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Syntactic sugar is pervasive in language technology. Programmers use it to

shrink the size of a core language; to define domain-specific languages; and

even to extend their language. Unfortunately, when syntactic sugar is elimi-

nated by transformation, it obscures the relationship between the user’s source

program and the transformed program. First, it obscures the evaluation steps

the program takes when it runs, since these evaluation steps happen in the core

(desugared) language rather than the surface (pre-desugaring) language the pro-

gram was written in. Second, it obscures the scoping rules for the surface lan-

guage, making it difficult for ides and other tools to obtain binding information.

And finally, it obscures the types of surface programs, which can result in type

errors that reference terms the programmer did not write. I address these prob-

lems by showing how evaluation steps, scoping rules, and type rules can all be

lifted—or resugared—from core to surface languages, thus restoring the abstrac-

tion provided by syntactic sugar.
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S Y N TA C T I C S U G A R

This chapter will introduce syntactic sugar, and work up to the thesis statement:

Many aspects of programming languages—in particular evaluation

steps, scope rules, and type rules—can be non-trivially resugared from

core to surface language, restoring the abstraction provided by syn-

tactic sugar.

1.1 what is it?

The term syntactic sugar was introduced by Peter Landin in 1964 [51]. It refers to

surface syntactic forms that are provided for convenience, but could instead be

written using the syntax of the rest of the language. This captures the spirit and

purpose of syntactic sugar.

The name suggests that syntactic sugar is inessential: it “sweetens” the lan-

guage to make it more palatable, but does not otherwise change its substance.

The name also naturally leads to related terminology: desugaring is the removal

of syntactic sugar by expanding it; and resugaring is a term that we will introduce

in this thesis for recovering various pieces of information that were lost during

desugaring.

As an example of a sugar, consider Java’s “enhanced for statement” (a.k.a.,

for-each loop), which can be used to print out the best numbers:

for (int n : best_numbers) {

System.out.println(n);

}

This enhanced for is quite convenient, but it isn’t really necessary, because you

can always do the same thing with a regular for loop and an iterator:

for (Iterator i = best_numbers.iterator(); i.hasNext(); ) {

int n = (int) i.next();

System.out.println(n);

}
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And in fact the Java spec formally recognizes this equivalence, and writes,

“The meaning of the enhanced for statement is given by translation into a basic

for statement.” [31, section 14.14.2] Ignoring some irrelevant details, it states that

this sugar:

for (<type> <var> : <expr>) { <statement> }

desugars into:

for (Iterator i = <expr>.iterator(); i.hasNext(); ) {

<type> <var> = (<type>) i.next();

<statement>

}

Here, the things we have written in angle brackets are parameters to the sugar:

they are pieces of code that it takes as arguments.

but what is it? An astute reader may have noticed that we still haven’t

actually defined syntactic sugar. Here is a reasonable definition:Words can be
thought of as

pointing to clusters
in concept-space. An
extensional definition
like this is an attempt

to draw a neat box
around such a cluster,

which is always a
little dubious because

clusters typically
have fuzzy

boundaries and
aren’t box-shaped.

A syntactic construct in an implementation of a programming lan-

guage is syntactic sugar if it is translated at compile-time into the

syntax of the rest of the language.

Thus syntactic sugar splits a language into two parts: a (small) core language

and a rich set of usable syntax atop that core. In this thesis, we use the term

surface to refer to the language the programmer sees, and core for the target of

desugaring. This makes desugaring a part of compilation: it is compilation from

a language to a subset of that language. It also makes clear that macros are a

special case of syntactic sugar: they are a way of allowing users of a language to

define syntactic sugar within the language itself.

1.2 what is it good for?

Syntactic sugar is an essential component of programming languages and sys-

tems, and it is now actively used in many practical settings:

• In the definition of language constructs in many languages ranging from

Java to Haskell.

• To allow users to extend the language, in languages ranging from the Lisp

family to C++ to Julia to Rust.

• To shrink the semantics of large scripting languages with many special-

case behaviors, such as JavaScript and Python, to small core languages

that tools can more easily process [32, 65, 66].
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Desugaring allows a language to expose a rich surface syntax, while compiling

down to a small core. Having a smaller core reduces the cognitive burden of

learning the essence of the language. It also reduces the effort needed to write

tools for the language or do proofs decomposed by program structure (such as

type soundness proofs). Thus, heaping sugar atop a core is a smart engineering

trade-off that ought to satisfy both creators and users of a language. Observe

that this trade-off does not depend in any way on desugaring being offered as a

surface linguistic feature (such as macros).

1.3 when should you use it?

Syntactic sugar is used to define abstractions. But languages have other ways

to define abstractions already: functions, classes, data definitions, etc. If an

abstraction can be implemented using these features, it’s almost always better to

do so, because developers are already deeply familiar with them. Thus:

Syntactic sugar should only be used to implement an abstraction if it

cannot be implemented in the core language directly.

Therefore, to find places where it is a good idea to use sugar, we should look

for things that most programming languages cannot abstract over:

1. In most languages, variable names are first order and cannot be manipu-

lated at run-time (e.g., a variable cannot be passed as an argument to a

function: if you attempt to do so, the value the variable is bound to will be

passed instead). Therefore, creating new binding constructs is a good use

for syntactic sugar in most languages. However, in R [72], variable names

can be abstracted over (e.g. “assign("x", 3); x” prints 3), and so sugar

isn’t necessary for this purpose.

2. Most languages use eager evaluation, which forces the arguments to a func-

tion to be evaluated when it is called, rather than allowing the function to

choose whether to evaluate them or not. Thus if an abstraction requires

delaying evaluation, it is a good candidate to be a sugar. However, Haskell

has lazy evaluation, and thus does not need sugars for this purpose.

3. Most languages cannot manipulate data definitions at run-time: e.g., field

names cannot be dynamically constructed. Thus creating new data defini-

tion constructs (e.g., a way to define state machines) is a good use case for

sugars. However, in Python, field names are first class (e.g., they can be
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added or assigned using setattr), so it does not need sugars to abstract

over fields in data definitions.1

Overall, syntactic sugar is a way to extend a language. In a limited sense, this is

what functions are for as well. Functions, however, are limited: they cannot take

a variable as an argument, delay evaluation, introduce new syntax, etc. This is

where sugar is sweetest.

1.4 what are its downsides?

There are two sets of downsides to syntactic sugar. The first set of downsides

applies to languages that allow user-defined syntactic sugar (i.e., macros), and

arises from the powerful nature of syntactic sugar. Sugars can manipulate many

things such as control flow and variable binding that are otherwise fixed in a

language. As a result, badly written sugars can lead to code that is convoluted

in ways not otherwise possible. Furthermore, syntactic sugar (by design) hides

details: programmers only ever see the sugar, and not the desugared code (ex-

cept perhaps in error messages), and thus may not be fully aware of what sort

of code they are implicitly writing. In short, it can be dangerous to allow users

to extend a language, and this is exactly what macros allow. However, this is a

language design issue and thus outside the scope of this thesis.

Instead, we address situations in which the abstraction provided by sugar

leaks [77]. The code generated by desugaring can be large and complicated,

creating an onerous comprehension burden; it may even use features of the core

language that the user does not know. Therefore, programmers using sugar must

not be forced to confront the details of the sugar; they should only confront the

core language when they use it directly. This is a concern irrespective of whether

sugars are defined as part of the language or whether users can define their own

sugars.

We call out three particular ways that syntactic sugar breaks abstractions:

evaluation steps Syntactic sugar obscures the evaluation steps the program

takes when it runs, since these evaluation steps happen in the core lan-

guage rather than the surface language the program was written in.

scope rules In a similar manner, syntactic sugar obscures the (implicitly de-

fined) scope rules for a surface language.

1 It may sound like we are suggesting that everything should be manipulatable at run-time. We are

not. The more things which are fixed at compile time (variable names, field names, etc.), the more (i)

programmers can reason about their programs; (ii) tools can reason about programs; (iii) compilers

can optimize programs (without herculean effort). It is good that sugar is sometimes necessary.
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type rules Finally, in typed languages with syntactic sugar, type error mes-

sages frequently reveal the desugared code (which the programmer didn’t

write), thus breaking the sugar’s abstraction.

1.5 how can these (particular) downsides be fixed?

We address these three problems with a general approach called resugaring. Thus

my thesis statement is that: While I use “we”
throughout the rest
of document to
acknowledge all the
others who helped
with this work, my
thesis statement is
for me to defend.
Hence “my”.

Many aspects of programming languages—in particular evaluation

steps, scope rules, and type rules—can be non-trivially resugared from

core to surface language, restoring the abstraction provided by syn-

tactic sugar.

We hope that this work will give desugaring its rightful place in the program-

ming language space, freeing future implementers and researchers to take full

advantage of sugar in their semantics and systems work. Only when using syn-

tactic sugar no longer inadvertently breaks abstractions can the adage “oh, that’s

just syntactic sugar” finally become true.

1.6 roadmap

The rest of this thesis is organized as follows: Related work is
dicussed individually
in chapters
chapters 4 to 6.

part ii : desugaring

Chapter 2 discusses and taxonomizes existing desugaring systems (of which

there are a wide variety).

Chapter 3 provides notation that will serve as groundwork for the rest of the

chapters.

part iii : resugaring

Chapter 4 shows how to resugar evaluation sequences.

Chapter 5 shows how to resugar scope rules.

Chapter 6 shows how to resugar type rules.

Related work is discussed in each resugaring chapter, wherever it is most

relevant.
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2

D E S U G A R I N G I N T H E W I L D

There are a bewildering variety of desugaring systems. In this chapter, we cate-

gorize a representative set of them into a taxonomy.

We stretch this taxonomy to include some systems that aren’t quite desugaring

systems, but that are closely associated with them. Notably, we discuss staged

metaprogramming systems, which (i) operate on code at run-time, rather than

compile-time, and (ii) have to explicitly, rather than implicitly, desugar code.

2.1 a sugar taxonomy

There are many dimensions by which desugaring mechanisms vary:

representation Desugaring is a syntax-to-syntax transformation, but how is

that syntax represented? There is a big difference between transformations

on the text of the program vs. its concrete surface syntax vs. its abstract surface

syntax.

authorship Are sugars defined by developers of the language (and thus rela-

tively fixed), or by users of the language (and thus flexible)?

metalanguage What is the metalanguage? That is, in what language are

sugars written? Is it the same language the programs are written in, thus

allowing sugars and code to be interspersed, or a different language?

desugaring order In what order are constructs desugared? Most impor-

tantly, are nested sugars desugared from the innermost to outermost (io), or

from outermost to innermost (oi)?

time of expansion When does desugaring occur? Is it at compilation time,

or at run-time (as in staged metaprogramming systems)? As previously noted,
if the “phase” at
which desugaring
happens is run-time,
then the system isn’t
really a desugaring
system, though it
may be similar
enough to warrant
our classification of
it.

We will consider four dimensions related to the expressiveness of desugaring sys-

tems:

parameters Can a sugar take an arbitrary expression as a parameter, or only

a primitive value?
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result Do sugars exclusively produce expressions, or can they produce any

kind of syntax?

deconstruction If it can take an expression, can it deconstruct it, or only

use it parametrically?

sugar-defining sugars Can sugars define other sugars?

We will also consider four dimensions related to safety:

syntactic safety Can desugaring produce syntactically invalid code?

hygiene Can a sugar accidentally capture a variable?

scope safety Can a sugar produce an unbound variable?

type safety Can a sugar produce code that contains a type error?

We next discuss each of these dimensions in detail. After that, table 1 as-

sesses a number of desugaring systems along these dimensions, and section 2.2

discusses these desugaring systems.

2.1.1 Representation

There are many ways to represent a program. The most prevalent are as text and

as a tree. Programs are most commonly saved as and edited as text (notable excep-

tions include languages or editors that are visual, block based, or projectional),

and they are most commonly internally represented as trees (notable exceptions in-

clude assembly, whose code is linear, and Forth, which does not have a parsing

phase).

Desugaring systems may be based on either representation. However, text is a

terrible representation for desugaring rules. The semantics of a language is almost

always defined in terms of its (abstract syntax) tree representation. Thus, insofar

as a programmer is forced to think of their program as text rather than as a tree,

they are being distracted from its semantics. There are well-known examples of

bugs that arise in text-based desugaring rules unless they are written in a very

defensive style: we discuss these in 2.2.5.

There are variations among tree representations as well: desugaring rules may

work over the concrete syntax of the language, or over its abstract syntax. The

concrete syntax of a language is its syntax as seen by the programmer, e.g. f(1)

for a function application. The abstract syntax is the internal representation of

that syntax, which for this example might (e.g.) be (apply (id f) 1). Concrete

syntax might seem similar to a text-based representation, but there is an impor-

tant distinction: f(1 in a textual representation is part of a term, but there is no

such thing as f(1 in the concrete syntax: it is ill-formed.
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Overall, this is a very loose categorization of representations: we are placing a

wide variety of possible representations into a few large buckets.

2.1.2 Authorship: Language-defined or User-defined

Sugars may either be specified and implemented as part of the language, or

they may be defined by users. For example, Haskell list comprehensions are

defined by the Haskell spec [61] and implemented in the compiler(s); thus they

are language-defined. Template Haskell sugars [75], on the other hand, can be

defined (and used) in any Haskell program; thus they are user-defined.

Language-defined sugars are a convenient method of simplifying language

design, and they are largely invisible: ideally, users of the language should not

be able to tell which syntactic constructs were implemented as sugar and which

were built in. In contrast, user-defined sugars are much more visible. They give

users the power to extend the language. As a consequence, when this extended

language is shared, other users must contend with it, which may be a gift or a

burden, depending on its quality.

2.1.3 Metalanguage

The metalanguage is the language that the sugars are written in. There are a

number of common possibilities:

• The metalanguage may be the host language itself.

• The metalanguage may be the implementation language of the compiler

(which is frequently the same language).

• The metalanguage may be a set of pattern-based rules in the general style

of Scheme’s syntax-rules. In table 1, we use “rules” as a shorthand for “a

set of pattern-based desugaring rules”.

2.1.4 Desugaring Order

There are two major desugaring strategies used in desugaring systems. They

loosely correspond to the call-by-value and call-by-name run-time evaluation

strategies, but differ in some important ways, so we will instead refer to them

by their original names: Outside-in (oi) and Inside-out (io) desugaring: [21] You can also ask
whether desugaring
proceeds left-to-right
or right-to-left.
However, this is a
comparatively minor
detail, so we ignore
it.

outside-in : oi desugaring is superficially similar to call-by-name evaluation,

in that desugaring proceeds from the outside in. However, there is one
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crucial difference: in call-by-name evaluation, if a function uses (e.g., does

case analysis on) one of its arguments, it causes that argument to be evalu-

ated. In contrast, if an oi sugar does case analysis on one of its parameters

(which are pieces of syntax), it does not force that parameter to be desug-

ared! Rather, the case analysis happens on the uninterpreted syntax of that

parameter.

There is an advantage to this: it allows sugars to truly extend the syntax of

the language because they can treat the syntax of their parameters however

they want. In the most extreme case, it may be impossible to even tell

where the innermost sugars are, so oi is the only possible desugaring order.

inside-out : io desugaring is similar to call-by-value evaluation: the innermost

sugars desugar first. The above paragraph suggested that io order may

not be possible, but there are a number of common settings in which it

is: (i) the syntax that sugars can introduce is limited enough that you can

always tell where nested sugars are; (ii) sugars act on the ast rather than

on concrete syntax; or (iii) sugars cannot deconstruct their parameters, so

the desugaring order is largely irrelevant anyways. In these settings, io

order has the advantage of being more analogous to evaluation (which

developers are quite familiar with). It is also sometimes useful for sugars to

use the desugared version of their parameters: for example, C++ templates

can be used to derive specialized implementations for particular types, and

it is convenient to allow that type to be a template expression.

2.1.5 Time of Expansion

We distinguish between three different “times” of expansion:

run means that “sugars” are actually expanded at run-time. This only occurs

for metaprogramming systems, which are not true desugaring systems.

compile means that sugars are always expanded in a separate phase before

the program runs. (To be more precise, the phases that occur in order are

(i) desugar, (ii) compile, and (iii) run. We describe this as “compile” for

simplicity and because “compile-time” is a well-established phrase.)

variety Racket macros can run at an arbitrary number of different phases,

including at compile-time and at run-time.

2.1.6 Expressiveness

We will examine four measures of expressiveness of each desugaring system:



2.1 a sugar taxonomy 15

parameters What kind of parameters can be passed to a sugar? In the most

general desugaring systems, any syntactic category—be it expression, state-

ment, type, field name, class definition, etc.—can be passed to a sugar.

Some systems are more limited, however: for example, C++ templates can

only take types or primitive values (e.g., numbers) as parameters.

result What kind of syntax can a sugar desugar to? Can it be any syntactic

category, or is it more limited, e.g., to expressions only? For example, C++

templates can only desugar into definitions, such as function definitions or

struct definitions. They cannot desugar into (e.g.) expressions.

deconstruction Sugars are given syntax as parameters. Can they decon-

struct this syntax (e.g., by case analysis) or must they treat it parametrically

(i.e., only compose it)?

There is a strong interaction between the ability to deconstruct parameters

and desugaring order (OI vs. IO). With OI order, the parameters that are

deconstructed are in the surface language, since they haven’t been desug-

ared yet. Under IO order, however, the parameters are in the core language,

because they have been desugared.

sugar-defining sugars Can sugars define sugars? That is, can a sugar ex-

pand into the definition of another sugar?

Of course, four measures isn’t enough to fully capture how expressive a desug-

aring system is! However, it should give a rough idea of the situations in which

it is appropriate to use.

2.1.7 Safety

Last—but certainly not least—we will consider four different safety properties of

desugaring systems: Safety and
expressiveness are
counterpoints. Safety
comes from the
ability of the compiler
to tell whether you’re
doing something
wrong, and the less
expressive the
language, the easier
it is to tell.

syntactic safety Can a sugar expand to syntactically invalid code? For ex-

ample, in the C Preprocessor (section 2.2.5), this (textual) macro:

#define discriminant(a,b,c) ((b) * (b) - (4 * (a) * (c))

is a completely valid macro that the preprocessor will happily expand for

you, leading to syntax errors at its use site because its parentheses aren’t

balanced.

Thus we will call the C Preprocessor syntactically unsafe. In contrast, a

syntactically safe desugaring system would raise an error on such a sugar

definition, even if that sugar was never used. This is roughly analogous to
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type checking: a type checker will warn that a function definition contains

a type error even if that function is never used.

Lisps (i.e., languages with parenthetical syntax) have an interesting rela-

tionship to syntactic safety because they generally have two “layers” of

syntax. The lower layer is simply s-expressions, and ensures that paren-

theses are well-balanced (and that there are no tokenization errors). The

higher layer checks that the s-expression makes syntactic sense. For exam-

ple, in Scheme, (define x 1 is invalid at both layers, (define ((x)) 1) is

valid at the first layer but not at the second, and (define x 1) is valid at

both layers. This can be called bicameral syntax [49, page 13], by analogy to

legislative houses that are split into a lower and upper level.

As a result, it is possible for a Lisp’s macro system to respect the lower layer

of syntax, but not the higher layer. And in fact all of the Lisps we assessed

fall into this category. We write this in the table as “partly” syntax safe.

hygiene Unlike the other safety properties discussed here, hygiene [45] is not

about the error behavior of the desugaring system. Instead, it is about how

desugaring treats variables. As an example, consider this simple or sugar

(using Racket syntax):Why not just write
(if a a b)? That

wouldn’t work well if
a had side effects.

(define-syntax-rule

(or a b)

(let ((temp a)) (if temp temp b)))

If a desugaring system did nothing special with variables, then this code:

(let ((temp "70 degrees"))

(or false temp))

would desugar into this code:

(let ((temp "70 degrees"))

(let ((temp false)) (if temp temp temp)))

which would then evaluate to false, which is wrong. The issues is thatSome of the examples
here were inspired by

Clinger and
Rees [13].

the user-written variable called temp is captured by the sugar-introduced

variable called temp. Thus this naive desugaring is unhygienic.

At its core, hygiene is lexical scoping for sugars. You should be able to tell

where a user-written variable is bound by looking at its code (in the exam-

ple, see that the temp in or false temp should be bound by the surround-

ing let). Likewise, you should be able to tell where a sugar-introduced

variable is bound by looking at the sugar definition (and there are analo-

gous examples where a sugar-introduced variable gets captured by a user-

written variable).
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While this account of hygiene is sufficient for this chapter’s purposes, there

is plenty more to say about hygiene. For an overview of the various kinds

of possible hygiene violations, see Adams [2]. For an alternative take on

the hygiene property, see section 5.5.4 of this thesis.

scope safety Can a sugar introduce scope errors? We will say that a desugar-

ing system is scope safe if sugars cannot introduce an unbound identifier or

cause a user-defined variable to become unbound.

type safety Can a sugar introduce type errors? We will say that a desugaring

system is type safe if sugars cannot introduce type errors. For example, this

MetaOCaml program (the .< ... >. syntax quotes an expression):

let sugar() = .<3 + "four">.;;

does not compile because of the type error present in the sugar—even

though the sugar is never used.

2.2 applying the taxonomy to desugaring systems

In this section, we apply the taxonomy to a number of desugaring systems. Every desugaring
system in the table
was tested except for
Early Lisp Macros,
McMicMac, Haskell
Sugars, and our
resugaring systems.

Table 1 shows the results, and the rest of this section briefly describes each

desugaring system in turn. The entries of this table come primarily from test

cases, which are available at https://github.com/justinpombrio/thesis, in

the sugars folder.

2.2.1 Early Lisp Macros

Early versions of Lisp [62, 40, 56, 63] introduced over time a variety of macro-

like features, including: the eval operator (which takes an s-expression as an

argument at runtime, and interprets it as code); fexprs (functions whose argu-

ments are passed to them without first being evaluated); quasiquotations [4];

and macros. These macros were arbitrary Lisp functions from s-expression to

s-expression that run at compile-time. They were unhygienic; indeed, even the

notion of hygiene had yet to be worked out.

2.2.2 Scheme Macros

Version: R5RS, as implemented in Racket v6.10.1

The Scheme language [42] was the first to introduce pattern-based desugaring

rules [46], and hygienic macro expansion [45]. It set the stage for desugaring

systems to come, including this thesis. The fact that we have so little to say

https://github.com/justinpombrio/thesis
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about Scheme’s macros is testament to how standard its view of macros has

become.

2.2.3 Racket Macros

Version: Racket v6.10.1

Racket [26] has an extremely powerful and heavily used macro system. It is

part and parcel of the language: Racket is meant to be a language for defining

languages, and does so with its macro system. Dozens of languages have been

defined this way, including:

• The Racket language itself, most of which is defined by macros (including

most of its mechanisms for defining macros).

• The Typed Racket language, whose type system is defined entirely by

macros [82].

• A number of non-programming languages, such as the Scribble document

templating system [25].

Given the way Racket’s macros are used, they are best viewed as compiler exten-

sions more than simply syntactic sugar.

For an overview of the aspirations of Racket and its macro system, see the

Racket Manifesto [20].

2.2.4 McMicMac Micros

Krishnamurthi et al. describe a desugaring system called McMicMac [50] that is

based on a combination of macros and micros, and built on top of Scheme. While

macros perform an ast-to-ast transformation, micros transform the ast to an ir

(an “intermediate representation” used by the compiler). Relevantly, the ir is

treated as data and cannot contain macros or micros, and is thus not recursively

desugared.

Micros extend macros in a couple of ways:

• Micros can take as arguments and produce as results values that aren’t

just syntax. For example, a set of micros can keep track of the lexical

environment, and use it to compute the set of free variables of a term.

• Micros can be grouped into vocabularies, with each vocabulary represent-

ing a different kind of transformation, and these vocabularies can be com-

posed.

Overall, McMicMac promotes micros as a useful generalization of macros.
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2.2.5 C Preprocessor

Version: gcc v6.3.0

The C Preprocessor (hereafter cpp) [28] is a text preprocessor: a source-to-source

transformation that operates at the level of text. (More precisely, it operates on

a token stream, in which the tokens are approximately those of the C language).

It is usually run before compilation for C or C++ programs, but it is not very

language specific, and can be used for other purposes as well. Unlike the rest

of the desugaring systems described in this chapter, cpp is not Turing complete.

It avoids Turing completeness by a simple mechanism: if a macro invokes itself

(directly or indirectly), the recursive invocation will not be expanded.

A number of issues arise from the fact that cpp operates on tokens, and is

thus unaware of the higher-level syntax of C [38]. As an example, consider this

innocent looking cpp desugaring rule that defines an alias for subtraction:

#define SUB(a, b) a - b

This rule is completely broken. Suppose it is used as follows:

SUB(0, 2 - 1))

This will expand to 0 - 2 - 1 and evaluate to -3. We can revise the rule to fix

this:

#define SUB(a, b) (a) - (b)

This will fix the last example, but it is still broken. Consider:

SUB(5, 3) * 2

This will expand to 5 - 3 * 2 and evaluate to -1. The rule can be fully fixed by

another set of parentheses:

#define SUB(a, b) ((a) - (b))

In general, both the inside boundary of a rule (the parameters a and b), and

the outside boundary (the whole rhs) need to be protected to ensure that the

expansion is parsed correctly. If the sugar is used in expression position, as in

the SUB example, this can be done with parentheses. In other positions, different

tricks must be used: e.g., a rule meant to be used in statement position can

be wrapped in do {...} while(0). This is a poor state of affairs: software

developers should not need to learn and remember to use tricks like this simply

to write working macros.

There are other issues that arise with text-based transformations as well, such

as variable capture. Furthermore, all of these issues are inherent to text-based

transformations, and cannot be fixed from within the paradigm. Overall, code

transformations should never operate at the level of text (or token streams).
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2.2.6 C++ Templates

Version: g++ v4.8.4

C++ templates [39] are not general-purpose sugars, because they cannot take

code as a parameter. Thus you cannot, for example, express a sugar that takes

an expression e and expands it to e + 1.

Instead, C++ templates are used primarily to instantiate polymorphic code by

replacing type parameters with concrete types. For example, take the following

template declarations from [39, page 344]:

template<class T>

constexpr T pi = T(3.1415926535897932385L);

template<class T>

T circular_area(T r) {

return pi<T> * r * r;

}

The first template declares a constant pi, which can be instantiated with dif-

ferent (presumably numeric) types T. The second template declares a function

circular_area, which can also be parameterized over different types T, and uses

T both for its radius argument and for its pi constant. We’ll use this function

template as a running example.

Besides function definitions, several other kinds of declarations can be tem-

plated, including methods, classes, structs, and type aliases. The behavior of

each is similar. A template may be invoked by passing parameters in angle

brackets. An invoked template acts like the kind of thing the template declared,

and can be used in the same positions. Thus, e.g., a struct template should be

invoked in type position; and our running function template example should be

invoked in expression position to make a function, which can then be called:

float area = circular_area<float>(1);

When a template is invoked like this, a copy of the template definition is made,

with the template parameters replaced with the concrete parameters. In our If a template is
invoked multiple
times with the same
parameters, only one
copy of the code will
be made, however.

example, this produces the code:

float circular_area(float r) {

return pi<float> * r * r;

}

So far we have only described type parameters, but templates can also take

other kinds of parameters, including primitive values (such as numbers) and
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other templates. The ability to manipulate numbers and invoke other templates

at compile time make C++ templates powerful and, unsurprisingly, Turing com-

plete. However, templates cannot be parameterized over code, and thus are not

general-purpose sugars. For example, most of the examples in this thesis cannot

be written as C++ templates.

Template expansion uses IO desugaring order. This is important because it

is possible to define both a generic template that applies most of the time, and

a specialized template that applies if a parameter has a particular value. For

example, this could be used to make a HashMap use a different implementation

if its keys are ints. Thus it is important that a template see the concrete type

(e.g. int) that is passed to it, even if this type is the result of another template

expansion.

2.2.7 Template Haskell

Version: GHC v7.6.3

Haskell allows user-defined sugars by way of the Template Haskell system [75].

It allows terms to be written either in concrete surface syntax:

[| 1 + 2 |]

or in abstract surface syntax:

return $ AppE (AppE (VarE '(+))

(LitE (IntegerL 1)))

(LitE (IntegerL 2))

It maintains hygiene by requiring terms to be wrapped in a Monad (called Q)

that ensures that introduced variables are given fresh names (unless explicitly

marked otherwise). However, this can easily be broken via quotation brackets

([| ... |]), so we count Template Haskell as unhygienic.

2.2.8 Haskell Sugars

Besides its template system, Haskell also has some sugars built in to the lan-

guage. For example, the Haskell specification states that list comprehensions [61,

section 3.11] are given by the following transformation:

[e | True] = [e]

[e | q] = [e | q, True]

[e | b, Q] = if b then [e | Q] else []

[e | p <- l, Q] = let ok p = [e | Q]



2.2 applying the taxonomy to desugaring systems 23

ok _ = []

in concatMap ok l

[e | let decls, Q] = let decls in [e | Q]

We will use this sugar as a case study for both resugaring scope rules (sec-

tion 5.6.2) and resugaring type rules (section 6.6.2).

2.2.9 Rust Macros

Version: 1.24.0-nightly

Rust has a hygienic macro system with pattern-based rules similar to Scheme’s

syntax-rules. Rust also has a second “procedural” macro system. This sec-

ondary macro system allows macros to be written as arbitrary Rust functions.

However, it can only be used in very specific circumstances—at the time of this

writing, only to add custom derive traits—so we do not discuss it further.

2.2.10 Julia Macros

Version: 0.4.5

Julia macros are written as Julia functions, and can construct and deconstruct

arbitrary syntax. They are mostly unhygienic. (The user guide discusses hy-

giene, but in testing the macro system appears to be unhygienic outside of the

specific situations described.) Beyond this, Julia also allows arbitrary run-time

metaprogramming: constructing, deconstructing, and evaluating code at run-

time. Table 1 describes only Julia’s macro system.

2.2.11 MetaOCaml

MetaOCaml is a multi-stage programming extension to OCaml. This means that it

provides three new constructs to the language:

brakcets (written .< · · · >.) Quote an expression, producing a syntax value

at run-time.

escape (written .∼) Splice values into a quotation.

run (written .!, or run) Given a syntax value at run-time, evaluate it.

Thus this code:

open Runcode;;

open Printf;;

let x = .<printf("k")>. in !. .<(.~x; .~x)>.;;
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prints kk. This method of programming is called multi-stage because these quota-

tions can be arbitrarily nested. An expression under n quotations is said to run

in stage n.

The upside to multi-stage programming is that it can provide very strong safety

guarantees. MetaOCaml guarantees that staged functions (i.e., functions that

produce quoted code) cannot produce ill-formed, ill-scoped, or ill-typed code.

This is checked at compile-time, before the staged function is even invoked. This

is vastly safer than the other desugaring systems we surveyed.

The downside to multi-stage programming is that it is not a full-fledged desug-

aring system. It cannot introduce new syntax, it cannot deconstruct syntax, and

its “desugaring” happens explicitly at run-time via calls to run. For all of these

reasons, multi-staged programming is best viewed as a way of more efficiently

organizing computation rather than as a means of extending a language.

2.2.12 Resugaring Systems

Table 1 lists our three resugaring systems. This is referring to the kinds of desugar-

ing systems that these resugaring approaches support. There are two interesting

aspects worth discussing.

First, while the resugaring systems appear to do well on the expressiveness

front, there is a limitation hidden in the metalanguage being “rules”. While

many of the other desugaring systems provide an “escape hatch” out of their

“rules” allowing arbitrary code to run during the desugaring process, our resug-

aring work strictly requires pattern-based rules.

Second, the safety guarantees are provided by a mix of the desugaring and

resugaring systems. Each of the resugaring systems is marked as “syntax safe”

and “hygienic”, because those are assumptions it makes about the desugaring

system it is built on top of. Scope resugaring is additionally marked as “scope

safe”, because scope resugaring would reject any sugar that was not scope safe.

Likewise, type resugaring would reject any sugar that was not type safe (and as

a result any sugar that was not scope safe).
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N O TAT I O N

In this chapter, we define notation and set assumptions that will be used through-

out the rest of the thesis.

Most importantly, we assume that desugaring is given (externally to the lan-

guage) as a set of pattern-based rewrite rules (à la Scheme’s syntax-rules [42]).

This is important because it will form an expressive limit on our techniques for

resugaring evaluation sequences (chapter 4), scope rules (chapter 5), and type

systems (chapter 6).

3.1 asts

For the purposes of resugaring scope (chapter 5), we require asts (abstract syntax

trees) to explicitly distinguish between variable declarations xd (i.e., binding sites),

and variable references xr (i.e., uses). We also require variables to have an ast

position i that uniquely distinguishes them. These distinctions will be important

in chapter 5, but can otherwise be ignored.

We will refer to asts (and parts of asts) as terms, and write them as e. Terms While t would be a
more obvious letter to
use for terms, we use
it to refer to types in
chapter 6.

can be inductively defined as:

constructor C ::= name syntactic construct name

term e ::= value primitive value

| (C e1 ... en) ast node

| xr

i variable reference at position i

| xd

i variable declaration at position i

By “constructor”, we mean the name of a syntactic construct, such as Plus or If.

Thus (Plus xr

i 1) is a term.
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3.2 desugaring

We require that desugaring be based on patterns: it proceeds by matching a lhs

(left-hand-side) pattern against a term, and then substituting into the rhs (right-

hand-side) pattern. We will describe how this works, piece by piece.

First, patterns p are terms that can contain pattern variables α:

pattern p ::= α pattern variable

| value primitive value

| (C p1...pn) ast node

| xr

i variable reference at position i

| xd

i variable declaration at position i

A term can then be matched against a pattern—written e/p—to produce an envi-

ronment γ. An environment is a mapping from pattern variables to terms:

environment γ ::= {α 7→ e, ...}

Once an environment is obtained, it can be substituted into a pattern—written

γ • p—to produce a term.

We can now say how to expand a single desugaring rule. Each rule has the

form:

desugaring rule r ::= p⇒ p′

where p is the rule’s lhs, and p′ is the rule’s rhs. To expand a rule p ⇒ p′ in a

term e, match against the lhs and substitute into the rhs: (e/p) • p′.

Finally, desugaring is the recursive expansion of all of the sugars in a term.

We will typically assume that desugaring happens in oi order (see section 2.1.4),

although chapter 5 will be agnostic to desugaring order.

an example Putting this all together, suppose we have the following sugar,

which encodes Let using Lambda:

(Let α β δ) ⇒ (Apply (Lambda α δ) β) “Let α equal β in δ”

and we want to expand the term (Let xd 1 xr). To do so, we match against the

lhs:

γ = (Let xd 1 xr)/(Let α β δ) = {α 7→ xd, β 7→ 1, δ 7→ xr}

and substitute into the rhs:

{α 7→ xd, β 7→ 1, δ 7→ xr} • (Apply (Lambda α δ) β) = (Apply (Lambda xd xr) 1)

Since there are no more sugars in the term, we are done desugaring.
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3.2.1 Restrictions on Desugaring

Not every syntactically valid desugaring rule is semantically sensible, and not

every semantically sensible desugaring rule is feasible to resugar. Here we give

(i) a set of well-formedness criteria on desugaring rules, without which they

don’t make semantic sense, and (ii) a set of restrictions on desugaring rules that

we need to effectively resugar them. These restrictions are sufficient for all of the

resugaring methods presented in this thesis.

well-formedness criteria for desugaring rules .

For every desugaring rule:

1. Each pattern variable in the rhs also appears in the lhs. Otherwise the pattern

variable would be unbound during expansion.

2. The lhs pattern contains no references or declarations. Rather, these should

be bound to its pattern variables during expansion. For example, the Let

sugar above could not have been written as:

(Let xd β δ) ⇒ (Apply (Lambda xd δ) β) “Let xd equal β in δ”

3. Each desugaring rule’s lhs must have the form (C p1, ..., pn). I.e., it cannot be

just a variable or primitive. We will need this fact in chapter 4.

restrictions on desugaring rules .

For every desugaring rule:

1. Each pattern variable appears at most once in the lhs and at most once in the

rhs. Allowing duplicate pattern variables complicates matching, unifica-

tion, and proofs of correctness. It also copies code and, in the worst case,

can exponentially blow up programs. We therefore disallow duplication,

with some exceptions for pattern variables bound to atomic terms.

2. The rules’ lhss must be disjoint. If they are not, it presents issues both for re-

sugaring evaluation sequences (section 4.5.1), and resugaring type systems

(section 6.3.1).

Some of the resugaring chapters relax these assumptions. For instance, the

evaluation resugaring chapter (chapter 4) formally supports ellipses (which al-

low matching zero or more repetitions of a pattern), and the scope resugaring

chapter is agnostic to the order of desugaring (which is assumed to be oi here).

However, all chapters handle at least these kinds of sugars.
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3.2.2 Relationship to Term Rewriting Systems

A set of pattern-based desugaring rules can be viewed as a term rewriting sys-

tem [43]. Two of the main questions studied about term rewriting systems is how

to tell whether they are confluent, and whether they terminate. Confluence asks: if

rewrites are applied in an arbitrary order, are they guaranteed to eventually pro-

duce the same result? The main mechanism for studying this is critical pairs [16],

which capture the situations in which rewrite rules overlap. In practice, however,

desugaring systems tend to fix a desugaring order (e.g. oi), making the question

of confluence moot.

Likewise, there is literature on determining whether a set of rewrite rules

always terminates (which is undecidable in general) [37]. This could be used to

check whether desugaring is guaranteed to halt (with potential false positives).

Termination checking is not necessary for resugaring, however: term resugaring,

scope rule resugaring, and type rule resugaring all halt, even if desugaring itself

may not.
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R E S U G A R I N G E VA L U AT I O N S E Q U E N C E S

In this chapter, we tackle the challenge of combining syntactic sugar with seman-

tics. Given a set of desugaring rules written in the style of the last chapter, we

show how to resugar program execution: to automatically convert an evaluation

sequence in the core language into a representative evaluation sequence in the

surface syntax. Each step in the surface language emulates one or more steps in

the core language. The computed steps hide the desugaring, thus maintaining

the abstraction provided by the surface language.

The chief challenge is to remain faithful to the original semantics—we can’t

change the meaning of a program!—and to ensure that the internals of the code

introduced by the syntactic sugar does not leak into the output. Our chief mech-

anisms for achieving this are to (a) perform static checks on the desugaring rules

to ensure they fall into the subset we can handle, and (b) rewrite the reduction

relation with instrumentation to track the origin of terms. We implement these

ideas in a tool called Confection, and formally verify key properties of our

approach, given simplifying assumptions, in the Coq proof assistant.

This chapter comes from work published in PLDI 2014 and ICFP 2015 under

the titles of Resugaring: Lifting Evaluation Sequences through Syntactic Sugar and

Hygienic Resugaring of Compositional Desugaring (both co-authored with Shriram

Krishnamurthi) [67, 68].

4.1 our approach

We aim to compute sensible evaluation sequences in a surface language, while

remaining faithful to the core language’s semantics. One approach would be to

attempt to construct a lifted (to the surface language) reduction-relation directly.

It is unclear, however, how to do this without making deep assumptions about

the core language evaluator (for instance, assuming that it is defined as a term-

rewriting system that can be composed with desugaring).

Our approach instead makes minimal assumptions about the evaluator, treat-

ing it as a black-box (since it is often a complex program that we may not be able
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to modify). We assume only that we have access to a stepper that provides a se-

quence of evaluation steps (augmented with some meta information) in the core

language. In section 4.6 we show how to obtain such a stepper from a generic,

black-box evaluator with a strategy that can be implemented by pre-processing

the program before evaluation.

Our high-level approach is to follow the evaluation steps in the core language,

find surface-level representations of some of the core terms, and emit them. Not

every core-level term will have a surface-level representation; these steps will be

skipped in the output. The evaluation sequence shown, then, is the sequence of

surface-level representations of the core terms that were not skipped. Central to

this approach are three properties:

emulation Each term in the generated surface evaluation sequence desugars

into the core term which it is meant to represent (up to term isomorphism).

abstraction Code introduced by desugaring is never revealed in the surface

evaluation sequence, and code originating from the original input program

is never hidden by resugaring.Putting
Abstraction

another way, surface
code will never be
presented as core

code, and core code
will never be

presented as surface
code.

coverage Resugaring is attempted on every core step, and as few core steps

are skipped as possible.

4.2 informal solution overview

We first present the techniques used by our solution, and some subtleties, infor-

mally. We choose a familiar desugaring example: the rewriting of Or, as used in

languages like Lisp and Scheme. We assume the surface language has Or as a

construct, while the core does not. We present our examples using a traditional

infix concrete syntax.

4.2.1 Finding Surface Representations Preserving Emulation

We start by defining a simple, binary version of Or (that let-binds its first argu-

ment in case it has side-effects):We present these
examples using the

actual syntax of
Confection, which

uses x instead of α

for a pattern variable,
and represents

variables as strings.

Or(x, y) -> Let([Binding("t", x)],

If(Id("t"), Id("t"), y)));

In this section we focus on abstract syntax and ignore the mapping to it from

concrete syntax.

Consider the surface term not(true) OR not(false), and suppose it is left-

associative. After desugaring, this would evaluate as follows in the core lan-

guage (assuming a typical call-by-value evaluator):
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let t = not(true) in

if t then t else not(false)

−→ let t = false in

if t then t else not(false)

−→ if false then false else not(false)

−→ not(false)

−→ true

In the surface language, we would wish to see this as (using dashed arrows to

denote reconstructed steps):

not(true) OR not(false)

99K false OR not(false)

99K not(false)

99K true

The first two terms in the core evaluation sequence are precisely the expansions

of the first two steps in the (hypothetical) surface evaluation sequence. This

suggests we can unexpand core terms into surface terms by running rules “in

reverse”: matching against the rhs and substituting into the corresponding lhs.

(To preserve Emulation, unexpansion must be an inverse of expansion: we prove

that this is so in section 4.5.2.) We will now show how the last two steps may

come about.

4.2.2 Maintaining Abstraction

When unexpanding, we should only unexpand code that originated from a sugar.

If the surface program itself is

let t = not(true) in

if t then t else not(false)

it should not unexpand into not(true) OR not(false): this would be confus-

ing and break the second clause of the Abstraction property.

We therefore augment each subterm in a core term with a list of tags, which

indicate whether a term originated in the original source or from sugar. Unex- Whereas the tags
used in hygienic
macro expansion [45]
specify time steps,
the tags in
resugaring specify
which sugar the code
originated from.

pansion attempts to process terms marked as originating from a desugaring rule;

this unexpansion will fail if the tagged term no longer has the form of the rule’s

rhs. When this happens, we conclude that there is no surface representation of

the core term and skip the step.
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To illustrate this, we revisit the same core evaluation sequence as before.

“{HeadOr: }” is a tag on the desugared expression that indicates it originated

from the Or sugar, and “{Body: }” is a tag that indicates it originated from

sugar (without saying which, although in this case it came from Or):

{HeadOr: let t = not(true) in

{Body: if t then t else not(false)}}

−→ {HeadOr: let t = false in

{Body: if t then t else not(false)}}

−→ {Body: if false then false else not(false)}

−→ not(false)

−→ true

The tags on the first two steps suggest that Or’s desugaring rule be applied in

reverse. They can be unexpanded because they match the rhs of Or. The third

step fails to resugar because the if is never unexpanded, and thus is a leftover

fragment of sugar. This step is therefore skipped, yielding no surface step. The

last two steps are not tagged and are therefore included in the surface evaluation

sequence as-is.

4.2.3 Striving for Coverage

Emulation and Abstraction guarantee an accurate surface evaluation sequence,

but they do not guarantee a useful one. For instance, the following evaluation

sequence is perfectly consistent with these two properties:

not(true) OR not(false)

99K true

However, a stepper that only shows the final step is unhelpful. We therefore pro-

pose a third property, Coverage, which states that steps are not “unnecessarily”

skipped. While Emulation and Abstraction are formally proved in section 4.5.3,

we have not found a complete formalization of Coverage, so we can only strive

to attain it in our systems and evaluate it in practice. Our examples (section 4.3A partial

formalization of
coverage can be

found in the second
paper this chapter is

based on [68].

and section 4.7) show that we do indeed obtain detailed and useful surface eval-

uation sequences.
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4.2.4 Trading Abstraction for Coverage

Suppose the surface term A OR B OR C parses to Or(A, B, C). We therefore

want to extend Or to handle more than two sub-terms. We can do this by adding

another rule:

Or([x, y]) ->

Let([Binding("t", x)],

If(Id("t"), Id("t"), y)));

Or([x, y, ys ...] ->

Let([Binding("t", x)],

If(Id("t"), Id("t"), Or([y, ys ...])));

We assume a prioritized semantics in which rules are tried in order; the first

rule whose lhs matches the invocation is used. The ellipses denote zero or more

repetitions of the preceding pattern [46].

Consider the surface term (false OR false OR true). Given the revised def-

inition of Or, unexpansion would yield the following lifted evaluation steps:

false OR false OR true

99K true

In particular, it correctly suppresses any presentation of the recursive invocation

of Or introduced by desugaring—precisely what Abstraction demands! However,

there are settings (such as debugging or education) where the user might wish

to see this invocation, i.e., to obtain the surface evaluation sequence:

false OR false OR true

99K false OR true

99K true

Thus, we let sugar authors make part of a rule’s rhs transparent by prefixing it

with !. Here, writing the second Or rule as:

Let([Binding("t", x)],

If(Id("t"), Id("t"), !Or([y, ys ...])))

yields the latter surface evaluation sequence.

This illustrates that there is a trade-off (which we make precise with theorem 4)

between Abstraction and Coverage. Because the trade-off depends on goals, we

entrust it to the sugar author. In the limit, marking the entirety of each rule as

transparent results in an ordinary trace in the core, ignoring all sugar.
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4.2.5 Maintaining Hygiene

The implementation discussed in this chapter—Confection—represents vari-

ables as strings and is not hygienic (e.g., sugar-introduced variables could acci-

dentally capture user-defined variables). However, in section 4.8, we provide a

sketch of how it could be made hygienic.

4.3 confection at work

We demonstrate how the techniques just described come together to show sur-

face evaluation sequences in the presence of sugar. Consider the following pro-

gram, written in the language Pyret (pyret.org), that computes the length of a

list:

fun len(x):

cases(List) x:

| empty() => 0

| link(_, tail) => len(tail) + 1

end

end

len([1, 2])

This seemingly innocuous program contains a lot of sugar. The cases expression

desugars into an application of the matchee’s _match method on an object con-

taining code for each branch; the function declaration desugars into a let binding

to a lambda; addition desugars into an application of a _plus method; and the

list [1, 2] desugars into a chain of list constructors. Here is the full desugaring

(i.e., the code that will actually be run):

len = fun(x):

temp17 :: List = x

temp17.["_match"](

{"empty" : fun(): 0 end,

"link" : fun(_, tail):

len(tail).["_plus"](1) end},

fun(): raise("cases: no cases matched");)

end

len(list.["link"](1, list.["link"](2, list.["empty"])))

This degree and nature of expansion is not unique to Pyret. It is also found in

languages like Scheme, due to the small size of the core, and in semantics like

λJS [32], due to both the size of the core and the enormous complexity of the

surface language.

pyret.org
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Nevertheless, here is the surface evaluation (pretty-)printed by Confection

(where <func> denotes a resolved functional):

99K <func>([1, 2])

99K cases(List) [1, 2]:

| empty() => 0

| link(_, tail) => len(tail) + 1

end

99K <func>([2]) + 1

99K (cases(List) [2]:

| empty() => 0

| link(_, tail) => len(tail) + 1

end) + 1

99K <func>([]) + 1 + 1

99K (cases(List) []:

| empty() => 0

| link(_, tail) => len(tail) + 1

end) + 1 + 1

99K 0 + 1 + 1

99K 1 + 1

99K 2

This sequence hides all the complexity of the core language.

4.4 the transformation system

We will present our system in three parts. First (section 4.4.1), we will describe

how our transformation system works, up to the level of performing a single

transformation: either expanding or unexpanding a single (instance of a) sugar.

Next (section 4.4.2), we will describe how to use tags to fully desugar and re-

sugar terms, transforming not just a term but its subterms as well. Finally

(section 4.4.3), we will show how to use the transformation system to lift core

evaluation sequences to surface evaluation sequences.

4.4.1 Performing a Single Transformation

We begin by describing the form and application of our transformation rules.
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Patterns

Since rules are applied both forward and in reverse, we represent their lhss and

rhss uniformly as patterns. We give a broader definition of patterns here than in

section 3.1: here we allow patterns to contain lists, ellipses, and (for the purposes

of resugaring) tags:

pattern p ::= α pattern variable

| value primitive value

| (C p1...pn) ast node

| [p1 ... pn] list of length n

| [p1 ... pn p∗] list of length ≥ n (ellipses)

| x variable

| (Tag o p) origin tag

term e ::= p pattern w/o pattern variables or ellipses

origin tag o ::= (Head i e) marks topmost rule production

| (Body bool) marks each rule production

Variables are denoted by a lowercase identifier (we omit the reference/declara-

tion distinction, and the position i, because they are not relevant in this chapter);

compound nodes are written in s-expression form; and lists are denoted by a

bracketed list of subpatterns. Nodes must have fixed arity, so lists are used

when a node needs to contain an arbitrary number of subterms. Ellipses (which

we write formally as p∗ to distinguish them from metasyntactic ellipses) in a list

pattern denote zero or more repetitions of the pattern they follow.

A term e is simply a pattern without pattern variables or ellipses. Tags and

origins (o) are described in section 4.4.2.

Our definition of patterns determines both the expressiveness of the resulting

transformation system and the ability to formally reason about it. There is a

natural trade-off between the two. We pick a definition similar to that of Scheme

syntax-rules-style macros, though without guard expressions.

Formally, these patterns are regular tree expressions [3]. Regular tree expres-

sions trx are the natural extension of regular expressions to handle trees: they

add a primitive (C trx1 ... trxn) for matching a tree node labeled C with branches

matching the regular tree expressions trx1 ... trxn. Whereas regular tree expres-

sions conventionally allow choice, we encode it using multiple rules, making the

pattern language simpler.

While we have found this definition of patterns suitably powerful for a wide

variety of sugars—including all those discussed in this chapter—our approach
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b := e (term)

| db1 ... bne (list binding)

| db1 ... bn b∗e (ellipsis binding)

γ := {α→ b, ...}

Figure 1: Bindings

is not dependent on the exact definition. The precise requirements for the trans-

formation language are given in section 4.5.3.

Matching, Substitution, and Unification

Our transformations are implemented with simpler operations on patterns: match-

ing and substitution.

Matching a term against a pattern induces an environment that binds the pat-

tern’s pattern variables. This environment may be substituted into a pattern to

produce another term. Formally, an environment is a mapping from pattern

variables α to bindings b, where each binding is either a term e, a list binding

db1 ... bne, or an ellipsis binding db1 ... bn b∗e. A pattern variable within ellipses

is bound to a list binding db1 ... bne instead of a list term [b1 ... bn] because they

behave slightly differently under substitution. Ellipsis bindings are similar, but

needed only during unification when a pattern variable within an ellipsis is itself

bound to an ellipsis pattern.

We will write e/p to denote matching a term e against a pattern p, and write

γ • p to denote substituting the bindings of an environment γ into a pattern p.

We will write e ≥ p to mean that e/p is defined, and γ1 ∪ γ2 for the right-biased

union of γ1 and γ2. The matching and substitution algorithms are given in fig. 2,

while bindings are defined in fig. 1.

For an example of matching and substitution, consider one of the rules of our

running Or example:

Or([x y ys ...] ->

Let([Binding("t" x)]

If(Id("t") Id("t") Or([y ys ...])));

Matching Or([true Not(true) false true]) against

Or([x y ys ...]) produces the environment

γ = {α→ true, β→ Not(true), δ→ dfalse truee}

and substituting γ into the rule’s rhs produces
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value/value = {}
x/x = {}
e/α = {α→ e}
[e1 ... en]/[p1 ... pn] =

⋃
i=1..n(ei/pi)

[e1 ... en ... en+k]/[p1 ... pn p∗] =
⋃

i=1..n(ei/pi) ∪merge([en+i/p]i=1..k)

(C e1 ... en)/(C p1 ... pn) =
⋃

i=1..n(ei/pi)

γ • value = value

γ • x = x

γ • [p1 ... pn] = [γ • p1 ... γ • pn]

γ • [p1 ... pn p∗] = [γ • p1 ... γ • pn ++ split(γ, p)

(where ++ is concatenation)

{ ... , α→ b, ... } • α = toTerm(b)

γ • (C p1 ... pn) = (C γ • p1 ... γ • pn)

merge([{α1 → b11 ... αn → bn1} ... {α1 → b1k ... αn → bnk}])
= {α1 → db11 ... b1ke ... αn → dbn1 ... bnke}

split({α1 → db11 ... b1ke ... αn → dbn1 ... bnke}, p)

= ({α1 → b11 ... αn → bn1} • p ... {α1 → b1k ... αn → bnk} • p)

toTerm(p) = p

toTerm(db1 ... bne) = (toTerm(b1) ... toTerm(bn))

Figure 2: Matching and substitution

Let([Binding("t" true)]

If(Id("t") Id("t") Or([Not(true) false true])))

Later, we will need to compute unifications as well. We omit showing the

algorithm; it is straightforward since we disallow duplicate pattern variables (as

seen in the next section).

Well-formedness of Transformations

The definitions we have given for matching and substitution are not well-behaved

for all patterns. Even the crucial property that (e/p) • p = e whenever e/p exists

fails to hold in certain situations, such as when a pattern’s ellipsis contains no

pattern variables (e.g., (3∗)). For this reason and others, we require a number

of criteria to hold for the lhs and rhs of each rule. Except for the last criterion



4.4 the transformation system 41

about ellipses, these requirements were given in section 3.2.1. We repeat them

here for convenience:

1. Each pattern variable in the rhs also appears in the lhs. Otherwise the pattern

variable would be unbound during expansion.

2. The lhs pattern contains no references or declarations. Rather, these should be

bound to its pattern variables during expansion.

3. Each transformation’s lhs must have the form (C p1 ... pn). We will rely on

this fact when showing that unexpansion is an inverse of expansion in

section 4.5.2.

4. Each pattern variable appears at most once in the lhs and at most once in the

rhs. Allowing duplicate pattern variables complicates matching, unifica-

tion, and proofs of correctness. It also copies code and, in the worst case,

can exponentially blow up programs. We therefore disallow duplication,

with the sole exception of variables bound to atomic terms.

5. The transformations’ lhss must be disjoint. We explain the reason for this in

section 4.4.1.

6. (New) An ellipsis of depth n must contain at least one pattern variable that either

appears at depth n or greater on the other side of the rule, or does not appear on the

other side of the rule. Otherwise it is impossible to know how many times

to repeat its pattern during substitution. (The depth of an ellipsis measures

how deeply nested it is within other ellipses; a top-level ellipsis has depth

1, an ellipsis within an ellipsis depth 2, and so forth.) For example, the rule

Bad(x) -> List([x ...]) is invalid, as is Bad(x) -> List([2 ...]).

The first two restrictions were further justified by our formalization of expansion

and unexpansion in Coq (section 4.5.4), where they occurred naturally as pre-

conditions for proofs.

Applying Transformations

A rulelist rs is an ordered list of desugaring rules pi → p′i, where each rule is well-

formed according to the criteria just described. A term e can then be expanded

with respect to rs by matching e against each pi in turn, and substituting the re-

sulting bindings into p′i if successful. In addition, the index i of the case that was

successful must also be returned. This index will be used during unexpansion

to know which rule to use, as multiple rules may have similar or identical rhss.

Formally,
exprs e = (j, (e/pj) • p′j)

for j = min {i|e ≥ pi}i
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Unexpansion proceeds in reverse, matching against p′i and then substituting

into pi. Recall, however, that our well-formedness criteria insisted that the pat-

tern variables in a rule’s rhs pattern be a subset of those in its lhs pattern, but

not vice versa. This allows a rule to “forget” information when applied forward.

Allowing information to be lost substantially increases the set of desugarings

expressible in our system in exchange for breaking the symmetry between ex-

pansion and unexpansion. Because pattern variables may be dropped in the

rhs, the unexpansion of a term e′ takes an additional argument—the term e that

was originally expanded—with which to bind pattern variables in pi that do not

appear in p′i. Formally,

unexprs (j, e′) e = ((e/pj) ∪ (e′/p′j)) • pj

Notice that e contains a good deal of redundant information. Since pj and p′j are

statically known, it suffices to store only the environment γ = e/pj restricted

to the pattern variables not free in p′j. We will say that γ stands in for e, and

overload unexprs by writing:

unexprs (j, e′) γ = (γ ∪ (e′/p′j)) • pj

Because unexpansion usually occurs after reduction steps have been taken, in

general the term being unexpanded is different from the output of expansion.

Overlapping Rules

When multiple rules overlap (i.e., when two different rules could apply to the

same term), the Emulation property may be violated. For illustration, suppose

a core language contains a MaxAcc primitive that takes a list of numbers and

a starting maximum, and in each reduction step pops the list and updates the

starting maximum. Furthermore, say we want to extend this language with

simple sugar for finding the maximum of a list of numbers, that fails with a

runtime exception on empty lists. This could be achieved with the following

transformation rules:

Max([]) -> Raise("empty list");

Max(xs) -> MaxAcc(xs, -infinity);

These rules are problematic, however, as demonstrated by the evaluation of the

surface term Max([-infinity]). It expands to the core term MaxAcc([-infinity],

-infinity), which reduces (in the core) to MaxAcc([], -infinity), which un-

expands by the second rule above to Max([]). Thus, the core sequence is:

MaxAcc([-infinity], -infinity)

−→ MaxAcc([], -infinity)
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and the derived surface evaluation sequence is:

Max([-infinity])

99K Max([])

But the Max([]) surface step flagrantly violates the Emulation property! It

expands into Raise("empty list"), which is very different from the core term

MaxAcc([], -infinity) it purports to represent.

Fortunately, the Max sugar becomes safe with the following minor rewrite to

make apparent the fact that the second rule only applies to non-empty argument

lists:

Max([]) -> Raise("Max: given empty list");

Max([x, xs ...]) -> MaxAcc([x, xs ...], -infinity);

The scenario just described now plays out differently. The initial expansion and

core reduction step remain the same, but when MaxAcc([], -infinity) is unex-

panded, that unexpansion fails because the term does not match the rhs pattern

MaxAcc([x, xs ...], -infinity); thus this step is safely skipped.

Confection implements a static check that admits the second definition but

not the first. It checks that the lhss of the rules are pairwise disjoint. This

ensures that after unexpansion, only the same rule that was unexpanded applies.

We formally state the rule and what it gains us in section 4.5.1.

4.4.2 Performing Transformations Recursively

We have described how to perform a single transformation. We will now describe

how to use tags to keep track of which rule each core term came from, and

how to use this information to perform recursive expansion and unexpansion of

terms, a.k.a. desugaring and resugaring.

Tagging

We define two kinds of tags: Head tags mark the outermost term constructed by

a rule application, and Body tags mark each non-atomic term constructed by a

rule application. Body tags serve to distinguish rule-generated code from user-

written code, thereby maintaining Abstraction. They are automatically inserted

into each rule’s rhs during parsing. Crucially, these tags can be considered

simply part of the rhs pattern, so they do not interfere with the definitions of

rule expansion and unexpansion.

As noted in section 4.2.4, it is sometimes desirable to make sugar-produced

terms transparent to the user. Confection allows sugar authors to do so by
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prefixing a term with ‘!’. Each Body tag contains a boolean indicating whether

it was made transparent in this way; we will call these tags transparent or opaque,

as appropriate.

Head tags serve a dual role. First, they store the index of the rule which was

applied, thus ensuring that only that rule may be applied in reverse during

resugaring; this is necessary to maintain Emulation. Second, when the rhs of a

rule contains fewer pattern variables than the lhs, Head tags store the bindings

γ for those pattern variables present in the lhs but not in the rhs.

While Head tags mark which rule they originated from, Body tags do not. In

principle, this simplification would allow one rule to successfully unexpand us-

ing chunks of code produced by another rule. In practice, it is hard to construct

scenarios in which this actually occurs and, in any case, it does not affect our

goal properties.

Recursive Expansion and Unexpansion

We have defined how to non-recursively expand and unexpand a term with re-

spect to a rulelist, and will now define recursive expansion and unexpansion,

a.k.a. desugaring and resugaring. To desugar a complete core term, recursively

traverse it in-order, applying exprs at each node:In other words, we
are assuming OI
desugaring order.

Other orders (e.g.,
IO) are possible, but

less common. See
section 2.1.4 for an

overview.

desugarrs value = value

desugarrs x = x

desugarrs (C e1, ..., en) = desugarrs (Tag (Head i γ) e′)

where γ stands in for (C e1, ..., en)/pi

when exprs (C e1, ..., en) = (i, e′)

desugarrs (C e1, ..., en) = (C desugarrs e1, ..., desugarrs en)

otherwise

desugarrs (e1 ... en) = (desugarrs e1 ... desugarrs en)

desugarrs (Tag o e) = (Tag o desugarrs e)

Resugaring can be performed by traversing a term, this time performing

unexprs (i, e) γ for any term e tagged with (Head i γ). Thus resugarrs identifies

the specific sugars that need to be unexpanded by finding Head tags, and dele-

gates the sugar-specific unexpansions—which include eliminating Body tags—to

unexprs.

If the unexpansion of any particular term fails, then resugaring as a whole

fails, since the tagged term in question can neither be accurately represented as

the result of an expansion nor shown as-is. Furthermore, resugaring should fail
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if any opaque Body tags remain. This ensures that code originating in sugar (and

therefore wrapped in Body tags) is never exposed, guaranteeing Abstraction.

resugarrs e = R′rs e when R′rs e has no opaque tags

resugarrs e = ⊥ otherwise

R′rs value = value

R′rs x = x

R′rs (Tag (Body b) e) = (Tag (Body b) R′rs e)

R′rs (Tag (Head i γ) e′) = unexprs (i, R
′
rs e′) γ

R′rs (C e1, ..., en) = (C R′rs e1, ..., R′rs en)

R′rs (e1 ... e1) = (R′rs e1 ... R′rs en)

4.4.3 Lifting Evaluation

We can now put the pieces together to see how Confection works as a whole.

We have defined desugaring and resugaring with respect to terms expressed

in our pattern language. Real languages’ source terms do not start in this form,

so we will require functions for converting between syntax in the surface and

core languages and terms in our pattern language. We will call these s->e ,

e->s , c->e , and e->c , using s, c, and e as abbreviations for surface, core, and

term respectively. With these functions, we can define functions to fully desugar

and resugar terms in the language’s syntax:

D = s->e ; desugarrs ; e->c

R = c->e ; resugarrs ; e->s

A surface reduction sequence for a deterministic language can now be com-

puted as follows:

def showSurfaceSequence(s):

let c = D(s)

while c can take a reduction step:

let s' = R(c)

if s': emit(s')

c := step(c)

Implementing this requires a step relation; though most languages don’t pro-

vide one natively, section 4.6 describes how to obtain one.

For a nondeterministic language, the aim is to lift an evaluation tree instead

of an evaluation sequence. The set of nodes in the surface tree can be found

by keeping a queue of as-yet-unexplored core terms, initialized to contain just

desugar(s), and repeatedly dequeuing a core term and checking whether it can
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be resugared. If it can, add its resugaring to the node set, and either way add

the core terms it can step to to the end of the queue. The tree structure can be

reconstructed with additional bookkeeping.

We have a complete implementation of Confection, in which all examples

from this chapter were run. It uses a user-written grammar file that specifies gram-

mars for both the core and surface syntax, and a set of rewrite rules. Though

the grammars and rewrite rules mimic the syntax used by Stratego [6], the rules

obey the semantics described in this chapter. The rules are also checked against

the well-formedness criteria of section 4.4.1, thus ensuring that our results hold.

Confection is available at:

http://cs.brown.edu/research/plt/dl/resugaring/v1/

4.5 formal justification

We will now justify many of our design decisions in terms of the formal proper-

ties they yield, and ultimately prove the Emulation and Abstraction properties

relative to some reasonable assumptions about the underlying language.

4.5.1 Transformations as Lenses

We have found it helpful to view our transformation rules from the perspective

of lenses [27]. In particular, the disjointness condition that prevents the Max

problem of section 4.4.1 can be seen as a precondition for the lens laws, and the

proof that our system obeys the Emulation property rests upon the fact that its

transformations form lenses.

A lens has two sets C and A, together with partial functions get : C →̇ A and

put : A× C →̇C that obey the laws,

put (get c, c) = ⊥ or c ∀c ∈ C GetPut

get (put (a, c)) = ⊥ or a ∀a ∈ A, c ∈ C PutGet

Taking C = e and A = (N, e) gives exprs and unexprs the signatures of get and

put, respectively. Thus if they additionally obey the two laws, they will form

a lens. We will give a necessary and sufficient condition for the laws to hold,

and later show that when they do hold, the Emulation property is preserved by

resugaring.

http://cs.brown.edu/research/plt/dl/resugaring/v1/
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The GetPut Law

The GetPut law applied to our transformations states that whenever it is well-

defined,

unexprs (exprs e) e = e

Expanding the definitions produces:

((e/pi) ∪ ((e/pi) • p′i/p′i)) • pi = e

This law can be shown to hold without further preconditions.

Lemma 1. The GetPut law holds whenever it is well-defined.

Proof. Clearly (e/pi) • p′i/p′i ⊆ e/pi. Thus (e/pi) ∪ ((e/pi) • p′i/p′i) = e/pi, and

((e/pi) ∪ ((e/pi) • p′i/p′i)) • pi = (e/pi) • pi. And since e is closed, (e/pi) • pi =

e.

The PutGet Law

The PutGet law states that whenever it is well-defined,

exprs (unexprs (j, e′) e) = (j, e′)

Expanding the definitions gives that,

(i, (((e/pj) ∪ (e′/p′j)) • pj/pi) • p′i) = (j, e′)

for i = min{i|((e/pj) ∪ (e′/p′j)) • pj ≥ pi}i

This law, however, does not hold for all possible rulelists. In fact, we saw a

situation in which it fails—the Max sugar in section 4.4.1—as well as the alarm-

ing consequences of the failure. In that section we introduced the disjointness

condition. Forcing the lhss of rules to be disjoint ensures that the surface repre-

sentation of a core term, which was obtained by unexpanding that term through

some rule, could only expand via the same rule, thereby obtaining the core term

it is supposed to represent.

We can now say precisely what the disjointness check gains us: it is both

necessary and sufficient for the PutGet law to hold. We will see later that the

PutGet law ensures Emulation. The reverse is not true, however, so the disjoint-

ness check is sufficient but not necessary to achieve Emulation, and a tighter

test could be found (although it would almost certainly have to make stronger

assumptions about evaluation in the core language than we do).

Definition 1. The disjointness condition for a rulelist rs = p1 → p′1, ..., pn → p′n
states that pi∨pj = ⊥ for all i 6= j.
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Theorem 1. For any rulelist rs, the PutGet law holds iff the disjointness condition

holds.

Proof Sketch. The law states that:

(i, (((e/pj) ∪ (e′/p′j)) • pj/pi) • p′i) = (j, e′)

for i = min{i|((e/pj) ∪ (e′/p′j)) • pj ≥ pi}i

First, note that the law always holds when i = j, so it is sufficient to consider

i < j. Let γ1 = (e/pj) ∪ (e′/p′j). If the PutGet law does not hold, then γ1 • pj/pi

exists, so pi∨pj exists. On the other hand, if pi∨pj exists for some i < j, then

e and e′ can be chosen such that (γ1 • pj)/pi is guaranteed to be well-defined,

forcing the law to not hold.

Confection statically checks that the rulelist obeys the well-formedness crite-

rion from section 4.4.1 and the disjointness criterion, thereby ensuring that the

lens laws will hold. We will next show that these lens laws imply that desugar-

ing and resugaring are inverses of each other, which is the crux of the Emulation

property.

4.5.2 Desugar and Resugar are Inverses

We show that desugar and resugar are inverses of each other, after noting that

surface and core terms have slightly different shapes.

Definition 2. A surface term is a term without any tags (Tag o e).

Definition 3. A core term is a term that contains no construct C that appears in the

outermost position of any lhs of the rulelist.

As expected, desugaring produces core terms, and resugaring produces sur-

face terms.

Lemma 2. If desugarrs e = e′, then e′ is a core term. And if resugarrs e′ = e, then e

is a surface term.

Proof. By induction over the term.

Further, desugar and resugar are idempotent over core and surface terms,

respectively.

Lemma 3. Whenever e is a surface term, resugarrs e = e. And whenever e′ is a core

term, desugarrs e′ = e′.

Proof. By induction over the term.
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Theorem 2. Assume that the lens laws hold for all transformations. Then for all sur-

face terms e, desugarrs e = e′ implies resugarrs e′ = e. And for all core terms e′,

resugarrs e′ = e implies desugarrs e = e′.

Proof. For both cases, proceed by induction over the term. The two nontrivial

cases are resugarrs (desugarrs (C e1, ..., en)) and

desugarrs (resugarrs (Tag (Head i γ) e′)). For brevity, call desugarrs Des, call

exprs E, call resugarrs Res, and call unexprs U.

In the first case,

Res (Des (C e1, ..., en))

= Res (Des (Tag (Head i γ) e′))

when E (C e1, ..., en) = (i, e′)

and where γ stands in for (C e1, ..., en)

= Res (Tag (Head i γ) (Des e′))

= U (i, Res Des e′) (C e1, ..., en)

= U (i, e′) (C e1, ..., en) (by I.H.)

= (C e1, ..., en) (by GetPut)

In the second case,

Des (Res (Tag (Head i γ) e′))

= Des (U (i, Res e′) γ)

= Des (C e1, ..., en) (using w.f.)

when U (i, Res e′) γ = (C e1, ..., en)

= Des (Tag (Head i γ) (Res e′)) (by PutGet)

= (Tag (Head i γ) (Des (Res e′)))

= (Tag (Head i γ) e′) (by I.H.)

4.5.3 Ensuring Emulation and Abstraction

We now precisely state and prove the Emulation and Abstraction properties,

making use of the results of the last section.

Theorem 3 (Emulation). Given a well-formed rulelist rs, each surface term in the

generated surface evaluation sequence desugars into the core term which it represents, so

long as:

• e->c (c->e c) = c for all c

• s->e (e->s e) = e for all e

• (c->e c) is a core term for all c
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• The disjointness condition holds for rs

Proof. In the stepping algorithm, s′ represents c in each iteration, so we would

like to show that if s′ occurs in the surface evaluation sequence then D(s′) = c.

If s′ occurs in the surface sequence, then resugaring must have succeeded with

R(c) = s′. Thus we simply need to show that D(R(c)) = c for all terms c in the

core language, i.e., that

e->c (desugarrs (s->e (e->s (resugarrs (c->e c))))) = c

The preconditions of theorem 2 are satisfied. This expression then consists of

three pairs of functions and their inverses, so the equation holds.

To state Abstraction precisely, we must first define the origin of a term. Since it

is possible for two different surface evaluation sequences to contain terms which

are identical up to tagging but have different origins, the origin of a term must

be defined with respect to a surface evaluation sequence (and the corresponding

core evaluation sequence).

Definition 4. The origin of an occurrence of a term within a given evaluation sequence

is defined by:

• Atomic terms have no origin.

• All subterms of the original input term have user origin.

• When a transformation rule is applied to a term (either forward or in reverse),

terms bound to pattern variables retain their origins, but all other terms on the

rhs have sugar origin, and all other terms on the lhs have user origin.

• Terms maintain their origin through evaluation.

Our use of Body tags purposely mimics this definition, so that Abstraction is

nearly true by construction.

Theorem 4 (Abstraction 1). The surface-level representation of a term e contains only

subterms of user origin, except as explicitly allowed by transparency marks (!).

Proof Sketch. Check that the application of transformation rules both forward

and in reverse preserves the invariant that a term has sugar origin iff it is tagged

with at least one Body tag, and user origin otherwise. Now see that resugarrs

always fails if any opaque Body tags remain.

Theorem 5 (Abstraction 2). Terms of user origin are never hidden by unexpansion.

Proof Sketch. Each subterm in the rhs of a rule is wrapped in a Body tag; thus

only terms tagged with a Body tag can match against it to be unexpanded. As

argued above, only terms of sugar origin may be tagged with a Body tag.
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Notice that theorems 2 and 3, which together prove Emulation, work for any

definition of rule expansion and unexpansion that obeys the lens laws. Conse-

quently, our expansion/unexpansion mechanism does not need to be defined

solely through the pattern-matching rules we have presented; it can be replaced

by a different one that (i) obeys the lens laws, and (ii) retains a tagging mecha-

nism for guaranteeing Abstraction.

4.5.4 Machine-Checking Proofs

We have made substantial progress formalizing our transformation system in the

Coq proof assistant [80]. We have formalized a subset of our pattern language,

as well as matching, substitution, unification, expansion, and unexpansion, and

the disjointness condition. Atop these definitions we have constructed formal

proofs that:

1. Matching is correct with respect to substitution.

2. Unification is correct with respect to substitution and matching.

3. Expansion and unexpansion of well-formed rules (as defined in Section 4.4.1)

that pass the first static check obey the lens laws.

This formalization helped us pin down the (sometimes subtle) well-formedness

criteria of section 4.4.1.

Our formalization does not, however, address tags or ellipsis patterns. It

would be straightforward to add tags. Handling ellipses, though, would require

significantly more work: when patterns may contain ellipses, substitution is no

longer compositional on p. For instance, γ • [p∗] is not a function of γ • p.

4.6 obtaining core-language steppers

Confection assumes it has access to the sequence of core-language terms pro-

duced by evaluation, each ornamented with the tags produced by the initial

desugaring—but typical evaluators provide neither! Fortunately this informa-

tion can be reconstructed with little or no modifications to the evaluator, even if

it compiles to native code. We now describe in general terms how this can be

accomplished. In what follows, we will use the term stepper [12] for an evaluator

that, instead of just producing an answer, produces the sequence of core terms

generated by evaluation.

The essence of reconstructing each term is simple: it is the current continua-

tion at that point of evaluation. Therefore, we need to be able to capture, and

present, the continuation as source. (The tags are introduced statically, so the
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process of reconstructing the code can reconstitute these tags alongside.) Either

the evaluator can be modified to reconstruct the source as it runs, or a pre-

compilation step may be introduced that does so in the host language itself. We

have used both approaches.

To construct the source term at an evaluation step, we have multiple options.

For instance, we can convert the code to continuation-passing style, with each

continuation parameter represented as a pair: the closure that runs, combined

with a function to produce a core language representation of the closure.

Instead, our steppers use a more efficient transformation [60]—based on A-

normalization [23]—to obtain a representation of each stack frame. To traverse

the stack and accumulate these representations, we have two choices. In lan-

guages with generalized stack inspection features like continuation marks [11],

or ways of emulating them (as discussed by Pettyjohn, et al. [60]), we can exploit

these existing run-time system features. In other cases, our steppers simply in-

strument the code to maintain a global stateful stack onto which they push and

pop frames.

In addition, our core steppers instrument the code so that it pauses at every

evaluation step to emit the representation of the current continuation. This can

be done by using resumable exceptions, native continuations, and so forth, but

even in languages without such features, it is easy to achieve: simply pause

execution to print the continuation, before resuming computation.

Using this combination of techniques, we have created steppers for Racket

(racket-lang.org), Pyret (pyret.org), and PLT Redex [19] (a tool for studying

language semantics). In the process we have used both the continuation mark

and “shadow stack” strategies. The Racket stepper is notable because although

Racket already has a stepper [12], it is much weaker than ours. For example,

it does not handle state, continuations, or any user-defined macros. Obtaining

a core stepper from PLT Redex is trivial because the tool already provides a

function that performs a single evaluation step.

performance Our prototype core steppers for Racket and Pyret induce a

5-40% overhead, depending on how large the stack grows and the relative mix

of instrumented and uninstrumented calls. In addition, we must pay for seri-

alization and context-switching because the Confection implementation is an

external process. This additional cost can obviously be eliminated by implement-

ing Confection inside the host language runtime.

racket-lang.org
pyret.org
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4.7 evaluation

In this section we describe sugars we implemented to test the expressiveness

of our system. (Section 4.3 shows a non-trivial outcome.) In what follows, we

manually verified that each of the implemented sugars showed the expected

surface steps.

4.7.1 Building on the Lambda Calculus

To see how far we could push building a useful surface language atop a small

core, we constructed a simple stateful language in PLT Redex. It contains only

single-argument functions, application, if statements, mutation, sequencing,

and amb (which nondeterministically chooses among its arguments), and some

primitive values and operations. Atop this we defined sugar for multi-argument

functions, Thunk, Force, Let, Letrec, multi-arm And and Or, Cond; and atop

these, a complex Automaton macro [48]. All of these behave exactly as one might

expect other than Letrec and Automaton, discussed below.

The Letrec sugar does not show any intermediate steps in which some but

not all branches have been evaluated; thus the surface evaluation shows the

branches all evaluating in one step. For instance, (letrec ((x y) (y 2)) (+ x

y)) steps directly to (+ 2 2). Though this initially surprised us, it is actually the

correct representation of the semantics of letrec; from our perspective, showing

intermediate steps would necessarily be inaccurate and violate Emulation.

The Automaton macro had the same problem until we made some small, semantics-

preserving refactorings: lifting some identifiers into Let bindings, and adding !

on recursive annotations. Figure 3 shows a run in Redex’s evaluation visualizer;

the underlying core evaluation took 264 steps.1

4.7.2 Return

Having first-class access to the current continuation is a powerful mechanism for

defining new control flow constructs. Racket does so with the built-in function

call/cc, that takes a function of one argument and calls it with the program’s

1 It may be concerning that this figure appears to contain unbound identifiers, such as M and init.

These are actually the names of function values, as determined by Racket. (These names can be

obtained by calling object-name on the function.) We could instead have simply displayed function

values generically—e.g. as #<procedure>—but that would have resulted in a more opaque evaluation

sequence. A better method might have been to explicitly show the environment, in which M and init

are bound. Finding the best way to present the surface evaluation sequence is an interesting research

question and outside the scope of this thesis.
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#t

(apply end "")

(apply more "r")

(apply more "dr")

(apply more "adr")

(apply init "cadr")

(apply M "cadr")

(Let M

 (Automaton

  init

  (init : ("c" -> more))

  (more :

   ("a" -> more)

   ("d" -> more)

   ("r" -> end))

  (end : "accept"))

 (apply M "cadr"))

Figure 3: Automaton macro execution example
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current continuation. Using it, we can define a return sugar that returns early

from a function:

Return(x) ->

Let([Bind("%RES", x)],

[Apply(Id("%RET"), [Id("%RES")])]);

Function(args, body) ->

Lambda(args, Apply(Id("call/cc"),

[Lambda(["%RET"], body)]));

(The definition of function is necessary to mark the point that return should

return to.) With this definition in place, we can see evaluation sequences such

as:

(+ 1 ((function (x) (+ 1 (return (+ x 2)))) (+ 3 4)))

99K (+ 1 ((function (x) (+ 1 (return (+ x 2)))) 7))

99K (+ 1 (+ 1 (return (+ 7 2))))

99K (+ 1 (+ 1 (return 9)))

99K (+ 1 9)

99K 10

This example illustrates that our approach is robust enough to work even in the

presence of dynamic control flow.

4.7.3 Pyret: A Case Study

Pyret, shown in section 4.3, is a new language. It makes heavy use of syntactic

sugar to emulate the syntax of other programming languages like Python. This

sugar was implemented by people other than this thesis’s author, and written as

a manual compiler, not as a set of rules; it was also implemented without any

attention paid to the limitations of this work. Thus, the language makes for a

good case study for the expressiveness of our work.

We restricted our attention to sugar relevant to evaluation. Pyret has builtin

syntactic forms for writing tests, and can run code both in a “check” mode

that only runs these tests, or in “normal” mode that runs code. We focused on

“normal” mode since it is most relevant to evaluation. There were two pieces

of sugar we were unable to express and one that required modification to show

ideal surface steps; we describe these in more detail below. As fig. 4 shows, we
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ast Node Description Implemented?

fun function declaration yes

when one-arm conditional yes

if multi-arm conditional yes

cases multi-arm conditional yes

cases-else multi-arm conditional yes

for generalized looping construct yes

op binary operators yes

not negation yes

paren grouping construct yes

left-app infix notation yes

list list expressions yes

dot indirect field lookup yes

colon direct field lookup yes

(currying syntax) allowed in fun and op yes

graph create cyclic data no

datatype datatype declarations no

Figure 4: Syntactic sugar in normal-mode Pyret

were able to handle almost all of Pyret’s sugar. An example of the result in action

was shown in section 4.3.

We were unable to fully handle algebraic datatype declarations because they

splice one block of code into another in a non-compositional manner; we believe

these could be expressed by adding a block construct that does not introduce a

new scope (akin to Scheme’s begin).

We were also unable to handle graph, which constructs cyclic data. It has

a complex desugaring that involves creating and updating placeholder values

and compile-time substitution. This could be solved either by expanding the

expressiveness of our system or by adding a new core construct to the language.

There is always a trade-off between the complexity of the core language and the

complexity of the desugaring; when a feature can only be implemented through

a highly non-compositional sugar like this, it may make sense to instead add the

feature to the core language.

Finally, the desugaring for binary operators needed to be modified to show

helpful surface evaluation sequences. The desugaring follows a strategy similar

to that of Python, by applying the _plus method of the left subexpression to the

right subexpression:The s terms are
source locations, used

for error-reporting.
Their propagation

could potentially be
automated, but we

did not attempt to do
so here.

Op(s, "+", x, y) ->

App(s, Bracket(s, x, Str(s, "_plus")), [y]);
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Op(s, "+", x, y) ->

Block(s,

[ Let(s, Bind(s, "temp", ABlank),

Obj(s, [Field(s, Str(s, "left"), x),

Field(s, Str(s, "right"), y)]))

, App(s, Bracket(s, Bracket(s, Id(s, "temp"),

Str(s, "left")),

Str(s, "_plus")),

[Bracket(s, Id(s, "temp"),

Str(s, "right"))])]);

Figure 5: Alternate desugaring of addition

Given the term 1 + (2 + 3), we would expect evaluation to step first to 1 + 5

and then to 6. Unfortunately, Confection shows only this surface evaluation

sequence:

1 + (2 + 3) 99K 6

The core evaluation sequence reveals why:

1.["_plus"](2.["_plus"](3))

−→ <func>(2.["_plus"](3))

−→ <func>(<func>(3))

−→ <func>(5)

−→ 6

(<func> denotes a resolved functional). To show the term 1 + 5, Emulation

requires that it desugar precisely into one of the terms in the core sequence; but

it desugars to 1.["_plus"](5), which has a different shape than any of the core

terms.

The fundamental problem is the order of evaluation induced by this desugar-

ing: first the left subexpression is evaluated, then the _plus field is resolved, then

the right subexpression is evaluated, then the “addition” is performed. We can

obtain a more helpful surface sequence by instead choosing a desugaring that

forces the left and right subexpressions to be evaluated fully before resolving the

operation, as shown in fig. 5.

This desugaring constructs a temporary object {left: x, right: y}, and

then computes temp.left._plus(temp.right). Notice that this desugaring slightly

changes the semantics of binary operators; the difference may be seen when the
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right subexpression mutates the _plus field of the left subexpression. In ex-

change, we obtain the expected surface evaluation sequence:

1 + (2 + 3) 99K 1 + 5 99K 6

4.8 obtaining hygiene

The implementation discussed in this chapter—Confection—is not hygienic.

(For a quick introduction to hygiene, see section 2.1.7.) In this section, we sketch

out how Confection could be modified to be hygienic. More specifically, we

show how it can be modified such that variables defined by users are never

bound by variables defined by sugars, and vice-versa.The version of
hygiene we are

discussing here is the
typical

definition [45]. In
the next chapter, we
will give a stronger

definition.

The required modification is simple. Suppose that:

• desugarrs gives fresh names to introduced variables (that is, variables on

the rhs).

• resugarrs allows any variable name to match against an introduced vari-

able.

Then both desugarrs and resugarrs will be hygienic: user-defined variables and

sugar-introduced variables will never be bound by one another.

During desugaring, sugar-introduced variables are those that appeared as vari-

ables in the rhs of a sugar. By assumption, all of these variables are given fresh

names; thus no user-defined variable can be bound by them, and vice-versa.

Why is this proof so easy, when significant effort has gone into defining hygienic

macro expansion algorithms? It is because we are assuming that sugars are de-

fined externally to the language, so they aren’t intermingled with user-defined

code.

During resugaring, it may look like there are no sugar-introduced variables,

since the lhss of desugaring rules cannot contain variables. However, it is pos-

sible for the lhs of a rule to drop a pattern variable when that pattern variable

is bound to a variable, thus indirectly dropping the variable. For example, take

the desugaring rule:

(Lambda α. β * 0) ⇒ (Lambda α. 0)

Using this rule, the term (Lambda x. x * 0) will desugar into (Lambda x. 0).

Resugaring would restore the pattern variable β, thereby re-introducing the x in

the body of the Lambda.

Is this re-introduced variable bound by the outer x? Surprisingly, it is not. The

key point is that in the absence of surface-language scoping rules, where a variable

is bound in a surface term is defined by the desugaring of that term. Since the inner
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x is dropped during desugaring, it has no binding site. Thus unexpansion is

hygienic: every variable that is re-introduced during resugaring has no binding

site, so there can be no accidental variable capture. The textual representation

of the surface term is misleading in this case. If Confection made the binding

structure of the surface term explicit by, e.g., drawing arrows to show where

variables were bound, then it would be visibly clear that the inner x was not

bound by the outer x.

This may seem like a cop-out, but it is the best that we can do when the

scope of the surface language is defined only implicitly through desugaring. In

the next chapter, we will show how to resugar core language scope rules to obtain

scope rules for the surface language, which will lead to a stronger notion of

hygiene.

4.9 related work

There is a long history of trying to relate compiled code back to its source. This

problem is especially pronounced in debuggers for optimizing compilers, where

the structure of the source can be altered significantly [34]. Most of this literature

is based on black-box transformations, unlike ours, which we assume we have

full control over. As a result, this work tends to be very different in flavor from

ours: some of it is focused on providing high-level representations of data on

the heap, which is a strict subproblem of ours, or of correlating back to source

expression locations, which again is weaker than reconstructing a source term. For

this reason, this work is usually also not accompanied by strong semantic guar-

antees or proofs of them.

One line of work in this direction is SELF’s debugging system [36]. Its com-

piler provides its debugger with debugging information at selected breakpoints

by (in part) limiting the optimizations that are performed around them. This is

a sensible approach when the code transformation in question is optimization

and can be turned off, but does not make sense when the transformation is a

desugaring which is necessary to give the program meaning.

Another line of work in this direction is the compile-time macro error report-

ing developed by Culpepper, et al. [14]. Constructing useful error messages is

a difficult task that we have not yet addressed. It has a different flavor than the

problem we address, though: akin to previous work in debugging, any source

terms mentioned in an error appear directly in the source, rather than having to

be reconstructed.

Deursen, et al. [83] formalize the concept of tracking the origins of terms

within term rewriting systems (which in their case represent the evaluator, not the

syntactic sugar as in our case). They go on to show various applications, includ-
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ing visualizing program execution, implementing debugger breakpoints, and

locating the sources of errors. Their work does not involve the use of syntactic

sugar, however, while our work hinges on the interplay between syntactic sugar

and evaluation. Nevertheless, we have adopted their notion of origin tracking

for our transformations.

Krishnamurthi, et al. [50] develop a macro system meant to support a vari-

ety of tools, such as type-checkers and debuggers. Tools can provide feedback

to users in terms of the programmer’s source using source locations recorded

during transformation. The system does not, however, reconstruct source terms;

it merely point out relevant parts of the original source. The source tracking

mechanisms are based on Dybvig, et al.’s macro system [17].

Clements [11, page 53] implements an algebraic stepper (similar to ours) for

Racket—a language that has macros—and thus faces precisely the same prob-

lem we address in this chapter. That work, however, side-steps these issues by

handling a certain fixed set of macros specially (those in the “Beginner Student”

language) and otherwise showing only expanded code. On the other hand, it

proves that its method of instrumenting a program to show evaluation steps is

correct (i.e., the instrumented program shows the same evaluation steps that the

original program produces), while we only show that the lifted evaluation se-

quence is correct with respect to the core stepper. Thus its approach could be

usefully composed with ours to achieve stronger guarantees.

Fisher and Shivers [22] develop a framework for defining static semantics that

connect the surface and core languages. They show how to effectively lower a

static semantics from a surface language to its core language. This is comple-

mentary to our work, which shows how to lift a dynamic semantics from core to

surface. This exposes a fundamental difference in starting assumptions: they as-

sume the surface language has a static semantics, while we assume its semantics

is defined by desugaring.

In a similar vein, there has been work on ensuring that syntactic extensions

respect scope rules and are type sound. We discuss this work in chapter 5 and

chapter 6, respectively.

Model-driven software engineering also draws heavily on bidirectional trans-

formation, because systems are expected to be written in a collection of domain-

specific languages that are transformed into implementations. These uses tend

to be static, rather than addressing the inverse-mapping problem in the context

of system execution (see the survey by Stevens [79]). When the problem we ad-

dress does arise in this area, it is typically the case that either (i) both the source

and target models have implementations, so that surface-level execution traces

can be obtained by evaluating in the surface language directly [59], or (ii) the

surface information sought is more limited than the reduction sequence we pro-
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vide (in the same ways as for debuggers for optimizing compilers, as described

earlier). Applying our results to this area is future work.





5

R E S U G A R I N G S C O P E R U L E S

In this chapter, we show how to lift scoping rules defined on a core language

to rules on the surface, a process of scope inference. In the process we introduce

a new representation of binding structure—scope as a preorder—and present a

theoretical advance: proving that a desugaring system preserves α-equivalence

even though scoping rules have been provided only for the core language.

This chapter comes from work published in ICFP 2017 under the title Infer-

ring Scope through Syntactic Sugar (co-authored with Shriram Krishnamurthi and

Mitchell Wand) [70]. Our notation and
terminology in this
chapter was
influenced by work
published by Erdweg
et al. [18] and Neron
et al. [57].

The next chapter presents type rule resugaring, which subsumes scope resug-

aring: type rules include the type environment Γ, and thus also describe scope.

Why not use this instead? There are two reasons why it may still be preferrable

to resugar scope rules: (i) your language may be untyped; and (ii) scope resug-

aring is more general and admits a wider variety of constructs. In addition, this

chapter’s hygiene theorem (theorem 8) may be of independent interest.

5.1 introduction

Traditionally, scoping rules are defined on the core language, not on the surface.

However, many tools depend on source representations. For instance, editors

need to know the surface language’s scoping in order to perform auto-complete,

distinguish free from bound variables, or draw arrows to show bound and bind-

ing instances. Likewise, refactorers need to know binding structure to perform

correct transformations. These tools are hard to construct if scoping is only

known for the core language.

Many tools that exploit binding information for the source do so by desug-

aring the program and obtaining its binding in the core language (this, for in-

stance, is the approach used by DrRacket [7] for overlaying binding arrows on

the source). However, this approach is far from ideal. It requires tools to be

able to desugar programs and to resolve binding in the core language. This is

an intimate level of knowledge of a language, though: syntactic sugar is sup-
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posed to be an abstraction, so external tools should ideally be unaware that a

language even has syntactic sugar. Additionally, this approach fails completely

if the source program cannot be desugared because it is incomplete or syntac-

tically invalid (as programs are most of the time while editing). It is therefore

better to disentangle the editor from the language, providing the editor precisely

what it needs: scoping rules for the surface language.

We therefore present a static inference process that, given a specification of

syntactic sugar and scoping rules on a core language, automatically constructs

scoping rules for the surface language. The inferred rules are guaranteed to give

the same binding structure to a surface program as that program would have

in the core language after desugaring (theorem 7). Essentially, scope inference

“pushes scope back through the sugar”. We can think of this as statically lifting

a “lightweight semantics” of the language. Thus it is a precursor to lifting other

notions of semantics (such as lifting type-checking rules, as we do in the next

chapter) though of course the mechanics of doing so will depend heavily on the

notion of semantics to be considered.

The intended application of this work is as follows:

1. Begin with a core language with known scoping rules, and a set of pattern-

based desugaring rules. (We give a formal description of scope in sec-

tion 5.3, and a language for specifying scope in section 5.4.)

2. Infer surface language scoping rules from the core scoping rules. (We give

a scope inference algorithm in section 5.5, and show how to make it hy-

gienic in section 5.7.)

3. Add these inferred scoping rules to various tools that can exploit them

(Sublime, Atom, CodeMirror, etc.).

An alternative approach would be to specify scoping rules for the surface lan-

guage, and verify that they are consistent with the core language. This approach

has been advocated for scoping [35, 78], type systems [53], and formal seman-

tics [22]. However, this assumes that language developers are always program-

ming language experts who are knowledgeable about binding, able to verify

consistency, and willing to do this extra work. These are particularly unsafe

assumptions for domain-specific languages, which we believe are a strong use

case for our technique.

Contributions and Outline

modelling scope In section 5.3, we give a formal description of scope as a pre-

order (which we motivate through examples in section 5.2). This preorder
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then defines the name binding structure of a program, such as where vari-

able references are bound, and which variable declarations shadow others.

binding specification language In section 5.4, we present a binding spec-

ification language, i.e., a language for specifying the name binding struc-

ture of a programming language. This specification makes it possible to

compute the scope structure (a preorder) of concrete programs in that lan-

guage.

scope inference In section 5.5, we show how to infer these scoping rules

through syntactic sugar. This is our main contribution. We describe our

implementation and provide case studies in section 5.6, and prove that—

given reasonable assumptions—desugaring after scope inference will be

hygienic in section 5.7.

5.2 two worked examples

We will begin by building up to our scope inference technique via two worked

examples. They are slightly simplified for expository purposes. Section 5.4

describes the full version, and sections 5.6.1 and 5.6.3 provide examples. (While

the full version of the technique is sometimes important, it has no effect on the

examples of this section.)

5.2.1 Example: Single-arm Let

For the first example, consider a simple Let construct that allows only a single

binding:

e ::= (Let xd e1 e2) “Let xd equal e1 in e2”

| . . .

(Here the superscript d indicates that this occurrence of the variable x is a dec-

laration of x. In general, we will distinguish declarations, i.e., binding sites, from

references, i.e., use sites.)

This Let may be desugared to Apply and Lambda by the following desugaring

rule, which we will write using s-expressions:

(Let α β δ)⇒ (Apply (Lambda α δ) β)

Now suppose that we know the scoping rules of Apply and Lambda, and

wish to derive what the scoping rules for Let must be, given the desugaring rule

and assuming the language is statically and lexically scoped. More precisely, we

wish to find a scoping rule for Let such that the desugaring rules preserve binding
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structure (and thus neither cause variable capture nor cause variables to become

unbound).

The first step will be to write down what we know about the scope on the rhs

(right hand side) of the rule. Pictorially, we might draw:

(rhs)

Apply

Lambda

α δ

β

where the dotted lines show the tree structure of the ast, and where the teal/-

solid arrow means that the Lambda’s parameter (α) can be used in its body (δ).

Similarly, there are no arrows among the children of Apply because function

application does not introduce any binding.

We also know from lexical scope that any declarations in scope at a node in

an ast should also be in scope at its children. This can be denoted with upward

arrows:

(rhs)

Apply

Lambda

α δ

β

In general, the meaning of the arrows is that a variable declaration is in scope

at every part of the program which has a (directed) path to it. (In the case of

variable shadowing, the outer declaration is in scope at the inner declaration,

which in turn is in scope at some region; references in this region will be bound

to the dominating inner declaration.)

Now we can begin to infer what the scope must look like on the lhs (left hand

side) of the desugaring rule. We want the rule to preserve binding, therefore there

should be a path from one pattern variable to another in the lhs iff there is a

similar path in the rhs. If there was a path from α to β in the lhs but not in the

rhs, that would mean that a variable (in α) that used to be bound (by β) could

become unbound. Likewise, if there was a path between two pattern variables

in the rhs but not in the lhs, that could result in unwanted variable capture.

Thus, since there is a path from δ to α in the rule’s rhs, there must also be a

path from δ to α in the lhs. This gives:

(lhs)
Let

α β δ
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In English, this arrow says that the variable declared at α is in scope at the Let’s

body δ, as expected.

There are still some missing arrows, however: there should be up arrows to

indicate that any declaration in scope at the Let should also be in scope at its

children. These can be inferred in a similar way: whenever there is a path from

the root to a pattern variable on the rhs, there should be a similar path on the

lhs. Since on the rhs there are paths to each pattern variable from the root, the

same should hold true on the lhs:

(lhs)
Let

α β δ

This gives a complete scoping rule for this Let construct.

5.2.2 Example: Multi-arm Let*

Next, take a more involved example: a multi-armed Let* construct (in the style

of Lisp/Scheme/Racket). It will have the following grammar:

e ::= (Let* b e) “Let-bind b in e”

| . . .

b ::= (Bind xd e b) “Bind xd to e, and export b’s bindings”

| EndBinds “No more bindings”

This grammar separates out the Let’s bindings into nested subterms. It is neces- We call the bindings
just “Bind”, even
though they are
specific to Let. If a
language has other
forms of binding as
well, “Bind” may
need a more specific
name such as
“LetBind”.

sary to do this if more complex binding patterns are allowed, such as arbitrarily

deep pattern-matching.

Let* can then be implemented with two desugaring rules:

(Let* (Bind α β δ) ε) ⇒ (Apply (Lambda α (Let* δ ε)) β)

(Let* EndBinds α) ⇒ (Begin α)

These rules would, for example, make the following transformation:

(Let* (Bind xd 1 (Bind yd 2 EndBinds)) (Plus xr yr))

⇒ (Apply (Lambda xd (Apply (Lambda yd (Plus xr yr)) 2)) 1)

Given that we know the scoping rules of Apply, Lambda, and Begin, we can

use them to derive the scoping rules for Let* and Bind. The scoping for the

second rule is trivial, so we will concentrate just on the first rule.

As before, the first step is to write down what we know about the scope on

the rhs:
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(rhs)

Apply

Lambda

α Let*

δ ε

β

Unlike in the previous example, this diagram is not (necessarily) complete, since

we don’t yet know the scoping rule for Let*. (This will happen when desugaring

rules use recursion.) We have drawn two upward arrows on Let*, despite the

fact that we don’t yet know its scoping rule: technically, these arrows should

(and can) be inferred, but we start with them to simplify this example.

Now we can begin to infer what the scope must look like on the lhs. As before,

we want the rule to preserve binding. Thus, since the rhs has a path from δ to

α and from ε to α, the same must be true in the lhs (labeling the arrows for

reference):

(lhs)

c

b

a

Let*

Bind

α β δ

ε

Notice that we drew the path from ε to α with two arrows. This is because we

will assume that scoping rules are local, relating only terms and their immediate

children.

We have now learned something about the scoping rules for Let* and Bind!

When read in English, these three arrows say that:

a. Declarations from a Let*’s binding list are visible in its body.

b. A Bind’s variable declaration is provided by the Bind (so that it can be used

by the Let*).

c. A Bind’s variable declaration is visible to later Binds in the binding list.

This information can now be applied to fill in the previously incomplete rhs

picture. Arrow (a) represents a fact about the scoping of every Let*, so it must

also apply in the rhs (highlighting it orange/dashed for exposition):



5.2 two worked examples 69

(rhs)

Apply

Lambda

α Let*

δ ε

β

Adding this arrow introduces a path from ε to δ, however, that needs to be

reflected back at the lhs!

(lhs)

c

b

a

d

Let*

Bind

α β δ

ε

In general, the algorithm is to monotonically add arrows until reaching the least

fixpoint. In this particular case, arrow d is the last fact to be inferred:

d. A Bind also provides any declarations provided by later Binds in the bind-

ing list.

This concludes the interesting facts to be inferred about the scoping rules for Let*

and Bind. We have ignored the upward arrows that reflect lexical scope from

parent to child for simplicity, but these can be inferred by the same process.

5.2.3 Scope as a Preorder

In the two preceding examples, we have expressed the scope of a program dia-

grammatically with arrows. When reasoning about scope, it will be helpful to

be able to transcribe these diagrams into a textual form.

To do so, recall the (approximate) meaning of the arrows: a declaration is We make the
meaning of arrows
precise in
section 5.3.2.

in scope at every part of the program which has a (directed) path to it, and is

shadowed by declarations of the same name that have a path to it. Thus the

arrows are only meaningful insofar as they produce paths. Furthermore, paths

have two important properties:

1. They are closed under reflexivity: there is always an (empty) path from a

to a.

2. They are closed under transitivity: if there is a path from a to b and a path

from b to c, then there is a path from a to c.
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These are also precisely the properties that define a preorder. Thus, we will

transcribe scope diagrams as preorders, writing a ≤ b when there is a path from

a to b. For example, in the (incomplete) diagram we inferred for the lhs of the

multi-arm Let* sugar:

Let*

Bind

α β δ

ε

The corresponding preorder is: ε ≤ Bind ≤ δ ≤ α

5.3 describing scope as a preorder

We have informally described the notion of scope as a preorder, primarily using

diagrams. In this section, we will describe it formally. First, however, we need

to lay down some starting assumptions and basic definitions.

5.3.1 Basic Assumptions

We will make a number of assumptions to make reasoning about scope more

tractable:

• We only deal with scoping that is static and lexical.

• Scoping rules will be as local as possible, only relating a term to its imme-

diate children. Longer relationships will be achieved by transitivity.If we allowed
non-local arrows,

then in the previous
example, inference

would produce a
single arrow from ε

to α instead of
arrows “a” and “b”.

Then the
orange/dashed arrow
could not be inferred,
since it relied on the

existence of arrow
“a”, and the inference

process would fail at
its task.

• We work on an ast, instead of directly on the surface syntax. As mentioned

in section 3.1, variable references (use sites) and declarations (binding sites)

must be syntactically distinguished in this ast.

• Each kind of term has a fixed arity. (Indefinite arity is possible using a list

encoding, as in Let* above.)

The last two of these assumptions are already reflected in our definition of

(ast) terms in section 3.1. For convenience, we repeat that definition here:

constructor C ::= name syntactic construct name

term e ::= value primitive value

| (C e1 ... en) ast node

| xr

i variable reference at position i

| xd

i variable declaration at position i



5.3 describing scope as a preorder 71

To reiterate, references and declarations have both a name x (as written in the

source), and an ast position i (that uniquely distinguishes them). Occasionally

it will be useful to refer to a variable which could be either a declaration or a

reference: in this case we omit the superscript, e.g. xi. Likewise, we will omit the

position subscript i when there is no ambiguity. We will also sometimes write C

in place of (C e1 ... en) when there is no danger of ambiguity.

By the last assumption above, we do not support lists [e1 ... en] (which have in-

definite arity). Instead we require them to be encoded into fixed-arity constructs.

5.3.2 Basic Definitions

We define scope in terms of a perorder. A preorder (≤) is a reflexive and transitive

relation. It need not be anti-symmetric, however, so it is possible that a ≤ b and

b ≤ a for distinct a and b. (This happens, for example, in letrec.) We capture

scope as a preorder on a term e as follows:

Definition 5 (Scope). A scope preorder on a term e is a preorder (≤) on the references

and declarations in e such that references are least in this preorder (i.e., nothing is ever

smaller than a reference).

Definition 6. A reference xr

i is in scope of a declaration xd

j when xr

i ≤ xd

j .

Definition 7. A declaration xd

i is more specific than another xd

j when xd

i ≤ xd

j .

Note that these definitions rely on the existence of a preorder (≤), but don’t

say how to determine it for a given term. We will present scoping rules to do so

in section 5.4. These definitions therefore provide very little on their own, but

they can be built upon to define some common concepts:

Definition 8 (Bound). A reference is bound by the most specific declaration(s) that it

has the same name as and is in scope of. More formally, we write:

xr 7→ xd , xd ∈ min{xd

i | xr ≤ xd

i }

where min S finds the (zero or more) least elements of S:

min S , {a ∈ S | 6 ∃b ∈ S. b ≤ a and a 6≤ b}

Definition 9 (Unbound). A reference is unbound (or free) when it is not bound by

any declaration.

Definition 10 (Ambiguously Bound). A variable reference is ambiguously bound

when it is bound by more than one declaration.
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Ambiguous binding may occur, for instance, if two declarations have the same

name and are both parameters to the same function. In this case, a reference

in the body of the function would be ambiguously bound by both of them. We

also capture the idea of shadowing, where a more specific declaration hides a less

specific declaration:
We use the same

notation � 7→ � for
both binding and

shadowing because
the definitions are

analogous.

Definition 11 (Shadowing). A declaration shadows the most specific declarations

that it has the same name as and is more specific than. Formally, xd

i shadows xd

j when:

xd

i 7→ xd

j , xd

j ∈ min{xd

k | x
d

i ≤ xd

k } and xd

j 6≤ xd

i

5.3.3 Validating the Definitions

Since this description of scope is new, readers might wonder whether our defi-

nitions of concepts match their vernacular meaning. We provide evidence that

they do in three forms.

First, we prove a simple lemma below showing that shadowing behaves as one

would expect. Second, we show (section 5.3.4) that the notion of scope used in

“Binding as Sets of Scopes” [24] obeys our scope-as-a-preorder definitions, for

an appropriate choice of preorder (≤). Finally, in section 5.3.5, we introduce a

second, very intuitive definition of scope called scope-as-sets, and show that it

is equivalent to scope-as-a-preorder up to a normalization.

Lemma 4 (Shadowing). If one declaration shadows another, then a reference in scope

of the shadowing declaration cannot be bound by the shadowed declaration.

Proof. Suppose that xd

j shadows xd

i (xd

j is the shadowing declaration and xd

i is

the shadowed declaration), and xr

k is in scope of xd

j . By definition, xr

k will be

bound by min{xd

l | x
r

k ≤ xd

l }. But xr

k ≤ xd

j ≤ xd

i , and xd

j 6≤ xd

i , so xd

i cannot be in

this set, and xr

k cannot be bound by xd

i .

5.3.4 Relationship to “Binding as Sets of Scopes”

Scope-as-a-preorder aligns with the notion of scope expressed by Flatt [24]. In

his formulation, each subterm in the program is labeled with a set of scopes, called

its scope set. A reference’s binding (i.e., declaration) is then found “as one whose

set of scopes is a subset of the reference’s own scopes (in addition to having the

same symbolic name)”. If there is more than one such declaration, a reference is

bound by the one with the largest (superset-wise) scope set. If there is no unique

such element, then the reference is “ambiguous” [24, pp. 3].

This can be expressed in terms of scope-as-a-preorder. Take the preorder (≤)
to be (the least relation such that):
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xr

i ≤ xr

i

xr ≤ yd iff scope-set(xr) ⊇ scope-set(yd)

xd

i ≤ yd

j iff scope-set(xd

i ) ⊇ scope-set(yd

j )

Then our definition of a reference’s binding agrees with Flatt’s, and our def-

inition of an “ambiguously bound” reference agrees with his definition of an

“ambiguous” reference.

5.3.5 Axiomatizing Scope as Sets

In this section, we describe an alternative axiomatization of scope, called scope-

as-sets. In scope-as-sets, instead of there being a preorder over variables, each

declaration has a scope, which is the part of the program in which it can be

referenced. For example, the scope of a function’s parameter is that function’s

body. The axioms for a term e are then:

scope Each declaration in e has a scope—written S(xd)—given by the parts of

the program in which it can be referenced. We will say that:

• A reference xr is in scope of a declaration xd when xr ∈ S(xd).

• One declaration xd is more specific than another yd when S(xd) ⊆
S(yd).

binding A reference is bound to the most specific declaration that it has the

same name as and is in scope of, provided such a unique element exists.

Again, if there is no (unique) most specific declaration, we will say that the

reference is ambiguously bound by those declarations.

These axioms differ from the scope-as-a-preorder definitions in that the rela-

tions “in scope of” and “more specific than” are defined differently. However, all

of the other definitions of section 5.3 (including binding, shadowing, ambiguous

declarations, etc.) are based on the relations “in scope of” and “more specific

than”. Thus all of those definitions apply just as well to scope-as-sets.

Furthermore, the two axiomatizations of scope we have presented are closely

related. In fact, scope-as-a-preorder is simply a normalized form of scope-as-sets:

there can be more than one scope set that leads to the same scope preorder (with

the same binding and shadowing). To begin with, either form can be converted

to the other.

conv1 : from scope-as-a-preorder to scope-as-sets Given a preorder

(≤), define its conversion into a scope-as-sets function S by:

S(yd) , {xr | xr ≤ yd} ∪ {xd | xd ≤ yd}
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conv2 : from scope-as-sets to scope-as-a-preorder Given a scope-

as-sets function S , define its conversion into a preorder (≤) by letting (≤) be the

least relation such that:

xr

i ≤ xr

i

xr ≤ yd when xr ∈ S(yd)

xd ≤ yd when S(xd) ⊆ S(yd)

Both of these conversions preserve all of the binding concepts of section 5.3.2:

Lemma 5 (Binding Preservation). Both Conv1 and Conv2 preserve “in scope of” and

“more specific than” in both directions (and thus all of the concepts of section 5.4).

Proof. Under both conversions, “in scope of” is preserved:

xr in scope of yd (under sas)

iff xr ∈ S(yd)

iff xr ≤ yd

iff xr in scope of yd (under sap)

And under both conversions, “more specific than” is preserved:

xd more specific than yd (under sas)

iff S(xd) ⊆ S(yd)

iff xd ≤ yd

iff xd more specific than yd (under sap)

Furthermore, these conversions are inverses in one direction: from scope-as-

a-preorder to scope-as-sets back to scope-as-a-preorder. This implies that there

is a normal form for scope-as-sets, given by Conv1(Conv2(S)), such that the

conversions are exact inverses whenever this normal form is used.

We first show that the conversions are inverses in one direction:

Lemma 6 (Inverses1). For every scope preorder (≤), Conv2(Conv1(≤)) = (≤)

Proof.

xr

i ≤ xr

j when i = j

xr ≤ yd when xr ∈ S(yd)

iff xr ∈ {xr | xr ≤ yd}
iff xr ≤ yd

xd ≤ yd when S(xd) ⊆ S(yd)

iff xd ≤ yd

And they’re inverses in the other direction when S is in a normal form. Specifi-

cally, we will say that a scope-as-sets function S is in normal form when:
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(i) ∀xd. S(xd) contains only variables

(ii) ∀xd. ∀yd. xd ∈ S(yd) iff S(xd) ⊆ S(yd)

Lemma 7 (Inverses2). For any scope-as-sets function S in normal form,

Conv1(Conv2(S)) = S .

Proof.

S(yd)

= {xr | xr ≤ yd} ∪ {xd | xd ≤ yd} (Conv1)

= {xr | xr ∈ S(yd)}∪
{xd | S(xd) ⊆ S(yd)} (Conv2)

= {xr | xr ∈ S(yd)} ∪ {xd | xd ∈ S(yd)} (by (ii))

= S(yd) (by (i))

The normal form of a scope-as-sets scope function can be computed as:

Norm(S) = Conv1(Conv2(S))

Lemma 8. For any scope-as-sets scope function S , Norm(S) is in fact in normal form.

Proof. The first requirement—that the range of S only contains variables—is im-

mediately fulfilled by Conv1. The second requirement follows from the defini-

tions of Conv1 and Conv2:

xd ∈ S(yd) iff xd ≤ yd iff S(xd) ⊆ S(yd)

Putting a scope-as-sets scope function in normal form preserves its binding

structure. Furthermore, once it is in normal form, converting it to scope-as-a-

preorder (and back) have no effect.

Lemma 9. Norm preserves “in scope of” and “more specific than” (and thus all of the

concepts of section 5.4).

Proof. Follows directly from lemma 5.

This concludes the demonstration that scope-as-a-preorder is simply a nor-

malized version of scope-as-sets, and can effectively be used in its place. The

axioms of scope-as-sets are basic enough that they ought to apply in basically

any lexically-scoped setting; thus scope-as-a-preorder should too. We use Scope-

as-a-preorder in this thesis, however, because it is more canonical (per normal-

ization) and because it more closely aligns with the binding language described

next.

5.4 a binding specification language

The previous section presented definitions for representing the scoping of a term.

It did not, however, say how to determine the scoping of a term, i.e., what the
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specific preorder should be. In this section, we give a language for specifying

scoping rules that, given a term, determine a scoping preorder over its variables.

5.4.1 Scoping Rules: Simplified

The basic idea behind our binding language is that the binding structure of

a term should be determined piecewise by its subterms. Thus every term con-

structor (e.g., Lambda or Bind) should specify a scoping rule that gives a preorder

amongst itself and its children. A term’s scope-as-a-preorder can then be found

by taking the transitive closure of these local preorders across the whole term.

As an example, take the term (Lambda xd

1 (Plus xr

2 3)). To find the bindings

of this term, we must know the scoping rules for Lambda and Plus. A sensible

rule for Plus is that a term (Plus α β) has preorder α ≤ (Plus α β) and β ≤
(Plus α β), meaning that whatever a Plus term is in scope of, its children are too.

For brevity, we will typically write α ≤ Plus and β ≤ Plus instead. Likewise,

a sensible rule for Lambda is that a term (Lambda α β) has preorder (β ≤ α ≤
Lambda), meaning that whatever a Lambda term is in scope of, its children are

too, and that β (its body) is in scope of α (its declaration). Put together, and

applied to the example term, these rules give that:

(Lambda xd

1 (Plus xr

2 3))

has preorder:

xr

2 , 3 ≤ Plus ≤ xd

1 ≤ Lambda

Thus xr

2 7→ xd

1 by definition 8, as it should be.

5.4.2 A Problem

This isn’t quite the whole picture, though. Consider the term

(Lambda xd

1 (Let* (Bind xd

2 xr

3 EndBinds) xr

4))

What will these scoping rules look like? Whatever they are, they should cause

xd

2 to shadow xd

1 , xr

3 to be bound by xd

1 , and xr

4 to be bound by xd

2 . Formally, we

should have:

xd

2 7→ xd

1 and xr

3 7→ xd

1 and xr

4 7→ xd

2

which implies that, at a minimum:

xd

2 ≤ xd

1 and xr

3 ≤ xd

1 and xr

4 ≤ xd

2

This places a set of requirements on the scoping rules for Lambda, Let*, and

Bind (assuming per section 5.3.1 that scoping rules are as local as possible). For
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instance, xr

3 ≤ xd

1 can only be achieved if xr

3 ≤ Bind ≤ Let* ≤ xd

1 . Continuing

this way gives the requirements (shown both pictorially and textually):

Lambda

xd1 Let*

Bind

xd2 xr3 EndBinds

xr4

Let* ≤ xd

1

Bind ≤ Let*

xr

4 ≤ Bind

xd

2 ≤ Bind

xr

3 ≤ Bind

Bind ≤ xd

2

However, this puts xr

3 in scope of xd

2 , and as a result, xr

3 will be bound by xd

2 !

The problem is that Bind is trying to provide xd

2 , to make it available in the body

of Let*, but in doing so it incidentally makes it available in the Bind’s definition

(to xr

3). This is not how scoping dependencies should flow, and in the next two

subsections we present the full, un-simplified version of our scoping rules that

avoid this problem.

5.4.3 The Solution

The solution is to separate the bindings a term imports (i.e., requires) from the

bindings it exports (i.e., provides). In the running example, for instance, the Bind

imports xd

1 , and exports xd

1 and xd

2 (with xd

2 shadowing xd

1 ). We will call imports

and exports ports.

The scoping rules can now be re-interpreted with this in mind. Given a term e,

they will determine a preorder not over the subterms of e (like we have presented

it so far), but instead over the ports of the subterms of e. With this in mind, we

offer four kinds of bindings: See ?? for a
comparison of our
binding language to
attribute grammars.

A. bind i in j: A term may make all declarations exported by its ith child be

imported by its jth child.

B. import i: A term’s i’th child may import its parent’s declarations. If so,

it imports the declarations imported by its parent. (This is almost universal:

declarations in scope at a node in an ast should also be in scope at its

children. However, we do allow a term to hide all bindings from its child,

if it so desires.)

C. export i: A term’s i’th child may export its declarations to its parent. If

so, the term exports child i’s exports.

D. re-export: A term may take the declarations it imported, and export them.

(We do not know of any examples of this in the wild, but we offer it for

completion.)
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These four kinds of paths may be represented graphically, showing imports as ↑
and exports as ↓:

B
A

CD

Parent↑ ↓

Child1↑ ↓ Child2↑ ↓

In a potentially confusing change, these port arrows are drawn in the opposite

direction as the port arrows in the paper this chapter is based on [70]. Why the

change?

In the paper, imports were drawn as ↓ and exports as ↑. As a result, in the

diagram the up arrow B connected two downward-pointing import arrows, and

the down arrow C connected two upward-pointing export arrows. Eelco Visser

pointed out how confusing this was, so we switched it.

Relatedly, why do our (solid/green) binding arrows go in the direction they

do? Some considerations suggest that they should go from reference to declara-

tion (which is what we settled on):

• They should go the intuitive way, and flow from the natural question to

ask (where is this reference bound?) to its answer (here is the binding

declaration).

• They should be consistent with related work, and go in the same direction

as the arrows in Scope Graphs [57].

Other considerations suggest that they go in the opposite direction (from decla-

ration to reference):

• They should go the intuitive way, and flow in the same direction as values

do: first a value is bound to a declaration, and then later that value is

propogated to its reference.

• They should be consistent with related work, and match the arrows that

the DrRacket editor [7] draws between references and declarations.

It was a difficult choice, and could reasonably have gone in the other direction.

With these new bindings in mind, the requirements for the example from the

previous subsection become:



5.4 a binding specification language 79

Lambda↑ ↓

xd1↑ ↓ Let*↑ ↓

Bind↑ ↓

xd2↑ ↓ xr3↑ ↓ EndBinds↑ ↓

xr4↑ ↓

↑Let* ≤ ↓xd

1

↑Bind ≤ ↑Let*
↑xr

4 ≤ ↓Bind
↑xd

2 ≤ ↑Bind
↑xr

3 ≤ ↑Bind
↓xd

2 ≤ ↑xd

2

↓Bind ≤ ↓xd

2

Under this new preorder, xr

3 7→ xd

1 and xr

4 7→ xd

2 as desired.

5.4.4 Scoping Rules: Unsimplified

We have given an intuition behind our scoping rules; now we present them

formally.

Each port will have one of two signs (import or export):

d ::= ↑ (import)

| ↓ (export)

A port, then, pairs a term e with a sign:

a, b, c ::= ↑e | ↓e (port)

A set of scope rules Σ gives a relation for each term constructor C that describes

the scoping relationships between a term constructed with C and its subterms:

Definition 12. A set of scope rules Σ is a partial map from term constructors C of

arity n to binary relations over {1, ..., n, r
↓, r
↑}, such that:

• The relation is transitive.

• r
↓ is a least element ( 6 ∃a. (a, r

↓) ∈ Σ[C])

• r
↑ is a greatest element ( 6 ∃a. (r↑, a) ∈ Σ[C])

Here i represents the ith child term, r
↓ represents the parent term’s exports,

and r
↑ represents the parent term’s imports. We will call pairs in the relation

(e.g., (1, r
↑)) facts, and will denote them with their description in our binding

language (so that (1, r
↑) = import 1). The sign on the port on i can be de-

termined knowing that the fact it is part of must be one of the four kinds of

bindings described in section 5.4.3. We will write e′ v e to mean that e′ is a

subterm of e, and write a v e to mean ∃e′. (a = ↑e′ or a = ↓e′) and e′ v e.
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As an example of scope rules, the rules for Lambda are:

Σ[Lambda] = {(1, r
↑), (2, r

↑), (2, 1)} = {import 1, import 2, bind 1 in 2}

These scope rules determine the scoping for individual (sub)terms. The scop-

ing of a full term is found by applying the scoping rules locally at each subterm,

then taking the reflexive transitive closure of this global relation:

Definition 13. The scoping of a full term e under scoping rules Σ is the set of judge-

ments of the form Σ, e ` a ≤ b defined by the “Declarative Rules” and “Shared Rules”

of fig. 6.

The judgments in the figure have the form Σ, e ` a ≤ b, which means that

“a ≤ b in term e using scoping rules Σ”. A judgment is well formed when a, b v e.

(Later, we will also use judgments of the form Σ, p ` a ≤ b; these are governed

by identical rules, allowing each term e to instead be a pattern p.)

Rules SD-Import, SD-Export, SD-Bind, and S-ReExport capture the direct mean-

ing of the scoping rules. S-Refl, S-Refl2, and SD-Trans give the transitive reflexive

closure. S-Decl says that declarations extend the current scope. S-Lift says that

facts learned about a subterm remain true in the whole term.

These rules are not, however, syntax-directed. We give a syntax-directed ver-

sion of the rules in the figure, under “Algorithmic Rules” and “Shared Rules”.

These two rule sets are equivalent:

Theorem 6 (Algorithmic Scope Checking). The declarative and algorithmic scope

checking rules (fig. 6) [with shared rules common to both] are equivalent.

Proof. We will show that the Algorithmic (SA-) and Declarative (SD-) rules are

equivalent by giving translations in both directions (omitting the symbol Σ through-

out for brevity). figs. 9 and 12 give the translations. The translations make use

of the fact that the scoping rule relations are transitive.

The conversion from SA to SD is straightforward. However, the conversion

from SD to SA is more difficult, as it has to handle the many ways the SD-Trans

rule can be used. It proceeds by recursively pushing SD-Trans toward the leaves

of the derivation.

The following table shows which inference rules can occur above SD-Trans

(and are thus included in figs. 9 and 11), and which are impossible (and thus not

included):

left \ right re-export export import bind lift

re-export 7 7 7 7 7

export 7 7 X X X

import 7 7 7 7 7

bind 7 7 X X X

lift 7 7 X X X
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Σ, e ` a ≤ b

Declarative Rules

SD-Trans
Σ, e ` a ≤ b Σ, e ` b ≤ c

Σ, e ` a ≤ c

SD-Import
import i ∈ Σ[C]

Σ, (C e1 ... en) ` ↑ei ≤ ↑(C e1 ... en)

SD-Export
export i ∈ Σ[C]

Σ, (C e1 ... en) ` ↓(C e1 ... en) ≤ ↓ei

SD-Bind
bind j in i ∈ Σ[C]

Σ, (C e1 ... en) ` ↑ei ≤ ↓ej

Shared Rules (Declarative & Algorithmic)

S-Refl1

Σ, e ` ↑e ≤ ↑e S-Refl2

Σ, e ` ↓e ≤ ↓e

S-Lift
Σ, ei ` a ≤ b

Σ, (C e1 ... en) ` a ≤ b

S-Decl
Σ, xd ` ↓xd ≤ ↑xd

S-ReExport
re-export ∈ Σ[C]

Σ, (C e1 ... en) ` ↓(C e1 ... en) ≤ ↑(C e1 ... en)

Algorithmic Rules

SA-Import
Σ, ei ` a ≤ ↑ei import i ∈ Σ[C]
Σ, (C e1 ... en) ` a ≤ ↑(C e1 ... en)

SA-Export
export i ∈ Σ[C] Σ, ei ` ↓ei ≤ a
Σ, (C e1 ... en) ` ↓(C e1 ... en) ≤ a

SA-Bind
Σ, ei ` a ≤ ↑ei bind j in i ∈ Σ[C] Σ, ej ` ↓ej ≤ b

Σ, (C e1 ... en) ` a ≤ b

Figure 6: Scope Checking

These scope checking rules say how to find a preorder over all of the ports in a

term. However, section 5.3 is based only on preorders over the variables in a term.

In fact, scope-as-a-preorder could be used with a different binding language, so

long as it can be used to extract a preorder.
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This is obtained as the restriction of the entire preorder to variables, as cap-

tured by the following rule:

Σ, e ` x ≤ y S-Var
Σ, e ` ↑xi ≤ ↑yj

Σ, e ` xi ≤ yj

The definitions for binding and shadowing (definitions 8 and 11) can then be

expressed as inference rules:

Σ, e ` x 7→ y S-Bound
xd ∈ min{xd

i |Σ, e ` xr ≤ xd

i }
Σ, e ` xr 7→ xd

S-Shadow
xd

j ∈ min{xd

k |Σ, e ` xd

i ≤ xd

k } and Σ, e 6` xd

j ≤ xd

i

Σ, e ` xd

i 7→ xd

j

These definitions form a scope preorder:

Lemma 10. For any set of scoping rules Σ and term e, the relation {(xi, xj) |Σ, e `
xi ≤ xj} is a scope preorder satisfying the requirements of definition 5.

Proof sketch. The relation is a preorder by the derivation rules S-Refl1, S-Refl2,

and SD-Trans. We must also show that references are least. Suppose instead

that xi ≤ xr

j for some i 6= j. Then ↑xi ≤ ↑xr

j (by S-Var), which is syntactically

impossible to achieve by the declarative judgements.

5.4.5 Well-Boundedness

Definition 8 (on being bound) can be used to define α-equivalence. Two terms

are α-equivalent if (i) each term is “well-bound”; (ii) they have the same “shape”

(i.e., they are identical ignoring their variable names); and (iii) for every binding

xr 7→ xd in one term, an analogous binding exists in the same location in the

other term. To formalize what “same location” means, we will use a join operator

(e ./ e′) that checks that e and e′ have the same shape and finds a bijection

between their variable occurrences as a witness to this fact:

xd

i ./ yd

j = {xd

i ↔ yd

j }
xr

i ./ yr

j = {xr

i ↔ yr

j }
const ./ const = ∅

(C e1 ... en) ./ (C e′1 ... e′n) =
⋃

i∈1..n ei ./ e′i
e ./ e′ = undefined otherwise

Likewise, to formalize “well-bound”, we will use the rules to determine when

two declarations conflict; for instance if they have the same name and are both

parameters to the same function. We will consider terms with conflicting decla-

rations to be ill-bound.
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Definition 14 (Conflicting Declarations). Two variable declarations xd

i and xd

j con-

flict in a term e when:

S-Conflict

Σ, e ` a ≤ xd

i Σ, e ` a ≤ xd

j
minΣ,e{xd

i , xd

j } = {xd

i , xd

j }
Σ, e ` xd

i conflicts xd

j

(If a variable reference is ambiguously bound (definition 10), then its bindings

declarations must be in conflict.)

A term e is well-bound with respect to scoping rules Σ when every reference is

bound by exactly one declaration, and there are no conflicting declarations:

S-WB

∀xr∈ e. ∃!xd∈ e. Σ, e ` xr 7→ xd

6 ∃xd

i , xd

j ∈ e. Σ, e ` xd

i conflicts xd

j

Σ ` wb e

The definition of α-equivalence with respect to the scoping rules Σ is then:

Definition 15 (α-equivalence).

S-α-Eqv

Σ ` wb e Σ ` wb e′ e ./ e′ = ψ
∀xr, xd. Σ, e ` xr 7→ xd iff Σ, e′ ` ψ(xr) 7→ ψ(xd)

Σ ` e =α e′

(We will also talk about α-equivalence and well-boundedness of patterns. The definitions

are identical.)

In section 5.6.5, we show a catalog of scoping rules that can be expressed in

our binding language.

5.5 inferring scope

In this section we show how to infer scope by lifting scoping rules from a core

language to the surface language. The input to this inference process is twofold:

first, the core language must have associated scoping rules, and second, the

syntactic sugar must be given as a set of pattern-based rewrite rules. The output

of scope inference is a set of scoping rules for the surface language.

The process is loosely analogous to type inference: type inference finds the

most general type annotations such that a program type-checks; scope inference

will find the smallest set of surface scoping rules under which desugaring pre-

serves α-equivalence. More precisely, given a core language with scoping rules

Σcore, and a desugaring D, our algorithm finds scoping rules Σsurf that preserves

α-equivalence (theorem 8), so that:

Σsurf ` e =α e′ implies Σcore ` D(e) =α D(e′)

Furthermore, Σsurf will be least, so that if Σ′surf also has this property, then

∀C. Σsurf [C] ⊆ Σ′surf [C].
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The general algorithm for scope inference is given in fig. 7. The next three

subsections explain our assumptions about desugaring, and then the algorithm.

5.5.1 Assumptions about Desugaring

To briefly recap, we assume that desugaring is given by a set of rewrite rules of

the form p⇒ p′, where p and p′ are patterns:

pattern p ::= α pattern variable

| value primitive value

| (C p1 ... pn) ast node

| xr

i variable reference

| xd

i variable declaration

Additionally, references and declarations in the rhs of a rule must be given

fresh names during expansion. Finally, desugaring must obey the requirements

of section 3.2.1, with one exception: the lhss of rules need not be disjoint.

When desugaring, there may be more than one rewrite rule that applies to a

given term. None of the results of this chapter depend on the order of the rewrites; even

a non-deterministic desugaring is allowed. A more typical choice is to apply rules

in outside-in order, as described in section 3.2, and as is done by Scheme-style

syntax-rules macros [42].

In general, a rewrite will look like:

p0[p[e1, ..., en]]⇒ p0[p′[e1, ..., en]]

where p0 and p are patterns, and p[e1, ..., en] denotes replacing the n pattern

variables of pattern p with terms e1, ..., en. (In section 5.2, p was called the lhs,

and p′ the rhs.) The outer pattern p0 is important because when a piece of

sugar expands, while its expansion doesn’t typically depend on its surrounding

context, its binding structure might. For example, p0 might be (Lambda xd α),

and xr inside the pattern variable may be unbound without it.

5.5.2 Constraint Generation

The first step to scope inference is generating a set of constraints for each desug-

aring rule that, if satisfied, ensure that it will preserve binding structure. Specif-

ically, fix a rewrite rule p⇒ p′. It is important that this rewrite does not change

the binding of any variable outside of p. To achieve this, it will suffice that the

preorder on the boundary of p is the same as the preorder among the boundary

of p′. The boundary, here, is the set of pattern variables in p, together with the
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inferScope(Σ, {pi ⇒ p′i}i∈1..n) , Let Σsurf = solve(Σ, {genConstrs(pi ⇒ p′i)}i∈1..n)

checkScope(Σsurf , {pi ⇒ p′i}i∈1..n)

Return Σsurf

genConstrs(p⇒ p′) ,
{

genConstr(a ≤ b, p⇒ p′)
}

a,b∈H
where H = pattern-vars(p) ∪ pattern-vars(p′) ∪ {r} and where

the omitted port signs on a and b are filled in as described in

definition 16

genConstr(a ≤ b, p⇒ p′) , genConj(a ≤ b, p) iff genConj(a ≤ b, p′)

(This is a constraint of the form f1 ∧ ...∧ fm iff f ′1 ∧ ...∧ f ′m′ .)

genConj(a ≤ b, p) , Find a derivation D of Σ, p ` a ≤ b where Σ is unknown, using
the Algorithmic Scope Checking rules (fig. 6). This can be ac-

complished since the rules are syntax-directed over p.

Return the conjunction of the premises of D.

(These premises will be facts of the form (i, j) ∈ Σ[C] for some i,

j, and C, and their conjunction is both necessary and sufficient

for Σ, p ` a ≤ b to hold.)

solve(Σcore, constraints) , Initialize Σsurf = Σcore

Until fixpoint:

• If a constraint has the form f1 ∧ ...∧ fm iff f ′1 ∧ ...∧ f ′m′
and some fi (or f ′i ) is true in Σsurf :

Delete fi (or f ′i ) from the constraint

• If a constraint has the form f1 ∧ ...∧ fm iff true, or the form

true iff f1 ∧ ...∧ fm (where true is the empty conjunction):

Delete the constraint from constraints

Add fi to Σsurf for each f1, ..., fm

(maintaining transitive closure)

• If at any point (i, j) ∈ Σsurf [C], where C is

in the core language but (i, j) 6∈ Σcore[C]:

ERROR: Reject this sugar

Return Σsurf

checkScope(Σ, {pi ⇒ p′i}i∈1..n) , For each rule p⇒ p′:

Check that if Σ, p ` a ≤ b and a ∈ p′ then b ∈ p′

(otherwise ERROR)

Check that each reference xr ∈ p′ is bound by a

unique declaration xd ∈ p′

Figure 7: Scope Inference Algorithm
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root (i.e., the whole term). For example, in p0[p[e1, ..., en]], αi bounds ei, and p

(the root) bounds p0. In general, we will call this property scope-equivalence:

Definition 16 (Scope-equivalence of patterns). .

Σ ` p ∼= p′ means that ∀a, b ∈ {α1, ..., αn, r}.

Σ, p ` a ≤ b iff Σ, p′ ` a ≤ b

where r (“root”) stands in for p or p′, as appropriate, and omitted port signs are deter-

mined by what our binding language allows:

Σ, p ` αi ≤ αj , Σ, p ` ↑αi ≤ ↓αj

Σ, p ` αi ≤ r , Σ, p ` ↑αi ≤ ↑p

Σ, p ` r ≤ αj , Σ, p ` ↓p ≤ ↓αj

Σ, p ` r ≤ r , Σ, p ` ↓p ≤ ↑p

When two patterns are scope-equivalent, rewriting one to the other within a

term does not change the scope of the rest of the term:

Definition 17 (Scope-preservation). A rewrite

p0[p[e1, ..., en]]⇒ p0[p′[e1, ..., en]]

preserves scope relative to a set of scoping rules Σ if ∀ a, b v p0, e1, ..., en (i.e., each of

a and b lies in one of p0, e1, ..., en):

Σ, p0[p[e1, ..., en]] ` a ≤ b iff Σ, p0[p′[e1, ..., en]] ` a ≤ b

Lemma 11 (Scope-equivalent patterns preserve scope). If Σ ` p ∼= p′, then any

rewrite p0[p[e1, ..., en]]⇒ p0[p′[e1, ..., en]] preserves scope.

Proof. We will prove the forward implication of the iff in scope-preservation;

the reverse is symmetric. View the (≤) preorder as a directed graph. Our

given is that there is a path from a to b in p0[p[e1, ..., en]], where neither a

nor b lies in p. Some subpaths of this path may traverse p; these subpaths

are bounded by ↑e1, ↓e1, ..., ↑en, ↓en, ↑p, ↓p. The fact that Σ ` p ∼= p′ means

that these subpaths can be converted to subpaths in p′, bounded instead by

↑e1, ↓e1, ..., ↑en, ↓en, ↑p′, ↓p′. Replace these subpaths. Now the whole path goes

from a to b in p0[p′[e1, ..., en]].

We can use scope-equivalence to turn a rewrite rule p ⇒ p′ into a set of

constraints that hold iff the rewrite rule preserves scope. There will be one

constraint for every pair (a, b) from the boundary. Each constraint will have the

form:

f1 ∧ f2 ∧ ... fn iff f ′1 ∧ f ′2 ∧ ... f ′m
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where each fi is a fact (e.g. bind 2 in 1 ∈ Σ[Let]). This constraint is found by

stating that the premises of the derivation of Σ, p ` a ≤ b hold iff the premises of

the derivation Σ, p′ ` a ≤ b hold. These derivations are guaranteed to be unique,

and can found efficiently, because the algorithmic scope-checking rules (fig. 6)

are syntax-directed.

As an example of this constraint generation, take the desugaring rule for Let:

(Let α β δ)⇒ (Apply (Lambda α δ) β)

One of the necessary constraints says that:

Σ, (Let α β δ) ` ↑α ≤ ↓β
iff Σ, (Apply (Lambda α δ) β) ` ↑α ≤ ↓β

Each side of this “iff” has a unique derivation using the algorithmic scope-

checking rules (fig. 6). Replacing each side with the premises of its derivation

yields the constraint:

bind 2 in 1 ∈ Σ[Let] iff bind 2 in 1 ∈ Σ[App] ∧ import 1 ∈ Σ[Lam]

Since the boundary has size four (α, β, δ, and r), continuing this way leads to

a total of 42 = 16 constraints:

bind 1 in 1 ∈ Σ[Let] iff bind 1 in 1 ∈ Σ[Lam]

bind 2 in 1 ∈ Σ[Let] iff bind 2 in 1 ∈ Σ[App]∧ import 1 ∈ Σ[Lam]

bind 3 in 1 ∈ Σ[Let] iff bind 2 in 1 ∈ Σ[Lam]

import 1 ∈ Σ[Let] iff import 1 ∈ Σ[App]∧ import 1 ∈ Σ[Lam]

bind 1 in 2 ∈ Σ[Let] iff bind 1 in 2 ∈ Σ[App]∧ export 1 ∈ Σ[Lam]

bind 2 in 2 ∈ Σ[Let] iff bind 2 in 2 ∈ Σ[App]

bind 3 in 2 ∈ Σ[Let] iff bind 1 in 2 ∈ Σ[App]∧ export 2 ∈ Σ[Lam]

import 2 ∈ Σ[Let] iff import 2 ∈ Σ[App]

bind 1 in 3 ∈ Σ[Let] iff bind 1 in 2 ∈ Σ[Lam]

bind 2 in 3 ∈ Σ[Let] iff bind 2 in 1 ∈ Σ[App]∧ import 2 ∈ Σ[Lam]

bind 3 in 3 ∈ Σ[Let] iff bind 2 in 2 ∈ Σ[Lam]

import 3 ∈ Σ[Let] iff import 1 ∈ Σ[App]∧ import 2 ∈ Σ[Lam]

export 1 ∈ Σ[Let] iff export 1 ∈ Σ[App]∧ export 1 ∈ Σ[Lam]

export 2 ∈ Σ[Let] iff export 2 ∈ Σ[App]

export 3 ∈ Σ[Let] iff export 1 ∈ Σ[App]∧ export 2 ∈ Σ[Lam]

re-export ∈ Σ[Let] iff re-export ∈ Σ[App]

We have just described how to generate constraints—covering the gen func-

tions in fig. 7—and the previous lemma shows that the constraints generated

this way capture our aim in scope inference. We now turn to solving these

constraints.



88 resugaring scope rules

5.5.3 Constraint Solving

These constraints can be solved by searching for their least fixpoint, starting with

the initial knowledge of the scoping rules for the core language. Finding the least

fixpoint is sensible, because by default, declarations should not be in scope. Since

all of the constraints have the form of an “iff” between conjunctions, the least

fixpoint exists and can be found by monotonically growing the set of known

facts.

Solving for the least fixpoint gives a set of scoping rules for the surface and

core languages such that the desugaring rules preserve this scope. Since the

least fixpoint was seeded with the known scoping rules for the core language,

its output will contain at least those facts. However, they may have inferred addi-

tional, incorrect facts about the scope of the core language. For instance, consider

the following “Lambda flip flop” rule (where Flip and Flop are constants, i.e.,

nodes of arity 0):

(LambdaFF Flip α1 α2)⇒ (Lambda α1 α2)

(LambdaFF Flop α1 α2)⇒ (Lambda α2 α1)

In traditional hygienic macro expansion systems this desugaring is considered

to be OK: the scope of a term is defined by the scope of its desugaring, which may

vary on things such as the choice between Flip and Flop constants. However, we

will take the opposite view: this desugaring should be rejected because the scope

it produces for LambdaFF cannot be captured by (reasonable) static scoping

rules.

Let us work through scope inference for this example. From the first rule, we

can learn (from the Lambda on the rhs) that bind 2 in 3 ∈ Σ[LambdaFF], and

from the second rule, we can learn that bind 3 in 2 ∈ Σ[LambdaFF]. Applying

either of these facts to the other rule gives that bind 2 in 1 ∈ Σ[Lambda]: the body

of the Lambda is in scope at its parameter! This contradicts the known signature

for Lambda (we know that bind 2 in 1 6∈ Σ[Lambda]), so these rules would be

rejected. In general, scope inference fails when the least fixpoint contains facts

about the scope of a core language construct that are not part of that construct’s

signature.

5.5.4 Ensuring Hygiene

We have described how to infer scope by generating and then solving constraints.

There are two checks we should perform, however, to ensure that desugaring
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cannot produce unbound identifiers. These checks are performed by checkScope

in fig. 7:

• Any references introduced on the rhs of a sugar must be bound. For

instance, a sugar could not simply expand to xr, because that would be

unbound.

• A sugar cannot delete a pattern variable that might contain a bound dec-

laration. For instance, it could not rewrite (lambda α β) to β, because β

might contain a reference bound by a declaration in α. In general, if a

sugar deletes any pattern variable, then it must also delete all smaller pat-

tern variables (those that are less in the preorder).

These two checks ensure that sugars cannot cause unbound identifier exceptions.

Besides obviously being a problem, we would like to prevent this because it

violates our notion of hygiene. However, these problematic sugars would not be

considered unhygienic in the traditional sense.

Traditionally, research on hygiene has focused on preventing sugars from ac-

cidentally capturing user-defined references and vice versa. For instance, if a

user binds xd

i and then uses xr inside a sugar, and the sugar locally binds

xd

j , then xr should not be bound by xd

j . These hygiene violations are called

“introduced-binder” and “introduced-reference” violations, respectively. There

are also more subtle violations in which desugaring makes observations about

declaration equality [2].

However, there is a simpler goal we can aim for that gets at the heart of the

problem, and subsumes all of these specific properties. The goal is that if two

programs are α-equivalent, then they will still be α-equivalent after a desugaring

D:

Σsurf ` e =α e′ implies Σcore ` D(e) =α D(e′)

(Recall from definition 15 that α-equivalence is parameterized by Σ. Therefore,

in the above antecedent and consequent, α-equivalence is respectively defined

by Σsurf and Σcore.)

This prevents accidental variable capture because α-renaming the captured

variable would cause it to not be captured, changing the α-equivalence-class of

the program. It also prevents the introduction of unbound identifiers, because

a program with an unbound identifier is not α-equivalent to any other program

(it is outside the domain of α-equivalence).

Most hygiene papers don’t mention this criterion for a simple reason: =α is

not defined on their surface language, so they cannot even state the requirement.

Recent exceptions to this rule [35, 78] get around it by requiring sugar-writers to

supply scoping rules for the surface language. These scoping rules then define
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α-equivalence for the surface language. In contrast, we infer scoping rules for

the surface language, and can then ask whether these inferred rules preserve

α-equivalence. In section 5.7 we will show that they do, so long as inference was

successful and scopeCheck passed.

This covers the solve algorithm in fig. 7, and completes our description of

scope inference: (i) find constraints for every desugaring rule; (ii) find their least

fixpoint, starting with the known scoping rules for the core language; and (iii)

check that none of the sugars can produce unbound identifiers.

5.5.5 Discussion of the Hygiene Property

One may wonder how useful of a property preserving α-equivalence is. To put

it strongly: what good is it for desugaring to preserve α-equivalence, when α-

equivalence for the surface language was made up? In fact, there is a situation

in which preserving α-equivalence is useless. Suppose that e1 =α e2 in the sur-

face language was defined to mean that D(e1) =α D(e2) in the core language,

where D is a naive, scope-unaware desugaring. Then desugaring will preserve

α-equivalence, despite not being hygienic!

It is therefore crucial that our binding language cannot express this (rather

insane) notion of surface-language α-equivalence. It is the weakness (i.e., sanity)

of our binding language that leads to the strength of our hygiene property. While

“sanity” is a somewhat subjective notion, we can at least show that our binding

language passes one basic litmus test. Any set of scope rules in our binding

language will lead to a notion of α-equivalence that is invariant under permuting

variable names (that is, it is equivariant [29]):

Lemma 12. If σ is a permutation of variable names and Σ ` e =α e′, then Σ ` σ(e) =α

σ(e′).

Proof sketch. A formula φ(a1, ... , an) is equivariant if for all arguments a1, ... , an,

and for all permuations σ of variable names, φ(a1, ... , an) iff φ(σ(a1), ... , σ(an)).

We wish to show that α-equivalence in our binding language is equivariant. The

only parts of α-equivalence (definition 15) that inspect variable names are the

various rules that implicitly check that two variables have the same name (such

as S-Decl and S-WB). Luckily, equality checking is equivariant. Furthermore,

formulas that do not inspect or modify names are equivariant, and any compo-

sition of equivariant formulas is itself equivariant. Thus α-equivalence is equiv-

ariant.

The “insane” notion of α-equivalence above—that defines surface language

α-equivalence in terms of a naive desugaring—does not respect variable permu-

tation, and thus cannot be expressed in our binding language.
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5.5.6 Correctness and Runtime

The inferScope algorithm correctly solves the constraints:

Theorem 7 (Rewrites preserve scope). .

Let Σsurf = inferScope(Σcore, {pi ⇒ p′i}i∈1..n). Then any rewrite of the form p0[pi[e1, ..., en]]⇒
p0[p′i[e1, ..., en]] will preserve scope. Furthermore, Σsurf is least (it is contained in every

other set of scoping rules that would be preserved).

Proof. By construction, the constraints generated by inferScope ensure that Σsurf `
pi
∼= p′i for each i. By lemma 11, this implies that any rewrite p0[pi[e1, ..., en]] ⇒

p0[p′i[e1, ..., en]] will preserve scope. Thus it suffices to show that solve does, in

fact, find the least solution to the constraints given Σcore.

solve works with scope signatures Σcore and Σsurf , and a set of constraints C:

F′11 ∧ F′12 ∧ ... iff F′′11 ∧ F′′12 ∧ ...

F′21 ∧ F′22 ∧ ... iff F′′21 ∧ F′′22 ∧ ...

...

At any point during the evaluation of solve, let the meaning φ of Σcore, Σsurf , and

Cs be: ∧
F∈Σsurf

F ∧
∧

F∈Σcore

F ∧
∧

F∈Σcore

¬F ∧
∧

i

∧
j

F′ij iff
∧
k

F′′ik


That is,

1. Every fact in Σsurf is true

2. Every fact in Σcore is true

3. Every fact in the core language but not in Σcore is false (i.e., we assume that

Σcore lists all scoping rules for the core language)

4. The constraints hold.

Upon initialization during solve, φ follows from Σcore and C. Furthermore,

every step of solve maintains φ. There are three kinds of steps to consider, and

each follows from a logical equivalence:

• “If a fact F in a constraint is in Σsurf : Delete F from the constraint.”

F ∧ (F ∧ F2 ∧ ... iff F′1 ∧ F′2 ∧ ...) ≡ F ∧ (F2 ∧ ... iff F′1 ∧ F′2 ∧ ...)

• “If one side of a constraint is empty: Delete the constraint; Add the other

side to Σsurf (maintaining trans. closure).”

(true iff F1 ∧ ...∧ Fn) ≡ F1 ∧ ...∧ Fn

• “If any fact F in Σsurf is in the complement of Σcore: ERROR”

F ∧ ¬F ≡ false
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Finally, when solve halts, it is because the facts in C and Σsurf are disjoint, and

every constraint in C has at least one fact on each side. Therefore it is valid to

obtain a minimal set of facts by setting every fact in Σsurf to false; doing so will

satisfy C by making both sides of every remaining constraint false. Thus we

have shown that the final Σsurf :

∧
F∈Σsurf

F ∧
∧

F∈Σsurf

¬F

is a minimal solution to the initial Σcore and C:

∧
F∈Σcore

F ∧
∧

F∈Σcore

¬F ∧
∧

i

∧
j

F′ij iff
∧
k

F′′ik


Thus the surface language scoping rules Σsurf found by solve are valid and mini-

mal, given the core language scoping rules Σcore plus the constraints C.

Corollary 1 (Desugaring preserves scope). .

Let Σsurf = inferScope(Σcore, {pi ⇒ p′i}i∈1..n). Then desugaring with the rules {pi ⇒
p′i}i∈1..n will preserve scope.

Proof. Induct on the number of rewrites performed.

Furthermore, scope inference runs in time O(ΣC∈surf arity(C)3):

Lemma 13. inferScope(Σ, C) runs in time O(size(C) + ΣC∈surf arity(C)3).

Proof. The running time of inferScope is dominated by solve, which in turn is

dominated by two operations: iterating over the facts in C, and adding facts

to Σsurf . Iterating over the facts in C takes time size(C), where size(C) is the

total number of facts in C. Each fact added to Σsurf requires maintaining the

transitive closure of Σsurf , for the constructor C of the fact. This can be done

with an amortized cost of O(arity(C)) per C-fact added. (To add a fact a ≤
b ∈ Σ[C] that does not appear in Σsurf , insert it and then recursively add a ≤
c ∈ Σ[C] for every fact b ≤ c ∈ Σ[C], and add c ≤ b ∈ Σ[C] for every fact

c ≤ a ∈ Σ[C].) Since there are O(arity(C)2) possible C-facts to add, this adds an

additional O(ΣC∈surf arity(C)3) running time.

The cubic parameter is concerning, but not a problem in practice for a number

of reasons. First, arity(C) tends to be small. Second, this algorithm is run off-

line, and once per language. Finally, as we discuss in section 5.6, in practice the

running time is extremely small.
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5.6 implementation and evaluation

We have implemented the scope inference algorithm. Beyond what is shown in

this chapter, the implementation also allows (i) marking variables as global refer-

ences that should refer to globally available identifiers in the expanded program,

such as print, and (ii) a select form of copying a pattern variable, where the pat-

tern variable contains a declaration and the copy is meant to be a reference of the

same name. The implementation is available at https://github.com/brownplt/

scope-graph.

Besides the examples shown earlier, we have tested this implementation on

sugars from three languages:

• All of the sugars that bind values in the Pyret language (pyret.org): namely

for expressions, let statement clustering (nested bindings are grouped

into a single let), and function declarations.

• Haskell list comprehensions, which include guards, generators, and local

bindings.

• All of the sugars that bind values in R5RS Scheme [42]: namely let, let*,

letrec, and do.

Some of the desugarings use ellipses in their definition, and thus had to be

translated to match our fixed-arity assumption. (To do so, we introduced auxil-

iary ast constructors and used those to express the equivalent looping.) letrec

required one further adjustment to successfully infer scope.1 After that, our tool

successfully inferred scope for all of the sugars except for Scheme’s do. In the

rest of this section, we will describe many of these sugars in more detail, ending

with do.

In practice, the running times are very modest. In our implementation in

Rust (rust-lang.org) all of the sugars we have tested run in about 18ms on a

generic desktop, of which 8ms is parsing time. Therefore, the speed is even fast The original
publication gave a
total running time of
130ms because the
code was compiled
without cargo
--release.

enough for scope inference to be used as part of a language developer’s rapid

prototyping workflow.

5.6.1 Case Study: Pyret for Expressions

Consider the “for expressions” of the Pyret language:

1 The change was to have the desugaring distinguish between the letrec having zero bindings or one-

or-more bindings. This prevented a fact of the form bind i in i from being applied to the binding

list of the desugared let, which would make its bindings recursive. We have not found a principled

account for why this was necessary.

https://github.com/brownplt/scope-graph
https://github.com/brownplt/scope-graph
rust-lang.org


94 resugaring scope rules

for fold(p from 1, n from range(1, 6)):

p * n

end # Produces 5! = 120

This example desugars into:

fold(lam(p, n): p * n end, 1, range(1, 6))

In general, the for syntax takes a function expression, any number of from

clauses, and a body. It desugars into a call to the function, passing it as ar-

guments (i) a lambda whose parameters are the lhss of each from and whose

body is the body of the for, and (ii) the rhs of each from.

Our system produces the following scoping rules for for, shown both textually

and pictorially:In the textual
representation of the

scoping rules, we
give names to a
node’s children.
Formally, these

should be indices.

For↑ ↓

func↑ ↓ froms↑ ↓ body↑ ↓

import func ∈ Σ[For]

import froms ∈ Σ[For]

import body ∈ Σ[For]

bind froms in body ∈ Σ[For]

From↑ ↓

param↑ ↓ arg↑ ↓ froms↑ ↓

import param ∈ Σ[From]

import arg ∈ Σ[From]

import froms ∈ Σ[From]

export param ∈ Σ[From]

export froms ∈ Σ[From]

5.6.2 Case Study: Haskell List Comprehensions

Haskell list comprehensions consist of sugar for boolean guards that filter the list,

generators that specify the domain of the elements in the list, and local bindings.

To quote the language standard [61, section 3.11]: “List comprehensions satisfy

these identities, which may be used as a translation into the kernel:”

[ e | True ] = [e] (Base case)

[ e | q ] = [ e | q, True ] (Base case)

[ e | b, Q ] = if b then [ e | Q ] else [] Boolean guards

[ e | p <- l, Q ] = let ok p = [ e | Q ]

ok _ = []

in concatMap ok l Generators

[ e | let decls, Q ] = let decls in [ e | Q ] Local bindings
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“where e ranges over expressions, p over patterns, l over list-valued expressions,

b over boolean expressions, decls over declaration lists, q over qualifiers, and Q

over sequences of qualifiers.”

For example, the perfect numbers (those equal to the sum of their divisors)

can be calculated by:

[n | n <- [1..], let d = divisors n, sum d == n]

Our system successfully infers the scope of these sugars. We will describe

them one at a time. First, list comprehensions [e | Q] consist of an expression

e and a list of qualifiers Q. Any declarations exported by Q (such as n above)

should be in scope at e:

[e | Q]↑ ↓

e↑ ↓ Q↑ ↓

import e ∈ Σ[ListComprehension]

import Q ∈ Σ[ListComprehension]

bind Q in e ∈ Σ[ListComprehension]

Boolean guards b, Q have a boolean expression b that is used to filter the list,

and a sequence of more qualifiers Q. The scope of a boolean guard expression

is simple: besides lexical scope, any declarations from Q are exported:

b, Q↑ ↓

b↑ ↓ Q↑ ↓

import b ∈ Σ[LC_Guard]

import Q ∈ Σ[LC_Guard]

export Q ∈ Σ[LC_Guard]

A generator expression p ← l, Q binds elements of list l to pattern p. p is

bound in Q, and the declarations of both p and Q are exported:

p ← l, Q↑ ↓

p↑ ↓ l↑ ↓ Q↑ ↓

import p ∈ Σ[LC_Generator]

import l ∈ Σ[LC_Generator]

import Q ∈ Σ[LC_Generator]

bind p in Q ∈ Σ[LC_Generator]

export p ∈ Σ[LC_Generator]

export Q ∈ Σ[LC_Generator]

Finally, local bindings decls are bound in the rest of the qualifiers Q, and also

exported:

let decls, Q↑ ↓

decls↑ ↓ Q↑ ↓

import decls ∈ Σ[LC_Let]

import Q ∈ Σ[LC_Let]

bind decls in Q ∈ Σ[LC_Let]

export decls ∈ Σ[LC_Let]

export Q ∈ Σ[LC_Let]
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5.6.3 Case Study: Scheme’s Named-Let

The Scheme language standard defines two variants of the let sugar. The regu-

lar variant of let has the syntax (let ((x val) ...) body), and binds each

declaration x to the corresponding val in body. The scope of this variant can be

inferred similarly to how we inferred the scope of let* in section 5.2.

The other variant is called “named” let. Its syntax is (let f ((x val) ...)

body), and it behaves like the regular let except that it additionally binds f to

(lambda (x ...) body). It can thus be used for recursive computations, such

as reversing a list:

(define (reverse lst)

(let rev ([ unreversed lst]

[reversed empty ])

(if (empty? unreversed)

reversed

(rev (cdr unreversed)

(cons (car unreversed) reversed)))))

Named-let desugars by the rule:We describe Racket’s
desugaring because it
is slightly more clear
(using better variable

names, and putting
the application inside

of the letrec).
These differences
have no effect on

scope inference.

(define -syntax -rule

;;; The named let sugar:

(let proc -id ([arg -id init -expr] ...) body)

;;; Desugars into:

(letrec ([proc -id (lambda (arg -id ...) body)])

(proc -id init -expr ...)))

We will represent the ast for named-let expressions with the grammar:

e ::= (Let xd b e) “Named-let: bind initial values b and recursive function xd in e”

| . . .

b ::= (Bind xd e b) “Bind xd to e, and bind b”

| EndBinds “No more bindings”

Translating the desugaring to use this grammar, our system correctly infers

the binding structure:
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Let↑ ↓

proc-id↑ ↓ bindings↑ ↓ body↑ ↓

import proc-id ∈ Σ[Let]

import bindings ∈ Σ[Let]

import body ∈ Σ[Let]

bind proc-id in bindings ∈ Σ[Let]

bind proc-id in body ∈ Σ[Let]

bind bindings in body ∈ Σ[Let]

Bind↑ ↓

arg-id↑ ↓ init-expr↑ ↓ bindings↑ ↓

import arg-id ∈ Σ[Bind]

import init-expr ∈ Σ[Bind]

import bindings ∈ Σ[Bind]

export arg-id ∈ Σ[Bind]

export bindings ∈ Σ[Bind]

While this correctly reflects the scoping of named-let, observe that it permits the

let-bindings to shadow the function name. This follows because (arg-id ...)

can shadow proc-id in the macro definition. Of course, if a program actually

did this, it would render the named part of the named-let useless! Nevertheless,

we faithfully reflect the language, and indeed our inferred scope may be a useful

diagnostic to the language designer.

5.6.4 Case Study: Scheme’s do

Scheme’s do expression can be used to perform what do-while and for loops

might do in another language. For instance, this do expression reads three num-

bers off of stdin, before displaying their sum.

(do ((sum 0)

(i 0 (+ i 1)))

((= i 3) (display "The sum is: ") (display sum) (

newline))

(set! sum (+ sum (string ->number (read -line)))))

In general, do binds a list of variables [sum and i] to initial values [0 and 0], and

then repeatedly evaluates the body of the loop [(set! sum ...)] and updates

the variables according to optional step expressions [(+ i 1)] until a condition

[(= i 3)] is met, at which point it evaluates a final sequence of expressions

[(display "The sum is: ") (display sum) (newline)].

The desugaring of do is given by [42, derived forms]:

(define -syntax do (syntax -rules ()

((do ((var init step ...) ...)

(test expr ...)
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command ...)

(letrec ((loop (lambda (var ...)

(if test

(begin #f expr ...)

(begin command ...

(loop (do "step" var step ...)

...))))))

(loop init ...)))

((do "step" x) x)

((do "step" x y) y)))

We will focus on the scope of the binding list, as scope inference fails on it. Its

correct scope is:

DoBind↑ ↓

var↑ ↓ init↑ ↓ step↑ ↓ binds↑ ↓

import var ∈ Σ[DoBind]

import init ∈ Σ[DoBind]

import step ∈ Σ[DoBind]

import binds ∈ Σ[DoBind]

export var ∈ Σ[DoBind]

export binds ∈ Σ[DoBind]

bind var in step ∈ Σ[DoBind]

bind binds in step ∈ Σ[DoBind]

While our binding language can express this scope, our algorithm is unable

to handle inferring scope for it: it incorrectly infers that var is in scope at init.

In more detail, whatever a desugaring does, it must at some point take apart

the binding list. However, once one of the declarations var has been removed

from the list, it must have a path to the rest of the list. Unfortunately that path

will put both init and step in scope of it. Therefore we cannot infer scope for

this macro. In general, we cannot handle binding lists in which the bindings are

visible in some expressions within the list (step) but not others (init).

This can naturally be fixed by putting do in the core language, but can also

be addressed by altering the syntax slightly: separating the init list from the

step list (which are semantically different entities) in the ast would avoid this

unwanted conflation. More broadly, however, we believe that extending scope

inference to work on desugaring rules with ellipses can solve this problem di-

rectly, as it is only the intermediate steps where the binding list is deconstructed

that pose a problem. This raises questions that we leave for future work.2

2 What do scope specifications over arbitrary-length lists look like? Can the ith element be bound in

the (i+1)st element (e.g., for let*)? How about (i+1) in i, or i in j for all i and j? How does scope

inference handle these cases, while still being correct, fast, and hygienic?
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5.6.5 Catalog of Scoping Rules (Extended)

In fig. 8, we demonstrate the expressiveness of our scoping rule language by

showcasing a small catalog of scoping rules. They are shown diagrammatically.

Some arrows have been omitted when they are implied by transitivity (e.g., the

arrow between Lambda and its (body) is omitted). The names written for the

children of each term (such as “(arg)” and “xd”) are only expository, but meant

to suggest a grammar the language might follow.

Single-binding Lambda and Let shows scoping rules for Lambda and Let when

they have only a single binding position. Multi-argument Lambda extends this to

functions of more than one argument. Notice that the scoping rule for Lambda

is the same in each case: the only difference is that one is meant to be used with

a single declaration while the other is meant to use a Param.

The next three rules describe the binding for Scheme-style Let, Let*, and Letrec

let-bindings. Akin to Lambda, the rules for various Lets are identical; only their

bindings differ.

Pattern Matching shows a rule for (nestable) pattern matching (or deconstruc-

tive assignment to) a pair. Its “left” and “right” children would typically be vari-

able declarations, although they could themselves be nested pattern matches.

Its “MatchPair” construct can be used in any of the binding sites of the other

scoping constructs.

Finally, we show the (correctly) inferred scope for the three sugars in Pyret

that bind values:

• For “loops” are actually syntactic sugar for the application of a higher-

order function (like map).

• Pyret has both statement and expression forms of let. The statements

desugar into let expressions, which then merge with adjacent lets to form

a single binding block.

• Pyret function declarations desugar into lambdas with explicit recursive

bindings.

5.7 proof of hygiene

We will show that our scope inference algorithm (when successful) always pro-

duces surface scoping rules such that desugaring is hygienic. Again, we say that

a desugaring D is hygienic when it preserves α-equivalence:

Σsurf ` e =α e′ implies Σcore ` D(e) =α D(e′)
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Single-binding

Lambda and Let

Lambda1↑ ↓

xd↑ ↓ (body)↑ ↓

Let1↑ ↓

xd↑ ↓ (val)↑ ↓ (body)↑ ↓

Multi-argument

Lambda

Lambda↑ ↓

(params)↑ ↓ (body)↑ ↓

Param↑ ↓

xd↑ ↓ (params)↑ ↓

Multi-arm Let

Let↑ ↓

(binds)↑ ↓ (body)↑ ↓

Bind↑ ↓

xd↑ ↓ (val)↑ ↓ (binds)↑ ↓

Multi-arm Let*

(Pyret)

Let*↑ ↓

(binds)↑ ↓ (body)↑ ↓

Bind*↑ ↓

xd↑ ↓ (val)↑ ↓ (binds)↑ ↓

Multi-arm Letrec

Letrec↑ ↓

(binds)↑ ↓ (body)↑ ↓

Bindrec↑ ↓

xd↑ ↓ (val)↑ ↓ (binds)↑ ↓

Pattern Matching

MatchPair↑ ↓

(left)↑ ↓ (right)↑ ↓

For Loops (Pyret)

For↑ ↓

(iter)↑ ↓ (binds)↑ ↓ (body)↑ ↓

Bindfor↑ ↓

xd↑ ↓ (val)↑ ↓ (binds)↑ ↓

Functions (Pyret)

Function↑ ↓

F↑ ↓ (params)↑ ↓ (body)↑ ↓ (stmts)↑ ↓

Figure 8: Catalog of Scoping Rules (Arrows that follow from transitivity omitted)



5.7 proof of hygiene 101

We will show this by way of a theorem that provides a necessary and sufficient

condition for hygiene, assuming that desugaring obeys our assumptions. Recall

that our definition of α-equivalence is strong, including that both terms are well-

bound; thus we will need to show that the result of desugaring remains well-

bound (so long as its input is).

To discuss the properties required for this theorem, we will divide variables

into categories: variables in D(e) are either New (fresh) or Copied from e, and

variables in e are either Used (if they were copied) or Unused otherwise. For-

mally, let φ be the mapping from copied variables in D(e) to their sources in e,

and:

Used , range(φ)

Unused , vars(e)− range(φ)

Copied , domain(φ)

New , vars(D(e))− domain(φ)

(where vars(e) is the set of all variables in e).

We now turn to the properties required for hygiene. We will first list some

clearly necessary properties, and then show that they are also sufficient.

First, D must avoid variable capture; thus D(e) cannot contain bindings be-

tween new variables (introduced by D) and copied variables (taken from e):

Property 1. .

∀xr∈Copied. ∀xd∈New. Σ, D(e) 6` xr 7→ xd

∀xr∈New. ∀xd∈Copied. Σ, D(e) 6` xr 7→ xd

Second, D must preserve binding structure among the variables it copies: Property 2 does not
appear in prior work
on hygiene because
such work typically
assumes that the
binding structure of
a surface term is
defined by the
binding structure of
its desugaring,
causing this property
to be true by
definition.

Property 2. .

∀xr, xd∈Copied.

Σ, D(e) ` xr 7→ xd iff Σ, e ` φ(xr) 7→ φ(xd)

Finally, D must preserve well-boundedness. Thus, it must not cause a refer-

ence to become unbound or introduce a new unbound reference:

Property 3. .

∀xr∈Used. ∀xd∈Unused. Σ, e 6` xr 7→ xd

∀xr∈New. ∃!xd∈New. Σ, D(e) ` xr 7→ xd

While these three properties are clearly necessary, it is by no means clear

that they are sufficient to guarantee α-equivalence preservation. However, the

following theorem shows that they are both necessary and sufficient to ensure

that D preserves α-equivalence:
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Theorem 8 (Fundamental Hygiene Theorem). Let D be a desugaring function over

terms with respect to scoping rules Σ that obeys the assumptions of section 5.3.1. Then

D respects α-equivalence iff for every (well-bound) input term e (numbering by property

number):

1. ∀xr∈Copied. ∀xd∈New. Σ, D(e) 6` xr 7→ xd

1. ∀xr∈New. ∀xd∈Copied. Σ, D(e) 6` xr 7→ xd

2. ∀xr∈Copied. ∀xd∈Copied. Σ, D(e) ` xr 7→ xd

iff Σ, e ` φ(xr) 7→ φ(xd)

3. ∀xr∈Used. ∀xd∈Unused. Σ, e 6` xr 7→ xd

3. ∀xr∈New. ∃!xd∈New. Σ, D(e) ` xr 7→ xd

where φ is the mapping from copied variables in D(e) to their sources in e.

Proof. D respects α-equivalence iff (i) D maps well-bound terms to well-bound

terms, and (ii) α-renaming any declaration xd in any well-bound term e does not

change the binding structure of D(e).

Address parts (i) and (ii) in reverse order.

For part (ii), do a case analysis on xd. In both cases, let e be the input term.

1. (xd ∈ Unused) α-varying xd renames both xd and also xr for every xr 7→ xd

in e. Renaming xd itself is fine: since it doesn’t appear in D(e), it cannot

change the binding structure of D(e). Now do case analysis on every such

xr:

a) (xr ∈ Unused) Similarly, this case is OK because xr does not appear in

D(e).

b) (xr ∈ Used) This case is problematic: renaming xr in e will rename

image(xr) in D(e), which will cause its binding to change. Thus:

∀xr ∈ Used. ∀xd ∈ Unused. Σ, e 6` xr 7→ xd (1)

2. (xd ∈ Used) α-varying xd renames both xd and xr for every xr 7→ xd in

e. Renaming xd is problematic iff ∃xr

i . s.t. Σ, D(e) ` xr

i 7→ xd

i where

xd

i ∈ image(xd) but xr

i 6∈ image(xr) for some xr 7→ xd (hence xr

i ’s binding

will change when xd is renamed). Thus:

If Σ, D(e) ` xr

i 7→ xd

i and φ(xd

i ) exists, then φ(xr

i ) exists and φ(xr

i ) 7→ φ(xd

i )

(2)

That dealt with the direct effects of renaming xd. Now consider the effects

of renaming xr for some Σ, e ` xr 7→ xd. Do case analysis on every such

xr:

a) (xr ∈ Unused) Renaming xr in e is OK since it does not appear in

D(e).
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b) (xr ∈ Used) Consider some xr

i ∈ image(xr). Let xr

i 7→ xd

i ∈ D(e) (it

must be bound, since D(e) is well-bound). For the binding of xr

i to

not change when xd (and xr) is renamed, xd

i must be in image(xd).

Thus:

If Σ, D(e) ` xr

i 7→ xd

i and φ(xr

i ) exists , then φ(xd

i ) exists, and φ(xr

i ) 7→ φ(xd

i )

(3)

For part (i), D(e) must be well-bound. The only bindings not covered by the

above cases are bindings from New to New. Thus:

∀xr ∈ New. ∃!xd ∈ New. xr 7→ xd ∈ D(e) (4)

This gives four equations that hold iff D is hygienic. Equation (1) corresponds

to the first part of the theorem’s Property (3). Equations (2) and (3) together

correspond to Properties (1) and (2). Finally, equation (4) corresponds to the

second part of Property (3).

We can now see that inferScope is hygienic. Property 1 is easily ensured by

giving variables fresh names, which is one of our assumptions about desugaring.

Property 2 follows from our inference process: since desugaring preserves scope

by theorem 7, bindings between variables must not change. Finally, property 3

is exactly what checkScope checks.

5.8 related work

Below, we discuss work related to two aspects of our approach to scope inference.

However, none of them infer scope through syntactic sugar; we therefore believe

that the central contribution of this chapter is novel.

5.8.1 Hygienic Expansion

The real goal of hygienic expansion is to preserve α-equivalence: α-renaming a

program should not change its meaning. Typically, however, α-equivalence is

only defined for the core language. Thus, traditional approaches to hygiene have

had to focus on avoiding specific issues like variable capture [45]. Recent work

by Adams advances the theory by giving an algorithm-independent set of issues

to avoid [2]. However, even this work lacks the ground truth of α-equivalence

preservation to base its claims on.

In contrast, Herman et al. advocate that sugar specify the binding structure

of the constructs they introduce, and build a system that does so [35]. Stansifer

et al. follow with a more powerful system called Romeo based on the same
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approach [78]. (We will discuss the binding languages used by these two tools

in the next subsection.) Since we infer scope rules for the surface language,

we can verify that desugaring preserves α-equivalence without requiring scope

annotations on sugars.

Erdweg et al. put forward an interesting alternative approach to hygiene with

the name-fix algorithm [18]. Name-fix assumes that the scoping for the surface

language is known. Instead of using this information to avoid unwanted variable

capture in the first place, name-fix uses it to detect variable capture and rename

variables as necessary to repair it after the fact. Erdweg et al. prove that name-fix

preserves α-equivalence, but for a weaker definition of α-equivalence than ours

that doesn’t include well-boundedness (thus allowing desugaring to produce

unbound variables).

This chapter’s work differs from the above work: we assume that scope is

defined only for the core language, and not for the surface language (à la Erdweg)

or for individual rewrite rules (à la Herman). This assumption is also made by

traditional capture-avoiding work on hygiene. However, by inferring scoping

rules from the core to the surface language, we gain two benefits: (i) we can prove

that our approach is correct with respect to the ground truth of α-equivalence

preservation (theorem 8), and (ii) we can produce a set of standalone scoping

rules for the surface language. To our knowledge, this approach has not been

taken before.

5.8.2 Scope

We will divide related work on scoping into two main categories. First, “Model-

ing Scope” discusses ways in which the scope of a term can be represented. Our

description of scope as a preorder (section 5.3) falls in this category. Second,

“Binding Specification Languages” discusses ways in which scope can be deter-

mined for a given term. Our binding language (section 5.4) falls in this category.

modeling scope Our description of scope-as-a-preorder is similar to the

view expressed by Flatt in “Binding as Sets of Scopes” [24]. In fact, Flatt’s notionScope-as-a-preorder
and Flatt’s Sets of

Scopes were
discovered

independently:
scope-as-a-preorder
arose from some of

the ideas from
Romeo [78].

of scope can be expressed as a preorder, as we show in section 5.3.4.

Neron et al. describe scope graphs, which are based on a similar view, but

are more general. For example, they include mechanisms for handling mod-

ule scope, which gives them the ability to model both modules and also other

constructs like objects and field lookup. While our scope-as-a-preorder binding

language can be extended to handle modules, doing so breaks the transitivity

assumption that we need to infer scope, so we have left it out of this chapter and

consider this a problem for future work.
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binding specification languages Our preorder-based binding specifi-

cation language is novel, but similar in expressiveness to many others. It is

perhaps most similar to Stansifer et al.’s Romeo [78]. The primary difference

between the two is that Romeo has slightly more expressive power: given two

declarations xd

1 and xd

2 , it is possible in Romeo for xd

1 to shadow xd

2 in one part

of a term, but xd

2 to shadow xd

1 in a different part of a term.3 It is not clear if

this power has any practical applications, but we choose to avoid it both for aes-

thetic reasons (we do not believe two declarations should be allowed to shadow

one another), and to simplify scope inference (which would otherwise have to

manipulate formulas over Romeo’s combinators, instead of merely preorders).

In a similar vein, Sewell et al. present a semantics engineering workbench

called Ott, which includes a comparable binding specification language [74].

Like Romeo, Ott would allow two declarations to each shadow one another in

different places. Furthermore, it gives additional power, by allowing terms to

name what they provide. For instance, a term could export two binding lists, one

named “value-bindings” and one named “type-bindings”.

Weirich et al. present a binding specification language called Unbound, which

can be expressed using scope-as-a-preorder (and hence is no more expressive

than it) [85]. They implement Unbound in Haskell, and give language-agnostic

implementations of operations such as constructing and deconstructing terms,

determining α-equivalence, and performing substitution. In Unbound, binding

is specified via a set of binding combinators. These binding combinators can be

expressed as a preorder.4

There are many more binding specification languages [1, 71, 47]. We have

chosen what we believe to be a representative sample for comparison. We have

shown that our binding specification language has a comparable level of expres-

siveness with most such systems, while simultaneously being simple enough to

enable scope inference.

There is a close analogy between our ports and attributes in attribute gram-

mars [44]: namely, imports are analogous to inherited attributes and exports are

analogous to synthesized attributes. The paths between imports and exports that

are allowed by our binding language (e.g., child export to parent export, but not

child export to parent import) are precisely the relationships between inherited

3 In Romeo, this would be expressed using the B combinator, as β1 B β2 and β2 B β1.
4 The translation of Unbound to scope-as-a-preorder is as follows. Name constructs a declaration

or reference, depending on whether it is a term or Pattern. Patterns P have scoping rules that state

export i ∈ Σ[C] and import i ∈ Σ[C] for every i. terms e have scoping rules that state import i ∈ Σ[e]
for every i. Finally, each of the four binding combinators obey the scoping rule for patterns or for

terms, as appropriate, in addition to the following facts:

Bind P e {bind 1 in 2 ∈ Σ[Bind]} Embed e ∅

Rebind P P {bind 1 in 2 ∈ Σ[Rebind]} Rec P {bind 1 in 1 ∈ Σ[Rec]}
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and synthesized attributes that are allowed in attribute grammars. Most algo-

rithms for evaluating attribute grammars disallow cycles, however, while our

preorders allow them.

5.9 discussion and future work

We have presented what we believe is the first algorithm for inferring scoping

rules through syntactic sugar. It makes use of our description of scope as a

preorder in section 5.3, and our binding language for specifying the scope of a

programming language in section 5.4. The case studies in section 5.6 show that

all of the aspects of this work are able to deal with many interesting scoping

constructs from real languages.

There are a number of weaknesses in our binding language that it would be

useful to ameliorate:

• Support for ellipses in sugar definitions would make writing sugars easier.

• Allowing named imports and exports—à la Ott [74]—would make sugars

like do inferable. It could also help with the fact that value bindings and

type bindings often flow differently. For example, in Java field names are

visible in subclasses while type parameters are not. With named imports,

each syntactic construct could effectively have two scope rules—one for

values and one for types—and they could be inferred separately.

• References are not always bound to a single declaration. For example, if

a method is overloaded, then a reference to that method is bound to both

method definitions, with the actual binding determined at runtime. In

definition 10, we define a reference that is bound to multiple declarations

to be ambiguously bound, and we consider this to be an error. It would be

useful to be able to relax this restriction in certain circumstances, and infer

during scope inference when it should be relaxed for a particular sugar.

• The ability to group several bindings together into a single namespace—à

la module declarations in Scope Graphs [57]—is necessary for inferring scope

for modules and for classes. This change is a relatively straightforward ex-

tensions to our binding language, but is a research question when applied

to scope inference.
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Figure 9: Proof of theorem 6
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Figure 10: Proof of theorem 6 (continued)
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Figure 11: Proof of theorem 6 (continued)
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Figure 12: Proof of theorem 6 (continued)
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R E S U G A R I N G T Y P E S

Type systems and syntactic sugar are both valuable to programmers, but some-

times at odds. While sugar is a valuable mechanism for implementing realistic

languages, the expansion process obscures program source structure. As a re-

sult, type errors can reference terms the programmers did not write (and even

constructs they do not know), baffling them. The language developer must also

manually construct type rules for the sugars, to give a typed account of the

surface language. In this chapter, we address these problems by presenting

a process for automatically reconstructing type rules for the surface language

using rules for the core. We have implemented this theory, and show several

interesting case studies.

This chapter comes from work published in PLDI 2018 under the title Inferring

Type Rules for Syntactic Sugar (co-authored with Shriram Krishnamurthi) [69].

6.1 introduction

While both desugaring and type checking are valuable, they typically interact

poorly. Type checking occurs either before or after desugaring, and there can be

major problems with each.

Suppose type-checking occurs on the desugared code. This has the virtue of

keeping the type-checker’s target language more tractable. However, errors are

now going to be generated in terms of desugared code, and it is not always clear

how to report these in terms of the surface language. This is further complicated

when the code violates implicit type assumptions made by the sugar, which

likely results in a confusing error message.

Alternatively, suppose we type-check surface code. This too is problematic. It

turns syntactic sugar into a burden by forcing the type-checker to expand with

the size of the surface language. This is especially bad in languages with macro-

like facilities, because the macro author must now also know how to extend a

type-checker. This destroys a valuable division of labor: macro authors may be

experts in a domain but not in programming language theory. Furthermore, the
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enlarged type-checker must respect desugaring: i.e., every program must type

in exactly the same way in the surface as it would have after desugaring.

inferring a surface type system We offer a way out of this dilemma.

Given typing rules for the core language, and syntactic sugar written as pattern-

based rules, we show how to infer type rules for the surface language.

Notice that this is not a complete solution to the problem: we provide type

rules, but not a full type checker with quality error messages. This could be

done automatically or manually. Automatically extending a type checker while

maintaining good error messages is (we believe) an open, and independently

valuable, problem. Alternatively, the type rules can (as usual) be added to the

type checker by hand.

Whichever method is used, these new rules can be added to the documenta-

tion for the language, providing a typed account of the surface. These rules are

also a useful diagnostic, enabling the author of the sugar, or an expert on the lan-

guage’s types, to confirm that the inferred typing rules are expected; when they

are not, these suggest a flaw in the desugaring. This diagnostic comes very early

in the pipeline: it relies only on the sugar definition, and so is available before a

sugar is ever used.

This approach depends crucially on a particular guarantee, which our system

will provide:

A surface program has a type in the inferred surface type system

iff its desugaring has that type in the core type system.

Thus, a well-typed program under the inferred surface rules will desugar into

a well-typed program under the original core rules. As a result, an ill-typed

program will always be caught in the surface type system, and an ill-typed sugar

will be rejected by our algorithm at definition time rather than having to wait until

it is used. Since the inferred type rules are guaranteed to be correct, they become

a valid documentation of the surface language’s type structure.

6.2 type resugaring

Our overall aim is to be able to generate type judgments for the surface lan-

guage given desugaring rules and judgments for the core, i.e., to perform type

resugaring. Type resugaring, in which type rules are inferred through syntactic

sugar, should be distinguished from ordinary type inference, in which types are

inferred within a program. We wish to obtain type rules for the surface language

that are faithful to the core language type rules: type checking using resugared

type rules should produce the same result as first desugaring and then type
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checking using the core type rules. Specifically, if Icore are the core language type

rules and Isurf are the resugared surface type rules, then

Goal 1.

Isurf  Γ ` e : t iff Icore  Γ ` D(e) : t

where I  J means that judgment J is provable by inference rules I, and D(e)

means the desugaring of expression e.

Notice the assumption implicit in this equation: the right-hand-side says t,

rather than D(t). We are handling desugaring of expressions, but not of types.

It is sometimes desirable to introduce a new type by way of translation into

an existing type: for instance, introducing Booleans and implementing them in

terms of Integers. We leave this more general problem—resugaring type rules,

when types can contain sugars—to future work.

To see how type resugaring might proceed, let us work through an example.

Take a simple and sugar, defined by:

α and β ⇒ if α then β else false

Our goal is to construct a type rule for and that is faithful to the core language,

meaning that (using goal 1):

Isurf  Γ ` (α and β) : t

iff Icore  Γ ` D(α and β) : t

Expanding out the sugar:

Isurf  Γ ` (α and β) : t

iff Icore  Γ ` (if D(α) then D(β) else false) : t

It is seemingly straightforward to obtain this property. We just have to add this

inference rule to Isurf:

Γ ` (if D(α) then D(β) else false) : t
t-and→

Γ ` (α and β) : t

and perhaps also its converse:

Γ ` (α and β) : t
t-and←

Γ ` (if D(α) then D(β) else false) : t

The rule t-and→can be read as “to prove that (α and β) has type t under type

environment Γ in the surface language, prove that its desugaring has type t

under Γ in the core language”. This is useful because it provides a way to prove

a type in the surface language by way of the core language type rules.

Its converse t-and←, however, is not helpful: there is no need to use the

surface language when trying to prove a type in the core language. Furthermore,
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t-and←is actually redundant: since t-and→is the only type rule mentioning and,

t-and←is admissible. Therefore, we only need t-and→.

In this particular case, we have added only the rule t-and→, but in general we

would add one such rule for each sugar. This could be called the augmented type

system: it is the core language type system, plus one extra rule per sugar, such

that we obtain a type system for the surface language.

Type checking in this augmented type system is akin to desugaring the pro-

gram and type checking in the core language. For example, the program true

and false has the type derivation:

` true : Bool ` false : Bool ` false : Boolt-if ` (if true then false else false) : Bool
t-and→ ` (true and false) : Bool

Since the extension type rules (like t-and→) always succeed, any type errors

will be found in the core language. For example, if the first argument to and was

not a boolean, this will be discovered by the t-if rule, not by the t-and→rule!

Thus, while the augmented type system technically obeys goal 1, it breaks the

abstraction that ought to be provided by syntactic sugar. Type errors made in the

surface language should be reported with respect to surface language constructs.

This can be achieved with a second goal:

Goal 2. Type rules for surface constructs should not mention core constructs.

Let us see how we can accomplish this. The essential insight is that every type

derivation of and will share a common form. It will always follow the template:

Dα

Γ ` α : Bool

Dβ

Γ ` β : Bool
t-false

Γ ` false : Bool
t-if

Γ ` (if α then β else false) : Bool
t-and→

Γ ` (α and β) : Bool

where the sub-derivations Dα and Dβ depend on α and β. Notice that the rest of

the derivation is constant: every type-derivation of α and β has this form. Thus

there is no reason to re-derive it every time we type-check. Instead, we can

remove this “cruft” to obtain a simpler type rule for and:

Γ ` α : Bool Γ ` β : Bool
t-and

Γ ` (α and β) : Bool

This type rule now satisfies our two goals, and is a valid and useful type rule

for the surface language. Indeed, it hides the implementation of and and instead

focuses just on its (expected) type structure.

The important step was determining the “template” derivation. We presented

it above without fanfare, but how can it automatically be discovered? Let us look

into this with a slightly more complex example, an or sugar:The let in the
desugaring of or

prevents the
duplicate evaluation

of α.
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?

Γ ` α : A

t-id Γ, x : A ` x : A A = Bool
t-id Γ, x : A ` x : A

?

Γ, x : A ` β : B A = B
t-if Γ, x : A ` if x then x else β : B

t-let
Γ ` let x = α in if x then x else β : B

t-prem.
Γ ` α : A

t-id Γ, x : A ` x : A A = Bool
t-id Γ, x : A ` x : A

t-prem.
Γ, x : A ` β : B A = B

t-if Γ, x : A ` if x then x else β : B
t-let

Γ ` let x = α in if x then x else β : B

Figure 13: Derivation of or. Top: an incomplete derivation. Bottom: a complete

derivation, using t-premise.

α or β ⇒ let x = α in if x then x else β

As before, we want to find a derivation for the sugar’s rhs (right-hand-side).

That is, we should search for a derivation of the judgment:

Γ ` (let x = α in if x then x else β) : t

We can begin by applying the core type rules, obtaining a partial derivation,

shown at the top of fig. 13. However, the core type rules (unsurprisingly) cannot

prove the judgments about pattern variables (marked with ? ). Each pattern

variable stands for an unknown surface term, so its derivation will vary between

different uses of the or sugar. Since we do not know what type it will have, we

will assign it a globally fresh type variable, using the rule t-premise:

fresh xt-premise
Γ ` α : x

(This rule will be generalized in section 6.4.2 and section 6.4.3.) We write this

rule with a dashed line because it is in a sense incomplete: it serves as a place-

holder for a subderivation that would be filled in if the pattern variable were

instantiated. Using this rule finishes the derivation, giving the bottom deriva-

tion in fig. 13. Notice that t-premise can be used to prove Γ ` α : A, because α

is a pattern variable, but cannot be used to prove Γ, x : A ` x : A, because x is

not a pattern variable.

As seen, pattern variables introduce type variables. Solving for these type

variables in general requires unification. We therefore split the search for a

derivation: first we find a potential derivation with equality constraints (as in

fig. 13), then we solve these constraints (via an ordinary unification algorithm).

Solving the constraints of fig. 13 gives the substitution {A = Bool, B = Bool}.
Finally, gathering the premises and conclusion of the derivation and applying

the substitution to them produces the type rule for or:

Γ ` α : Bool Γ ` β : Bool
t-or

Γ ` α or β : Bool
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our overall approach Putting all this together, we can describe our type

resugaring algorithm. For each desugaring rule, such as the or sugar from above:

1. Construct a generic type judgment from the sugar’s rhs,

e.g. Γ ` (let x = α in if x then x else β) : t

2. Search for a derivation of this judgment using the core language type rules

plus the t-premise rule from above. Fail if no derivation, or if multiple

derivations, are found. For example, this will find the derivation shown in

fig. 13.

3. Gather the equality constraints from the derivation. Additionally, if mul-

tiple premises (i.e., judgments proved by the t-premise rule) are of the

same expression, add equality constraints that these expressions have the

same type. Solve the unification problem. (If there are any unconstrained

variables, they become free variables in the type rule.)

For example, in or, there are two equality constraints: A = Bool and

A = B. The t-premise rule is used only once for α and once for β, so no

additional constraints are needed. The solution is {A = Bool, B = Bool}.

4. Form a type rule whose premises are the judgments proved by t-premise

from the derivation in step (2), and whose conclusion is a generic type

judgment from the sugar’s lhs. Apply the unification from step (3). This

is the resugared surface type rule.

We have implemented a prototype of this approach, called SweetT. SweetT

is written in Racket [26] (racket-lang.org), and makes use of the semantics

engineering tool Redex [19]. All of the examples in this chapter run in SweetT, albeit

with a different, more parenthetical, syntax.

6.3 theory

In this section, we describe the assumptions that type resugaring will rely on,

and then prove that it obeys goal 1 and goal 2 given these assumptions. Roughly

speaking, these assumptions are:

• Desugaring rules must obey the basic “Well-Formedness Criteria” of sec-

tion 3.2.1.

• Desugaring rules must be defined using pattern-based rules, and their lhss

must be disjoint (section 6.3.1).

(This is the second “Restriction on Desugaring Rules” from section 3.2.1.

We relax the first restriction given there: pattern variables may be used

more than once in a pattern.)

racket-lang.org
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• The type system used to resugar must support pattern variables and partial

derivations, and they must obey obvious laws (section 6.3.2).

• The core language type rules must be syntax directed (also section 6.3.2).

This will fail, for instance, on a type system with non-algorithmic subtyp-

ing.

• Our implementation of SweetT must be correct (section 6.3.3). (As must

Redex, which we use to find derivations.)

• Finally, SweetT’s unification algorithm must be able to handle the sugars

given. Section 6.4.5 gives an example of extending it. Additionally, our im-

plementation supports directly recursive sugars (as shown in section 6.4.2),

but not sugars that are defined in terms of other sugars.

The rest of this section describes these assumptions in more detail. As a pre-

lude, fig. 14 provides a guide to the notation we will use throughout the chapter.

6.3.1 Requirements on Desugaring

First, we require that desugaring rules be pattern-based. Each desugaring rule

has a lhs and a rhs, which are terms p that may contain pattern variables.

Desugaring proceeds by recursively expanding these rules, replacing the lhs

with the rhs. Formally:

D(e) = e

D(value) = value

D(x) = x

D(γ • p) = (D(γ)) • (L[p])
if p = (C p1 . . . pn) and C is in the surface langauge

D(C e1 . . . en) = (C D(e1) . . . D(en))

if C is in the core language

where D(·) is desugaring, L represents the desugaring rules, L[p] is the rhs

of the desugaring rule whose lhs is p, and desugaring a substitution γ means

desugaring its expressions: D({α 7→ e, ...}) = {α 7→ D(e), ...}.
Likewise, desugaring can be extended in the obvious way to desugar judg-

ments and type environments:

D(Γ ` p : t) = Γ ` D(p) : t

D({x → p, . . . }) = {x → D(p), . . . }

Unsurprisingly, substitution distributes over pattern-based desugaring:
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notation explanation

e ::= value (primitive value)

| (C e1 ... en) (ast node)

| x (variable)

p ::= α (pattern variable)

| value

| (C p1 ... pn)

| x

t ::= type (type)

Γ ::= · | Γ, x : t (type environment)

J ::= Γ ` p : t (type judgment)

I ::= J1 . . . Jn/J (inference rule)

I ::= I1 . . . In (set of inference rules)

γ ::= {α→ e, . . . } (substitution)

L ::= {p⇒ p′, . . . } (desugaring rules)

Our approach relies on being able to use p in two different ways: (i) from one

perspective p is one side of a syntactic sugar rule, and any α inside is a pattern

variable; (ii) from the other perspective, p is an expression inside a type rule,

in which α is a metavariable. The convention of the first perspective is to call

p as C, but we choose instead to use p to emphasize the other perspective.

In addition, to the above notation, we will also write:

I  J to mean that judgment J is provable under inference rules I (i.e., there

is a derivation that proves J).

I  J1 . . . Jn → J to mean that there is a derivation that proves J with un-

proven leaves Ji.

(γ • p) to denote applying substitution γ to pattern p.

Figure 14: Notation explanation
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Lemma 14 (Distributivity of Substitution and Desugaring).

D(γ • J) = D(γ) •D(J)

Proof. Let J = Γ ` p : t. By definition, D(Γ ` p : t) = Γ ` D(p) : t. Induct on p.

Base case: e is a primitive value:

D(γ • value) = value = D(γ) • value.

Base case: e is a variable: likewise.

Base case: e is a pattern variable α:

D(γ • α) = D(γ[α]) = (D(γ))[α] = D(γ) • α = D(γ) •D(α).

Inductive case: e is a compound term {α1 7→ e1, ...} • p:

D(γ • ({α1 7→ e1, ...} • p))

= D({α1 7→ (γ • e1), ...} • p) (substitution)

= {α1 7→ D(γ • e1), ...} • p′ where L[p] = p′

= {α1 7→ (D(γ) •D(e1)), ...} • p′ (I.H.)

= D(γ) • ({α1 7→ D(e1), ...} • p′) (substitution)

= D(γ) •D({α1 7→ e1, ...} • p) (desugar)

We also assume that the lhss of each desugaring rule are disjoint, so that

there is never any ambiguity as to which resugaring rule to apply (this is the last

assumption of section 3.2.1). That is:

Assumption 1 (Unique Desugaring). For every pair p1 and p2 of sugar lhss, there

are no substitutions γ1 and γ2 such that γ1 • p1 = γ2 • p2.

This is everything we need of desugaring.

6.3.2 Requirements on the Type System

Let us now change focus to the type system. In the and example in section 6.2,

we made implicit assumptions about the core type system. We stated that every

type derivation of (α and β) must share a common template, and we implicitly

assumed that this template could not depend on α or on β. This is certainly

not true of every conceivable type system. Type resugaring will rely on three

assumptions about the type system in order to make the approach we outlined

work.

Before we describe these assumptions, notice that the type derivations found

by resugaring (e.g., in fig. 13) contain pattern variables. Thus the type system

used by resugaring is not exactly the language’s type system: it is an extension of

the type system that handles pattern variables (and partial derivations, discussed
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shortly). It is this extended type system we will be discussing in this section.

With that said, we can state the assumptions.

First, we will assume that the type system supports pattern variables: it must

be possible to search for type derivations of a judgment whose term contains

pattern variables. Furthermore, a judgment with pattern variables must hold iff

that judgment holds under all substitutions for those pattern variables:

Assumption 2 (Substitution into Derivations). A derivation (possibly containing

pattern variables) is provable iff it is provable under all substitutions:

I  J1 . . . Jn → J iff ∀γ. I  γ • J1 . . . γ • Jn → γ • J

Likewise for rules:

I  J1 . . . Jn / J iff ∀γ. I  γ • J1 . . . γ • Jn / γ • J

Next, we assume that the type system supports partial derivations that may

contain unjustified judgments in their leaves, which we will call their premises. If

a partial derivation is provable, and its premises are provable, then its conclusion

must also be provable:

Assumption 3 (Composition of Derivations). The composition of provable deriva-

tions is provable:

If I  J1 . . . Jn → J and ∀i. I  Ji, then I  J.

Finally, we would like the core type system to be deterministic in a particular

way. Say that a judgment is abstract if it contains pattern variables, or concrete

otherwise. We would like that if an abstract partial derivation J1 . . . Jn → J applies

to a concrete judgment γ • J that can be proven, then the proof of γ • J must

use J1 . . . Jn → J, and thus prove as intermediate steps γ • Ji for each i ∈ 1..n.

Formally, we define determinism as:

Definition 18 (Determinism). A set of inference rules I is deterministic when, for

any concrete judgment γ • J:

If I  γ • J and I  J1 . . . Jn → J, then I  γ • Ji for each i ∈ 1..n.

Instead of assuming outright that the core language is deterministic, we can

prove it from a more conservative assumption. We will assume that there is

never any ambiguity as to which type rule applies to a concrete judgment J, i.e.,

that the type system is syntax directed:

Assumption 4 (Syntax Directedness). At most one type rule in Icore ever applies to a

concrete judgment J.
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Under this assumption, the core language can be proven deterministic. This

will be essential for our proof of goal 1.

Lemma 15 (Determinism). Suppose that at most one type rule in I ever applies to a

concrete judgment J. Then I is deterministic.

Proof. Suppose that I  γ • J and I  J1 . . . Jn → J. We aim to show that I  γ • Ji

for each i ∈ 1..n.

Induct on the derivation I  J1 . . . Jn → J. Let the bottommost step in the

derivation be I  J′1 . . . J′m / J, and call this rule R. By assumption 2 (substitution),

I  γ • J′1 . . . γ • J′m / γ • J. Since, by assumption 4 (unique-rule), only one rule

can apply to the judgment γ • J, no rule other than R may apply. Hence the

derivation of γ • J must have I  γ • J′1 . . . γ • J′m / γ • J as the bottommost step.

Thus for each i ∈ 1..m:

• I  γ • J′i , and

• There is a subset Ji1 . . . Jil of J1 . . . Jn such that I  Ji1 . . . Jil → J′i . Since each

judgment J1 . . . Jn must be used in the derivation I  J, the union of these

subsets must be the full set J1 . . . Jn.

For each i ∈ 1..m, by the inductive hypothesis,

I  γ • Ji1 . . . γ • Jil . Since the union of these sets is γ • J1 . . . γ • Jn, we are done.

(Note that in the base case, n = 0, and the result is vacuously true.)

Corollary 2 (Core Determinism). If a core language Icore obeys assumption 4 (unique-

rule), then it is deterministic.

Proof. Follows from the lemma, together with assumption 4 (unique-rule).

6.3.3 Requirements on Resugaring

Our final set of requirements is on the behavior of the type resugaring algorithm.

Thus it is essentially a specification for our implementation: SweetT is correct iff

it obeys the requirements of this subsection.

Let us look at what it means to successfully resugar a desugaring rule plhs ⇒
prhs ∈ L. Resugaring will search for a partial derivation of the sugar’s rhs:

Icore  J1 . . . Jn → Jrhs

where J1 . . . Jn are provable using the t-premise rule and Jrhs has the form

Jrhs = Γ ` prhs : t. (Our implementation uses Redex’s build-derivations

function to perform this search.) If such a derivation is found, and is unique,

then we will write:

resugar(Icore, plhs ⇒ prhs) = J1 . . . Jn/Jlhs
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where Jlhs = Γ ` plhs : t, and we will add the type rule J1 . . . Jn/Jlhs to Isurf.

Therefore:

Assumption 5 (Resugaring). Suppose that

resugar(Icore, plhs ⇒ prhs) = J1 . . . Jn/(Γ ` plhs : t). Then:

Icore  J1 . . . Jn → D(Γ ` plhs : t)

This is the correctness criterion for resugaring.

For the upcoming proof, we will also need that the surface language be de-

terministic in the sense of definition 18. This is provable using assumption 1

(unique-sugar):

Lemma 16 (Surface Determinism). If resugaring succeeds, then Isurf is deterministic.

Repeating the definition of determinism, this means that:

If Isurf  γ • J and Isurf  J1 . . . Jn → J, then Isurf  γ • Ji for each i ∈ 1..n.

Proof. To start, we will show that at most one resugared type rule may apply to

a concrete judgment J. Suppose, for the sake of contradiction, that two distinct

rules apply, with conclusions J1 and J2. Let the expressions in J, J1, and J2 be

e, e1, and e2 respectively. Since both rules can be applied to J, there must be

substitutions γ1 and γ2 such that γ1 • J1 = γ2 • J2 = J. Thus γ1 • e1 = γ2 • e2 = e.

However, this contradicts assumption 1 (unique-sugar). Thus at most one type

rule in Isurf may apply to a concrete judgment.

Then, by lemma 15, Isurf is deterministic.

6.3.4 Main Theorem

We now prove that—given the requirements of this section—type resugaring

obeys goal 1. This theorem applies to the core of our approach, but ignores

some details for simplicity: for example, it ignores the fact that type rules may

have side conditions, and it assumes by fiat that our derivation search process

works correctly (see assumption 5).

Theorem 9. Grant assumptions 1–5 from this section, let L = plhs ⇒rhs . . . , and

suppose that

resugar(Icore, plhs ⇒rhs) · · · = Isurf. Then for all surface type judgments Jsurf :

Isurf  Jsurf iff Icore  D(Jsurf)

Proof. Given in fig. 15.

Furthermore, resugaring obeys goal 2, essentially by construction:
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Proof. Split on the “iff”.

Forward implication (“soundness”): Induct on the derivation proving that Isurf  Jsurf. Let

J1 . . . Jn/J0 = resugar(Icore, _) be the rule in Isurf used to prove Jsurf, and let γ be the substitution such

that Jsurf = γ • J0. Then:

Isurf  Jsurf assumption

iff Isurf  γ • J0 equality

implies Isurf  γ • Ji for i ∈ 1..n by lemma 16 (surface determinism)

implies Icore  D(γ • Ji) for i ∈ 1..n inductive hypothesis

Also:

Icore  J1 . . . Jn / D(J0) by assumption 5 (resugaring)

implies Icore  D(γ) • J1 . . . D(γ) • Jn / D(γ) •D(J0) by assumption 2 (substitution)

iff Icore  D(γ) •D(J1) . . . D(γ) •D(Jn) / D(γ) •D(J0) since D(Ji) = Ji

iff Icore  D(γ • J1) . . . D(γ • Jn) / D(γ • J0) by lemma 14 (distributivity)

iff Icore  D(γ • J1) . . . D(γ • Jn) / D(Jsurf) equality

Thus Icore  D(Jsurf) by assumption 3 (composition).

Reverse implication (“completeness”): Induct on the derivation proving that Icore  D(Jsurf). Let

J1 . . . Jn/J0 = resugar(Icore, _) be the rule in Isurf for the (outermost) sugar in Jsurf’s expression, and let

γ be the substitution such that Jsurf = γ • J0. Then:

Icore  D(Jsurf) assumption

iff Icore  D(γ • J0) equality

implies Icore  D(γ) •D(J0) by lemma 14 (distributivity)

Also: Icore  J1 . . . Jn → D(J0) by assumption 5 (resugaring)

implies Icore  D(γ) • J1 . . . D(γ) • Jn by corollary 2 (core determinism)

iff Icore  D(γ) •D(J1)D(γ) •D(Jn) since D(Ji) = Ji

iff Icore  D(γ • J1) . . . D(γ • J1) by lemma 14 (distributivity)

implies Isurf  γ • J1 . . . γ • Jn inductive hypothesis

Also:

Isurf  J1 . . . Jn / J0 by assumption 5 (resugaring)

implies Isurf  γ • J1 . . . γ • Jn / γ • J0 by assumption 2 (substitution)

iff Isurf  γ • J1 . . . γ • Jn / γ • Jsurf equality

Thus Isurf  Jsurf by assumption 3 (composition).

Figure 15: Proof of theorem 9.
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Lemma 17. Resugaring obeys goal 2: type rules for surface constructs never mention

core constructs.

Proof. Let resugar(Icore, plhs ⇒ prhs) = J1 . . . Jn/Jlhs be any surface rule. We aim

to show that J1 . . . Jn and Jlhs do not mention core constructs C. By assumption

5 (resugaring), Icore  J1 . . . Jn → D(Jlhs), where J1 . . . Jn are all provable using

t-premise. We gave the t-premise rule in section 6.2, and generalize it in sec-

tion 6.4.3 and section 6.4.4. However, in all of its versions, the judgment must be

over a surface term. Thus J1 . . . Jn do not mention core constructs.

Finally, the expression in Jlhs is the lhs of a desugaring rule, and is thus by

definition a surface term. Therefore, given our assumptions listed in this section,

resugaring obeys goal 2.

6.4 desugaring features

There are several important features of desugaring that make the above story

more interesting. We describe them in this section.

6.4.1 Calculating Types

Consider the desugaring of let into the application of a lambda:

let x = α in β ⇒ (λ x : ? . β)(α)

What is the missing type? It needs to match the type of α, but there is no way

to express this using the kind of desugaring rules we have presented so far. We

therefore extend the desugaring language with a feature called calc-type. In

this example, it can be used as follows:

let x = α in β ⇒ calc-type α as X in (λ x : X . β)(α)

This binds the type variable X to the type of α in the rest of the desugaring.

In general, calc-type may be used in expression position on the rhs of a

desugaring rule, and its meaning is that:

calc-type p1 as t in p2

desugars to p2, in which the type t has been unified with the type of p1, thus

allowing the free type variables of t to be used in p2.1 Notice that this requires

1 calc-type can also be used to force a more specific surface type rule than would be inferred. For

example, (calc-type α as List<X> in ...) will lead to a surface type rule that enforces that α is

a list. This is used in the Haskell list comprehension example of section 6.6.2 and in the or example

of section 6.4.5.
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desugaring and type checking to be interspersed. This is not surprising, since

the desugaring of let involves determining a type.

This feature needs to be reflected in our type system. We do so with the type

rule:

Γ ` p1 : t1 t1 = t Γ ` p2 : t2t-calc-type
Γ ` (calc-type p1 as t in p2) : t2

With this type rule, we can find a type derivation for let, shown in fig. 16. It

t-premise
Γ ` α : A A = t

t-premise
Γ, x : t ` β : D

t-lambda
Γ ` (λ x:t. β) : t → D

t-premise
Γ ` α : t

t-app
Γ ` (λ x:t. β)(α) : D

t-calc-type
Γ ` (calc-type α as t in (λ x:t. β) α) : D

t-let
Γ ` let x = α in β : D

Figure 16: Type derivation of let

leads to the type rule:

Γ ` α : A Γ, x : A ` β : B
t-let

Γ ` let x = α in β : B

Here we can see an advantage of type resugaring. As noted above, to type

check let in the core, type checking and desugaring must be interspersed. How-

ever, to type check let in the surface, only this resugared rule is needed.

6.4.2 Recursive Sugars

Consider boolean guards in Haskell list comprehensions, which are defined by

the desugaring rule (in Haskell’s syntax):

[α | β, γ] ⇒ if β then [α | γ] else []

This sugar, unlike those we have seen up to this point, is defined recursively: its

rhs contains a list comprehension. Our resugaring algorithm, as described so

far, will fail to find a type derivation for this sugar. It will get to the judgment

Γ ` [α | γ] : _, but lack any way to prove this judgment, because the t-premise

rule does not match.

Our solution is to generalize the t-premise rule to allow any judgment about

a surface term to be accepted as a premise. Notice that the term [α | γ] is a

surface term: when desugaring, pattern variables such as α and γ will only ever

be bound to surface terms, and thus they themselves should be considered part

of the surface language. We therefore refine the t-premise rule as:
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fresh x p is a surface term
t-premise

Γ ` p : x

Furthermore, this is the most general rule we can make: goal 2 states that

surface type rules must never mention core constructs, so t-premise can allow

judgments over surface terms but nothing more.

6.4.3 Fresh Variables

Take the sugar const, which produces a constant function:

const α ⇒ λ x : Unit. α

It is important that x be given a fresh name, or else this sugar might acciden-

tally capture a user-defined variable called x which is used in α. This is easy to

add to desugaring: each desugaring rule will specify a set of “capturing” vari-

ables that are not freshly generated, and all other introduced variables will be

given fresh names. (We use a capturing rather than fresh set to choose hygienePicking fresh names
for sugar-introduced
variables suffices for
hygiene because our
sugars are declared

outside the language.

by default.)

This feature must also be reflected in the surface type system. First, let F be

the set of introduced variables that are not marked as captured. We then add

the type rule:

Γ ` p : t p is a surface term x1 . . . xn ∈ F
t-fresh

Γ, x1 : t1 . . . xn : tn ` p : t

to remove unnecessary fresh variables from the type environment, and by modi-

fying t-premise to only work on judgments so limited:Our implementation
combines t-fresh

and t-premise into
one rule for

convenience, but the
effect is the same.

p is a surface term ∀x ∈ Γ. x 6∈ F fresh x′
t-premise

Γ ` p : x′

What exactly is t-fresh saying? It is a form of weakening, but with two

extra restrictions. First, the variables being weakened are variables that will

be given fresh names during desugaring. Second, the expression e is a surface

term. Together, these imply that e cannot contain x1 . . . xn, so it should be safe to

remove them from Γ. One way this could fail is if the language does not admit

weakening, for example if it has a linear type system. We therefore assume that:

Assumption 6. The rule:

x 6∈ Γ x 6∈ e Γ, x : t′ ` e : t
Γ ` e : t

is admissible in the core type system.

This rule can be used to “reverse” any use of t-fresh, so if it is admissible

then applying t-fresh greedily can never lead a derivation into a dead end.
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6.4.4 Globals

Sugars may rely on library functions. For instance, Haskell’s list comprehension

sugar makes use of the library function concatMap (which is map followed by list

concatenation). We therefore allow the declaration of “global” names, together

with their type, with the understanding that this name will be available to the

desugared code (with the given type). The ability to
reference “globals” is
but a poor
approximation to a
macro system that
allows macros and
code to be
interspersed, in
which a macro may
reference any
identifier it is in
scope of. However,
type resugaring in
this setting is a much
harder problem
which we leave to
future work.

The declared globals effectively form a primordial type environment, available

in conjunction with the ordinary type environment. For example, if + desugars

into a call to a global plus, the type rule for + is actually (using N as shorthand

for Number):

plus : N,N→N, Γ ` α : N plus : N,N→N, Γ ` β : N
plus : N,N→N, Γ ` α + β : N

However, this is both verbose and unusual, so we opt to leave the N,N→N implicit.

We do so by adding the type rule:

globals[x] = t
t-global

Γ ` x : t
which allows plus to be left out of Γ.

6.4.5 Variable Arities

We support syntactic constructs with variable arity by having a sort called e∗ that

represents a sequence of expressions:

e∗ ::= ε empty sequence

| (cons e e∗) nonempty sequence

| α pattern variable

SweetT supports these sequences by providing:

• The above grammar production, allowing a language’s grammar to refer

to e∗.

• Proper handling of sequences in the unification algorithm, allowing them

to be resugared.

• Built-in operations for accessing the n’th element of a sequence, and for

asserting that a type judgment holds for all expressions in a sequence.

SweetT likewise supports sequences of types, t∗, and records of both expressions

and types.

Using this feature, a simple variable-arity or sugar can have production rule

(or e∗), and desugaring rules:
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(or (cons α ε)) ⇒ α

(or (cons α (cons β δ))) ⇒ if α then true else (or (cons β δ))

Type resugaring produces one type rule for each desugaring rule:

Γ ` α : Asugar-or-1
Γ ` (or (cons α ε)) : A

Γ ` (or (cons β δ)) : Bool Γ ` α : Bool
sugar-or-2

Γ ` (or (cons α (cons β δ))) : Bool

The first rule may appear to be too general, but it accurately reflects the sugar

as written: (or (cons 3 ε)) is a synonym for 3 and has type Number. However, we

can statically restrict the singleton or to accept only booleans using calc-type:

(or (cons α ε)) ⇒ calc-type α as Bool in α

at which point the resugared type rule becomes:

Γ ` α : Boolsugar-or-1
Γ ` (or (cons α ε)) : Bool

as probably desired.

6.5 implementation

We have implemented a prototype of our tool in PLT Redex [19], a semantics en-

gineering tool. It can be found at cs.brown.edu/research/plt/dl/pldi2018/.

Among other features, Redex allows one to define judgment forms, and given a

judgment form can search for derivations of it.

SweetT takes as input:

• The syntax of a language, given as a grammar in Redex.

• Core language type rules, defined as a judgment form in Redex. We re-

quire that these rules be written using equality constraints: if two premises

in a type rule would traditionally describe equality by repeating a type

variable, SweetT instead requires that the rule be written using two differ-

ent type variables, with an equality constraint between them—thus making

the unification explicit.2

• Desugaring rules, given by a lhs and rhs. Each rule has a capture list of

variables to be treated unhygienically, as described in section 6.4.3, and the

rhs of a rule may make use of calc-type, as described in section 6.4.1.

2 This is necessary because re-using the same type variable would invoke Redex’s pattern-matching

algorithm. This is usually sufficient, because Redex is meant to type a complete term. However, we

are typing a partial term, and instead need a more general unification algorithm. So instead, SweetT

gathers equations and performs unification itself.

cs.brown.edu/research/plt/dl/pldi2018/
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• Type definitions of globals, as described in section 6.4.4.

SweetT then provides a resugar function that follows the process outlined at

the end of section 6.2, together with the extensions described in section 6.4. If

resugar succeeds, it produces the resugared type rule, as well as the derivation

which led to it. If it fails, it announces that no derivation was found (or, less likely,

that more than one was found, in violation of assumption 4 (unique-rule)).

Assumption 5 (resugaring) is essentially a specification for resugar, and we

believe our implementation obeys this property. We provide empirical evidence

for this fact, and for the power of SweetT, in the next section.

6.6 evaluation

There is no standard benchmark for work in this area. Therefore, we evaluate

our approach in two ways. First, we try resugaring on a number of sugars we

create atop existing type systems, to ensure that it can support that variety of type

systems. Second, we show some case studies which validate that it can handle

interesting sugars.

6.6.1 Type Systems

We evaluate SweetT by implementing a number of type systems from Types and

Programming Languages (tapl [9]). We tested the type systems in Part II of

tapl (except for references, pg. 167), as well as two later systems (subtyping and

existentials). Altogether, this is:

• Booleans (pg. 93)

• Numbers (pg. 93)

• Simply Typed Lambda Calculus (pg. 103)

• Unit (pg. 119)

• Ascription (pg. 122)

• Let binding (pg. 124)

• Pairs (pg. 126)

• Tuples (pg. 128)

• Records (pg. 129)

• Sums (pg. 132)

• Variants (pg. 136)

• General recursion (pg. 144)

• Lists (pg. 147)

• Error handling (pg. 174)

• Algorithmic subtyping (pg. 212)
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• Existential types (pg. 366)

We tested each type system by picking one or more sugars that made use of its

features, resugaring them to obtain type rules, and validating the resulting type

rules by hand. All of them resugared successfully.

Three type systems required extending SweetT’s unification algorithm: records

and lists needed builtin support, as described in section 6.4.5, and subtyping re-

quired adding subtyping constraints, as well as a new t-sub-premise rule. Ref-The t-sub-premise
rule is like

t-premise, but for
subtyping judgments

instead of type
judgments.

erences (pg. 167) would have required changing the form of judgments, from

Γ ` e : t to Γ, γ ` e : t where γ is a store environment, which would be a more

extensive change.

6.6.2 Case Studies

We describe six case studies below.

The first three are simpler than the rest. We describe them briefly, and show

them in figs. 18 and 19. For each, the figure first shows the relevant core language

type rules, then the sugar, then its core derivation, and finally the resugared

type rule. To make them fit, we show all of the derivations after unification,

eliminating equality constraints.

The last three case studies are more complex, so we discuss them more but do

not show their type derivations (which do not fit on a page).

letrec The letrec sugar (fig. 18) introduces recursive bindings using λ and

fix (the fixpoint operator).

λret The λret sugar (fig. 18) implements return in functions using tapl-

style exceptions (using String as the fixed exception type). The variable return

is marked as capturing in the sugar, and thus appears explicitly in the resulting

type rule.

upcast The upcast sugar (fig. 19) converts an expression to a supertype of

its type via η-expansion. Notice that the core language type system contains

subtyping judgments, as mentioned in section 6.6.1.

foreach We consider a functional foreach loop, that performs a map on a

list, and also provides break within the loop. If break is called, the loop halts

and returns the elements processed so far. Its desugaring is:

foreach x list body

=>
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Γ ` list : List D Γ, x : D, break : (Unit→ B) ` body : F
t-foreach

Γ ` foreach x list body : List F

Figure 17: foreach type rule

letrec loop : ((List a) -> (List b) -> (List b)) =

(λ (lst : (List a)) (acc : (List b))

if (isnil lst)

then acc

else

try

let break = (λ (_ : Unit) raise "") in

let x = head lst in

loop (tail lst) (cons body acc)

with (λ (_ : String) acc))

in reverse (loop list nil)

where reverse is a global (section 6.4.4) with type [i] -> [i]. In addition, this

sugar is declared to capture the variable break (see section 6.4.3).

The resugared type rule for foreach is show in fig. 17. It demonstrates how

different variables must be handled. In the desugaring, when body is used,

several variables are in scope: loop, lst, acc, break, and x. However, in the

resugared type rule, only break and x are in scope in the judgment for body:

x because it is an argument to the sugar, and break because it is declared as

capturing.

haskell list comprehensions List comprehensions [61, section 3.11] are

given by the following transformation:

[e | True] = [e]

[e | q] = [e | q, True]

[e | b, Q] = if b then [e | Q] else []

[e | p <- l, Q] = let ok p = [e | Q]

ok _ = []

in concatMap ok l

[e | let decls, Q] = let decls in [e | Q]

A Haskell list comprehension has the form [e | Q], where e is an expression

and Q is a list of qualifiers. There are three kinds of qualifiers, which are visible

in the rules above: (i) boolean guards b perform a filter; (ii) generators p <- l

perform a map; and (iii) let decls declare local bindings.
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We will ignore first two rules (which are uninteresting base cases), and fo-

cus on the last three, that introduce qualifiers. To resugar these three kinds of

qualifiers, we declare concatMap as a global with type (i -> [o]) -> [i] ->

[o], as described in section 6.4.4. We also simplify the generator desugaring to

consist of a single variable binding, because that is what is available in the tapl

core language we are desugaring to. Finally, we use calc-type (section 6.4.1)

to determine the type of elements in generators. Thus, we are resugaring these

slightly modified rules:

[e | b, Q] = if b then [e | Q] else []

[e | x <- l, Q] = calc-type l as [t] in

concatMap (\(x :: t) -> [e | Q]) l

[e | let x = e2, Q] = (let x = e2 in [e | Q])

SweetT resugars these rules, producing the following type rules (transcribed into

Haskell syntax):“hlc” stands for
“Haskell list

comprehension”. Γ ` [e | Q] : C Γ ` b : Bool
t-hlc-guard

Γ ` [e | b, Q] : C

Γ, x : t ` [e | Q] : [o] Γ ` l : [t]
t-hlc-gen

Γ ` [e | x <- l, Q] : [o]

Γ, x : A ` [e | Q] : B Γ ` e2 : A
t-hlc-let

Γ ` [e | let x = e2, Q] : B

newtype Let us now look at a desugaring of new-type into existential types.

The core language will have constructs for packing and unpacking existentials:

Γ ` e : [X 7→U]t
t-pack

Γ ` pack (U e) as (∃ X t) : (∃ X t)

Γ ` e1 : (∃ X t1) Γ, x : t1 ` e2 : t2t-unpack
Γ ` unpack e1 as (∃ X x) in e2 : t2

We define a new-type sugar that presents a concrete type T as an abstract type

X, and provides wrapping and unwrapping functions (with user-chosen names)

that convert from T to X and from X to T respectively. The desugaring is:

new -type (wrap unwrap) of T as X in body

⇒
unpack (pack (T (pair id id)

as (∃ X (Pair (T → X) (X → T)))))

as (∃ X w)

in let wrap = fst w in

let unwrap = snd w in

body
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where id is a global (section 6.4.4) identity function.

This sugar is successfully resugared to give the type rule:

Γ, u : X → T, w : T → X ` body : A
t-new-type

Γ ` new-type (w u) of T as X in body : A

Notice that this type rule does not mention existentials in any way, thereby hid-

ing the underlying implementation method and sparing the programmer from

needing to understand anything but new-type itself.

6.7 related work

work with the same goal We know of a few pieces of work with the

same end goal as us: to take a language with syntactic sugar, and type check

it without allowing for the possibility of a user seeing a type error in the core

language.

In Lorenzen and Erdweg’s SoundExt [53], desugaring comes before type check-

ing. Their formalism takes (i) a type system for the core language, (ii) a type

system for the surface language, and (iii) desugaring rules. It then statically ver-

ifies that the surface type system is consistent with the core type system. More

precisely, they ensure that, for any program, if that program type-checks in the

surface language, then its desugaring must type-check in the core language. Our

approach has a critical advantage over theirs: we do not require type rules to

be written for the surface language, but rather infer them. This simplifies the

process of extending the language, restoring the adage “oh, that’s just syntactic

sugar”. We believe this is especially valuable to authors of, say, domain-specific

languages, who are experts in a domain but may not be in the definition of type

systems.

Lorenzen and Erdweg’s later SoundX [54] shows how to integrate desugaring

and type rules, so that the same rule can serve both to extend desugaring and to

extend the type system. Essentially, the lhs of a desugaring rule is given as a

type rule, and the rhs is given as an expression (per usual). Again, the difference

with our work is that we do not require type rules to be written for the surface

language.

In a similar vein, both Granz et al.’s MacroML [30] and Mainland’s Meta-

Haskell [55] are staged programming languages. They provide the same guaran-

tee as SoundExt and SoundX: in the words of Mainland, “Well-typed metapro-

grams should only generate well-typed object terms.” Therefore, as with our

work, a user is guaranteed never to see a type error in desugared code. Unlike

SweetT, these staged systems allow macro definitions to be interspersed with

code. On the other hand, they do not allow macros to check the type of an ex-
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pression (as in our calc-type, section 6.4.1), or to inspect code (they can only

build code up from smaller fragments).

Omar et al. provide a syntactic extension mechanism for Wyvern called “type-

specific languages” (TSLs) [58]. They note that syntactic extensions often conflict

with each other, but can be resolved based on the type that the syntax is checked

against. As a simple example, Python uses the same syntax {...} for both sets

and dictionaries. The syntax {} is thus ambiguous, but this could be resolved

by checking whether the type context expected a set or a dictionary. This is

the purpose of TSLs. Like MacroML and MetaHaskell, Wyvern TSLs can only

construct code, and cannot inspect or deconstruct it. (This is sufficient for their

main intended use case, which is defining language literals.)

Finally, Heeren et al., and later Serrano and Hage, show how to augment a

type system with new hand-written error messages [33, 73]. They do so in the

context of embedded dsls that are implemented without syntactic sugar (which

is why their work does not immediately apply to our situation). When coding in

such an embedded dsl, programmers would normally be confronted with type

errors arising from the implementation of the dsl. This line of work allows the

dsl author to write custom error messages that instead frame the error in terms

of the dsl.

work with similar goals There are many systems that type check af-

ter desugaring; they potentially show a programmer a type error in code the

programmer did not write. Some of these are type systems retrofitted onto lan-

guages with macros, such as Type Racket [81] and Typed Clojure [5]. They at

best use sourcemaps, providing an accurate line number for a potentially con-

fusing message. There are also metaprogramming systems added to languages

with types, such as those of Haskell [76], Ocaml [15], and Scala [8]. They permit

grammar extension, and allow desugaring to be defined as an arbitrary function

from ast to ast. However, while their metasyntactic types capture the syntactic

category of an expression (for instance Exp vs. Name in TemplateHaskell), they

do not reflect the object types (e.g., expressions of type Int vs. expressions of

type String). As a result, they need to type check after desugaring. (Contrast

this to MetaHaskell and MacroML, described above.)

Lerner et al.’s Seminal [52] is a system for generating error messages in an

unusual way: if a program fails to type check, then it searches for one or more

small modification to the program such that it would type check, and presents

these to the programmer as suggested changes. At a high-level, Seminal has

a similar goal to type resugaring: it presents suggested modifications in terms

of the program that the programmer wrote, rather than (as per type inference)
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presenting type errors in terms of a mismatch between type annotations that the

programmer did not write.

Wyk et al. introduce forwarding for attribute grammars [84]. Forwarding is a

kind of inheritance. With it, instead of specifying all of its attributes directly, a

node in the ast can instead opt to forward some of them to a new node of its own

construction. If the original node is thought of as a surface node, and the new

node is thought of as a core node, then this is a kind of desugaring, and (some

of) the attributes of the core node are automatically propogated to the surface

node. Thus, if these forwarded attributes include scope or type information,

then the surface node’s scope or type has been defined to be the scope or type of

its “desugaring”. Notice that this differs from resugaring, though: we lift scope

rules (in the previous chapter), and type rules (in this chapter).

Fisher and Shivers’ Ziggurat [22] is a framework for defining a hierarchy of

language levels, that makes it easy to attach static analysis of any sort to each

level. However, it does not analyze the analysis, so it is possible for one level’s

analysis to conflict with that of another.

Similar work has been done for scope rules. For an overview, see section 5.8.

work with a different goal Our work could be contrasted with Chang

et al.’s Turnstile [10]. Turnstile is a macro-based framework for defining type

systems. However, while it uses desugaring in the implementing language, it has

no support for sugar in the implemented language. To this end, it is a competitor

to other lightweight language modeling tools (like Redex), and we could have

used Turnstile instead of Redex as the basis for our work (we settled on Redex

for various practical reasons).

6.8 discussion and conclusion

In this chapter, we have presented an algorithm and system for type resugaring:

given syntactic sugar over a typed language, it reconstructs type rules for that

sugar. These rules can be added to a type-checker to check the sugar directly

(and produce error messages at the level of the sugar, rather than its expanded

code), and also be added to the documentation of the surface language. We

show that the system can handle a variety of language constructs, and that it

successfully suppresses the details of what the sugar expands to.

We discussed restrictions on the pattern language of sugars in section 6.3.1

and the underlying type system in sections 6.3.2 and 6.3.3. We also presented

some limitations of the implementation in section 6.6.1. It is worth investigating

to see if these restrictions can be lifted to make this idea even more broadly

applicable.
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In principle, not much in our work has specifically been about types. Therefore,

this idea could just as well be applied to other syntax-driven deductive systems,

such as a natural semantics [41] or structural operational semantics [64]. This

would correspondingly enable the creation of semantic rules at the level of the

surface language, which can not only enrich a language’s documentation but

also facilitate its use in, say, a proof assistant.

6.9 demos

This section shows SweetT in action. Figure 20 shows a sample usage of SweetT,

and figs. 21 to 23 show many sugars and their resugared type rules. These

sugars are mostly very simple; their purpose is not to show that SweetT can

handle interesting sugars (this is what the case studies of section 6.6.2 are for),

but rather to show that it can handle several different type systems. In particular,

these sugars, together with those shown earlier in this chapter, make use of all

of the TAPL type system features listed in section 6.6.1.
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Sugars: Letrec and λret

Core Type Rules:
Γ, x : T ` e : U

t-lambda
Γ ` λ x:T. e : (T → U)

Γ ` f : T → U Γ ` e : Tt-apply
Γ ` (f e) : U

Γ ` e : T → Tt-fix
Γ ` (fix e) : T

Γ ` e : Strt-raise
Γ ` (raise e) : T

Γ ` e : T Γ ` ecatch : Str → Tt-try
Γ ` try e with ecatch : T

Desugaring Rules:

letrec x : C = a in b ⇒ (λ x:C. b) (fix (λ x:C. a))

λret x:T. b

⇒ λ x:T. try (let return = (λ v:Str. raise v) in b) with (λ v:Str. v)

λret is a function with return automatically bound (i.e., marked as captur-

ing) to escape from the function.

Core Derivations:

t-premise
Γ, x : C ` b : D

t-lambda
Γ ` (λ x:C. b) : C → D

t-premise
Γ, x : C ` a : C

t-lambda
Γ ` (λ x:C. a) : C → C

t-fix
Γ ` (fix (λ x:C. a)) : Ct-apply

Γ ` ((λ x:C. b) (fix (λ x:C. a))) : D
t-letrec→

Γ ` letrec x : C = a in b : D

t-id Γ, x : T, v : Str ` v : Str
t-raise Γ, x : T, v : Str ` raise v : A

t-λ Γ, x : T ` (λ v:Str. raise v) : Str→ A
t-prem.

Γ, x : T, return : Str → A ` b : Str
t-let Γ, x : T ` (let return = (λ v:Str. raise v) in b) : Str

t-id Γ, x : T, v : Str ` v : Str
t-λ Γ, x : T ` (λ v:Str. v) : Str→ Strt-try

Γ, x : T ` (try (let return = (λ v:Str. raise v) in b) with (λ v:Str. v)) : Str
t-λ Γ ` λ x:T. (try (let return = (λ v:Str. raise v) in b) with (λ v:Str. v)) : T→ Str

t-λret→ Γ ` (λret x:T. b) : T→ Str

Resugared Type Rules:

Γ, x : C ` a : C Γ, x : C ` b : D
t-letrec

Γ ` letrec x : C = a in b : D

Γ, x : T, return : (Str → A) ` b : Str
t-λret

Γ ` (λret x:T. b) : T → Str

Figure 18: Derivation examples
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Sugar: Upcast

Core Type Rules:

x:T ∈ Γ
t-id

Γ ` x : T
Γ, x : T ` e : U

t-lambda
Γ ` λ x:T. e : (T → U)

Γ ` f : T → U Γ ` e : T′ T′ <: Tt-apply
Γ ` (f e) : U

Desugaring Rule:

upcast a as C ⇒ (λ x:C. x) a

Core Derivation:

t-id
Γ, x : C ` x : C

t-lambda
Γ ` (λ x:C. x) : C → C

t-premise
Γ ` a : A

t-sub-premise
A <: Ct-apply

Γ ` ((λ x:C. x) a) : Ct-upcast→
Γ ` upcast a as C : C

Resugared Type Rule:

Γ ` a : A A <: Ct-upcast
Γ ` upcast a as C : C

Figure 19: Derivation examples (cont.)
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#lang racket

(require redex)

(require "../ resugar.rkt")

(define -resugarable -language demo

#: keywords(if true false Bool)

(e ::= ....

(if e e e))

(v ::= ....

true

false)

(t ::= ....

Bool)

(s ::= ....

(not s)))

(define -core -type -system demo

[(` Γ e_1 t_1)

(` Γ e_2 t_2)

(` Γ e_3 t_3)

(con (t_1 = Bool))

(con (t_2 = t_3))

------ t-if

(` Γ (if e_1 e_2 e_3) t_3)]

[------ t-true

(` Γ true Bool)]

[------ t-false

(` Γ false Bool)])

(define rule_not

(ds-rule "not" #: capture ()

(not ~a)

(if ~a false true)))

(view -sugar -type -rules demo ` (list rule_not))

infers the following resugared type rule :
(Γ ` a : Bool)

not
(Γ ` (not a) : Bool)

Figure 20: Sample SweetT usage
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