{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Model comparison with the AIC\n",
"\n",
"[mRNA count dataset download](https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv)\n",
"\n",
"[Spindle length dataset download](https://s3.amazonaws.com/bebi103.caltech.edu/data/good_invitro_droplet_data.csv)\n",
"\n",
"
"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
"
\n",
"
Loading BokehJS ...\n",
"
\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"(function(root) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
"\n",
" const force = true;\n",
"\n",
" if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n",
" root._bokeh_onload_callbacks = [];\n",
" root._bokeh_is_loading = undefined;\n",
" }\n",
"\n",
"const JS_MIME_TYPE = 'application/javascript';\n",
" const HTML_MIME_TYPE = 'text/html';\n",
" const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
" const CLASS_NAME = 'output_bokeh rendered_html';\n",
"\n",
" /**\n",
" * Render data to the DOM node\n",
" */\n",
" function render(props, node) {\n",
" const script = document.createElement(\"script\");\n",
" node.appendChild(script);\n",
" }\n",
"\n",
" /**\n",
" * Handle when an output is cleared or removed\n",
" */\n",
" function handleClearOutput(event, handle) {\n",
" const cell = handle.cell;\n",
"\n",
" const id = cell.output_area._bokeh_element_id;\n",
" const server_id = cell.output_area._bokeh_server_id;\n",
" // Clean up Bokeh references\n",
" if (id != null && id in Bokeh.index) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
"\n",
" if (server_id !== undefined) {\n",
" // Clean up Bokeh references\n",
" const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
" cell.notebook.kernel.execute(cmd_clean, {\n",
" iopub: {\n",
" output: function(msg) {\n",
" const id = msg.content.text.trim();\n",
" if (id in Bokeh.index) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
" }\n",
" }\n",
" });\n",
" // Destroy server and session\n",
" const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
" cell.notebook.kernel.execute(cmd_destroy);\n",
" }\n",
" }\n",
"\n",
" /**\n",
" * Handle when a new output is added\n",
" */\n",
" function handleAddOutput(event, handle) {\n",
" const output_area = handle.output_area;\n",
" const output = handle.output;\n",
"\n",
" // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
" if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n",
" return\n",
" }\n",
"\n",
" const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
"\n",
" if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
" toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
" // store reference to embed id on output_area\n",
" output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
" }\n",
" if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
" const bk_div = document.createElement(\"div\");\n",
" bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
" const script_attrs = bk_div.children[0].attributes;\n",
" for (let i = 0; i < script_attrs.length; i++) {\n",
" toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
" toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n",
" }\n",
" // store reference to server id on output_area\n",
" output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
" }\n",
" }\n",
"\n",
" function register_renderer(events, OutputArea) {\n",
"\n",
" function append_mime(data, metadata, element) {\n",
" // create a DOM node to render to\n",
" const toinsert = this.create_output_subarea(\n",
" metadata,\n",
" CLASS_NAME,\n",
" EXEC_MIME_TYPE\n",
" );\n",
" this.keyboard_manager.register_events(toinsert);\n",
" // Render to node\n",
" const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
" render(props, toinsert[toinsert.length - 1]);\n",
" element.append(toinsert);\n",
" return toinsert\n",
" }\n",
"\n",
" /* Handle when an output is cleared or removed */\n",
" events.on('clear_output.CodeCell', handleClearOutput);\n",
" events.on('delete.Cell', handleClearOutput);\n",
"\n",
" /* Handle when a new output is added */\n",
" events.on('output_added.OutputArea', handleAddOutput);\n",
"\n",
" /**\n",
" * Register the mime type and append_mime function with output_area\n",
" */\n",
" OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
" /* Is output safe? */\n",
" safe: true,\n",
" /* Index of renderer in `output_area.display_order` */\n",
" index: 0\n",
" });\n",
" }\n",
"\n",
" // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
" if (root.Jupyter !== undefined) {\n",
" const events = require('base/js/events');\n",
" const OutputArea = require('notebook/js/outputarea').OutputArea;\n",
"\n",
" if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
" register_renderer(events, OutputArea);\n",
" }\n",
" }\n",
" if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
" root._bokeh_timeout = Date.now() + 5000;\n",
" root._bokeh_failed_load = false;\n",
" }\n",
"\n",
" const NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"\\n\"+\n",
" \"
\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"- re-rerun `output_notebook()` to attempt to load from CDN again, or
\\n\"+\n",
" \"- use INLINE resources instead, as so:
\\n\"+\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"from bokeh.resources import INLINE\\n\"+\n",
" \"output_notebook(resources=INLINE)\\n\"+\n",
" \"
\\n\"+\n",
" \"
\"}};\n",
"\n",
" function display_loaded() {\n",
" const el = document.getElementById(\"f70a8c9f-de70-448c-a2e1-d517fd77fd74\");\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS is loading...\";\n",
" }\n",
" if (root.Bokeh !== undefined) {\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n",
" }\n",
" } else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(display_loaded, 100)\n",
" }\n",
" }\n",
"\n",
" function run_callbacks() {\n",
" try {\n",
" root._bokeh_onload_callbacks.forEach(function(callback) {\n",
" if (callback != null)\n",
" callback();\n",
" });\n",
" } finally {\n",
" delete root._bokeh_onload_callbacks\n",
" }\n",
" console.debug(\"Bokeh: all callbacks have finished\");\n",
" }\n",
"\n",
" function load_libs(css_urls, js_urls, callback) {\n",
" if (css_urls == null) css_urls = [];\n",
" if (js_urls == null) js_urls = [];\n",
"\n",
" root._bokeh_onload_callbacks.push(callback);\n",
" if (root._bokeh_is_loading > 0) {\n",
" console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" root._bokeh_is_loading = css_urls.length + js_urls.length;\n",
"\n",
" function on_load() {\n",
" root._bokeh_is_loading--;\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
" run_callbacks()\n",
" }\n",
" }\n",
"\n",
" function on_error(url) {\n",
" console.error(\"failed to load \" + url);\n",
" }\n",
"\n",
" for (let i = 0; i < css_urls.length; i++) {\n",
" const url = css_urls[i];\n",
" const element = document.createElement(\"link\");\n",
" element.onload = on_load;\n",
" element.onerror = on_error.bind(null, url);\n",
" element.rel = \"stylesheet\";\n",
" element.type = \"text/css\";\n",
" element.href = url;\n",
" console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" for (let i = 0; i < js_urls.length; i++) {\n",
" const url = js_urls[i];\n",
" const element = document.createElement('script');\n",
" element.onload = on_load;\n",
" element.onerror = on_error.bind(null, url);\n",
" element.async = false;\n",
" element.src = url;\n",
" console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.head.appendChild(element);\n",
" }\n",
" };\n",
"\n",
" function inject_raw_css(css) {\n",
" const element = document.createElement(\"style\");\n",
" element.appendChild(document.createTextNode(css));\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.1.min.js\", \"https://unpkg.com/@holoviz/panel@1.2.1/dist/panel.min.js\"];\n",
" const css_urls = [];\n",
"\n",
" const inline_js = [ function(Bokeh) {\n",
" Bokeh.set_log_level(\"info\");\n",
" },\n",
"function(Bokeh) {\n",
" }\n",
" ];\n",
"\n",
" function run_inline_js() {\n",
" if (root.Bokeh !== undefined || force === true) {\n",
" for (let i = 0; i < inline_js.length; i++) {\n",
" inline_js[i].call(root, root.Bokeh);\n",
" }\n",
"if (force === true) {\n",
" display_loaded();\n",
" }} else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(run_inline_js, 100);\n",
" } else if (!root._bokeh_failed_load) {\n",
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
" root._bokeh_failed_load = true;\n",
" } else if (force !== true) {\n",
" const cell = $(document.getElementById(\"f70a8c9f-de70-448c-a2e1-d517fd77fd74\")).parents('.cell').data().cell;\n",
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
" }\n",
" }\n",
"\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
" run_inline_js();\n",
" } else {\n",
" load_libs(css_urls, js_urls, function() {\n",
" console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n",
" run_inline_js();\n",
" });\n",
" }\n",
"}(window));"
],
"application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"\\n\"+\n \"
\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"
\\n\"+\n \"
\\n\"+\n \"- re-rerun `output_notebook()` to attempt to load from CDN again, or
\\n\"+\n \"- use INLINE resources instead, as so:
\\n\"+\n \"
\\n\"+\n \"
\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"
\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"f70a8c9f-de70-448c-a2e1-d517fd77fd74\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.1.min.js\", \"https://unpkg.com/@holoviz/panel@1.2.1/dist/panel.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"f70a8c9f-de70-448c-a2e1-d517fd77fd74\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import warnings\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import numba\n",
"import scipy.optimize\n",
"import scipy.stats as st\n",
"\n",
"import bebi103\n",
"\n",
"import iqplot\n",
"\n",
"import bokeh.io\n",
"bokeh.io.output_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
"\n",
"We have [previously introduced the Akaike information criterion](../21/information_criteria.ipynb). Here, we will demonstrate its use in model comparison and the mechanics of how to calculated it.\n",
"\n",
"As a reminder, for a set of parameters $\\theta$ with MLE $\\theta^*$ and a model with log-likelihood $\\ell(\\theta;\\text{data})$, the AIC is given by\n",
"\n",
"\\begin{align}\n",
"\\text{AIC} = -2\\ell(\\theta^*;\\text{data}) + 2p,\n",
"\\end{align}\n",
"\n",
"where $p$ is the number of free parameters in a model. The Akaike weight of model $i$ in a collection of models is\n",
"\n",
"\\begin{align}\n",
"w_i = \\frac{\\mathrm{e}^{-(\\text{AIC}_i - \\text{AIC}_\\mathrm{max})/2}}{\\sum_j\\mathrm{e}^{-(\\text{AIC}_j - \\text{AIC}_\\mathrm{max})/2}}.\n",
"\\end{align}\n",
"\n",
"To begin, we will use the AIC to compare a single Negative Binomial model to a mixture of two Negative Binomials for smFISH data from Singer, et al."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## AIC for mRNA counts\n",
"\n",
"Let us now compare the single Negative Binomial to the mixture model for mRNA counts. We again need our functions for computing the MLE and computing the log-likelihood from previous lessons."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def log_like_iid_nbinom(params, n):\n",
" \"\"\"Log likelihood for i.i.d. NBinom measurements, parametrized\n",
" by alpha, b=1/beta.\"\"\"\n",
" alpha, b = params\n",
"\n",
" if alpha <= 0 or b <= 0:\n",
" return -np.inf\n",
"\n",
" return np.sum(st.nbinom.logpmf(n, alpha, 1/(1+b)))\n",
"\n",
"\n",
"def mle_iid_nbinom(n):\n",
" \"\"\"Perform maximum likelihood estimates for parameters for i.i.d.\n",
" NBinom measurements, parametrized by alpha, b=1/beta\"\"\"\n",
" with warnings.catch_warnings():\n",
" warnings.simplefilter(\"ignore\")\n",
"\n",
" res = scipy.optimize.minimize(\n",
" fun=lambda params, n: -log_like_iid_nbinom(params, n),\n",
" x0=np.array([3, 3]),\n",
" args=(n,),\n",
" method='Powell'\n",
" )\n",
"\n",
" if res.success:\n",
" return res.x\n",
" else:\n",
" raise RuntimeError('Convergence failed with message', res.message)\n",
" \n",
"\n",
"def initial_guess_mix(n, w_guess):\n",
" \"\"\"Generate initial guess for mixture model.\"\"\"\n",
" n_low = n[n < np.percentile(n, 100*w_guess)]\n",
" n_high = n[n >= np.percentile(n, 100*w_guess)]\n",
" \n",
" alpha1, b1 = mle_iid_nbinom(n_low)\n",
" alpha2, b2 = mle_iid_nbinom(n_high)\n",
" \n",
" return alpha1, b1, alpha2, b2\n",
"\n",
"\n",
"def log_like_mix(alpha1, b1, alpha2, b2, w, n):\n",
" \"\"\"Log-likeihood of binary Negative Binomial mixture model.\"\"\"\n",
" # Fix nonidentifieability be enforcing values of w\n",
" if w < 0 or w > 1:\n",
" return -np.inf\n",
" \n",
" # Physical bounds on parameters\n",
" if alpha1 < 0 or alpha2 < 0 or b1 < 0 or b2 < 0:\n",
" return -np.inf\n",
"\n",
" logx1 = st.nbinom.logpmf(n, alpha1, 1/(1+b1))\n",
" logx2 = st.nbinom.logpmf(n, alpha2, 1/(1+b2))\n",
"\n",
" # Multipliers for log-sum-exp\n",
" lse_coeffs = np.tile([w, 1-w], [len(n), 1]).transpose()\n",
"\n",
" # log-likelihood for each measurement\n",
" log_likes = scipy.special.logsumexp(np.vstack([logx1, logx2]), axis=0, b=lse_coeffs)\n",
" \n",
" return np.sum(log_likes)\n",
"\n",
"\n",
"def mle_mix(n, w_guess):\n",
" \"\"\"Obtain MLE estimate for parameters for binary mixture \n",
" of Negative Binomials.\"\"\"\n",
" with warnings.catch_warnings():\n",
" warnings.simplefilter(\"ignore\")\n",
"\n",
" res = scipy.optimize.minimize(\n",
" fun=lambda params, n: -log_like_mix(*params, n),\n",
" x0=[*initial_guess_mix(n, w_guess), w_guess],\n",
" args=(n,),\n",
" method='Powell',\n",
" tol=1e-6,\n",
" )\n",
"\n",
" if res.success:\n",
" return res.x\n",
" else:\n",
" raise RuntimeError('Convergence failed with message', res.message) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can load in the data and compute the MLEs for each of the four genes."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Rex1 | \n",
" Rest | \n",
" Nanog | \n",
" Prdm14 | \n",
"
\n",
" \n",
" \n",
" \n",
" alpha | \n",
" 1.634562 | \n",
" 4.530335 | \n",
" 1.263097 | \n",
" 0.552886 | \n",
"
\n",
" \n",
" b | \n",
" 84.680915 | \n",
" 16.543054 | \n",
" 69.347842 | \n",
" 8.200636 | \n",
"
\n",
" \n",
" alpha1 | \n",
" 3.497010 | \n",
" 2.786599 | \n",
" 0.834853 | \n",
" 2.385858 | \n",
"
\n",
" \n",
" b1 | \n",
" 4.104915 | \n",
" 12.395709 | \n",
" 66.534676 | \n",
" 4.747278 | \n",
"
\n",
" \n",
" alpha2 | \n",
" 5.089624 | \n",
" 6.683424 | \n",
" 4.127551 | \n",
" 0.558672 | \n",
"
\n",
" \n",
" b2 | \n",
" 31.810372 | \n",
" 11.953266 | \n",
" 28.132831 | \n",
" 4.872748 | \n",
"
\n",
" \n",
" w | \n",
" 0.160422 | \n",
" 0.108772 | \n",
" 0.466650 | \n",
" 0.210606 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Rex1 Rest Nanog Prdm14\n",
"alpha 1.634562 4.530335 1.263097 0.552886\n",
"b 84.680915 16.543054 69.347842 8.200636\n",
"alpha1 3.497010 2.786599 0.834853 2.385858\n",
"b1 4.104915 12.395709 66.534676 4.747278\n",
"alpha2 5.089624 6.683424 4.127551 0.558672\n",
"b2 31.810372 11.953266 28.132831 4.872748\n",
"w 0.160422 0.108772 0.466650 0.210606"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load in data\n",
"df = pd.read_csv(\"../data/singer_transcript_counts.csv\", comment=\"#\")\n",
"\n",
"df_mle = pd.DataFrame(index=['alpha', 'b', 'alpha1', 'b1', 'alpha2', 'b2', 'w'])\n",
"\n",
"for gene in df:\n",
" n = df['Nanog'].values\n",
"\n",
" # Single Negative Binomial MLE\n",
" alpha, b = mle_iid_nbinom(df[gene].values)\n",
"\n",
" # Mixture model MLE\n",
" alpha1, b1, alpha2, b2, w = mle_mix(df[gene].values, 0.2)\n",
" \n",
" # Store results in data frame\n",
" df_mle[gene] = [alpha, b, alpha1, b1, alpha2, b2, w]\n",
" \n",
"# Take a look\n",
"df_mle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For each of the two models, we can compute the log likelihood evaluated at the MLEs for the parameters."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Rex1 | \n",
" Rest | \n",
" Nanog | \n",
" Prdm14 | \n",
"
\n",
" \n",
" \n",
" \n",
" alpha | \n",
" 1.634562 | \n",
" 4.530335 | \n",
" 1.263097 | \n",
" 0.552886 | \n",
"
\n",
" \n",
" b | \n",
" 84.680915 | \n",
" 16.543054 | \n",
" 69.347842 | \n",
" 8.200636 | \n",
"
\n",
" \n",
" alpha1 | \n",
" 3.497010 | \n",
" 2.786599 | \n",
" 0.834853 | \n",
" 2.385858 | \n",
"
\n",
" \n",
" b1 | \n",
" 4.104915 | \n",
" 12.395709 | \n",
" 66.534676 | \n",
" 4.747278 | \n",
"
\n",
" \n",
" alpha2 | \n",
" 5.089624 | \n",
" 6.683424 | \n",
" 4.127551 | \n",
" 0.558672 | \n",
"
\n",
" \n",
" b2 | \n",
" 31.810372 | \n",
" 11.953266 | \n",
" 28.132831 | \n",
" 4.872748 | \n",
"
\n",
" \n",
" w | \n",
" 0.160422 | \n",
" 0.108772 | \n",
" 0.466650 | \n",
" 0.210606 | \n",
"
\n",
" \n",
" log_like_single | \n",
" -1638.678482 | \n",
" -1376.748398 | \n",
" -1524.928918 | \n",
" -713.091587 | \n",
"
\n",
" \n",
" log_like_mix | \n",
" -1590.353744 | \n",
" -1372.108896 | \n",
" -1512.444549 | \n",
" -712.702876 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Rex1 Rest Nanog Prdm14\n",
"alpha 1.634562 4.530335 1.263097 0.552886\n",
"b 84.680915 16.543054 69.347842 8.200636\n",
"alpha1 3.497010 2.786599 0.834853 2.385858\n",
"b1 4.104915 12.395709 66.534676 4.747278\n",
"alpha2 5.089624 6.683424 4.127551 0.558672\n",
"b2 31.810372 11.953266 28.132831 4.872748\n",
"w 0.160422 0.108772 0.466650 0.210606\n",
"log_like_single -1638.678482 -1376.748398 -1524.928918 -713.091587\n",
"log_like_mix -1590.353744 -1372.108896 -1512.444549 -712.702876"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"for gene in df:\n",
" ell = log_like_iid_nbinom(\n",
" (df_mle.loc[\"alpha\", gene], df_mle.loc[\"b\", gene]), df[gene].values\n",
" )\n",
" df_mle.loc[\"log_like_single\", gene] = ell\n",
"\n",
" ell_mix = log_like_mix(\n",
" *df_mle.loc[[\"alpha1\", 'b1', 'alpha2', 'b2', 'w'], gene].values,\n",
" df[gene].values,\n",
" )\n",
" df_mle.loc[\"log_like_mix\", gene] = ell_mix\n",
" \n",
"# Take a look\n",
"df_mle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can already see a very large difference between the log likelihood evaluated at the MLE for Rex1, but not much difference for Prdm14. The mixture morel has $p = 5$ parameters, while the single Negative Binomial model has $p = 2$. With these numbers, we can compute the AIC and then also the Akaike weights."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Rex1 | \n",
" Rest | \n",
" Nanog | \n",
" Prdm14 | \n",
"
\n",
" \n",
" \n",
" \n",
" alpha | \n",
" 1.634562 | \n",
" 4.530335 | \n",
" 1.263097 | \n",
" 0.552886 | \n",
"
\n",
" \n",
" b | \n",
" 84.680915 | \n",
" 16.543054 | \n",
" 69.347842 | \n",
" 8.200636 | \n",
"
\n",
" \n",
" alpha1 | \n",
" 3.497010 | \n",
" 2.786599 | \n",
" 0.834853 | \n",
" 2.385858 | \n",
"
\n",
" \n",
" b1 | \n",
" 4.104915 | \n",
" 12.395709 | \n",
" 66.534676 | \n",
" 4.747278 | \n",
"
\n",
" \n",
" alpha2 | \n",
" 5.089624 | \n",
" 6.683424 | \n",
" 4.127551 | \n",
" 0.558672 | \n",
"
\n",
" \n",
" b2 | \n",
" 31.810372 | \n",
" 11.953266 | \n",
" 28.132831 | \n",
" 4.872748 | \n",
"
\n",
" \n",
" w | \n",
" 0.160422 | \n",
" 0.108772 | \n",
" 0.466650 | \n",
" 0.210606 | \n",
"
\n",
" \n",
" log_like_single | \n",
" -1638.678482 | \n",
" -1376.748398 | \n",
" -1524.928918 | \n",
" -713.091587 | \n",
"
\n",
" \n",
" log_like_mix | \n",
" -1590.353744 | \n",
" -1372.108896 | \n",
" -1512.444549 | \n",
" -712.702876 | \n",
"
\n",
" \n",
" AIC_single | \n",
" 3281.356963 | \n",
" 2757.496797 | \n",
" 3053.857837 | \n",
" 1430.183173 | \n",
"
\n",
" \n",
" AIC_mix | \n",
" 3190.707487 | \n",
" 2754.217792 | \n",
" 3034.889098 | \n",
" 1435.405751 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Rex1 Rest Nanog Prdm14\n",
"alpha 1.634562 4.530335 1.263097 0.552886\n",
"b 84.680915 16.543054 69.347842 8.200636\n",
"alpha1 3.497010 2.786599 0.834853 2.385858\n",
"b1 4.104915 12.395709 66.534676 4.747278\n",
"alpha2 5.089624 6.683424 4.127551 0.558672\n",
"b2 31.810372 11.953266 28.132831 4.872748\n",
"w 0.160422 0.108772 0.466650 0.210606\n",
"log_like_single -1638.678482 -1376.748398 -1524.928918 -713.091587\n",
"log_like_mix -1590.353744 -1372.108896 -1512.444549 -712.702876\n",
"AIC_single 3281.356963 2757.496797 3053.857837 1430.183173\n",
"AIC_mix 3190.707487 2754.217792 3034.889098 1435.405751"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"for gene in df:\n",
" df_mle.loc['AIC_single', gene] = -2 * (df_mle.loc['log_like_single', gene] - 2)\n",
" df_mle.loc['AIC_mix', gene] = -2 * (df_mle.loc['log_like_mix', gene] - 5)\n",
" \n",
"# Take a look\n",
"df_mle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can compute the Akaike weight for the mixture model (the weight for the single Negative Binomial model is $1-w_\\mathrm{mix}$)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Rex1 | \n",
" Rest | \n",
" Nanog | \n",
" Prdm14 | \n",
"
\n",
" \n",
" \n",
" \n",
" alpha | \n",
" 1.634562e+00 | \n",
" 4.530335 | \n",
" 1.263097 | \n",
" 0.552886 | \n",
"
\n",
" \n",
" b | \n",
" 8.468092e+01 | \n",
" 16.543054 | \n",
" 69.347842 | \n",
" 8.200636 | \n",
"
\n",
" \n",
" alpha1 | \n",
" 3.497010e+00 | \n",
" 2.786599 | \n",
" 0.834853 | \n",
" 2.385858 | \n",
"
\n",
" \n",
" b1 | \n",
" 4.104915e+00 | \n",
" 12.395709 | \n",
" 66.534676 | \n",
" 4.747278 | \n",
"
\n",
" \n",
" alpha2 | \n",
" 5.089624e+00 | \n",
" 6.683424 | \n",
" 4.127551 | \n",
" 0.558672 | \n",
"
\n",
" \n",
" b2 | \n",
" 3.181037e+01 | \n",
" 11.953266 | \n",
" 28.132831 | \n",
" 4.872748 | \n",
"
\n",
" \n",
" w | \n",
" 1.604216e-01 | \n",
" 0.108772 | \n",
" 0.466650 | \n",
" 0.210606 | \n",
"
\n",
" \n",
" log_like_single | \n",
" -1.638678e+03 | \n",
" -1376.748398 | \n",
" -1524.928918 | \n",
" -713.091587 | \n",
"
\n",
" \n",
" log_like_mix | \n",
" -1.590354e+03 | \n",
" -1372.108896 | \n",
" -1512.444549 | \n",
" -712.702876 | \n",
"
\n",
" \n",
" AIC_single | \n",
" 3.281357e+03 | \n",
" 2757.496797 | \n",
" 3053.857837 | \n",
" 1430.183173 | \n",
"
\n",
" \n",
" AIC_mix | \n",
" 3.190707e+03 | \n",
" 2754.217792 | \n",
" 3034.889098 | \n",
" 1435.405751 | \n",
"
\n",
" \n",
" w_single | \n",
" 2.068790e-20 | \n",
" 0.162533 | \n",
" 0.000076 | \n",
" 0.931585 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Rex1 Rest Nanog Prdm14\n",
"alpha 1.634562e+00 4.530335 1.263097 0.552886\n",
"b 8.468092e+01 16.543054 69.347842 8.200636\n",
"alpha1 3.497010e+00 2.786599 0.834853 2.385858\n",
"b1 4.104915e+00 12.395709 66.534676 4.747278\n",
"alpha2 5.089624e+00 6.683424 4.127551 0.558672\n",
"b2 3.181037e+01 11.953266 28.132831 4.872748\n",
"w 1.604216e-01 0.108772 0.466650 0.210606\n",
"log_like_single -1.638678e+03 -1376.748398 -1524.928918 -713.091587\n",
"log_like_mix -1.590354e+03 -1372.108896 -1512.444549 -712.702876\n",
"AIC_single 3.281357e+03 2757.496797 3053.857837 1430.183173\n",
"AIC_mix 3.190707e+03 2754.217792 3034.889098 1435.405751\n",
"w_single 2.068790e-20 0.162533 0.000076 0.931585"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"for gene in df:\n",
" AIC_max = max(df_mle.loc[['AIC_single', 'AIC_mix'], gene])\n",
" numerator = np.exp(-(df_mle.loc['AIC_single', gene] - AIC_max)/2)\n",
" denominator = numerator + np.exp(-(df_mle.loc['AIC_mix', gene] - AIC_max)/2)\n",
" df_mle.loc['w_single', gene] = numerator / denominator\n",
" \n",
"# Take a look\n",
"df_mle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In looking at the Akaike weight for the mixture (1 – `w_single`), is it clear that the mixture model is strongly preferred for Rex1 and Nanog. There is not strong preference for Rest, and a preference for the single Negative Binomial model for Prdm14. Reminding ourselves of the ECDFs, this makes sense."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"(function(root) {\n",
" function embed_document(root) {\n",
" const docs_json = {\"44c70b54-079d-48ce-82f3-13f4395be777\":{\"version\":\"3.2.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"GridPlot\",\"id\":\"p1173\",\"attributes\":{\"rows\":null,\"cols\":null,\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1172\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1166\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1024\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1065\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1106\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1147\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1167\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1025\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1066\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1107\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1148\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1168\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1026\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1027\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1067\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1068\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1108\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1109\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1149\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1150\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}}]}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1169\"},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1170\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1029\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1070\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1111\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1152\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1171\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1030\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1071\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1112\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1153\"}]}}]}},\"children\":[[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1002\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1003\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1004\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1012\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1013\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1005\",\"attributes\":{\"text\":\"Nanog\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1040\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1031\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1032\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1033\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"r2dJ0OtZ0j+5OkBWrg7QPxzHcRzHcdw/B8jK1QGy4j8q/k2Nin/TP9q+UJi2L+Q/J5poookmyj8avEVsBm/BP9daa6211uo/vvfee++95z9IHnnkkUfeP7JydYCsXK0/rANk5eoA2T/AqVHxb2rkP0geeeSRR+4/LQl6PUuC7j8gK1cHyMrVP42Kf1Oj4u8/XMRm8BaxqT+vZ0nQ61mSP93JfEh3Mq8/J5poookm6j+Nin9To+LfP/FvalT8m8o/hxtuuOGG6z+ycnWArFxtP4Jez5Kg1+M/9dNPP/304z+fJUGvZ0nQP5vBW8Rm8OY/aEnQ61kS5D+bwVvEZvDWPxDpTuZDuuM/8yHdyXxI5z8S9HqWBL3uP/eFwrR9oeA/i39To+Lf1D+ycnWArFx9P0/mQ7qT+dA/VVVVVVVV5T8gK1cHyMrlPwAAAAAAAPA/hWn7QmHa7j9J0OtZEvTqP3bZZZddduk/BhZYYIEFtj8EZOXqAFnpP82HdCfzId0/HMdxHMdx7D8WWGCBBRbYPxL0epYEvc4/chzHcRzH4T+HG2644YbbP0GvZ0nQ6+k/Zpdddtllxz/SncyHdCfjP93JfEh3Mu8/3HDDDTfc4D+ycnWArFzdP/FvalT8m7o/2r5QmLYvxD+bwVvEZvC2P93JfEh3Mr8/9dNPP/300z8CsnJ1gKzcP1A//fTTT+8/MW1fKEzb5z8S9HqWBL3eP/qQ7mQ+pOs/2r5QmLYv1D/7QmHavlDYP4QQQgghhNA/lVJKKaWU0j+PPPLII4/sPxZYYIEFFug/MW1fKEzbxz9sBm8Rm8HbPxsV/6ZGxe8/EZvBW8Rm4D9walT8mxrVP4cbbrjhhqs/mQ/pTuZD6j+XXXbZZZftP6dGxb+pUeE/MW1fKEzbtz91J/Mh3cnsPz3yyCOPPOI/yMrVAbJy5T/hLWIzeIvoP2Tl6gBZueo/SB555JFHzj9fKEzbFwrTP+ecc8455+w/GrxFbAZv0T9/+umnn37qPwYWWGCBBZY/r2dJ0OtZ4j+ToNezJOjlP3iL2AzeIuY/6U7mQ7qT6T/nnHPOOefcP4wxxhhjjOE/ke5kPqQ72T9FE0000UTjP9DrWRL0euY/XMRm8BaxyT87QFauDpDlPw433HDDDec/5JFHHnnk4T+EEEIIIYSgPwyFaftCYeo/4S1iM3iL2D/Q61kS9HrWP0geeeSRR74/cGpU/JsaxT96PUuCXs/SP2r7QmHavtA/uTpAVq4OwD9NNNFEE03kP4QQQgghhOA/GrxFbAZv4T/AqVHxb2rUP6WUUkoppdQ/avtCYdq+4D9cxGbwFrGZP4QQQgghhLA/+0Jh2r5QyD/rAFm5OkDmPzIf0p3Mh+Q/xhhjjDHG2D9ml1122WXXP1Oj4t/UqOg/S4Jez5Kg5z+8RWwGbxHrP8p8SHcyH+I/pZRSSiml5D8GFlhggQXWP1zEZvAWsek/ic3gLWIz6D8GFlhggQXGPzTRRBNNNNE/r2dJ0OtZoj9S8W9qVPzrP/jee++99+4/zjnnnHPO6T+EEEIIIYTAPwYWWGCBBaY/xhhjjDHG6D+ArFwdICvnP7JydYCsXM0/VwfIytUB4j/VqPg3NSruP/jee++9994/L7vssssu6z800UQTTTThP7k6QFauDuA/S4Jez5Kg1z96PUuCXs/iP0/mQ7qT+eA/xhhjjDHGuD8CsnJ1gKzsP69nSdDrWcI/2QzeIjaD5z8xbV8oTNvXPyLdyXxId+I/CtP2hcK07T+HG2644YbLPyhM2xcK0+Y/UvFvalT82z9FE0000USzP+SRRx555NE/uIjN4C1i4z+8RWwGbxHLP9DrWRL0esY/8W9qVPyb2j8avEVsBm+xP+2yyy677OI/LLDAAgss4D9fKEzbFwrjP0Nh2r5QmOY/qlHxb2pU7D9S8W9qVPzLP93JfEh3Ms8/hxtuuOGGuz+fJUGvZ0ngP/+mRsW/qdE/YjN4i9gM7j+sA2Tl6gDpP0/mQ7qT+cA/oH766aef7j+ycnWArFztP0UTTTTRRNM/snJ1gKxcnT87QFauDpDVP0GvZ0nQ69k/ej1Lgl7Pwj922WWXXXbZP6EwbV8oTOs/J5poookm2j+R7mQ+pDvJP5dddtlll90/brjhhhtu6D8GFlhggQXmP2aXXXbZZec/bAZvEZvB6z/avlCYti+0PzmO4ziO4+g/ke5kPqQ76T/CW8Rm8BbhP8Rm8BaxGew/6wBZuTpA1j+VUkoppZTiP31IdzIf0t0/XMRm8Bax2T9FE0000UTDPx555JFHHuk/XMRm8BaxuT8MhWn7QmHaP6211lprreU/nXPOOeec4z9walT8mxrlPztAVq4OkMU/pZRSSimlxD9edtlll13mP2pU/JsaFe8/BhZYYIEFhj//pkbFv6nhPzUq/k2Niu8/N9xwww033D+ycnWArFyNPxzHcRzHccw/11prrbXW2j8l6PUsCXrtP31IdzIf0s0/77333nvv7T9VVVVVVVXVP82HdCfzIe0/WhL0epYE7T8YCtP2hcLkP6Pi39So+Oc/vEVsBm8R2z8cx3Ecx3G8PxDpTuZDusM/FKbtC4Vp6z/DtH2hMG3vP99777333us/ynxIdzIf0j8Q6U7mQ7rTP69nSdDrWbI/fUh3Mh/S7T+21lprrbXWP8YYY4wxxsg/Kv5NjYp/4z+ycnWArFy9P6EwbV8oTNs/LQl6PUuC3j+on3766afvPzfccMMNN+w/+0Jh2r5Q6D/kkUceeeTBP4CsXB0gK9c/YjN4i9gM3j/j39So+DflP7bWWmutteY/m8FbxGbwxj+6k/mQ7mTuP8O0faEwbd8/qJ9++umnzz/nnHPOOefMP4t/U6Pi3+Q/2r5QmLYvpD+on3766affP/FvalT8m+o/P/30008/7T+0JOj1LAnqPzFtXyhM26c/cGpU/JsatT/dyXxIdzLfP/30008//eQ/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1041\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1042\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1037\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1038\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1039\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1011\",\"attributes\":{\"tools\":[{\"id\":\"p1024\"},{\"id\":\"p1025\"},{\"id\":\"p1026\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1028\"},{\"id\":\"p1029\"},{\"id\":\"p1030\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1019\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1020\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1021\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1022\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1014\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1015\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1016\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1017\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1018\",\"attributes\":{\"axis\":{\"id\":\"p1014\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1023\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1019\"}}}],\"frame_width\":200,\"frame_height\":150}},0,0],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1043\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1044\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1045\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1053\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1054\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1046\",\"attributes\":{\"text\":\"Prdm14\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1081\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1072\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1073\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1074\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Prdm14\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAUAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAA4AAAAQAAAACwAAAAEAAAAPAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAABwAAAAAAAAAEAAAABgAAAAAAAAAMAAAABAAAAAAAAAAHAAAAEQAAAAEAAAAIAAAAAgAAAAAAAAAAAAAAAQAAAAQAAAAYAAAAHwAAAAMAAAADAAAAAAAAAAEAAAABAAAABQAAAAAAAAADAAAAAQAAAAcAAAABAAAABQAAAAEAAAAHAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAkAAAAgAAAAAwAAAA8AAAAEAAAABAAAAAAAAAABAAAABgAAAAMAAAADAAAAAQAAAAIAAAATAAAACAAAAAEAAAAAAAAACwAAAAMAAAAGAAAAAAAAAAwAAAAAAAAADAAAAAUAAAAJAAAAAgAAAAcAAAAVAAAAAAAAAAUAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAEAAAAFAAAAAAAAAAAAAAANAAAAAAAAAAQAAAACAAAAAwAAAAAAAAANAAAAGwAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAGAAAABQAAAAIAAAADAAAABwAAAAIAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAEAAAAZAAAADAAAAAcAAAABAAAABgAAAAAAAAAEAAAAAwAAAAEAAAAAAAAAAQAAABQAAAAKAAAABwAAAAAAAAAAAAAAAAAAAAUAAAAAAAAADAAAAAAAAAACAAAAAQAAAAAAAAAAAAAABwAAAAMAAAABAAAAAAAAAAgAAAAAAAAADwAAAAUAAAAEAAAABgAAAAAAAAACAAAAAQAAAAAAAAAMAAAABAAAAAYAAAAAAAAAAwAAAAAAAAAJAAAACAAAAAwAAAAHAAAADQAAAAEAAAAAAAAAAQAAAAsAAAADAAAACwAAABsAAAAGAAAAIAAAAAAAAAAGAAAAAAAAAAAAAAAFAAAAAAAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAYAAAAGAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAABAAAAAcAAAAGAAAAAwAAAAAAAAAWAAAAAAAAABIAAAABAAAABQAAAAAAAAABAAAAAQAAABIAAAADAAAAAAAAAAQAAAAPAAAAAwAAAAAAAAAAAAAAAAAAABIAAAABAAAAAAAAAAEAAAAQAAAADAAAAAEAAAAIAAAABQAAAAAAAAAAAAAAEQAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAEAAAABAAAACgAAAAAAAAAFAAAAAAAAAAAAAAAAAAAADwAAAAAAAAAIAAAABQAAAAYAAAAFAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAJAAAAAAAAAAYAAAAFAAAAEwAAAAYAAAABAAAABAAAAAQAAAAAAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"snJ1gKxcbT/99NNPP/3kP7JydYCsXH0/XyhM2xcK0z8GFlhggQWGP7JydYCsXI0/r2dJ0OtZkj99SHcyH9LdP0UTTTTRRNM/94XCtH2h4D8q/k2Nin/TPxDpTuZDutM/avtCYdq+4D8//fTTTz/tP++999577+0/hxtuuOGG6z/1008//fTTP7JydYCsXO0/BhZYYIEFlj9cxGbwFrGZP7JydYCsXJ0/2r5QmLYv1D+EEEIIIYSgP69nSdDrWaI/U6Pi39So6D/avlCYti+kP7iIzeAtYuM/KEzbFwrT5j8GFlhggQWmP1Lxb2pU/Os/Kv5NjYp/4z8xbV8oTNunP8YYY4wxxug/1aj4NzUq7j/AqVHxb2rUP0GvZ0nQ6+k/YjN4i9gM3j9cxGbwFrGpP4cbbrjhhqs/pZRSSiml1D+dc84555zjP1A//fTTT+8/GxX/pkbF7z/ccMMNN9zgP0/mQ7qT+eA/snJ1gKxcrT+Lf1Oj4t/UP3BqVPybGtU/cGpU/Jsa5T/dyXxIdzKvP8JbxGbwFuE/VVVVVVVV1T85juM4juPoPztAVq4OkNU/49/UqPg35T8gK1cHyMrVP6wDZOXqAOk/BhZYYIEF1j/rAFm5OkDWP4QQQgghhLA/GrxFbAZvsT+vZ0nQ61myP0UTTTTRRLM/NNFEE0004T/XWmuttdbqP42Kf1Oj4u8/p0bFv6lR4T8l6PUsCXrtPxDpTuZDuuM/gl7PkqDX4z/avlCYti+0P9DrWRL0etY/m8FbxGbw5j8avEVsBm/hP4wxxhhjjOE/ttZaa6211j9IHnnkkUfePxL0epYEve4/tCTo9SwJ6j+bwVvEZvDWP3BqVPybGrU/+pDuZD6k6z//pkbFv6nhPw433HDDDec/BhZYYIEFtj/EZvAWsRnsP5vBW8Rm8LY/N9xwww037D9VVVVVVVXlP0nQ61kS9Oo/LQl6PUuC3j8eeeSRRx7pP2pU/JsaFe8/MW1fKEzbtz/IytUBsnLlP8YYY4wxxrg/gKxcHSAr1z8S9HqWBL3eP3Icx3Ecx+E/Zpdddtll1z9Lgl7PkqDXPztAVq4OkOU/XMRm8BaxuT/xb2pU/Ju6P+ecc8455+w/hxtuuOGGuz/1008//fTjP/jee++9994/5JFHHnnk4T8cx3Ecx3G8P1oS9HqWBO0/NSr+TY2K7z+ycnWArFy9P93JfEh3Mt8/MW1fKEzb1z8WWGCBBRbYP0geeeSRR74/3cl8SHcyvz9XB8jK1QHiP4CsXB0gK+c/rbXWWmut5T/DtH2hMG3fP8p8SHcyH+I/ke5kPqQ76T+on3766affP7k6QFauDsA/hBBCCCGEwD/zId3JfEjnP0/mQ7qT+cA/GrxFbAZvwT/7QmHavlDYP8O0faEwbe8/qlHxb2pU7D8EZOXqAFnpP+EtYjN4i9g/Zpdddtll5z/kkUceeeTBP2hJ0OtZEuQ/PfLII4884j/GGGOMMcbYP69nSdDrWcI/rANk5eoA2T/43nvvvffuP6EwbV8oTOs/dtlll1126T96PUuCXs/CP0UTTTTRRMM/EOlO5kO6wz8gK1cHyMrlP9q+UJi2L8Q/HMdxHMdx7D+llFJKKaXEP42Kf1Oj4t8/ke5kPqQ72T9walT8mxrFPztAVq4OkMU/6U7mQ7qT6T+vZ0nQ61niP3bZZZdddtk/BhZYYIEFxj8nmmiiiSbqP9DrWRL0esY/l1122WWX7T+ToNezJOjlP9q+UJi2L+Q/2QzeIjaD5z+bwVvEZvDGP7k6QFauDuA/XMRm8Bax2T9ml1122WXHP4888sgjj+w/TTTRRBNN5D9Lgl7PkqDnPzFtXyhM28c/It3JfEh34j/7QmHavlDIP7xFbAZvEes/mQ/pTuZD6j8CsnJ1gKzsP1zEZvAWsek/zYd0J/Mh7T9Br2dJ0OvZP8YYY4wxxsg/J5poookm2j9sBm8Rm8HrP5VSSimllOI/33vvvffe6z+on3766afvP7733nvvvec/AAAAAAAA8D+R7mQ+pDvJPzFtXyhM2+c/XMRm8BaxyT8nmmiiiSbKPwYWWGCBBeY/8W9qVPybyj8ssMACCyzgPwfIytUBsuI/nyVBr2dJ4D8MhWn7QmHaPxGbwVvEZuA/hBBCCCGE4D+j4t/UqPjnPxZYYIEFFug/8W9qVPyb2j/XWmuttdbaP3o9S4Jez+I/vEVsBm8Ryz+HG2644YbLP+2yyy677OI/wKlR8W9q5D/OOeecc87pP4nN4C1iM+g/XyhM2xcK4z9S8W9qVPzLP93JfEh3Mu8/HMdxHMdxzD+6k/mQ7mTuP7xFbAZvEds/eIvYDN4i5j/nnHPOOefMP6EwbV8oTNs/hxtuuOGG2z8tCXo9S4LuP9KdzId0J+M/snJ1gKxczT8yH9KdzIfkPwrT9oXCtO0/RRNNNNFE4z99SHcyH9LNP0geeeSRR84/EvR6lgS9zj+gfvrpp5/uP2wGbxGbwds/3cl8SHcyzz9S8W9qVPzbP2IzeIvYDO4/dSfzId3J7D833HDDDTfcPwyFaftCYeo/6wBZuTpA5j+on3766afPP7k6QFauDtA/SB555JFH7j+llFJKKaXkP3/66aeffuo/nyVBr2dJ0D+EEEIIIYTQP2r7QmHavtA/8W9qVPyb6j8cx3Ecx3HcPwKycnWArNw/FKbtC4Vp6z9P5kO6k/nQP1522WWXXeY/NNFEE0000T8avEVsBm/RP/+mRsW/qdE/fUh3Mh/S7T/kkUceeeTRP2Tl6gBZueo/0OtZEvR65j/7QmHavlDoP0Nh2r5QmOY/55xzzjnn3D/KfEh3Mh/SP82HdCfzId0/r2dJ0OtZ0j+ycnWArFzdPy+77LLLLus/lVJKKaWU0j9uuOGGG27oP7bWWmutteY/hWn7QmHa7j/hLWIzeIvoP5dddtlll90/GArT9oXC5D+Lf1Oj4t/kP3o9S4Jez9I/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1082\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1083\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1078\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1079\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1080\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1052\",\"attributes\":{\"tools\":[{\"id\":\"p1065\"},{\"id\":\"p1066\"},{\"id\":\"p1067\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1069\"},{\"id\":\"p1070\"},{\"id\":\"p1071\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1060\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1061\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1062\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1063\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1055\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1056\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1057\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1058\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1059\",\"attributes\":{\"axis\":{\"id\":\"p1055\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1064\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1060\"}}}],\"frame_width\":200,\"frame_height\":150}},0,1],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1084\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1085\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1086\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1094\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1095\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1087\",\"attributes\":{\"text\":\"Rest\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1122\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1113\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1114\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1115\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rest\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IgAAAFsAAABGAAAANgAAADYAAABEAAAASgAAADwAAABgAAAAIwAAADIAAAAzAAAAKwAAADIAAABKAAAAfQAAAD4AAACCAAAAXwAAAB8AAABDAAAAWgAAAD4AAAAnAAAARAAAACgAAABBAAAATgAAADwAAABeAAAAYwAAADcAAABFAAAAKQAAAGYAAABBAAAAKgAAAEwAAAByAAAAVAAAAGoAAAC2AAAARAAAAFYAAAA/AAAAGAAAAGcAAABgAAAASwAAADwAAABGAAAATwAAAEoAAABKAAAALAAAAGgAAABhAAAAHgAAADoAAAARAAAAIgAAACwAAAAcAAAAMQAAAEEAAAD2AAAAaAAAAGwAAABbAAAAkAAAACgAAABQAAAAOQAAAFIAAABVAAAAMwAAACcAAABiAAAAWAAAAEEAAAANAAAAjAAAAFUAAABMAAAAFQAAAFAAAAA8AAAAiQAAAFsAAABGAAAADAAAADUAAABBAAAAIQAAADsAAAA7AAAASAAAAG4AAACKAAAAaQAAAFMAAABoAAAAPgAAADkAAABuAAAAMwAAAGoAAABcAAAAOwAAACEAAABsAAAANQAAACIAAABeAAAAMAAAAEAAAABdAAAANQAAAE0AAABTAAAAOAAAADAAAABYAAAANgAAAEsAAAAuAAAAHQAAACoAAABPAAAAQAAAADkAAABcAAAAfQAAACUAAAAsAAAAcAAAADQAAAB9AAAAmAAAABIAAAAiAAAAEAAAADUAAABIAAAAZwAAACMAAABLAAAAPgAAAIYAAABTAAAAXgAAAEMAAABUAAAAUAAAADkAAABQAAAAHQAAAFcAAACCAAAAIAAAAI4AAABOAAAAXAAAAEoAAACbAAAAnwAAAD0AAABKAAAAXgAAADsAAABbAAAAcAAAAEQAAAAbAAAAIAAAAE4AAACiAAAAWQAAAKIAAABcAAAAZAAAACgAAAAlAAAABQAAAGsAAAAfAAAAWwAAAJkAAABeAAAAgQAAAGIAAABsAAAACAAAADUAAABfAAAAJwAAAEEAAABEAAAASwAAAFMAAAAtAAAAWgAAAFcAAABOAAAAdQAAACQAAABSAAAAPQAAAIEAAABnAAAANwAAACsAAAAoAAAAOAAAABsAAABXAAAANQAAAEgAAABZAAAAbQAAAHwAAAAxAAAAHwAAADAAAABSAAAARgAAAFIAAAB5AAAAQQAAAAsAAACqAAAAZwAAAD4AAAAuAAAAagAAAF4AAABSAAAAXwAAAFsAAABAAAAAOgAAAEIAAAAaAAAAQwAAAE8AAAB2AAAAGgAAAG0AAAAZAAAANgAAADMAAAA1AAAANAAAAAwAAABGAAAAPgAAAHQAAABVAAAAZQAAAFwAAACGAAAASgAAAC4AAABJAAAAHgAAAIkAAABrAAAAOwAAAC4AAABWAAAADwAAAD4AAABSAAAAlAAAAE0AAABbAAAAXAAAAFIAAABiAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"hxtuuOGGuz/rAFm5OkDmP0geeeSRR94/ynxIdzIf0j+vZ0nQ61nSP+ecc84559w/LLDAAgss4D/Q61kS9HrWPzmO4ziO4+g/3cl8SHcyvz+ycnWArFzNP0geeeSRR84/0OtZEvR6xj99SHcyH9LNP58lQa9nSeA/P/30008/7T8xbV8oTNvXP31IdzIf0u0/4S1iM3iL6D9walT8mxq1PzfccMMNN9w/BhZYYIEF5j8WWGCBBRbYP+SRRx555ME/zYd0J/Mh3T9FE0000UTDPwyFaftCYdo/5JFHHnnk4T+21lprrbXWPzFtXyhM2+c/6U7mQ7qT6T9fKEzbFwrTP2IzeIvYDN4/cGpU/JsaxT9Br2dJ0OvpP/FvalT8m9o/O0BWrg6QxT8avEVsBm/hP4888sgjj+w/wKlR8W9q5D9J0OtZEvTqP42Kf1Oj4u8/snJ1gKxc3T/99NNPP/3kP3bZZZdddtk/BhZYYIEFpj+0JOj1LAnqP6wDZOXqAOk/T+ZDupP54D+bwVvEZvDWPy0Jej1Lgt4/r2dJ0OtZ4j8Rm8FbxGbgP4QQQgghhOA/Zpdddtllxz9/+umnn37qPx555JFHHuk/RRNNNNFEsz+Lf1Oj4t/UP4QQQgghhKA/HMdxHMdxvD8xbV8oTNvHP4QQQgghhLA/HMdxHMdxzD/XWmuttdbaPwAAAAAAAPA/8W9qVPyb6j+HG2644YbrP1522WWXXeY/hWn7QmHa7j8Q6U7mQ7rDPwfIytUBsuI/9dNPP/300z/SncyHdCfjP6WUUkoppeQ/EvR6lgS9zj+vZ0nQ61nCP5HuZD6kO+k/O0BWrg6Q5T+8RWwGbxHbPwYWWGCBBZY/oH766aef7j8YCtP2hcLkP4wxxhhjjOE/2r5QmLYvpD96PUuCXs/iP4CsXB0gK9c/SB555JFH7j/Q61kS9HrmPxL0epYEvd4/snJ1gKxcjT+EEEIIIYTQP6EwbV8oTNs/XMRm8BaxuT9VVVVVVVXVPztAVq4OkNU/w7R9oTBt3z/EZvAWsRnsPy0Jej1Lgu4/11prrbXW6j/1008//fTjP2Tl6gBZueo/+0Jh2r5Q2D/avlCYti/UPzfccMMNN+w/3cl8SHcyzz+8RWwGbxHrPw433HDDDec/ICtXB8jK1T/xb2pU/Ju6P/qQ7mQ+pOs/avtCYdq+0D+ycnWArFy9P6Pi39So+Oc/vEVsBm8Ryz9cxGbwFrHZP7733nvvvec/T+ZDupP50D//pkbFv6nhP2hJ0OtZEuQ/Kv5NjYp/0z+HG2644YbLP6211lprreU/lVJKKaWU0j/CW8Rm8BbhP5HuZD6kO8k/GrxFbAZvsT8GFlhggQXGPyLdyXxId+I/Qa9nSdDr2T/AqVHxb2rUP4CsXB0gK+c/snJ1gKxc7T9P5kO6k/nAP/tCYdq+UMg/qlHxb2pU7D+5OkBWrg7QPyXo9SwJeu0/alT8mxoV7z+vZ0nQ61miP0geeeSRR74/snJ1gKxcnT800UQTTTTRP6iffvrpp98/J5poookm6j+5OkBWrg7APzTRRBNNNOE/4S1iM3iL2D9iM3iL2AzuP9q+UJi2L+Q/FlhggQUW6D8cx3Ecx3HcPzIf0p3Mh+Q/7bLLLrvs4j+llFJKKaXUP18oTNsXCuM/r2dJ0OtZsj/j39So+DflP++999577+0/MW1fKEzbtz8S9HqWBL3uP1cHyMrVAeI/8yHdyXxI5z/3hcK0faHgP1A//fTTT+8/w7R9oTBt7z9ml1122WXXP2r7QmHavuA/ic3gLWIz6D8GFlhggQXWP0Nh2r5QmOY/HMdxHMdx7D+XXXbZZZfdP7JydYCsXK0/xhhjjDHGuD/KfEh3Mh/iPzUq/k2Niu8/ICtXB8jK5T+on3766afvP2aXXXbZZec/XMRm8Bax6T/avlCYti/EPxq8RWwGb8E/snJ1gKxcbT+hMG1fKEzrPwYWWGCBBbY/ttZaa6215j/dyXxIdzLvP/tCYdq+UOg/l1122WWX7T8EZOXqAFnpP2wGbxGbwes/snJ1gKxcfT8avEVsBm/RP1Oj4t/UqOg/ej1Lgl7Pwj+HG2644YbbP31IdzIf0t0/p0bFv6lR4T9NNNFEE03kP8YYY4wxxsg/eIvYDN4i5j9VVVVVVVXlPz3yyCOPPOI/dSfzId3J7D+EEEIIIYTAP0UTTTTRROM/S4Jez5Kg1z8K0/aFwrTtP5kP6U7mQ+o/RRNNNNFE0z+bwVvEZvDGP6WUUkoppcQ/EOlO5kO60z/dyXxIdzKvP8jK1QGycuU//6ZGxb+p0T+Nin9To+LfP5Og17Mk6OU/33vvvffe6z/Nh3Qn8yHtP+ecc84558w/m8FbxGbwtj9S8W9qVPzLP7iIzeAtYuM/+N5777333j8q/k2Nin/jP1oS9HqWBO0/bAZvEZvB2z8GFlhggQWGPxsV/6ZGxe8/DIVp+0Jh6j/GGGOMMcbYP1zEZvAWsck/L7vssssu6z9uuOGGG27oP51zzjnnnOM/xhhjjDHG6D8oTNsXCtPmPyeaaKKJJto/cGpU/Jsa1T9S8W9qVPzbP1zEZvAWsak/ArJydYCs3D+VUkoppZTiP+ecc8455+w/hxtuuOGGqz9S8W9qVPzrPzFtXyhM26c/ej1Lgl7P0j+on3766afPP+SRRx555NE/nyVBr2dJ0D+vZ0nQ61mSP93JfEh3Mt8/rANk5eoA2T8CsnJ1gKzsP4t/U6Pi3+Q/zjnnnHPO6T/ZDN4iNoPnP9Wo+Dc1Ku4/3HDDDTfc4D8nmmiiiSbKP7k6QFauDuA/2r5QmLYvtD+6k/mQ7mTuPxSm7QuFaes/6wBZuTpA1j/xb2pU/JvKP3BqVPybGuU/XMRm8BaxmT+R7mQ+pDvZPxDpTuZDuuM/+N5777337j9yHMdxHMfhP5vBW8Rm8OY/S4Jez5Kg5z+CXs+SoNfjP3bZZZddduk/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1123\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1124\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1119\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1120\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1121\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1093\",\"attributes\":{\"tools\":[{\"id\":\"p1106\"},{\"id\":\"p1107\"},{\"id\":\"p1108\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1110\"},{\"id\":\"p1111\"},{\"id\":\"p1112\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1101\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1102\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1103\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1104\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1096\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1097\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1098\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1099\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1100\",\"attributes\":{\"axis\":{\"id\":\"p1096\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1105\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1101\"}}}],\"frame_width\":200,\"frame_height\":150}},1,0],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1125\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1126\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1127\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1135\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1136\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1128\",\"attributes\":{\"text\":\"Rex1\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1163\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1154\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1155\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1156\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rex1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CwAAAKwAAAAFAQAAsgAAAIEAAABhAAAAEAAAAB0AAAB2AAAAhQAAAJgAAAAIAAAAfQAAAKwAAAD1AAAACQEAAMoAAAAjAQAADgAAACgAAAA4AAAAoAAAAHgAAAA0AAAA7wAAAAsAAACXAAAATAAAAHoAAAAiAQAAYgAAAKoAAADaAAAAqwAAAIMAAABZAAAAIAAAAAgAAADWAAAA2wAAAKwAAABhAQAASwEAAOsAAADRAAAACAAAACkBAADvAAAAwAAAAO4AAAB8AAAAowAAAJQAAACXAAAAKAAAAM0AAABLAQAA2gAAAJYAAAA9AAAATAAAAIAAAAALAAAApgAAAGAAAABqAQAAoAAAAPcAAADMAAAACgEAAGIAAACRAAAAPQAAAIgAAABvAAAADwAAAFAAAAD6AAAAqQAAAJsAAAAGAAAAowAAAK4AAADjAAAARQAAAN0AAACnAAAArgAAAJsAAADDAAAAJgAAAIcAAAD0AAAAYgAAALYAAAAKAAAAvwAAAIMAAAD/AAAAIAEAAIkAAADuAAAAZwAAAIMAAACmAAAAEQAAABwBAAAIAQAAVgAAAAgAAAAEAQAAUQAAABMAAAB5AAAACQAAAH4AAAAIAAAABgAAAG4AAADCAAAAdgAAAHoAAAB6AAAAnwAAABcAAAAMAAAAowAAAMAAAAAuAQAAnQAAAD4AAADOAAAAaAAAAIwAAACBAAAAfgAAAKAAAACMAAAAAgEAAB4AAABjAAAABgAAAGIAAACqAAAA/gAAAAkAAAALAAAAmgAAAJEAAAALAAAAWgAAAMsAAAC6AAAAkAAAAEQAAACmAAAAXgAAALoAAADJAAAAcQAAALAAAAASAAAAnAAAAB8AAACtAAAApgAAAGwAAAD1AAAAvwAAAHEAAABIAAAAnQAAADMAAACTAAAAbAAAAAsAAACkAQAAvgAAAJcAAACZAAAAxgAAAJoAAAAwAAAACwAAAF8AAAAXAAAAhgAAAEYBAAB8AAAAaQAAAOkAAADZAAAAAwAAAF4AAACQAAAALwAAALEAAADxAAAANgAAAGYAAACOAAAAzAAAAFkAAABRAAAAfAAAAAcAAAAJAQAAZAAAAMwAAABmAAAAdAAAAI4AAADSAAAAjAAAAB0AAACbAAAABgAAAFoAAABgAAAAjgAAABkBAAB2AAAABQAAAHQAAAAPAQAAEwAAAEEBAADiAAAAyQAAAAgAAAARAAAAswAAACEBAAAZAAAABgEAAOMAAADCAAAAYgAAAIIAAAB0AAAAKgAAAE8AAAAPAAAAwQAAABQBAACPAAAAXQAAAPIAAAAgAAAAmQAAAG8AAAA1AAAALwAAAAYAAAD8AAAATgAAAM0AAADZAAAA1wAAAA0AAAC/AAAAdAAAAIQAAAB9AAAAPwAAALoAAABhAAAAZAAAADYAAACJAAAABAAAAJ4AAACmAAAAtAAAAMMAAACQAAAAQwAAAHgAAAAYAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"__dummy_cat\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}],[\"__ECDF\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"GrxFbAZvsT87QFauDpDlP7JydYCsXO0/0OtZEvR65j+ycnWArFzdPyr+TY2Kf9M/HMdxHMdxvD+vZ0nQ61nCP3bZZZdddtk/+N5777333j898sgjjzziP69nSdDrWaI/N9xwww033D+ttdZaa63lP6pR8W9qVOw/CtP2hcK07T85juM4juPoP/jee++99+4/XMRm8BaxuT87QFauDpDFP/FvalT8m8o/EOlO5kO64z8nmmiiiSbaP8YYY4wxxsg/bAZvEZvB6z+vZ0nQ61myP+SRRx555OE/EvR6lgS9zj/XWmuttdbaP4Vp+0Jh2u4/9dNPP/300z/j39So+DflP3/66aeffuo/yMrVAbJy5T9iM3iL2AzePzTRRBNNNNE/2r5QmLYvxD/avlCYti+kP7Qk6PUsCeo/ZOXqAFm56j8gK1cHyMrlPxsV/6ZGxe8/NSr+TY2K7z8Upu0LhWnrP84555xzzuk/BhZYYIEFpj9qVPybGhXvP99777333us/vvfee++95z+HG2644YbrP4cbbrjhhts/aEnQ61kS5D//pkbFv6nhP1cHyMrVAeI/BhZYYIEFxj922WWXXXbpP6iffvrpp+8/8W9qVPyb6j9yHMdxHMfhP7xFbAZvEcs/3cl8SHcyzz/Nh3Qn8yHdP0UTTTTRRLM/wKlR8W9q5D9fKEzbFwrTP42Kf1Oj4u8/gl7PkqDX4z+PPPLII4/sPx555JFHHuk/77333nvv7T/avlCYti/UP6dGxb+pUeE/hxtuuOGGyz+on3766affP0uCXs+SoNc/8W9qVPybuj+fJUGvZ0nQPwKycnWArOw/cGpU/Jsa5T96PUuCXs/iP7JydYCsXI0/2r5QmLYv5D8GFlhggQXmP7xFbAZvEes/fUh3Mh/SzT/XWmuttdbqP/30008//eQ/eIvYDN4i5j/tsssuu+ziP/tCYdq+UOg/cGpU/JsaxT/DtH2hMG3fPzfccMMNN+w/wKlR8W9q1D8oTNsXCtPmP4QQQgghhLA/Zpdddtll5z9IHnnkkUfeP1oS9HqWBO0/oH766aef7j+Nin9To+LfP/qQ7mQ+pOs/6wBZuTpA1j8tCXo9S4LePzIf0p3Mh+Q/snJ1gKxcvT8tCXo9S4LuP5dddtlll+0/T+ZDupP50D8xbV8oTNunPz/99NNPP+0/hBBCCCGE0D+5OkBWrg7AP/FvalT8m9o/snJ1gKxcrT8CsnJ1gKzcP1zEZvAWsak/r2dJ0OtZkj9ml1122WXXPxZYYIEFFug/XMRm8Bax2T+8RWwGbxHbP6EwbV8oTNs/nXPOOeec4z9P5kO6k/nAPzFtXyhM27c/TTTRRBNN5D8xbV8oTNvnP93JfEh3Mu8/RRNNNNFE4z9S8W9qVPzLP1zEZvAWsek/0OtZEvR61j8ssMACCyzgP5dddtlll90/55xzzjnn3D/1008//fTjP58lQa9nSeA/zYd0J/Mh7T9FE0000UTDP3BqVPybGtU/BhZYYIEFlj+llFJKKaXUP1VVVVVVVeU/55xzzjnn7D/dyXxIdzKvP9q+UJi2L7Q/lVJKKaWU4j8avEVsBm/hP3BqVPybGrU//6ZGxb+p0T+sA2Tl6gDpP5vBW8Rm8OY/T+ZDupP54D+ycnWArFzNP6WUUkoppeQ/r2dJ0OtZ0j8ON9xwww3nP1Oj4t/UqOg/FlhggQUW2D/rAFm5OkDmP93JfEh3Mr8/0p3Mh3Qn4z8Q6U7mQ7rDP5Og17Mk6OU/GArT9oXC5D+bwVvEZvDWPxzHcRzHcew/2QzeIjaD5z/7QmHavlDYP0geeeSRR84/uIjN4C1i4z/7QmHavlDIP4wxxhhjjOE/gKxcHSAr1z8GFlhggQW2PwAAAAAAAPA/8yHdyXxI5z/KfEh3Mh/iP69nSdDrWeI/4S1iM3iL6D8HyMrVAbLiPzFtXyhM28c/m8FbxGbwtj96PUuCXs/SPxq8RWwGb8E/3cl8SHcy3z/DtH2hMG3vP2wGbxGbwds/ttZaa6211j+hMG1fKEzrP5kP6U7mQ+o/snJ1gKxcbT+VUkoppZTSP8JbxGbwFuE/m8FbxGbwxj9edtlll13mP1Lxb2pU/Os/XMRm8BaxyT8gK1cHyMrVP4QQQgghhOA/ke5kPqQ76T8avEVsBm/RP2r7QmHavtA/UvFvalT82z+EEEIIIYSgP31IdzIf0u0/VVVVVVVV1T8EZOXqAFnpPwYWWGCBBdY/4S1iM3iL2D/3hcK0faHgP0GvZ0nQ6+k/EZvBW8Rm4D96PUuCXs/CP18oTNsXCuM/XMRm8BaxmT/kkUceeeTRP0UTTTTRRNM/avtCYdq+4D+6k/mQ7mTuP0GvZ0nQ69k/BhZYYIEFhj/GGGOMMcbYP2IzeIvYDO4/hBBCCCGEwD9QP/3000/vP0nQ61kS9Oo/xhhjjDHG6D+HG2644YarP0geeeSRR74/Q2HavlCY5j8S9HqWBL3uP+SRRx555ME/Jej1LAl67T8vu+yyyy7rP4nN4C1iM+g/i39To+Lf1D99SHcyH9LdP6wDZOXqANk/0OtZEvR6xj+5OkBWrg7QP4cbbrjhhrs/o+Lf1Kj45z/VqPg3NSruP9xwww033OA/ynxIdzIf0j/EZvAWsRnsP6WUUkoppcQ/It3JfEh34j8xbV8oTNvXP5HuZD6kO8k/Zpdddtllxz+ycnWArFydP3Un8yHdyew/qJ9++umnzz/pTuZDupPpPwyFaftCYeo/J5poookm6j/GGGOMMca4P0uCXs+SoOc/ke5kPqQ72T8S9HqWBL3ePxzHcRzHcdw/HMdxHMdxzD+ArFwdICvnPxDpTuZDutM/O0BWrg6Q1T8nmmiiiSbKP7k6QFauDuA/snJ1gKxcfT8q/k2Nin/jP4t/U6Pi3+Q/ttZaa6215j9uuOGGG27oPzTRRBNNNOE/55xzzjnnzD8MhWn7QmHaP0geeeSRR+4/\"},\"shape\":[279],\"dtype\":\"float64\",\"order\":\"little\"}],[\"__label\",{\"type\":\"ndarray\",\"array\":[\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \",\" \"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1164\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1165\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1160\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rex1\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1161\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rex1\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1162\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rex1\"},\"y\":{\"type\":\"field\",\"field\":\"__ECDF\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1134\",\"attributes\":{\"tools\":[{\"id\":\"p1147\"},{\"id\":\"p1148\"},{\"id\":\"p1149\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1151\"},{\"id\":\"p1152\"},{\"id\":\"p1153\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1142\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1143\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1144\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1145\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1137\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1138\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1139\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1140\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1141\",\"attributes\":{\"axis\":{\"id\":\"p1137\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1146\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1142\"}}}],\"frame_width\":200,\"frame_height\":150}},1,1]]}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n",
" const render_items = [{\"docid\":\"44c70b54-079d-48ce-82f3-13f4395be777\",\"roots\":{\"p1173\":\"f61a7ae8-8511-432e-91d5-aebeb142dadf\"},\"root_ids\":[\"p1173\"]}];\n",
" root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n",
" }\n",
" if (root.Bokeh !== undefined) {\n",
" embed_document(root);\n",
" } else {\n",
" let attempts = 0;\n",
" const timer = setInterval(function(root) {\n",
" if (root.Bokeh !== undefined) {\n",
" clearInterval(timer);\n",
" embed_document(root);\n",
" } else {\n",
" attempts++;\n",
" if (attempts > 100) {\n",
" clearInterval(timer);\n",
" console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n",
" }\n",
" }\n",
" }, 10, root)\n",
" }\n",
"})(window);"
],
"application/vnd.bokehjs_exec.v0+json": ""
},
"metadata": {
"application/vnd.bokehjs_exec.v0+json": {
"id": "p1173"
}
},
"output_type": "display_data"
}
],
"source": [
"genes = [\"Nanog\", \"Prdm14\", \"Rest\", \"Rex1\"]\n",
"\n",
"plots = [\n",
" iqplot.ecdf(\n",
" data=df[gene].values,\n",
" q=gene,\n",
" x_axis_label=\"mRNA count\",\n",
" title=gene,\n",
" frame_height=150,\n",
" frame_width=200,\n",
" )\n",
" for gene in genes\n",
"]\n",
"\n",
"bokeh.io.show(bokeh.layouts.gridplot(plots, ncols=2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Rex1 clearly is bimodal, and Nanog appears to have a second inflection point where the ECDF reaches a value of about 0.4, which is what we see in the MLE estimates in the mixture model. Rest and Prdm14 both appear to be unimodal, agreeing with what we saw with the AIC analysis.\n",
"\n",
"Note that this underscores something we've been stressing all term. You should do good exploratory data analysis first, and the EDA often tells much of the story!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Caveat\n",
"\n",
"Remember, though, that we did *not* take into account that the measurements of the four genes were done in the same cells. We modeled that when we presented the mixture models at the beginning of this lesson. The analysis of a more complicated model with MLE proved to be out of reach due to computational difficulty. So, we should not make strong conclusions about what the relative quality of the mixture of single Negative Binomial models mean in this context. We will address these kinds of modeling issues next term."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## AIC for the spindle model\n",
"\n",
"We can do a similar analysis for the two competing models for mitotic spindle size. We need our functions from earlier."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def theor_spindle_length(gamma, phi, d):\n",
" \"\"\"Compute spindle length using mathematical model\"\"\"\n",
" return gamma * d / np.cbrt(1 + (gamma * d / phi)**3)\n",
"\n",
"\n",
"def log_likelihood(params, d, ell):\n",
" \"\"\"Log likelihood of spindle length model.\"\"\"\n",
" gamma, phi, sigma = params\n",
"\n",
" if gamma <= 0 or gamma > 1 or phi <= 0:\n",
" return -np.inf\n",
"\n",
" mu = theor_spindle_length(gamma, phi, d)\n",
" return np.sum(st.norm.logpdf(ell, mu, sigma))\n",
"\n",
"\n",
"def spindle_mle(d, ell):\n",
" \"\"\"Compute MLE for parameters in spindle length model.\"\"\"\n",
" with warnings.catch_warnings():\n",
" warnings.simplefilter(\"ignore\")\n",
"\n",
" res = scipy.optimize.minimize(\n",
" fun=lambda params, d, ell: -log_likelihood(params, d, ell),\n",
" x0=np.array([0.5, 35, 5]),\n",
" args=(d, ell),\n",
" method='Powell'\n",
" )\n",
"\n",
" if res.success:\n",
" return res.x\n",
" else:\n",
" raise RuntimeError('Convergence failed with message', res.message) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now perform MLE to get the parameters for each model and store them in a Pandas Series for convenience."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"../data/good_invitro_droplet_data.csv\", comment=\"#\")\n",
"\n",
"mle_1 = df[\"Spindle Length (um)\"].apply([np.mean, np.std]).values\n",
"mle_2 = spindle_mle(\n",
" df[\"Droplet Diameter (um)\"].values, df[\"Spindle Length (um)\"].values\n",
")\n",
"\n",
"s = pd.Series(\n",
" index=[\"phi_1\", \"sigma_1\", \"gamma\", \"phi_2\", \"sigma_2\"],\n",
" data=np.concatenate((mle_1, mle_2)),\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we can compute the log likelihood evaluated at the MLE."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"phi_1 32.864030\n",
"sigma_1 4.788240\n",
"gamma 0.860475\n",
"phi_2 38.231250\n",
"sigma_2 3.753422\n",
"log_like_1 -1999.517925\n",
"log_like_2 -1837.158982\n",
"dtype: float64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[\"log_like_1\"] = st.norm.logpdf(df[\"Spindle Length (um)\"], s[\"phi_1\"], s[\"sigma_1\"]).sum()\n",
"s[\"log_like_2\"] = log_likelihood(\n",
" s[[\"gamma\", \"phi_2\", \"sigma_2\"]],\n",
" df[\"Droplet Diameter (um)\"],\n",
" df[\"Spindle Length (um)\"],\n",
")\n",
"\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The log likeihood for model 2, with spindle size depending on droplet diameter, is much greater than for model 1. And now we can compute the AIC,noting that there are two parameters for model 1 and three for model 2."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"phi_1 32.864030\n",
"sigma_1 4.788240\n",
"gamma 0.860475\n",
"phi_2 38.231250\n",
"sigma_2 3.753422\n",
"log_like_1 -1999.517925\n",
"log_like_2 -1837.158982\n",
"AIC_1 4003.035850\n",
"AIC_2 3680.317964\n",
"dtype: float64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[\"AIC_1\"] = -2 * (s['log_like_1'] - 2)\n",
"s[\"AIC_2\"] = -2 * (s['log_like_2'] - 3)\n",
"\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There is a massive disparity in the AICs, so we know that model 2 is strongly preferred. Nonetheless, we can compute the Akaike weight for model 1 to compare."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"phi_1 3.286403e+01\n",
"sigma_1 4.788240e+00\n",
"gamma 8.604745e-01\n",
"phi_2 3.823125e+01\n",
"sigma_2 3.753422e+00\n",
"log_like_1 -1.999518e+03\n",
"log_like_2 -1.837159e+03\n",
"AIC_1 4.003036e+03\n",
"AIC_2 3.680318e+03\n",
"w_single 8.369539e-71\n",
"dtype: float64"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AIC_max = max(s[['AIC_1', 'AIC_2']])\n",
"numerator = np.exp(-(s.loc['AIC_1'] - AIC_max)/2)\n",
"denominator = numerator + np.exp(-(s['AIC_2'] - AIC_max)/2)\n",
"s['w_single'] = numerator / denominator\n",
"\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Model 1 is completely out of the question, with a tiny Akaike weight!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing environment"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python implementation: CPython\n",
"Python version : 3.11.4\n",
"IPython version : 8.12.2\n",
"\n",
"numpy : 1.24.3\n",
"pandas : 2.0.3\n",
"scipy : 1.11.1\n",
"bokeh : 3.2.1\n",
"iqplot : 0.3.4\n",
"bebi103 : 0.1.15\n",
"jupyterlab: 4.0.5\n",
"\n"
]
}
],
"source": [
"%load_ext watermark\n",
"%watermark -v -p numpy,pandas,scipy,bokeh,iqplot,bebi103,jupyterlab"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}