{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Python の lambda 式\n", "\n", "* lambda式は無名変数です\n", "* \"lambda 引き数 : 処理\" のように書きます\n", "* 主に map や filter の引き数に使います\n", "\n", "![063.png](attachment:063.png)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 4, 27, 256, 3125]\n" ] } ], "source": [ "lst = map(lambda t: t**t, [1,2,3,4,5])\n", "print (list(lst))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XlYlXX+//HnR1xRxAVxA8QFFwRLw62astQyW8ysyZr2xWqm78xvlpRSy7TFbJqmmazGmraZaRVSMpc227PUSjZBERcQFRTFhZ3z+f0B08UQyVEP3JxzXo/r8rrO4dye8/p4Dq/u7nPO+zbWWkRExLe0cDqAiIh4nspdRMQHqdxFRHyQyl1ExAep3EVEfJDKXUTEB6ncRUR8kMpdRMQHqdxFRHxQS6ceOCQkxEZGRjr18CIiXmnjxo37rbXdGtrOsXKPjIxkw4YNTj28iIhXMsbsdGc7HZYREfFBKncRER+kchcR8UEqdxERH6RyFxHxQQ2WuzHmRWNMvjEm9WduN8aYvxljsowxycaYEZ6PKSIiJ8KdPfeXgUnHuf0iIKrmzwzg2VOPJSIip6LBcrfWfgYUHmeTKcCrtto6oJMxpqenAoqI+IqS8ioeXbWZ3IPFjf5Ynjjm3hvIqXU9t+ZnP2GMmWGM2WCM2VBQUOCBhxYR8Q5fbdvPhX/9jH98ms3azMbvP098Q9XU87N6z7ptrV0CLAGIi4vTmblFxOcdLq3g0ZWbef3bHCK7BvLGjDGM6de10R/XE+WeC4TXuh4G5HngfkVEvNoH6fuYsyyFgiNl3HFuP34/YSBtWwU0yWN7otyTgLuNMW8Ao4Eia+0eD9yviIhX2n+0jHlJaaxI3sPgHkE8f0Mcw8I6NWmGBsvdGPM6MA4IMcbkAg8ArQCstc8BK4HJQBZQDNzcWGFFRJozay3Lf8jjwXfTOFZWxR8nDuSOc/vTumXTf6WowXK31l7TwO0W+I3HEomIeKG8QyXMWZbKxxn5DI/oxKJpw4jqHuRYHsdG/oqI+AKXy/Lat7tYuCqDKpfl/kuiufHMSAJa1PdZk6ajchcROUnb9x9jVkIy324v5OwBITx6RSzhXQKdjgWo3EVETlhllYsXvtjOkx9soXXLFiyaNoyr4sIwxtm99dpU7iIiJyA97zCzEpJJ2V3EBdHdWXB5DN07tnU61k+o3EVE3FBWWcXTH2fx7Cfb6BTYisXXjmBybI9mtbdem8pdRKQBG3ceZFZCMln5R7liRG/mXhxN5/atnY51XCp3EZGfUVxeyeNrMnn5qx30Cm7HyzePZNygUKdjuUXlLiJSjy+27ic+MZncgyXcMLYPMycNpkMb76lM70kqItIEiooreHhlOm9tyKVfSHveumMso/p2cTrWCVO5i4jUWJ26l7nLUyk8Vs5d4/rzu/FRTTboy9NU7iLi9wqOVA/6ei9lD9E9O/LSTSOJ6R3sdKxTonIXEb9lrSXxu93MX5FOSXkV91w4iBnn9KNVQNMP+vI0lbuI+KXdh0q4LzGFT7cUcEafzjw2bRgDQjs4HctjVO4i4ldcLsu/v9nJY6sysMCDlw3l+jF9aOHwoC9PU7mLiN/YVnCU+IRk1u84yC+iQnhkavMZ9OVpKncR8XkVVS6e/zybv364lXatAvjzVacxbUTvZjs6wBNU7iLi01J3FzErIZm0vMNcFNODB6cMJTSo+Q368jSVu4j4pNKKKv7+8Vae+zSbzoGtefZXI7gotqfTsZqMyl1EfM6GHYXMTEgmu+AYV50RxuyLh9ApsHkP+vI0lbuI+IyjZZU8vjqDV9ftpFdwO169ZRTnDOzmdCxHqNxFxCd8uqWA+xJTyCsq4caxkdxz4SDae9GgL0/z35WLiE84VFzOghWbSfgul/7d2vP2HWOJi/S+QV+epnIXEa+1KmUPc5encbC4nLvPG8Dd5w/w2kFfnqZyFxGvk3+4lPuXp7E6bS8xvTvyyi0jGdrLuwd9eZrKXUS8hrWWpRtzWbAindJKF7MmDeb2X/SlpQ8M+vI0lbuIeIWcwmLueyeFz7fuZ1RkFxZOi6VfN98Z9OVpKncRadaqXJZXv97B42syMcCCKUP51WjfG/TlaSp3EWm2svKPMCshhY07D3LuwG48ckUsvTu1czqWV1C5i0izU1Hl4h+fbuNvH2UR2CaAv/zyNKYO9+1BX56mcheRZiUlt4iZCcls3nOYi4f1ZN6lQ+kW1MbpWF7HrXI3xkwCngICgBestQvr3B4BvAJ0qtkm3lq70sNZRcSHlVZU8dcPt/L859l0bd+af1x/BhcO7eF0LK/VYLkbYwKAxcBEIBdYb4xJstam19psDvCWtfZZY0w0sBKIbIS8IuKDvsk+QHxiCtv3H+PquHDuu3gIwe1aOR3Lq7mz5z4KyLLWZgMYY94ApgC1y90CHWsuBwN5ngwpIr7pSGkFi1Zn8q91Ownv0o7/3DaaswaEOB3LJ7hT7r2BnFrXc4HRdbaZB7xvjPk/oD0wwSPpRMRnrc3MZ3ZiCnsOl3LLWX3504UDCWyttwE9xZ1/yfrenrZ1rl8DvGytfcIYMxb4lzEmxlrr+p87MmYGMAMgIiLiZPKKiJc7eKycBSvSSfx+N1GhHUi460xGRHR2OpbPcafcc4HwWtfD+Olhl1uBSQDW2q+NMW2BECC/9kbW2iXAEoC4uLi6/4EQER9mreW9lD08sDyNopIKfjs+it+c1582LTXoqzG4U+7rgShjTF9gNzAduLbONruA8cDLxpghQFugwJNBRcR77TtcypxlqXyQvo9hYcH8+7bRDOnZseG/KCetwXK31lYaY+4G1lD9MccXrbVpxpj5wAZrbRLwR+B5Y8zvqT5kc5O1VnvmIn7OWstbG3J46L3NlFe6uG/yYG45S4O+moJb717UfGZ9ZZ2f3V/rcjpwlmejiYg323WgmPjEZL7adoDRfbvw2LRhRIa0dzqW39Bb0yLiUVUuy8tf7eDPazIJaGF4eGoM14yM0KCvJqZyFxGP2bLvCDOXJvNDziHOHxzKw1Nj6BmsQV9OULmLyCkrr3Tx7CfbeHrtVjq0aclT00/nstN6adCXg1TuInJKNuUcYlZCMhl7j3DZab144NJounbQoC+nqdxF5KSUlFfx5IdbeOHzbEKD2vLCDXFMiO7udCypoXIXkRP29bYD3JuYzI4DxVwzKoJ7Jw+mY1sN+mpOVO4i4rbDpRUsXJXBa9/sok/XQF67fTRn9tegr+ZI5S4ibvlo8z5mv5NK/pFSbv9FX/4wcRDtWmt0QHOlcheR4zpwtIwH300naVMeg7oH8dz1Z3B6eCenY0kDVO4iUi9rLUmb8njw3XSOlFbw+wkDuWtcf1q31OgAb6ByF5Gf2FNUwpx3UvkoI5/TwjuxaNowBvUIcjqWnACVu4j8yOWyvLE+h0dXbqbC5WLOxUO4+ay+BGh0gNdRuYsIADv2HyM+MZl12YWM7deVhdNi6dNVg768lcpdxM9VVrl46csdPPFBJq1atGDhFbFcPTJcowO8nMpdxI9l7D3MrKXJbMotYsKQ7jx0eQw9gts6HUs8QOUu4ofKKqtYvHYbz6zNIrhdK/5+zXAuGdZTe+s+ROUu4me+33WQWQnJbNl3lKnDezP3kmi6tG/tdCzxMJW7iJ8oLq/kife38OKX2+nRsS0v3hTH+YM16MtXqdxF/MBXWfuJT0xhV2Ex142JYNakwQRp0JdPU7mL+LCikgoeXbmZN9bn0DekPW/MGMOYfl2djiVNQOUu4qPeT9vLnGWp7D9axh3n9uP3EwbStpUGffkLlbuIj9l/tIx5SWmsSN7D4B5BvHBjHMPCNOjL36jcRXyEtZZlP+zmwXfTKS6r4o8TB3LnuP60CtCgL3+kchfxAXmHSpj9TgprMwsYHlE96CuquwZ9+TOVu4gXc7ks//l2F4+tyqDKZbn/kmhuPDNSg75E5S7irbILjhKfkMK3Owo5e0AIj14RS3iXQKdjSTOhchfxMpVVLl74YjtPfrCFNi1bsOjKYVx1RphGB8j/ULmLeJH0vMPMTNhE6u7DXDi0OwumxBDaUYO+5KdU7iJeoKyyiqc/zuLZT7bRKbAVz/xqBBfF9NDeuvwslbtIM7dxZyGzElLIyj/KFSN6M/fiaDpr0Jc0QOUu0kwdK6vk8TWZvPL1DnoFt+Plm0cyblCo07HES7hV7saYScBTQADwgrV2YT3b/BKYB1hgk7X2Wg/mFPErn28t4N7EFHIPlnDj2D7cM2kwHdpoX0zc1+CrxRgTACwGJgK5wHpjTJK1Nr3WNlHAvcBZ1tqDxhjtXoichKLiCh56L523N+bSr1t73r5zLCMjuzgdS7yQO7sCo4Asa202gDHmDWAKkF5rm9uBxdbagwDW2nxPBxXxdatT9zJ3eSqFx8r59bj+/HZ8lAZ9yUlzp9x7Azm1rucCo+tsMxDAGPMl1Ydu5llrV9e9I2PMDGAGQERExMnkFfE5+UdKmZeUxsqUvUT37MhLN40kpnew07HEy7lT7vV91srWcz9RwDggDPjcGBNjrT30P3/J2iXAEoC4uLi69yHiV6y1JHy3mwUr0impqOKeCwcx45x+GvQlHuFOuecC4bWuhwF59WyzzlpbAWw3xmRSXfbrPZJSxMfkHizmvndS+WxLAXF9OrNw2jAGhHZwOpb4EHfKfT0QZYzpC+wGpgN1PwmzDLgGeNkYE0L1YZpsTwYV8QUul+Vf63by2OoMAB68bCjXj+lDCw36Eg9rsNyttZXGmLuBNVQfT3/RWptmjJkPbLDWJtXcdoExJh2oAu6x1h5ozOAi3mZbwVFmLU1mw86DnDOwG49MjSGsswZ9SeMw1jpz6DsuLs5u2LDBkccWaUoVVS6WfJbNUx9tpV2rAOZeEs20Eb01OkBOijFmo7U2rqHt9K0IkUaUuruImUuTSd9zmMmxPZh32VBCgzToSxqfyl2kEZRWVPHUR1tZ8lk2nQNb89x1I5gU09PpWOJHVO4iHrZ+RyGzliaTvf8YV50RxpyLowkObOV0LPEzKncRDzlaVsmi1Rm8+vVOwjq341+3juIXUd2cjiV+SuUu4gGfbingvsQU8opKuOnMSO65cBDtNehLHKRXn8gpOFRczvwV6SR+t5v+3dqz9M6xnNFHg77EeSp3kZNgrWVV6l7uX57KoeIK7j5vAHefP0CDvqTZULmLnKD8w6XMXZ7KmrR9xPTuyCu3jGJoLw36kuZF5S7iJmstb2/M5aEV6ZRVuoi/aDC3nd2Xlhr0Jc2Qyl3EDTmFxdybmMIXWfsZFdmFhdNi6ddNg76k+VK5ixxHlcvy6tc7WLQ6kxYGFlwew69GRWjQlzR7KneRn5GVf4SZS5P5btchxg3qxsNTY+ndqZ3TsUTconIXqaOiysVzn2zj7x9nEdgmgCevPo3LT9egL/EuKneRWlJyi7hn6SYy9h7hkmE9mXfZUEI6tHE6lsgJU7mLUD3o68kPt/D8Z9mEdGjDkuvP4IKhPZyOJXLSVO7i977JPkB8Ygrb9x9j+shw7p08hOB2GvQl3k3lLn7rSGkFj63O4N/rdhHepR3/uW00Zw0IcTqWiEeo3MUvrc3I5753Uth7uJRbz+7LHy8YSGBr/TqI79CrWfxK4bFy5r+bxrIf8ogK7UDCXWcyIqKz07FEPE7lLn7BWsuK5D3MS0qjqKSC346P4jfn9adNSw36Et+kcheft+9wKbPfSeXDzfsYFhbMf24fzeAeHZ2OJdKoVO7is6y1vLk+h4dXbqa80sXsyUO4+axIDfoSv6ByF5+060Ax8YnJfLXtAKP7duGxacOIDGnvdCyRJqNyF59S5bK89OV2/vx+Ji1btOCRqbFMHxmuQV/id1Tu4jMy9x5hZkIym3IOcf7gUB6eGkPPYA36Ev+kchevV17p4plPsli8Nougtq14avrpXHZaLw36Er+mchevtinnEDOXJpO57whTTu/F/ZdE01WDvkRU7uKdSsqr+MsHmfzzi+2EBrXlhRvimBDd3elYIs2Gyl28zlfb9nNvYgo7DxRz7egI4i8aTMe2GvQlUpvKXbzG4dIKHl2Zwevf7qJP10Beu300Z/bXoC+R+rj1bQ5jzCRjTKYxJssYE3+c7a40xlhjTJznIorAh+n7mPiXT3lz/S5mnNOP1b87R8UuchwN7rkbYwKAxcBEIBdYb4xJstam19kuCPgt8E1jBBX/dOBoGQ++m07SpjwG9whiyfVxnBbeyelYIs2eO4dlRgFZ1tpsAGPMG8AUIL3OdguARcCfPJpQ/JK1lqRNecxLSuNoWSW/nzCQu8b1p3VLjQ4QcYc75d4byKl1PRcYXXsDY8xwINxau8IYo3KXU7KnqIQ576TyUUY+p4d3YtGVwxjYPcjpWCJexZ1yr++bIPbHG41pATwJ3NTgHRkzA5gBEBER4V5C8Rsul+X19bt4dGUGlS4Xcy4ews1n9SVAowNETpg75Z4LhNe6Hgbk1boeBMQAn9R8I7AHkGSMucxau6H2HVlrlwBLAOLi4iwiNbbvP0Z8QjLfbC/kzP5dWXjFMCK6BjodS8RruVPu64EoY0xfYDcwHbj2vzdaa4uAHz+2YIz5BPhT3WIXqU9llYsXv9zOE+9voXXLFjw2LZZfxoVrdIDIKWqw3K21lcaYu4E1QADworU2zRgzH9hgrU1q7JDimzbvOcyshGSSc4uYGN2dhy6PoXvHtk7HEvEJbn2JyVq7ElhZ52f3/8y24049lviyssoqFq/dxjNrswhu14qnrx3OxbE9tbcu4kH6hqo0qe92HWTW0mS25h9l6vDe3H9JNJ3bt3Y6lojPUblLkygur+TPa7bw0lfb6dGxLS/dNJLzBoc6HUvEZ6ncpdF9mbWf+MRkcgpLuG5MBLMmDSZIg75EGpXKXRpNUUkFj7y3mTc35NA3pD1vzhjD6H5dnY4l4hdU7tIo3k/by5xlqRw4Vs6d5/bn/02Iom2rAKdjifgNlbt4VMGRMua9m8Z7yXsY0rMj/7xxJLFhwU7HEvE7KnfxCGst73y/m/kr0ikuq+JPFwzkjnP70ypAg75EnKByl1O2+1AJs99J4ZPMAkZEVA/6GhCqQV8iTlK5y0lzuSz/+WYnC1dl4LLwwKXR3DA2UoO+RJoBlbuclOyCo8QnpPDtjkJ+ERXCI1NjCe+iQV8izYXKXU5IZZWL5z/fzpMfbqFtyxY8fuUwrjwjTKMDRJoZlbu4LT3vMDMTNpG6+zAXDu3OgikxhGrQl0izpHKXBpVWVPH0x1k89+k2OgW25tlfjeCi2J5OxxKR41C5y3Ft3FnIzKXJbCs4xrQRYcy9ZAidAjXoS6S5U7lLvY6VVfL4mkxe+XoHvYLb8cotozh3YDenY4mIm1Tu8hOfbSng3sQU8opKuGFMH+6ZNJgObfRSEfEm+o2VHxUVV7DgvXSWbsylX7f2vHXHWEZGdnE6loicBJW7ALA6dQ9zl6dReKycX4/rz2/Ha9CXiDdTufu5/COlPLA8jVWpe4nu2ZGXbhpJTG8N+hLxdip3P2WtZenGXB56bzMlFVXcc+EgZpzTT4O+RHyEyt0P5RQWc987KXy+dT9xfTqzcNowBoR2cDqWiHiQyt2PuFyWV7/ewaI1mRhg/pShXDe6Dy006EvE56jc/URW/lHiE5LZsPMg5wzsxiNTYwjrrEFfIr5K5e7jKqpcLPksm6c+3Eq71gE8cdVpXDGitwZ9ifg4lbsPS91dxMylyaTvOczk2B48eFkM3YLaOB1LRJqAyt0HlVZU8dRHW1nyWTZd2rfmuetGMClGg75E/InK3ces31HIrKXJZO8/xi/jwpg9OZrgwFZOxxKRJqZy9xFHyypZtDqDV7/eSVjndvz71tGcHRXidCwRcYjK3QeszcxndmIKew6XcvNZkfzpgkG016AvEb+mBvBiB4+Vs2BFOonf72ZAaAeW3nkmZ/Tp7HQsEWkGVO5eyFrLypS9PJCUyqHiCv7v/AHcff4A2rTUoC8RqeZWuRtjJgFPAQHAC9bahXVu/wNwG1AJFAC3WGt3ejirAPmHS5mzLJX30/cR2zuYV28ZTXSvjk7HEpFmpsFyN8YEAIuBiUAusN4Yk2StTa+12fdAnLW22BhzF7AIuLoxAvsray1vb8hlwXvplFe6uPeiwdx6dl9aatCXiNTDnT33UUCWtTYbwBjzBjAF+LHcrbVra22/DrjOkyH9XU5hMfcmpvBF1n5G9e3Cwiti6ddNg75E5Oe5U+69gZxa13OB0cfZ/lZgVX03GGNmADMAIiIi3Izov6pclle+2sHjazIJaGF46PIYrh0VoUFfItIgd8q9viax9W5ozHVAHHBufbdba5cASwDi4uLqvQ+ptnXfEWYmJPP9rkOMG9SNR6bG0qtTO6djiYiXcKfcc4HwWtfDgLy6GxljJgCzgXOttWWeied/yitdPPfpNp7+OIv2bQL469WnM+X0Xhr0JSInxJ1yXw9EGWP6AruB6cC1tTcwxgwH/gFMstbmezyln0jOPcTMpclk7D3Cpaf14oFLownpoEFfInLiGix3a22lMeZuYA3VH4V80VqbZoyZD2yw1iYBjwMdgLdr9jB3WWsva8TcPqW0ooonP9jC859n0y2oDc/fEMfE6O5OxxIRL+bW59yttSuBlXV+dn+tyxM8nMtvrMs+QHxCMjsOFHPNqHDiLxpCcDsN+hKRU6NvqDrkSGkFC1dl8J9vdhHRJZDXbhvNmQM06EtEPEPl7oCPM/Yx+51U9h0u5baz+/KHCwYS2FpPhYh4jhqlCRUeK2f+u2ks+yGPqNAOPHPXmQyP0KAvEfE8lXsTsNbybvIe5iWlcaS0gt+Nj+LX5/XXoC8RaTQq90a2t6h60NeHm/dxWlgwj105msE9NOhLRBqXyr2RWGt5Y30Oj7y3mQqXi9mTh3DL2X0J0OgAEWkCKvdGsPPAMeITUvg6+wBj+nVh4RXDiAxp73QsEfEjKncPqnJZXvpyO39+P5NWLVrwyNRYpo8M16AvEWlyKncPydxbPehrU84hxg8O5aGpMfQM1qAvEXGGyv0UlVe6eOaTLBavzSKobSv+ds1wLh3WU4O+RMRRKvdT8EPOIWYtTSZz3xGmnN6LBy4dSpf2rZ2OJSKicj8ZJeVVPPF+Ji9+uZ3QoLb888Y4xg/RoC8RaT5U7ifoq237iU9IYVdhMdeOjiD+osF0bKtBXyLSvKjc3XS4tIJHV27m9W9z6NM1kNdvH8PY/l2djiUiUi+Vuxs+TN/H7GUpFBwpY8Y5/fj9hIG0a63RASLSfKncj+PA0TLmvZvOu5vyGNwjiCXXx3FaeCenY4mINEjlXg9rLct/yOPBd9M4WlbJHyYO5M5z+9O6ZQuno4mIuEXlXkfeoRLmLEvl44x8Tg/vxKIrhzGwe5DTsURETojKvYbLZXnt210sXJVBlcsy95JobjozUoO+RMQrqdyB7fuPEZ+QzDfbCzlrQFcenTqMiK6BTscSETlpfl3ulVUu/vnFdv7ywRZat2zBY9Ni+WVcuEYHiIjX89ty37znMLMSkknOLWJidHceujyG7h3bOh1LRMQj/K7cyyqrWPxxFs98so1Oga1YfO0IJsf20N66iPgUvyr3jTsPMishmaz8o1wxvDdzL4mmswZ9iYgP8otyLy6v5PE1mbz81Q56dmzLSzeP5LxBoU7HEhFpND5f7l9s3U98YjK5B0u4fkwfZk4aRJAGfYmIj/PZci8qqeDh99J5a0MufUPa8+aMMYzup0FfIuIffLLc16TtZe6yVA4cK+eucf353fgo2rbSoC8R8R8+Ve4FR8qYl5TGeyl7GNKzI/+8cSSxYcFOxxIRaXI+Ue7WWhK/2838FemUlFdxz4WDmHFOP1oFaNCXiPgnt8rdGDMJeAoIAF6w1i6sc3sb4FXgDOAAcLW1dodno9Zv96ES7ktM4dMtBYyIqB70NSBUg75ExL81WO7GmABgMTARyAXWG2OSrLXptTa7FThorR1gjJkOPAZc3RiB/8vlsvz7m508tioDC8y7NJrrx2rQl4gIuLfnPgrIstZmAxhj3gCmALXLfQowr+byUuBpY4yx1loPZv3RtoKjxCcks37HQX4RFcIjU2MJ76JBXyIi/+VOufcGcmpdzwVG/9w21tpKY0wR0BXY74mQtb21Poc5y1Np27IFj185jCvPCNPoABGROtwp9/qas+4euTvbYIyZAcwAiIiIcOOhf6pvt/aMHxzKg1OGEhqkQV8iIvVxp9xzgfBa18OAvJ/ZJtcY0xIIBgrr3pG1dgmwBCAuLu6kDtmMjOzCyMguJ/NXRUT8hjufFVwPRBlj+hpjWgPTgaQ62yQBN9ZcvhL4uLGOt4uISMMa3HOvOYZ+N7CG6o9CvmitTTPGzAc2WGuTgH8C/zLGZFG9xz69MUOLiMjxufU5d2vtSmBlnZ/dX+tyKXCVZ6OJiMjJ0lc4RUR8kMpdRMQHqdxFRHyQyl1ExAep3EVEfJBx6uPoxpgCYOdJ/vUQGmG0QTOnNfsHrdk/nMqa+1hruzW0kWPlfiqMMRustXFO52hKWrN/0Jr9Q1OsWYdlRER8kMpdRMQHeWu5L3E6gAO0Zv+gNfuHRl+zVx5zFxGR4/PWPXcRETmOZl3uxphJxphMY0yWMSa+ntvbGGPerLn9G2NMZNOn9Cw31vwHY0y6MSbZGPORMaaPEzk9qaE119ruSmOMNcZ4/Scr3FmzMeaXNc91mjHmtabO6GluvLYjjDFrjTHf17y+JzuR01OMMS8aY/KNMak/c7sxxvyt5t8j2RgzwqMBrLXN8g/V44W3Af2A1sAmILrONr8Gnqu5PB140+ncTbDm84DAmst3+cOaa7YLAj4D1gFxTuduguc5Cvge6FxzPdTp3E2w5iXAXTWXo4EdTuc+xTWfA4wAUn/m9snAKqrPZDcG+MaTj9+c99x/PDG3tbYc+O+JuWubArxSc3kpMN549wlVG1yztXattba45uo6qs+M5c3ceZ4BFgCLgNKmDNdI3Fnz7cBia+1BAGttfhNn9DR31myBjjWXg/npGd+8irX2M+o5I10tU4BXbbV1QCdjTE9PPX5zLvf6Tszd++e2sdZWAv89Mbe3cmfNtd1K9X+mKenrAAAB+klEQVT5vVmDazbGDAfCrbUrmjJYI3LneR4IDDTGfGmMWWeMmdRk6RqHO2ueB1xnjMml+vwR/9c00Rxzor/vJ8Stk3U4xGMn5vYibq/HGHMdEAec26iJGt9x12yMaQE8CdzUVIGagDvPc0uqD82Mo/r/zj43xsRYaw81crbG4s6arwFettY+YYwZS/XZ3WKsta7Gj+eIRu2v5rznfiIn5uZ4J+b2Iu6sGWPMBGA2cJm1tqyJsjWWhtYcBMQAnxhjdlB9bDLJy99Udfe1vdxaW2Gt3Q5kUl323sqdNd8KvAVgrf0aaEv1DBZf5dbv+8lqzuXujyfmbnDNNYco/kF1sXv7cVhoYM3W2iJrbYi1NtJaG0n1+wyXWWs3OBPXI9x5bS+j+s1zjDEhVB+myW7SlJ7lzpp3AeMBjDFDqC73giZN2bSSgBtqPjUzBiiy1u7x2L07/Y5yA+82Twa2UP0u++yan82n+pcbqp/8t4Es4Fugn9OZm2DNHwL7gB9q/iQ5nbmx11xn20/w8k/LuPk8G+AvQDqQAkx3OnMTrDka+JLqT9L8AFzgdOZTXO/rwB6gguq99FuBO4E7az3Hi2v+PVI8/brWN1RFRHxQcz4sIyIiJ0nlLiLig1TuIiI+SOUuIuKDVO4iIj5I5S4i4oNU7iIiPkjlLiLig/4/Y1BQXUD0+FcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111) # row1 col1 1st subplot\n", "dat = [0,1]\n", "ax.plot(dat)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\left( \n", "\\begin{array}{c}\n", "x' \\\\\n", "y' \\\\\n", "1\n", "\\end{array} \n", "\\right) \n", "=\n", "\\left( \n", "\\begin{array}{ccc} \n", "m_{11} & m_{21} & d_{x} \\\\\n", "m_{12} & m_{22} & d_{y} \\\\\n", "0 & 0 & 1\n", "\\end{array} \n", "\\right)\n", "\\left( \n", "\\begin{array}{c}\n", "x \\\\\n", "y \\\\\n", "1\n", "\\end{array} \n", "\\right)\n", "$$" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Attachments", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 1 }