYCsXK0/rANk5eoA2T/AqVHxb2rkP0geeeSRR+4/LQl6PUuC7j8gK1cHyMrVP42Kf1Oj4u8/XMRm8BaxqT+vZ0nQ61mSP93JfEh3Mq8/J5poookm6j+Nin9To+LfP/FvalT8m8o/hxtuuOGG6z+ycnWArFxtP4Jez5Kg1+M/9dNPP/304z+fJUGvZ0nQP5vBW8Rm8OY/aEnQ61kS5D+bwVvEZvDWPxDpTuZDuuM/8yHdyXxI5z8S9HqWBL3uP/eFwrR9oeA/i39To+Lf1D+ycnWArFx9P0/mQ7qT+dA/VVVVVVVV5T8gK1cHyMrlPwAAAAAAAPA/hWn7QmHa7j9J0OtZEvTqP3bZZZddduk/BhZYYIEFtj8EZOXqAFnpP82HdCfzId0/HMdxHMdx7D8WWGCBBRbYPxL0epYEvc4/chzHcRzH4T+HG2644YbbP0GvZ0nQ6+k/Zpdddtllxz/SncyHdCfjP93JfEh3Mu8/3HDDDTfc4D+ycnWArFzdP/FvalT8m7o/2r5QmLYvxD+bwVvEZvC2P93JfEh3Mr8/9dNPP/300z8CsnJ1gKzcP1A//fTTT+8/MW1fKEzb5z8S9HqWBL3eP/qQ7mQ+pOs/2r5QmLYv1D/7QmHavlDYP4QQQgghhNA/lVJKKaWU0j+PPPLII4/sPxZYYIEFFug/MW1fKEzbxz9sBm8Rm8HbPxsV/6ZGxe8/EZvBW8Rm4D9walT8mxrVP4cbbrjhhqs/mQ/pTuZD6j+XXXbZZZftP6dGxb+pUeE/MW1fKEzbtz91J/Mh3cnsPz3yyCOPPOI/yMrVAbJy5T/hLWIzeIvoP2Tl6gBZueo/SB555JFHzj9fKEzbFwrTP+ecc8455+w/GrxFbAZv0T9/+umnn37qPwYWWGCBBZY/r2dJ0OtZ4j+ToNezJOjlP3iL2AzeIuY/6U7mQ7qT6T/nnHPOOefcP4wxxhhjjOE/ke5kPqQ72T9FE0000UTjP9DrWRL0euY/XMRm8BaxyT87QFauDpDlPw433HDDDec/5JFHHnnk4T+EEEIIIYSgPwyFaftCYeo/4S1iM3iL2D/Q61kS9HrWP0geeeSRR74/cGpU/JsaxT96PUuCXs/SP2r7QmHavtA/uTpAVq4OwD9NNNFEE03kP4QQQgghhOA/GrxFbAZv4T/AqVHxb2rUP6WUUkoppdQ/avtCYdq+4D9cxGbwFrGZP4QQQgghhLA/+0Jh2r5QyD/rAFm5OkDmPzIf0p3Mh+Q/xhhjjDHG2D9ml1122WXXP1Oj4t/UqOg/S4Jez5Kg5z+8RWwGbxHrP8p8SHcyH+I/pZRSSiml5D8GFlhggQXWP1zEZvAWsek/ic3gLWIz6D8GFlhggQXGPzTRRBNNNNE/r2dJ0OtZoj9S8W9qVPzrP/jee++99+4/zjnnnHPO6T+EEEIIIYTAPwYWWGCBBaY/xhhjjDHG6D+ArFwdICvnP7JydYCsXM0/VwfIytUB4j/VqPg3NSruP/jee++9994/L7vssssu6z800UQTTTThP7k6QFauDuA/S4Jez5Kg1z96PUuCXs/iP0/mQ7qT+eA/xhhjjDHGuD8CsnJ1gKzsP69nSdDrWcI/2QzeIjaD5z8xbV8oTNvXPyLdyXxId+I/CtP2hcK07T+HG2644YbLPyhM2xcK0+Y/UvFvalT82z9FE0000USzP+SRRx555NE/uIjN4C1i4z+8RWwGbxHLP9DrWRL0esY/8W9qVPyb2j8avEVsBm+xP+2yyy677OI/LLDAAgss4D9fKEzbFwrjP0Nh2r5QmOY/qlHxb2pU7D9S8W9qVPzLP93JfEh3Ms8/hxtuuOGGuz+fJUGvZ0ngP/+mRsW/qdE/YjN4i9gM7j+sA2Tl6gDpP0/mQ7qT+cA/oH766aef7j+ycnWArFztP0UTTTTRRNM/snJ1gKxcnT87QFauDpDVP0GvZ0nQ69k/ej1Lgl7Pwj922WWXXXbZP6EwbV8oTOs/J5poookm2j+R7mQ+pDvJP5dddtlll90/brjhhhtu6D8GFlhggQXmP2aXXXbZZec/bAZvEZvB6z/avlCYti+0PzmO4ziO4+g/ke5kPqQ76T/CW8Rm8BbhP8Rm8BaxGew/6wBZuTpA1j+VUkoppZTiP31IdzIf0t0/XMRm8Bax2T9FE0000UTDPx555JFHHuk/XMRm8BaxuT8MhWn7QmHaP6211lprreU/nXPOOeec4z9walT8mxrlPztAVq4OkMU/pZRSSimlxD9edtlll13mP2pU/JsaFe8/BhZYYIEFhj//pkbFv6nhPzUq/k2Niu8/N9xwww033D+ycnWArFyNPxzHcRzHccw/11prrbXW2j8l6PUsCXrtP31IdzIf0s0/77333nvv7T9VVVVVVVXVP82HdCfzIe0/WhL0epYE7T8YCtP2hcLkP6Pi39So+Oc/vEVsBm8R2z8cx3Ecx3G8PxDpTuZDusM/FKbtC4Vp6z/DtH2hMG3vP99777333us/ynxIdzIf0j8Q6U7mQ7rTP69nSdDrWbI/fUh3Mh/S7T+21lprrbXWP8YYY4wxxsg/Kv5NjYp/4z+ycnWArFy9P6EwbV8oTNs/LQl6PUuC3j+on3766afvPzfccMMNN+w/+0Jh2r5Q6D/kkUceeeTBP4CsXB0gK9c/YjN4i9gM3j/j39So+DflP7bWWmutteY/m8FbxGbwxj+6k/mQ7mTuP8O0faEwbd8/qJ9++umnzz/nnHPOOefMP4t/U6Pi3+Q/2r5QmLYvpD+on3766affP/FvalT8m+o/P/30008/7T+0JOj1LAnqPzFtXyhM26c/cGpU/JsatT/dyXxIdzLfP/30008//eQ/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1314\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1315\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1310\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1311\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1312\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1322\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1316\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1317\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1318\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAQAAAAAAAAABAAAAAAAAACEAAAAAAAAAIQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIkAAAAAAAAAiQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAmQAAAAAAAACZAAAAAAAAAKEAAAAAAAAAoQAAAAAAAACpAAAAAAAAAKkAAAAAAAAAsQAAAAAAAACxAAAAAAAAALkAAAAAAAAAuQAAAAAAAADBAAAAAAAAAMEAAAAAAAAAxQAAAAAAAADFAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADNAAAAAAAAAM0AAAAAAAAA0QAAAAAAAADRAAAAAAAAANUAAAAAAAAA1QAAAAAAAADZAAAAAAAAANkAAAAAAAAA3QAAAAAAAADdAAAAAAAAAOEAAAAAAAAA4QAAAAAAAADlAAAAAAAAAOUAAAAAAAAA6QAAAAAAAADpAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADxAAAAAAAAAPEAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPkAAAAAAAAA+QAAAAAAAAD9AAAAAAAAAP0AAAAAAAABAQAAAAAAAAEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAAEFAAAAAAAAAQUAAAAAAAIBBQAAAAAAAgEFAAAAAAAAAQkAAAAAAAABCQAAAAAAAgEJAAAAAAACAQkAAAAAAAABDQAAAAAAAAENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAAERAAAAAAAAAREAAAAAAAIBEQAAAAAAAgERAAAAAAAAARUAAAAAAAABFQAAAAAAAgEVAAAAAAACARUAAAAAAAABGQAAAAAAAAEZAAAAAAACARkAAAAAAAIBGQAAAAAAAAEdAAAAAAAAAR0AAAAAAAIBHQAAAAAAAgEdAAAAAAAAASEAAAAAAAABIQAAAAAAAgEhAAAAAAACASEAAAAAAAABJQAAAAAAAAElAAAAAAACASUAAAAAAAIBJQAAAAAAAAEpAAAAAAAAASkAAAAAAAIBKQAAAAAAAgEpAAAAAAAAAS0AAAAAAAABLQAAAAAAAgEtAAAAAAACAS0AAAAAAAABMQAAAAAAAAExAAAAAAACATEAAAAAAAIBMQAAAAAAAAE1AAAAAAAAATUAAAAAAAIBNQAAAAAAAgE1AAAAAAAAATkAAAAAAAABOQAAAAAAAgE5AAAAAAACATkAAAAAAAABPQAAAAAAAAE9AAAAAAACAT0AAAAAAAIBPQAAAAAAAAFBAAAAAAAAAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAACAUEAAAAAAAIBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAABRQAAAAAAAAFFAAAAAAABAUUAAAAAAAEBRQAAAAAAAgFFAAAAAAACAUUAAAAAAAMBRQAAAAAAAwFFAAAAAAAAAUkAAAAAAAABSQAAAAAAAQFJAAAAAAABAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAADAUkAAAAAAAMBSQAAAAAAAAFNAAAAAAAAAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAwFNAAAAAAADAU0AAAAAAAABUQAAAAAAAAFRAAAAAAABAVEAAAAAAAEBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAAAAVUAAAAAAAABVQAAAAAAAQFVAAAAAAABAVUAAAAAAAIBVQAAAAAAAgFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAAFZAAAAAAAAAVkAAAAAAAEBWQAAAAAAAQFZAAAAAAACAVkAAAAAAAIBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAABXQAAAAAAAAFdAAAAAAABAV0AAAAAAAEBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAMBXQAAAAAAAwFdAAAAAAAAAWEAAAAAAAABYQAAAAAAAQFhAAAAAAABAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAADAWEAAAAAAAMBYQAAAAAAAAFlAAAAAAAAAWUAAAAAAAEBZQAAAAAAAQFlAAAAAAACAWUAAAAAAAIBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAABaQAAAAAAAAFpAAAAAAABAWkAAAAAAAEBaQAAAAAAAgFpAAAAAAACAWkAAAAAAAMBaQAAAAAAAwFpAAAAAAAAAW0AAAAAAAABbQAAAAAAAQFtAAAAAAABAW0AAAAAAAIBbQAAAAAAAgFtAAAAAAADAW0AAAAAAAMBbQAAAAAAAAFxAAAAAAAAAXEAAAAAAAEBcQAAAAAAAQFxAAAAAAACAXEAAAAAAAIBcQAAAAAAAwFxAAAAAAADAXEAAAAAAAABdQAAAAAAAAF1AAAAAAABAXUAAAAAAAEBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAMBdQAAAAAAAwF1AAAAAAAAAXkAAAAAAAABeQAAAAAAAQF5AAAAAAABAXkAAAAAAAIBeQAAAAAAAgF5AAAAAAADAXkAAAAAAAMBeQAAAAAAAAF9AAAAAAAAAX0AAAAAAAEBfQAAAAAAAQF9AAAAAAACAX0AAAAAAAIBfQAAAAAAAwF9AAAAAAADAX0AAAAAAAABgQAAAAAAAAGBAAAAAAAAgYEAAAAAAACBgQAAAAAAAQGBAAAAAAABAYEAAAAAAAGBgQAAAAAAAYGBAAAAAAACAYEAAAAAAAIBgQAAAAAAAoGBAAAAAAACgYEAAAAAAAMBgQAAAAAAAwGBAAAAAAADgYEAAAAAAAOBgQAAAAAAAAGFAAAAAAAAAYUAAAAAAACBhQAAAAAAAIGFAAAAAAABAYUAAAAAAAEBhQAAAAAAAYGFAAAAAAABgYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACgYUAAAAAAAKBhQAAAAAAAwGFAAAAAAADAYUAAAAAAAOBhQAAAAAAA4GFAAAAAAAAAYkAAAAAAAABiQAAAAAAAIGJAAAAAAAAgYkAAAAAAAEBiQAAAAAAAQGJAAAAAAABgYkAAAAAAAGBiQAAAAAAAgGJAAAAAAACAYkAAAAAAAKBiQAAAAAAAoGJAAAAAAADAYkAAAAAAAMBiQAAAAAAA4GJAAAAAAADgYkAAAAAAAABjQAAAAAAAAGNAAAAAAAAgY0AAAAAAACBjQAAAAAAAQGNAAAAAAABAY0AAAAAAAGBjQAAAAAAAYGNAAAAAAACAY0AAAAAAAIBjQAAAAAAAoGNAAAAAAACgY0AAAAAAAMBjQAAAAAAAwGNAAAAAAADgY0AAAAAAAOBjQAAAAAAAAGRAAAAAAAAAZEAAAAAAACBkQAAAAAAAIGRAAAAAAABAZEAAAAAAAEBkQAAAAAAAYGRAAAAAAABgZEAAAAAAAIBkQAAAAAAAgGRAAAAAAACgZEAAAAAAAKBkQAAAAAAAwGRAAAAAAADAZEAAAAAAAOBkQAAAAAAA4GRAAAAAAAAAZUAAAAAAAABlQAAAAAAAIGVAAAAAAAAgZUAAAAAAAEBlQAAAAAAAQGVAAAAAAABgZUAAAAAAAGBlQAAAAAAAgGVAAAAAAACAZUAAAAAAAKBlQAAAAAAAoGVAAAAAAADAZUAAAAAAAMBlQAAAAAAA4GVAAAAAAADgZUAAAAAAAABmQAAAAAAAAGZAAAAAAAAgZkAAAAAAACBmQAAAAAAAQGZAAAAAAABAZkAAAAAAAGBmQAAAAAAAYGZAAAAAAACAZkAAAAAAAIBmQAAAAAAAoGZAAAAAAACgZkAAAAAAAMBmQAAAAAAAwGZAAAAAAADgZkAAAAAAAOBmQAAAAAAAAGdAAAAAAAAAZ0AAAAAAACBnQAAAAAAAIGdAAAAAAABAZ0AAAAAAAEBnQAAAAAAAYGdAAAAAAABgZ0AAAAAAAIBnQAAAAAAAgGdAAAAAAACgZ0AAAAAAAKBnQAAAAAAAwGdAAAAAAADAZ0AAAAAAAOBnQAAAAAAA4GdAAAAAAAAAaEAAAAAAAABoQAAAAAAAIGhAAAAAAAAgaEAAAAAAAEBoQAAAAAAAQGhAAAAAAABgaEAAAAAAAGBoQAAAAAAAgGhAAAAAAACAaEAAAAAAAKBoQAAAAAAAoGhAAAAAAADAaEAAAAAAAMBoQAAAAAAA4GhAAAAAAADgaEAAAAAAAABpQAAAAAAAAGlAAAAAAAAgaUAAAAAAACBpQAAAAAAAQGlAAAAAAABAaUAAAAAAAGBpQAAAAAAAYGlAAAAAAACAaUAAAAAAAIBpQAAAAAAAoGlAAAAAAACgaUAAAAAAAMBpQAAAAAAAwGlAAAAAAADgaUAAAAAAAOBpQAAAAAAAAGpAAAAAAAAAakAAAAAAACBqQAAAAAAAIGpAAAAAAABAakAAAAAAAEBqQAAAAAAAYGpAAAAAAABgakAAAAAAAIBqQAAAAAAAgGpAAAAAAACgakAAAAAAAKBqQAAAAAAAwGpAAAAAAADAakAAAAAAAOBqQAAAAAAA4GpAAAAAAAAAa0AAAAAAAABrQAAAAAAAIGtAAAAAAAAga0AAAAAAAEBrQAAAAAAAQGtAAAAAAABga0AAAAAAAGBrQAAAAAAAgGtAAAAAAACAa0AAAAAAAKBrQAAAAAAAoGtAAAAAAADAa0AAAAAAAMBrQAAAAAAA4GtAAAAAAADga0AAAAAAAABsQAAAAAAAAGxAAAAAAAAgbEAAAAAAACBsQAAAAAAAQGxAAAAAAABAbEAAAAAAAGBsQAAAAAAAYGxAAAAAAACAbEAAAAAAAIBsQAAAAAAAoGxAAAAAAACgbEAAAAAAAMBsQAAAAAAAwGxAAAAAAADgbEAAAAAAAOBsQAAAAAAAAG1AAAAAAAAAbUAAAAAAACBtQAAAAAAAIG1AAAAAAABAbUAAAAAAAEBtQAAAAAAAYG1AAAAAAABgbUAAAAAAAIBtQAAAAAAAgG1AAAAAAACgbUAAAAAAAKBtQAAAAAAAwG1AAAAAAADAbUAAAAAAAOBtQAAAAAAA4G1AAAAAAAAAbkAAAAAAAABuQAAAAAAAIG5AAAAAAAAgbkAAAAAAAEBuQAAAAAAAQG5AAAAAAABgbkAAAAAAAGBuQAAAAAAAgG5AAAAAAACAbkAAAAAAAKBuQAAAAAAAoG5AAAAAAADAbkAAAAAAAMBuQAAAAAAA4G5AAAAAAADgbkAAAAAAAABvQAAAAAAAAG9AAAAAAAAgb0AAAAAAACBvQAAAAAAAQG9AAAAAAABAb0AAAAAAAGBvQAAAAAAAYG9AAAAAAACAb0AAAAAAAIBvQAAAAAAAoG9AAAAAAACgb0AAAAAAAMBvQAAAAAAAwG9AAAAAAADgb0AAAAAAAOBvQAAAAAAAAHBAAAAAAAAAcEAAAAAAABBwQAAAAAAAEHBAAAAAAAAgcEAAAAAAACBwQAAAAAAAMHBAAAAAAAAwcEAAAAAAAEBwQAAAAAAAQHBAAAAAAABQcEAAAAAAAFBwQAAAAAAAYHBAAAAAAABgcEAAAAAAAHBwQAAAAAAAcHBAAAAAAACAcEAAAAAAAIBwQAAAAAAAkHBAAAAAAACQcEAAAAAAAKBwQAAAAAAAoHBAAAAAAACwcEAAAAAAALBwQAAAAAAAwHBAAAAAAADAcEAAAAAAANBwQAAAAAAA0HBAAAAAAADgcEAAAAAAAOBwQAAAAAAA8HBAAAAAAADwcEAAAAAAAABxQAAAAAAAAHFAAAAAAAAQcUAAAAAAABBxQAAAAAAAIHFAAAAAAAAgcUAAAAAAADBxQAAAAAAAMHFAAAAAAABAcUAAAAAAAEBxQAAAAAAAUHFAAAAAAABQcUAAAAAAAGBxQAAAAAAAYHFAAAAAAABwcUAAAAAAAHBxQAAAAAAAgHFAAAAAAACAcUAAAAAAAJBxQAAAAAAAkHFAAAAAAACgcUAAAAAAAKBxQAAAAAAAsHFAAAAAAACwcUAAAAAAAMBxQAAAAAAAwHFAAAAAAADQcUAAAAAAANBxQAAAAAAA4HFAAAAAAADgcUAAAAAAAPBxQAAAAAAA8HFAAAAAAAAAckAAAAAAAAByQAAAAAAAEHJAAAAAAAAQckAAAAAAACByQAAAAAAAIHJAAAAAAAAwckAAAAAAADByQAAAAAAAQHJAAAAAAABAckAAAAAAAFByQAAAAAAAUHJAAAAAAABgckAAAAAAAGByQAAAAAAAcHJAAAAAAABwckAAAAAAAIByQAAAAAAAgHJAAAAAAACQckAAAAAAAJByQAAAAAAAoHJAAAAAAACgckAAAAAAALByQAAAAAAAsHJAAAAAAADAckAAAAAAAMByQAAAAAAA0HJAAAAAAADQckAAAAAAAOByQAAAAAAA4HJAAAAAAADwckAAAAAAAPByQAAAAAAAAHNAAAAAAAAAc0AAAAAAABBzQAAAAAAAEHNAAAAAAAAgc0AAAAAAACBzQAAAAAAAMHNAAAAAAAAwc0AAAAAAAEBzQAAAAAAAQHNAAAAAAABQc0AAAAAAAFBzQAAAAAAAYHNAAAAAAABgc0AAAAAAAHBzQAAAAAAAcHNAAAAAAACAc0AAAAAAAIBzQAAAAAAAkHNAAAAAAACQc0AAAAAAAKBzQAAAAAAAoHNAAAAAAACwc0AAAAAAALBzQAAAAAAAwHNAAAAAAADAc0AAAAAAANBzQAAAAAAA0HNAAAAAAADgc0AAAAAAAOBzQAAAAAAA8HNAAAAAAADwc0AAAAAAAAB0QAAAAAAAAHRAAAAAAAAQdEAAAAAAABB0QAAAAAAAIHRAAAAAAAAgdEAAAAAAADB0QAAAAAAAMHRAAAAAAABAdEAAAAAAAEB0QAAAAAAAUHRAAAAAAABQdEAAAAAAAGB0QAAAAAAAYHRAAAAAAABwdEAAAAAAAHB0QAAAAAAAgHRAAAAAAACAdEAAAAAAAJB0QAAAAAAAkHRAAAAAAACgdEAAAAAAAKB0QAAAAAAAsHRAAAAAAACwdEAAAAAAAMB0QAAAAAAAwHRAAAAAAADQdEAAAAAAANB0QAAAAAAA4HRAAAAAAADgdEAAAAAAAPB0QAAAAAAA8HRAAAAAAAAAdUAAAAAAAAB1QAAAAAAAEHVAAAAAAAAQdUAAAAAAACB1QAAAAAAAIHVAAAAAAAAwdUAAAAAAADB1QAAAAAAAQHVAAAAAAABAdUAAAAAAAFB1QAAAAAAAUHVAAAAAAABgdUAAAAAAAGB1QAAAAAAAcHVAAAAAAABwdUAAAAAAAIB1QAAAAAAAgHVAAAAAAACQdUAAAAAAAJB1QAAAAAAAoHVAAAAAAACgdUAAAAAAALB1QAAAAAAAsHVAAAAAAADAdUAAAAAAAMB1QAAAAAAA0HVAAAAAAADQdUAAAAAAAOB1QAAAAAAA4HVAAAAAAADwdUAAAAAAAPB1QAAAAAAAAHZAAAAAAAAAdkAAAAAAABB2QAAAAAAAEHZAAAAAAAAgdkAAAAAAACB2QAAAAAAAMHZAAAAAAAAwdkAAAAAAAEB2QAAAAAAAQHZAAAAAAABQdkAAAAAAAFB2QAAAAAAAYHZAAAAAAABgdkAAAAAAAHB2QAAAAAAAcHZAAAAAAACAdkAAAAAAAIB2QAAAAAAAkHZAAAAAAACQdkAAAAAAAKB2QAAAAAAAoHZAAAAAAACwdkAAAAAAALB2QAAAAAAAwHZAAAAAAADAdkAAAAAAANB2QAAAAAAA0HZAAAAAAADgdkAAAAAAAOB2QAAAAAAA8HZAAAAAAADwdkAAAAAAAAB3QAAAAAAAAHdAAAAAAAAQd0AAAAAAABB3QAAAAAAAIHdAAAAAAAAgd0AAAAAAADB3QAAAAAAAMHdAAAAAAABAd0AAAAAAAEB3QAAAAAAAUHdAAAAAAABQd0AAAAAAAGB3QAAAAAAAYHdAAAAAAABwd0AAAAAAAHB3QAAAAAAAgHdAAAAAAACAd0AAAAAAAJB3QAAAAAAAkHdAAAAAAACgd0AAAAAAAKB3QAAAAAAAsHdAAAAAAACwd0AAAAAAAMB3QAAAAAAAwHdAAAAAAADQd0AAAAAAANB3QAAAAAAA4HdAAAAAAADgd0AAAAAAAPB3QAAAAAAA8HdAAAAAAAAAeEAAAAAAAAB4QAAAAAAAEHhAAAAAAAAQeEAAAAAAACB4QAAAAAAAIHhAAAAAAAAweEAAAAAAADB4QAAAAAAAQHhAAAAAAABAeEAAAAAAAFB4QAAAAAAAUHhAAAAAAABgeEAAAAAAAGB4QAAAAAAAcHhAAAAAAABweEAAAAAAAIB4QAAAAAAAgHhAAAAAAACQeEAAAAAAAJB4QAAAAAAAoHhAAAAAAACgeEAAAAAAALB4QAAAAAAAsHhAAAAAAADAeEAAAAAAAMB4QAAAAAAA0HhAAAAAAADQeEAAAAAAAOB4QAAAAAAA4HhAAAAAAADweEAAAAAAAPB4QAAAAAAAAHlAAAAAAAAAeUAAAAAAABB5QAAAAAAAEHlAAAAAAAAgeUAAAAAAACB5QAAAAAAAMHlAAAAAAAAweUAAAAAAAEB5QAAAAAAAQHlAAAAAAABQeUAAAAAAAFB5QAAAAAAAYHlAAAAAAABgeUAAAAAAAHB5QAAAAAAAcHlAAAAAAACAeUAAAAAAAIB5QA==\"},\"shape\":[818],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAADKchdJ6ANzP8pyF0noA3M/P+UWjpJYhT8/5RaOkliFP5e7hwuPRpE/l7uHC49GkT+0ztGj7lqYP7TO0aPuWpg/bLx1Qg7Lnz9svHVCDsufP870dtpwwaM/zvR22nDBoz+sgVaqA7qnP6yBVqoDuqc/PpS+YM3Jqz8+lL5gzcmrP0cfI+WE7K8/Rx8j5YTsrz/BNjkQWQ+yP8E2ORBZD7I/OpwjNbsutD86nCM1uy60P+ee2sgzU7Y/557ayDNTtj+fEi4cu3u4P58SLhy7e7g/gViytG2nuj+BWLK0bae6P08AKYCF1bw/TwApgIXVvD+w1pSvVAW/P7DWlK9UBb8/1MgT3yCbwD/UyBPfIJvAPyDN1Cjis8E/IM3UKOKzwT+T5wBesczCP5PnAF6xzMI/p3ou+1flwz+nei77V+XDP8x41fyk/cQ/zHjV/KT9xD+hB+YvbBXGP6EH5i9sFcY/VSwNn4Usxz9VLA2fhSzHPy+a4BbNQsg/L5rgFs1CyD/daIe8IVjJP91oh7whWMk/FxB1s2Vsyj8XEHWzZWzKPyYLis99f8s/JguKz31/yz9HonxRUZHMP0eifFFRkcw/imTZq8mhzT+KZNmryaHNP03gPk/SsM4/TeA+T9Kwzj+niLl8WL7PP6eIuXxYvs8/4AesjiVl0D/gB6yOJWXQP4eWHE9N6tA/h5YcT03q0D8hIjponG7RPyEiOmicbtE/iEQsZgzy0T+IRCxmDPLRP8q1yWuXdNI/yrXJa5d00j8qMvAmOPbSPyoy8CY49tI/tjP5xel20z+2M/nF6XbTPzN/Ke6n9tM/M38p7qf20z/VYf6ybnXUP9Vh/rJuddQ/vYw/jjrz1D+9jD+OOvPUP9jiv1gIcNU/2OK/WAhw1T8HbbpD1evVPwdtukPV69U/PBa70p5m1j88FrvSnmbWPwviBNZi4NY/C+IE1mLg1j+ME2llH1nXP4wTaWUfWdc/3DyE29LQ1z/cPITb0tDXP7N8V9F7R9g/s3xX0XtH2D+xTTUaGb3YP7FNNRoZvdg/C0T6v6kx2T8LRPq/qTHZP9Xtiv8spdk/1e2K/yyl2T9cxpBFohfaP1zGkEWiF9o/DNFwKwmJ2j8M0XArCYnaP+IAd3Rh+do/4gB3dGH52j8LDzILq2jbPwsPMguraNs/H9T7/uXW2z8f1Pv+5dbbP5uYqoESRNw/m5iqgRJE3D/1KGjlMLDcP/UoaOUwsNw/YcermkEb3T9hx6uaQRvdPyxZVC5Fhd0/LFlULkWF3T8GbOBHPO7dPwZs4Ec87t0/U+XBpydW3j9T5cGnJ1beP+tfyyUIvd4/61/LJQi93j+pZrWv3iLfP6lmta/eIt8/B+S5R6yH3z8H5LlHrIffP9BARANy698/0EBEA3Lr3z9RZtqEGCfgP1Fm2oQYJ+A/9hObSfVX4D/2E5tJ9VfgP7/A0fNPiOA/v8DR80+I4D9zSL8uKbjgP3NIvy4puOA/UiZ6rIHn4D9SJnqsgefgP8i3dyVaFuE/yLd3JVoW4T9y+BtYs0ThP3L4G1izROE/h1JPCI5y4T+HUk8IjnLhP8QkGv/qn+E/xCQa/+qf4T/QpkUKy8zhP9CmRQrLzOE/8NoB/C754T/w2gH8LvnhP0VBkKoXJeI/RUGQqhcl4j90BvPvhVDiP3QG8++FUOI//2ugqXp74j//a6CpenviP6gtOrj2peI/qC06uPal4j9Bqkj/+s/iP0GqSP/6z+I/6Zr5ZIj54j/pmvlkiPniP+Ym4tGfIuM/5ibi0Z8i4z9oJcQwQkvjP2glxDBCS+M/WWFWbnBz4z9ZYVZucHPjP3S2D3krm+M/dLYPeSub4z8s4fRAdMLjPyzh9EB0wuM/HN1ot0vp4z8c3Wi3S+njP1iw/86yD+Q/WLD/zrIP5D9ug1N7qjXkP26DU3uqNeQ/eejbsDNb5D956NuwM1vkP5w0x2RPgOQ/nDTHZE+A5D+I0dWM/qTkP4jR1Yz+pOQ/1m03H0LJ5D/WbTcfQsnkP7D0aRIb7eQ/sPRpEhvt5D8mNhpdihDlPyY2Gl2KEOU/aCsG9pAz5T9oKwb2kDPlP6HC4NMvVuU/ocLg0y9W5T/hHzftZ3jlP+EfN+1neOU/+0BXODqa5T/7QFc4OprlP6nzN6unu+U/qfM3q6e75T+9DWI7sdzlP70NYjux3OU/dtja3Vf95T922NrdV/3lP2KgD4ecHeY/YqAPh5wd5j9EXMIqgD3mP0RcwiqAPeY/HF73uwNd5j8cXve7A13mP+YB5CwofOY/5gHkLCh85j96Tt5u7prmP3pO3m7umuY/in1Ncle55j+KfU1yV7nmPxBgmyZk1+Y/EGCbJmTX5j9BlSZ6FfXmP0GVJnoV9eY/fIo1WmwS5z98ijVabBLnPxA76rJpL+c/EDvqsmkv5z9ipzZvDkznP2KnNm8OTOc/9PrReFto5z/0+tF4W2jnP85ZLrhRhOc/zlkuuFGE5z+NTW8U8p/nP41NbxTyn+c/Estgcz275z8Sy2BzPbvnPxTKbrk01uc/FMpuuTTW5z8SaJ3J2PDnPxJoncnY8Oc/XZCBhSoL6D9dkIGFKgvoP54jOs0qJeg/niM6zSol6D/SmGl/2j7oP9KYaX/aPug/uBIweTpY6D+4EjB5OljoP1TkJZZLceg/VOQllktx6D+uf1awDoroP65/VrAOiug/MMo7oISi6D8wyjughKLoPwjSuTyuuug/CNK5PK666D9f4BpbjNLoP1/gGluM0ug/KeQLzx/q6D8p5AvPH+roP9AxmWppAek/0DGZamkB6T/Rkyv+aRjpP9GTK/5pGOk/yqiFWCIv6T/KqIVYIi/pP26LwUaTRek/bovBRpNF6T9EwU6UvVvpP0TBTpS9W+k/zGzwCqJx6T/MbPAKonHpPzbAu3JBh+k/NsC7ckGH6T+zrRaSnJzpP7OtFpKcnOk/itK2LbSx6T+K0rYttLHpP3aaoAiJxuk/dpqgCInG6T+CmCbkG9vpP4KYJuQb2+k/MBPpf23v6T8wE+l/be/pP2XB1Zl+A+o/ZcHVmX4D6j/6tSfuTxfqP/q1J+5PF+o/sXdnN+Iq6j+xd2c34irqP55Day42Puo/nkNrLjY+6j/id1eKTFHqP+J3V4pMUeo/6CSfACZk6j/oJJ8AJmTqP2rDBEXDduo/asMERcN26j80DZsJJYnqPzQNmwklieo/UffF/kub6j9R98X+S5vqP77LO9M4reo/vss70zit6j9JYQY07L7qP0lhBjTsvuo/+m+EzGbQ6j/6b4TMZtDqP7IAa0ap4eo/sgBrRqnh6j+e9sZJtPLqP572xkm08uo/IrH+fIgD6z8isf58iAPrPwjF04QmFOs/CMXThCYU6z+xy2QEjyTrP7HLZASPJOs/KkcvncI06z8qRy+dwjTrPwCaEe/BROs/AJoR78FE6z++EU2YjVTrP74RTZiNVOs/HAOINSZk6z8cA4g1JmTrP832z2GMc+s/zfbPYYxz6z8J5pu2wILrPwnmm7bAgus/7YXOy8OR6z/thc7Lw5HrP7qguDeWoOs/uqC4N5ag6z89fBuPOK/rPz18G484r+s/bUwrZau96z9tTCtlq73rP6SxkUvvy+s/pLGRS+/L6z+DQXDSBNrrP4NBcNIE2us/9hljiOzn6z/2GWOI7OfrP5F9g/qm9es/kX2D+qb16z+jeGq0NAPsP6N4arQ0A+w/XY4zQJYQ7D9djjNAlhDsP3dtfybMHew/d21/Jswd7D+wq3bu1irsP7Crdu7WKuw/sIfMHbc37D+wh8wdtzfsP7KwwThtROw/srDBOG1E7D9tEyfC+VDsP20TJ8L5UOw/3qtgO11d7D/eq2A7XV3sP0lbaCSYaew/SVtoJJhp7D8zwtD7qnXsPzPC0Puqdew/sB3IPpaB7D+wHcg+loHsP9AnG2lajew/0CcbaVqN7D+O+jf195jsP476N/X3mOw/CPUwXG+k7D8I9TBcb6TsP56ivxXBr+w/nqK/FcGv7D98o0eY7brsP3yjR5jtuuw/Y5bZWPXF7D9jltlY9cXsP0YDNsvY0Ow/RgM2y9jQ7D92RtBhmNvsP3ZG0GGY2+w//XvRjTTm7D/9e9GNNObsPwprG7+t8Ow/Cmsbv63w7D/4cEtkBPvsP/hwS2QE++w/zWu96jgF7T/Na73qOAXtP+Ojjr5LD+0/46OOvksP7T+TtKBKPRntP5O0oEo9Ge0/f3Oc+A0j7T9/c5z4DSPtP3fW9DC+LO0/d9b0ML4s7T+b1+laTjbtP5vX6VpONu0/mleL3L4/7T+aV4vcvj/tP979uxoQSe0/3v27GhBJ7T93FjR5QlLtP3cWNHlCUu0/j22EWlZb7T+PbYRaVlvtP0IoGSBMZO0/QigZIExk7T/MmjwqJG3tP8yaPCokbe0/shsa2N517T+yGxrY3nXtP/LTwId8fu0/8tPAh3x+7T8MjCaW/YbtPwyMJpb9hu0/rXUqX2KP7T+tdSpfYo/tP/7xlz2rl+0//vGXPauX7T9jVCmL2J/tP2NUKYvYn+0/mKGKoOqn7T+YoYqg6qftPxZLXNXhr+0/Fktc1eGv7T+T5jWAvrftP5PmNYC+t+0/puGo9oC/7T+m4aj2gL/tP1wxQ40px+0/XDFDjSnH7T+4/ZGXuM7tP7j9kZe4zu0/C0kkaC7W7T8LSSRoLtbtPwaTjVCL3e0/BpONUIvd7T+Gd2ihz+TtP4Z3aKHP5O0//0hZqvvr7T//SFmq++vtP3WmELoP8+0/daYQug/z7T8ADU4eDPrtPwANTh4M+u0/wGTiI/EA7j/AZOIj8QDuP0WJsha/B+4/RYmyFr8H7j9SzblBdg7uP1LNuUF2Du4/+XkM7xYV7j/5eQzvFhXuPwBJ2mehG+4/AEnaZ6Eb7j+T2nD0FSLuP5PacPQVIu4/JCY+3HQo7j8kJj7cdCjuP5Tm0mW+Lu4/lObSZb4u7j97AeXW8jTuP3sB5dbyNO4/nulRdBI77j+e6VF0EjvuP5L8IIIdQe4/kvwggh1B7j9124VDFEfuP3XbhUMUR+4/xL7i+vZM7j/EvuL69kzuP1jFyunFUu4/WMXK6cVS7j9lPgRRgVjuP2U+BFGBWO4/oe6KcCle7j+h7opwKV7uP3VQkoe+Y+4/dVCSh75j7j8/z4fUQGnuPz/Ph9RAae4/rP0UlbBu7j+s/RSVsG7uPyHHIQYOdO4/IcchBg507j82nNZjWXnuPzac1mNZee4/Q5qe6ZJ+7j9Dmp7pkn7uPwWuKdK6g+4/Ba4p0rqD7j9TsW5X0YjuP1OxblfRiO4/84OtstaN7j/zg62y1o3uP34fcRzLku4/fh9xHMuS7j9uppHMrpfuP26mkcyul+4/QG42+oGc7j9Abjb6gZzuP8IE2NtEoe4/wgTY20Sh7j9/MEKn96XuP38wQqf3pe4/WuyVkZqq7j9a7JWRmqruP2BeS88tr+4/YF5Lzy2v7j+5yTOUsbPuP7nJM5Sxs+4/5Xt7Eya47j/le3sTJrjuPyi1q3+LvO4/KLWrf4u87j8/jKwK4sDuPz+MrAriwO4/Ws3G5SnF7j9azcblKcXuP1/UpUFjye4/X9SlQWPJ7j+FYllOjs3uP4ViWU6Oze4/Q29XO6vR7j9Db1c7q9HuP570fTe61e4/nvR9N7rV7j/dthRxu9nuP922FHG72e4/pgfPFa/d7j+mB88Vr93uP4uEzVKV4e4/i4TNUpXh7j8U0Z9UbuXuPxTRn1Ru5e4/QkxGRzrp7j9CTEZHOunuP5vBM1b57O4/m8EzVvns7j/AFU+sq/DuP8AVT6yr8O4/ne70c1H07j+d7vRzUfTuPyxX+dbq9+4/LFf51ur37j/fXqn+d/vuP99eqf53++4/tLTME/n+7j+0tMwT+f7uP/o9pz5uAu8/+j2nPm4C7z/NqPqm1wXvP82o+qbXBe8/VvoHdDUJ7z9W+gd0NQnvP9AYkcyHDO8/0BiRzIcM7z9hUdrWzg/vP2FR2tbOD+8/yNmruAoT7z/I2au4ChPvP+tNU5c7Fu8/601TlzsW7z9RKaWXYRnvP1EppZdhGe8/hzz+3Xwc7z+HPP7dfBzvP30eRY6NH+8/fR5Fjo0f7z/omevLkyLvP+iZ68uTIu8/qxbwuY8l7z+rFvC5jyXvP0f/3nqBKO8/R//eeoEo7z9yItQwaSvvP3Ii1DBpK+8/xRB8/UYu7z/FEHz9Ri7vP5J2FQIbMe8/knYVAhsx7z/1cXJf5TPvP/Vxcl/lM+8/D+X5NaY27z8P5fk1pjbvP5LEqKVdOe8/ksSopV057z+HYhPOCzzvP4diE84LPO8/d7VmzrA+7z93tWbOsD7vP96bacVMQe8/3ptpxUxB7z8JHH7R30PvPwkcftHfQ+8/XaCiEGpG7z9doKIQakbvPw0wc6DrSO8/DTBzoOtI7z9SpCqeZEvvP1KkKp5kS+8/HdqjJtVN7z8d2qMm1U3vP1zgWlY9UO8/XOBaVj1Q7z/KIm5JnVLvP8oibkmdUu8/YpGfG/VU7z9ikZ8b9VTvP3DEVehEV+8/cMRV6ERX7z9RHZ3KjFnvP1EdncqMWe8/4uMo3cxb7z/i4yjdzFvvP65gVDoFXu8/rmBUOgVe7z/b8yP8NWDvP9vzI/w1YO8/7ChGPF9i7z/sKEY8X2LvP0jHFBSBZO8/SMcUFIFk7z+m35Wcm2bvP6bflZybZu8/WNZ87q5o7z9Y1nzurmjvP4VqKyK7au8/hWorIrtq7z9MurJPwGzvP0y6sk/AbO8/7EPUjr5u7z/sQ9SOvm7vP+PjAve1cO8/4+MC97Vw7z8j0GOfpnLvPyPQY5+mcu8/SpDPnpB07z9KkM+ekHTvP/3y0gt0du8//fLSC3R27z9gALD8UHjvP2AAsPxQeO8/r+lehyd67z+v6V6HJ3rvPxT2jsH3e+8/FPaOwfd77z+kbKfAwX3vP6Rsp8DBfe8/pHvImYV/7z+ke8iZhX/vPw4dzGFDge8/Dh3MYUOB7z9j+EYt+4LvP2P4Ri37gu8/0UGJEK2E7z/RQYkQrYTvP7SWnx9Zhu8/tJafH1mG7z9111Nu/4fvP3XXU27/h+8/2P4tEKCJ7z/Y/i0QoInvP7L2dBg7i+8/svZ0GDuL7z8Yai+a0IzvPxhqL5rQjO8/EZUkqGCO7z8RlSSoYI7vP8MR3VTrj+8/wxHdVOuP7z8zo6OycJHvPzOjo7Jwke8/kf2F0/CS7z+R/YXT8JLvPxyMVclrlO8/HIxVyWuU7z+tNKil4ZXvP600qKXhle8/3xjZeVKX7z/fGNl5UpfvP+NUCVe+mO8/41QJV76Y7z8RvCBOJZrvPxG8IE4lmu8/JJPOb4eb7z8kk85vh5vvPz5IiszknO8/PkiKzOSc7z+yKJR0PZ7vP7IolHQ9nu8/kxT2d5Gf7z+TFPZ3kZ/vPx8whObgoO8/HzCE5uCg7z/3kt3PK6LvP/eS3c8rou8/QfVsQ3Kj7z9B9WxDcqPvP6VaaVC0pO8/pVppULSk7z86u9YF8qXvPzq71gXype8/YaqGciun7z9hqoZyK6fvP5b7GKVgqO8/lvsYpWCo7z9AZfyrkanvP0Bl/KuRqe8/gSFvlb6q7z+BIW+VvqrvPwiNf2/nq+8/CI1/b+er7z//wwxIDK3vP//DDEgMre8//TzHLC2u7z/9PMcsLa7vPxRiMStKr+8/FGIxK0qv7z8GKKBQY7DvPwYooFBjsO8/k6M7qnix7z+TozuqeLHvP/Sc/0SKsu8/9Jz/RIqy7z+FIbwtmLPvP4UhvC2Ys+8/ohMWcaK07z+iExZxorTvP7u4hxupte8/u7iHG6m17z+sRWE5rLbvP6xFYTmstu8/UGnJ1qu37z9QacnWq7fvP2PVvf+nuO8/Y9W9/6e47z+txRPAoLnvP63FE8Cgue8/hYV4I5a67z+FhXgjlrrvP6fzcTWIu+8/p/NxNYi77z9oBF8Bd7zvP2gEXwF3vO8/SEJ4kmK97z9IQniSYr3vP/JM0PNKvu8/8kzQ80q+7z+eVlQwML/vP55WVDAwv+8/65/MUhLA7z/rn8xSEsDvPyLy3GXxwO8/IvLcZfHA7z8CGAV0zcHvPwIYBXTNwe8/+VShh6bC7z/5VKGHpsLvP+va6qp8w+8/69rqqnzD7z94PvjnT8TvP3g++OdPxO8/1Om9SCDF7z/U6b1IIMXvPyaODtftxe8/Jo4O1+3F7z+Fk5ucuMbvP4WTm5y4xu8/gIf1ooDH7z+Ah/WigMfvP1GKjPNFyO8/UYqM80XI7z+nurCXCMnvP6e6sJcIye8/FKCSmMjJ7z8UoJKYyMnvPyyUQ/+Fyu8/LJRD/4XK7z9IKrbUQMvvP0gqttRAy+8/AZa+IfnL7z8Blr4h+cvvP1sQE++uzO8/WxAT767M7z+rO0xFYs3vP6s7TEVize8/O4blLBPO7z87huUsE87vP62LPa7Bzu8/rYs9rsHO7z8ldZbRbc/vPyV1ltFtz+8/NlgWnxfQ7z82WBafF9DvP6KUxx6/0O8/opTHHr/Q7z/kMJlYZNHvP+QwmVhk0e8/kzVfVAfS7z+TNV9UB9LvP5kH0xmo0u8/mQfTGajS7z9AwZOwRtPvP0DBk7BG0+8/K4omIOPT7z8riiYg49PvPyDu9m991O8/IO72b33U7z/FMlenFdXvPw==\"},\"shape\":[818],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1323\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1324\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1319\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1320\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1321\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1275\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1288\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1289\"},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1290\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1291\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1292\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1293\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1294\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1283\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1284\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1285\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1286\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1278\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1279\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1280\"},\"axis_label\":\"Nanog\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1281\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1282\",\"attributes\":{\"axis\":{\"id\":\"p1278\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1287\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1283\"}}}],\"frame_width\":375,\"frame_height\":275}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"590a7797-db8b-406f-84af-77d1adb50eb6\",\"roots\":{\"p1267\":\"ee5afddf-feac-4c3d-a389-8f44b0c49849\"},\"root_ids\":[\"p1267\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1267" } }, "output_type": "display_data" } ], "source": [ "p = iqplot.ecdf(data=df['Nanog'].values, q='Nanog', conf_int=True)\n", "n_theor = np.arange(0, df['Nanog'].max()+1)\n", "cdf_theor = st.nbinom.cdf(n_theor, alpha_mle, 1/(1+b_mle))\n", "\n", "# Weave together to make staircase for discrete distribution\n", "n_plot = np.empty(2 * len(n_theor))\n", "cdf_plot = np.empty(2 * len(n_theor))\n", "cdf_plot[0] = 0\n", "cdf_plot[1::2] = cdf_theor\n", "cdf_plot[2::2] = cdf_theor[:-1]\n", "n_plot[::2] = n_theor\n", "n_plot[1::2] = n_theor\n", "\n", "p.line(n_plot, cdf_plot, line_color='orange', line_width=2)\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The MLE curve deviates from the nonparametric ECDF 95% confidence interval. This suggests we may be missing something in our model. We will cover this in more depth in future lessons." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computing environment" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python implementation: CPython\n", "Python version : 3.11.4\n", "IPython version : 8.12.2\n", "\n", "numpy : 1.24.3\n", "scipy : 1.11.1\n", "pandas : 2.0.3\n", "bokeh : 3.2.1\n", "iqplot : 0.3.4\n", "jupyterlab: 4.0.5\n", "\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -v -p numpy,scipy,pandas,bokeh,iqplot,jupyterlab" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 4 }