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Chapter 1

Effective Pandas

Introduction

This series is about how to make effective use of pandas, a data analysis library
for the Python programming language. It’s targeted at an intermediate level:
people who have some experince with pandas, but are looking to improve.

Prior Art

There are many great resources for learning pandas; this is not one of them. For
beginners, I typically recommend Greg Reda’s 3-part introduction, especially
if theyre’re familiar with SQL. Of course, there’s the pandas documentation
itself. I gave a talk at PyData Seattle targeted as an introduction if you prefer
video form. Wes McKinney’s Python for Data Analysis is still the goto book
(and is also a really good introduction to NumPy as well). Jake VanderPlas’s
Python Data Science Handbook, in early release, is great too. Kevin Markham
has a video series for beginners learning pandas.

With all those resources (and many more that I’ve slighted through omission),
why write another? Surely the law of diminishing returns is kicking in by now.
Still, I thought there was room for a guide that is up to date (as of March
2016) and emphasizes idiomatic pandas code (code that is pandorable). This
series probably won’t be appropriate for people completely new to python or
NumPy and pandas. By luck, this first post happened to cover topics that are
relatively introductory, so read some of the linked material and come back, or
let me know if you have questions.

Get the Data

We’ll be working with flight delay data from the BTS (R users can install
Hadley’s NYCFlights13 dataset for similar data.
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http://pandas.pydata.org
https://twitter.com/gjreda
http://gregreda.com/2013/10/26/intro-to-pandas-data-structures/
http://pandas.pydata.org/
https://www.youtube.com/watch?v=otCriSKVV_8
http://shop.oreilly.com/product/0636920023784.do
http://shop.oreilly.com/product/0636920034919.do
http://www.dataschool.io/easier-data-analysis-with-pandas/
https://twitter.com/tomaugspurger
http://www.transtats.bts.gov/databases.asp?Mode_ID=1&Mode_Desc=Aviation&Subject_ID2=0
https://github.com/hadley/nycflights13
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import os
import zipfile

import requests
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

if int(os.environ.get("MODERN_PANDAS_EPUB", 0)):
import prep

headers = {
'Pragma': 'no-cache',
'Origin': 'http://www.transtats.bts.gov',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.8',
'Upgrade-Insecure-Requests': '1',
'User-Agent': ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2) '

'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.'
'0.2564.116 Safari/537.36'),

'Content-Type': 'application/x-www-form-urlencoded',
'Accept': ('text/html,application/xhtml+xml,application/xml;q=0.9,'

'image/webp,*/*;q=0.8'),
'Cache-Control': 'no-cache',
'Referer': ('http://www.transtats.bts.gov/DL_SelectFields.asp?Table'

'_ID=236&DB_Short_Name=On-Time'),
'Connection': 'keep-alive',
'DNT': '1',

}

with open('modern-1-url.txt', encoding='utf-8') as f:
data = f.read().strip()

os.makedirs('data', exist_ok=True)
dest = "data/flights.csv.zip"

if not os.path.exists(dest):
r = requests.post('http://www.transtats.bts.gov/DownLoad_Table.asp?Table_ID=236'

'&Has_Group=3&Is_Zipped=0',
headers=headers, data=data, stream=True)

with open("data/flights.csv.zip", 'wb') as f:
for chunk in r.iter_content(chunk_size=102400):

if chunk:
f.write(chunk)
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That download returned a ZIP file. There’s an open Pull Request for automat-
ically decompressing ZIP archives with a single CSV, but for now we have to
extract it ourselves and then read it in.

zf = zipfile.ZipFile("data/flights.csv.zip")
fp = zf.extract(zf.filelist[0].filename, path='data/')
df = pd.read_csv(fp, parse_dates=["FL_DATE"]).rename(columns=str.lower)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 471949 entries, 0 to 471948
Data columns (total 37 columns):
fl_date 471949 non-null datetime64[ns]
unique_carrier 471949 non-null object
airline_id 471949 non-null int64
tail_num 467903 non-null object
fl_num 471949 non-null int64
origin_airport_id 471949 non-null int64
origin_airport_seq_id 471949 non-null int64
origin_city_market_id 471949 non-null int64
origin 471949 non-null object
origin_city_name 471949 non-null object
origin_state_nm 471949 non-null object
dest_airport_id 471949 non-null int64
dest_airport_seq_id 471949 non-null int64
dest_city_market_id 471949 non-null int64
dest 471949 non-null object
dest_city_name 471949 non-null object
dest_state_nm 471949 non-null object
crs_dep_time 471949 non-null int64
dep_time 441622 non-null float64
dep_delay 441622 non-null float64
taxi_out 441266 non-null float64
wheels_off 441266 non-null float64
wheels_on 440453 non-null float64
taxi_in 440453 non-null float64
crs_arr_time 471949 non-null int64
arr_time 440453 non-null float64
arr_delay 439620 non-null float64
cancelled 471949 non-null float64
cancellation_code 30852 non-null object
diverted 471949 non-null float64
distance 471949 non-null float64
carrier_delay 119994 non-null float64

https://github.com/pydata/pandas/pull/12175


CHAPTER 1. EFFECTIVE PANDAS 7

weather_delay 119994 non-null float64
nas_delay 119994 non-null float64
security_delay 119994 non-null float64
late_aircraft_delay 119994 non-null float64
unnamed: 36 0 non-null float64
dtypes: datetime64[ns](1), float64(17), int64(10), object(9)
memory usage: 133.2+ MB

Indexing

Or, explicit is better than implicit. By my count, 7 of the top-15 voted pandas
questions on Stackoverflow are about indexing. This seems as good a place as
any to start.

By indexing, we mean the selection of subsets of a DataFrame or Series.
DataFrames (and to a lesser extent, Series) provide a difficult set of
challenges:

• Like lists, you can index by location.
• Like dictionaries, you can index by label.
• Like NumPy arrays, you can index by boolean masks.
• Any of these indexers could be scalar indexes, or they could be arrays, or

they could be slices.
• Any of these should work on the index (row labels) or columns of a

DataFrame.
• And any of these should work on hierarchical indexes.

The complexity of pandas’ indexing is a microcosm for the complexity of the
pandas API in general. There’s a reason for the complexity (well, most of it),
but that’s not much consolation while you’re learning. Still, all of these ways
of indexing really are useful enough to justify their inclusion in the library.

Slicing

Or, explicit is better than implicit.

By my count, 7 of the top-15 voted pandas questions on Stackoverflow are
about slicing. This seems as good a place as any to start.

Brief history digression: For years the preferred method for row and/or column
selection was .ix.

df.ix[10:15, ['fl_date', 'tail_num']]

http://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15
http://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15
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index fl_date tail_num
10 2014-01-01 N3LGAA
11 2014-01-01 N368AA
12 2014-01-01 N3DDAA
13 2014-01-01 N332AA
14 2014-01-01 N327AA
15 2014-01-01 N3LBAA

However this simple little operation hides some complexity. What if, rather
than our default range(n) index, we had an integer index like

first = df.groupby('airline_id')[['fl_date', 'unique_carrier']].first()
first.head()

airline_id fl_date unique_carrier
19393 2014-01-01 WN
19690 2014-01-01 HA
19790 2014-01-01 DL
19805 2014-01-01 AA
19930 2014-01-01 AS

Can you predict ahead of time what our slice from above will give when passed
to .ix?

first.ix[10:15, ['fl_date', 'tail_num']]

airline_id fl_date tail_num ————- ———- ———–

Surprise, an empty DataFrame! Which in data analysis is rarely a good thing.
What happened?

We had an integer index, so the call to .ix used its label-based mode. It was
looking for integer labels between 10:15 (inclusive). It didn’t find any. Since we
sliced a range it returned an empty DataFrame, rather than raising a KeyError.

By way of contrast, suppose we had a string index, rather than integers.

first = df.groupby('unique_carrier').first()
first.ix[10:15, ['fl_date', 'tail_num']]
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unique_carrier fl_date tail_num
UA 2014-01-01 N14214
US 2014-01-01 N650AW
VX 2014-01-01 N637VA
WN 2014-01-01 N412WN

And it works again! Now that we had a string index, .ix used its positional-
mode. It looked for rows 10-15 (exclusive on the right).

But you can’t reliably predict what the outcome of the slice will be ahead of
time. It’s on the reader of the code (probably your future self) to know the
dtypes so you can reckon whether .ix will use label indexing (returning the
empty DataFrame) or positional indexing (like the last example). In general,
methods whose behavior depends on the data, like .ix dispatching to label-
based indexing on integer Indexes but location-based indexing on non-integer,
are hard to use correctly. We’ve been trying to stamp them out in pandas.

Since pandas 0.12, these tasks have been cleanly separated into two methods:

1. .loc for label-based indexing
2. .iloc for positional indexing

first.loc[['AA', 'AS', 'DL'], ['fl_date', 'tail_num']]

unique_carrier fl_date tail_num
AA 2014-01-01 N338AA
AS 2014-01-01 N524AS
DL 2014-01-01 N911DL

first.iloc[[0, 1, 3], [0, 1]]

unique_carrier fl_date airline_id
AA 2014-01-01 19805
AS 2014-01-01 19930
DL 2014-01-01 19790

.ix is still around, and isn’t being deprecated any time soon. Occasionally
it’s useful. But if you’ve been using .ix out of habit, or if you didn’t know
any better, maybe give .loc and .iloc a shot. For the intrepid reader, Joris
Van den Bossche (a core pandas dev) compiled a great overview of the pandas

https://github.com/pydata/pandas/issues/9595
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__getitem__ API. A later post in this series will go into more detail on using
Indexes effectively; they are useful objects in their own right, but for now we’ll
move on to a closely related topic.

SettingWithCopy

Pandas used to get a lot of questions about assignments seemingly not working.
We’ll take this StackOverflow question as a representative question.

f = pd.DataFrame({'a':[1,2,3,4,5], 'b':[10,20,30,40,50]})
f

index a b
0 1 10
1 2 20
2 3 30
3 4 40
4 5 50

The user wanted to take the rows of b where a was 3 or less, and set them
equal to b / 10 We’ll use boolean indexing to select those rows f['a'] <= 3,

# ignore the context manager for now
with pd.option_context('mode.chained_assignment', None):

f[f['a'] <= 3]['b'] = f[f['a'] <= 3 ]['b'] / 10
f

index a b
0 1 10
1 2 20
2 3 30
3 4 40
4 5 50

And nothing happened. Well, something did happen, but nobody witnessed it.
If an object without any references is modified, does it make a sound?

The warning I silenced above with the context manager links to an explanation
that’s quite helpful. I’ll summarize the high points here.

http://stackoverflow.com/q/16553298/1889400
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
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The “failure” to update f comes down to what’s called chained indexing, a prac-
tice to be avoided. The “chained” comes from indexing multiple times, one after
another, rather than one single indexing operation. Above we had two opera-
tions on the left-hand side, one __getitem__ and one __setitem__ (in python,
the square brackets are syntactic sugar for __getitem__ or __setitem__ if it’s
for assignment). So f[f['a'] <= 3]['b'] becomes

1. getitem: f[f['a'] <= 3]
2. setitem: _['b'] = ... # using _ to represent the result of 1.

In general, pandas can’t guarantee whether that first __getitem__ returns a
view or a copy of the underlying data. The changes will be made to the thing
I called _ above, the result of the __getitem__ in 1. But we don’t know that
_ shares the same memory as our original f. And so we can’t be sure that
whatever changes are being made to _ will be reflected in f.

Done properly, you would write

f.loc[f['a'] <= 3, 'b'] = f.loc[f['a'] <= 3, 'b'] / 10
f

index a b
0 1 1.0
1 2 2.0
2 3 3.0
3 4 40.0
4 5 50.0

Now this is all in a single call to __setitem__ and pandas can ensure that the
assignment happens properly.

The rough rule is any time you see back-to-back square brackets, ][, you’re in
asking for trouble. Replace that with a .loc[..., ...] and you’ll be set.

The other bit of advice is that a SettingWithCopy warning is raised when the
assignment is made. The potential copy could be made earlier in your code.

Multidimensional Indexing

MultiIndexes might just be my favorite feature of pandas. They let you repre-
sent higher-dimensional datasets in a familiar two-dimensional table, which my
brain can sometimes handle. Each additional level of the MultiIndex represents
another dimension. The cost of this is somewhat harder label indexing.
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My very first bug report to pandas, back in November 2012, was about indexing
into a MultiIndex. I bring it up now because I genuinely couldn’t tell whether
the result I got was a bug or not. Also, from that bug report

Sorry if this isn’t actually a bug. Still very new to python. Thanks!

Adorable.

That operation was made much easier by this addition in 2014, which lets you
slice arbitrary levels of a MultiIndex.. Let’s make a MultiIndexed DataFrame
to work with.

hdf = df.set_index(['unique_carrier', 'origin', 'dest', 'tail_num', 'fl_date']).sort_index()
hdf[hdf.columns[:4]].head()

airline_id fl_num \
unique_carrier origin dest tail_num fl_date
AA ABQ DFW N200AA 2014-01-06 19805 1662

2014-01-27 19805 1090
N202AA 2014-01-27 19805 1332
N426AA 2014-01-09 19805 1662

2014-01-15 19805 1467

origin_airport_id \
unique_carrier origin dest tail_num fl_date
AA ABQ DFW N200AA 2014-01-06 10140

2014-01-27 10140
N202AA 2014-01-27 10140
N426AA 2014-01-09 10140

2014-01-15 10140

origin_airport_seq_id
unique_carrier origin dest tail_num fl_date
AA ABQ DFW N200AA 2014-01-06 1014002

2014-01-27 1014002
N202AA 2014-01-27 1014002
N426AA 2014-01-09 1014002

2014-01-15 1014002

And just to clear up some terminology, the levels of a MultiIndex are the former
column names (unique_carrier, origin…). The labels are the actual values
in a level, ('AA', 'ABQ', …). Levels can be referred to by name or position,
with 0 being the outermost level.

https://github.com/pydata/pandas/issues/2207
http://pandas.pydata.org/pandas-docs/version/0.18.0/whatsnew.html#multiindexing-using-slicers
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Slicing the outermost index level is pretty easy, we just use our regular
.loc[row_indexer, column_indexer]. We’ll select the columns dep_time
and dep_delay where the carrier was American Airlines, Delta, or US Airways.

hdf.loc[['AA', 'DL', 'US'], ['dep_time', 'dep_delay']]

dep_time dep_delay
unique_carrier origin dest tail_num fl_date
AA ABQ DFW N200AA 2014-01-06 1246.0 71.0

2014-01-27 605.0 0.0
N202AA 2014-01-27 822.0 -13.0
N426AA 2014-01-09 1135.0 0.0

2014-01-15 1022.0 -8.0
... ... ...
US TUS PHX N824AW 2014-01-16 1900.0 -10.0

2014-01-20 1903.0 -7.0
N836AW 2014-01-08 1928.0 18.0

2014-01-29 1908.0 -2.0
N837AW 2014-01-10 1902.0 -8.0

[139194 rows x 2 columns]

So far, so good. What if you wanted to select the rows whose origin was Chicago
O’Hare (ORD) or Des Moines International Airport (DSM). Well, .loc wants
[row_indexer, column_indexer] so let’s wrap our the two elements of our
row indexer (the list of carriers and the list of origins) in a tuple to make it a
single unit:

hdf.loc[(['AA', 'DL', 'US'], ['ORD', 'DSM']), ['dep_time', 'dep_delay']]

dep_time dep_delay
unique_carrier origin dest tail_num fl_date
AA DSM DFW N200AA 2014-01-12 603.0 -7.0

2014-01-17 751.0 101.0
N424AA 2014-01-10 1759.0 -1.0

2014-01-15 1818.0 18.0
N426AA 2014-01-07 1835.0 35.0

... ... ...
US ORD PHX N806AW 2014-01-26 1406.0 -4.0

N830AW 2014-01-28 1401.0 -9.0
N833AW 2014-01-10 1500.0 50.0
N837AW 2014-01-19 1408.0 -2.0
N839AW 2014-01-14 1406.0 -4.0

[5205 rows x 2 columns]
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Now try to do any flight from ORD or DSM, not just from those carriers.
This used to be a pain. You might have to turn to the .xs method, or pass
in df.index.get_level_values(0) and zip that up with the indexers your
wanted, or maybe reset the index and do a boolean mask, and set the index
again… ugh.

But now, you can use an IndexSlice.

hdf.loc[pd.IndexSlice[:, ['ORD', 'DSM']], ['dep_time', 'dep_delay']]

dep_time dep_delay
unique_carrier origin dest tail_num fl_date
AA DSM DFW N200AA 2014-01-12 603.0 -7.0

2014-01-17 751.0 101.0
N424AA 2014-01-10 1759.0 -1.0

2014-01-15 1818.0 18.0
N426AA 2014-01-07 1835.0 35.0

... ... ...
WN DSM MDW N941WN 2014-01-17 1759.0 14.0

N943WN 2014-01-10 2229.0 284.0
N963WN 2014-01-22 656.0 -4.0
N967WN 2014-01-30 654.0 -6.0
N969WN 2014-01-19 1747.0 2.0

[22380 rows x 2 columns]

The : says include every label in this level. The IndexSlice object is just
sugar for the actual python slice object needed to remove slice each level.

pd.IndexSlice[:, ['ORD', 'DSM']]

(slice(None, None, None), ['ORD', 'DSM'])

We use IndexSlice since hdf.loc[(:, ['ORD', 'DSM'])] isn’t valid python
syntax. Now we can slice to our heart’s content; all flights from O’Hare to Des
Moines in the first half of January? Sure, why not?

hdf.loc[pd.IndexSlice[:, 'ORD', 'DSM', :, '2014-01-01':'2014-01-15'],
['dep_time', 'dep_delay', 'arr_time', 'arr_delay']]

dep_time dep_delay arr_time \
unique_carrier origin dest tail_num fl_date
EV ORD DSM NaN 2014-01-07 NaN NaN NaN

N11121 2014-01-05 NaN NaN NaN
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N11181 2014-01-12 1514.0 6.0 1625.0
N11536 2014-01-10 1723.0 4.0 1853.0
N11539 2014-01-01 1127.0 127.0 1304.0

... ... ... ...
UA ORD DSM N24212 2014-01-09 2023.0 8.0 2158.0

N73256 2014-01-15 2019.0 4.0 2127.0
N78285 2014-01-07 2020.0 5.0 2136.0

2014-01-13 2014.0 -1.0 2114.0
N841UA 2014-01-11 1825.0 20.0 1939.0

arr_delay
unique_carrier origin dest tail_num fl_date
EV ORD DSM NaN 2014-01-07 NaN

N11121 2014-01-05 NaN
N11181 2014-01-12 -2.0
N11536 2014-01-10 19.0
N11539 2014-01-01 149.0

... ...
UA ORD DSM N24212 2014-01-09 34.0

N73256 2014-01-15 3.0
N78285 2014-01-07 12.0

2014-01-13 -10.0
N841UA 2014-01-11 19.0

[153 rows x 4 columns]

We’ll talk more about working with Indexes (including MultiIndexes) in a later
post. I have an unproven thesis that they’re underused because IndexSlice is
underused, causing people to think they’re more unwieldy than they actually
are. But let’s close out part one.

WrapUp

This first post covered Indexing, a topic that’s central to pandas. The power
provided by the DataFrame comes with some unavoidable complexities. Best
practices (using .loc and .iloc) will spare you many a headache. We then
toured a couple of commonly misunderstood sub-topics, setting with copy and
Hierarchical Indexing.



Chapter 2

Method Chaining

Method chaining, where you call methods on an object one after another, is
in vogue at the moment. It’s always been a style of programming that’s been
possible with pandas, and over the past several releases, we’ve added methods
that enable even more chaining.

• assign (0.16.0): For adding new columns to a DataFrame in a chain
(inspired by dplyr’s mutate)

• pipe (0.16.2): For including user-defined methods in method chains.
• rename (0.18.0): For altering axis names (in additional to changing the

actual labels as before).
• Window methods (0.18): Took the top-level pd.rolling_* and

pd.expanding_* functions and made them NDFrame methods with a
groupby-like API.

• Resample (0.18.0) Added a new groupby-like API
• .where/mask/Indexers accept Callables (0.18.1): In the next release you’ll

be able to pass a callable to the indexing methods, to be evaluated within
the DataFrame’s context (like .query, but with code instead of strings).

My scripts will typically start off with large-ish chain at the start getting things
into a manageable state. It’s good to have the bulk of your munging done with
right away so you can start to do Science™:

Here’s a quick example:

%matplotlib inline

import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

16

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.assign.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pipe.html
http://pandas.pydata.org/pandas-docs/version/0.18.0/whatsnew.html#changes-to-rename
http://pandas.pydata.org/pandas-docs/version/0.18.0/whatsnew.html#window-functions-are-now-methods
http://pandas.pydata.org/pandas-docs/version/0.18.0/whatsnew.html#resample-api
https://github.com/pydata/pandas/pull/12539
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sns.set(style='ticks', context='talk')

import prep

def read(fp):
df = (pd.read_csv(fp)

.rename(columns=str.lower)

.drop('unnamed: 36', axis=1)

.pipe(extract_city_name)

.pipe(time_to_datetime, ['dep_time', 'arr_time', 'crs_arr_time', 'crs_dep_time'])

.assign(fl_date=lambda x: pd.to_datetime(x['fl_date']),
dest=lambda x: pd.Categorical(x['dest']),
origin=lambda x: pd.Categorical(x['origin']),
tail_num=lambda x: pd.Categorical(x['tail_num']),
unique_carrier=lambda x: pd.Categorical(x['unique_carrier']),
cancellation_code=lambda x: pd.Categorical(x['cancellation_code'])))

return df

def extract_city_name(df):
'''
Chicago, IL -> Chicago for origin_city_name and dest_city_name
'''
cols = ['origin_city_name', 'dest_city_name']
city = df[cols].apply(lambda x: x.str.extract("(.*), \w{2}", expand=False))
df = df.copy()
df[['origin_city_name', 'dest_city_name']] = city
return df

def time_to_datetime(df, columns):
'''
Combine all time items into datetimes.

2014-01-01,0914 -> 2014-01-01 09:14:00
'''
df = df.copy()
def converter(col):

timepart = (col.astype(str)
.str.replace('\.0$', '') # NaNs force float dtype
.str.pad(4, fillchar='0'))

return pd.to_datetime(df['fl_date'] + ' ' +
timepart.str.slice(0, 2) + ':' +
timepart.str.slice(2, 4),
errors='coerce')

return datetime_part
df[columns] = df[columns].apply(converter)
return df
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output = 'data/flights.h5'

if not os.path.exists(output):
df = read("data/627361791_T_ONTIME.csv")
df.to_hdf(output, 'flights', format='table')

else:
df = pd.read_hdf(output, 'flights', format='table')

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 471949 entries, 0 to 471948
Data columns (total 36 columns):
fl_date 471949 non-null datetime64[ns]
unique_carrier 471949 non-null category
airline_id 471949 non-null int64
tail_num 467903 non-null category
fl_num 471949 non-null int64
origin_airport_id 471949 non-null int64
origin_airport_seq_id 471949 non-null int64
origin_city_market_id 471949 non-null int64
origin 471949 non-null category
origin_city_name 471949 non-null object
origin_state_nm 471949 non-null object
dest_airport_id 471949 non-null int64
dest_airport_seq_id 471949 non-null int64
dest_city_market_id 471949 non-null int64
dest 471949 non-null category
dest_city_name 471949 non-null object
dest_state_nm 471949 non-null object
crs_dep_time 471949 non-null datetime64[ns]
dep_time 441586 non-null datetime64[ns]
dep_delay 441622 non-null float64
taxi_out 441266 non-null float64
wheels_off 441266 non-null float64
wheels_on 440453 non-null float64
taxi_in 440453 non-null float64
crs_arr_time 471949 non-null datetime64[ns]
arr_time 440302 non-null datetime64[ns]
arr_delay 439620 non-null float64
cancelled 471949 non-null float64
cancellation_code 30852 non-null category
diverted 471949 non-null float64
distance 471949 non-null float64
carrier_delay 119994 non-null float64
weather_delay 119994 non-null float64
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nas_delay 119994 non-null float64
security_delay 119994 non-null float64
late_aircraft_delay 119994 non-null float64
dtypes: category(5), datetime64[ns](5), float64(14), int64(8), object(4)
memory usage: 118.9+ MB

I find method chains readable, though some people don’t. Both the code and
the flow of execution are from top to bottom, and the function parameters are
always near the function itself, unlike with heavily nested function calls.

My favorite example demonstrating this comes from Jeff Allen (pdf). Compare
these two ways of telling the same story:

tumble_after(
broke(

fell_down(
fetch(went_up(jack_jill, "hill"), "water"),
jack),

"crown"),
"jill"

)

and

jack_jill %>%
went_up("hill") %>%
fetch("water") %>%
fell_down("jack") %>%
broke("crown") %>%
tumble_after("jill")

Even if you weren’t aware that in R %>% (pronounced pipe) calls the function
on the right with the thing on the left as an argument, you can still make out
what’s going on. Compare that with the first style, where you need to unravel
the code to figure out the order of execution and which arguments are being
passed where.

Admittedly, you probably wouldn’t write the first one. It’d be something like

on_hill = went_up(jack_jill, 'hill')
with_water = fetch(on_hill, 'water')
fallen = fell_down(with_water, 'jack')
broken = broke(fallen, 'jack')
after = tmple_after(broken, 'jill')

http://trestletech.com/wp-content/uploads/2015/07/dplyr.pdf
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I don’t like this version because I have to spend time coming up with appropri-
ate names for variables. That’s bothersome when we don’t really care about
the on_hill variable. We’re just passing it into the next step.

A fourth way of writing the same story may be available. Suppose you owned
a JackAndJill object, and could define the methods on it. Then you’d have
something like R’s %>% example.

jack_jill = JackAndJill()
(jack_jill.went_up('hill')

.fetch('water')

.fell_down('jack')

.broke('crown')

.tumble_after('jill')
)

But the problem is you don’t own the ndarray or DataFrame or DataArray,
and the exact method you want may not exist. Monekypatching on your own
methods is fragile. It’s not easy to correctly subclass pandas’ DataFrame to
extend it with your own methods. Composition, where you create a class that
holds onto a DataFrame internally, may be fine for your own code, but it won’t
interact well with the rest of the ecosystem so your code will be littered with
lines extracting and repacking the underlying DataFrame.

Perhaps you could submit a pull request to pandas implementing your method.
But then you’d need to convince the maintainers that it’s broadly useful enough
to merit its inclusion (and worth their time to maintain it). And DataFrame
has something like 250+ methods, so we’re reluctant to add more.

Enter DataFrame.pipe. All the benefits of having your specific function as a
method on the DataFrame, without us having to maintain it, and without it
overloading the already large pandas API. A win for everyone.

jack_jill = pd.DataFrame()
(jack_jill.pipe(went_up, 'hill')

.pipe(fetch, 'water')

.pipe(fell_down, 'jack')

.pipe(broke, 'crown')

.pipe(tumble_after, 'jill')
)

This really is just right-to-left function execution. The first argument to pipe,
a callable, is called with the DataFrame on the left as its first argument, and
any additional arguments you specify.

I hope the analogy to data analysis code is clear. Code is read more often than
it is written. When you or your coworkers or research partners have to go back

http://xarray.pydata.org/en/stable/data-structures.html#dataarray
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pipe.html


CHAPTER 2. METHOD CHAINING 21

in two months to update your script, having the story of raw data to results
be told as clearly as possible will save you time.

Costs

One drawback to excessively long chains is that debugging can be harder. If
something looks wrong at the end, you don’t have intermediate values to in-
spect. There’s a close parallel here to python’s generators. Generators are
great for keeping memory consumption down, but they can be hard to debug
since values are consumed.

For my typical exploratory workflow, this isn’t really a big problem. I’m
working with a single dataset that isn’t being updated, and the path from
raw data to usuable data isn’t so large that I can’t drop an import pdb;
pdb.set_trace() in the middle of my code to poke around.

For large workflows, you’ll probably want to move away from pandas to some-
thing more structured, like Airflow or Luigi.

When writing medium sized ETL jobs in python that will be run repeatedly,
I’ll use decorators to inspect and log properties about the DataFrames at each
step of the process.

from functools import wraps
import logging

def log_shape(func):
@wraps(func)
def wrapper(*args, **kwargs):

result = func(*args, **kwargs)
logging.info("%s,%s" % (func.__name__, result.shape))
return result

return wrapper

def log_dtypes(func):
@wraps(func)
def wrapper(*args, **kwargs):

result = func(*args, **kwargs)
logging.info("%s,%s" % (func.__name__, result.dtypes))
return result

return wrapper

@log_shape
@log_dtypes
def load(fp):

df = pd.read_csv(fp, index_col=0, parse_dates=True)

http://pythonhosted.org/airflow/
http://luigi.readthedocs.org/en/stable/index.html
https://en.wikipedia.org/wiki/Extract,_transform,_load
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@log_shape
@log_dtypes
def update_events(df, new_events):

df.loc[new_events.index, 'foo'] = new_events
return df

This plays nicely with engarde, a little library I wrote to validate data as it
flows through the pipeline (it essentialy turns those logging statements into
excpetions if something looks wrong).

Inplace?

Most pandas methods have an inplace keyword that’s False by default. In
general, you shouldn’t do inplace operations.
First, if you like method chains then you simply can’t use inplace since the
return value is None, terminating the chain.
Second, I suspect people have a mental model of inplace operations happening,
you know, inplace. That is, extra memory doesn’t need to be allocated for the
result. But that might not actually be true. Quoting Jeff Reback from that
answer

Their is no guarantee that an inplace operation is actually faster.
Often they are actually the same operation that works on a copy,
but the top-level reference is reassigned.

That is, the pandas code might look something like this

def dataframe_method(self, inplace=False):
data = self.copy() # regardless of inplace
result = ...
if inplace:

self._update_inplace(data)
else:

return result

There’s a lot of defensive copying in pandas. Part of this comes down to pandas
being built on top of NumPy, and not having full control over how memory
is handled and shared. We saw it above when we defined our own functions
extract_city_name and time_to_datetime. Without the copy, adding the
columns would modify the input DataFrame, which just isn’t polite.
Finally, inplace operations don’t make sense in projects like ibis or dask, where
you’re manipulating expressions or building up a DAG of tasks to be executed,
rather than manipulating the data directly.

http://engarde.readthedocs.org
http://stackoverflow.com/a/22533110
http://www.ibis-project.org
http://dask.pydata.org/en/latest/
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Application

I feel like we haven’t done much coding, mostly just me shouting from the top
of a soapbox (sorry about that). Let’s do some exploratory analysis.

What’s the daily flight pattern look like?

(df.dropna(subset=['dep_time', 'unique_carrier'])
.loc[df['unique_carrier']

.isin(df['unique_carrier'].value_counts().index[:5])]
.set_index('dep_time')
# TimeGrouper to resample & groupby at once
.groupby(['unique_carrier', pd.TimeGrouper("H")])
.fl_num.count()
.unstack(0)
.fillna(0)
.rolling(24)
.sum()
.rename_axis("Flights per Day", axis=1)
.plot()

)
sns.despine()

png
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import statsmodels.api as sm

Does a plane with multiple flights on the same day get backed up, causing later
flights to be delayed more?

%config InlineBackend.figure_format = 'png'
flights = (df[['fl_date', 'tail_num', 'dep_time', 'dep_delay', 'distance']]

.dropna()

.sort_values('dep_time')

.assign(turn = lambda x:
x.groupby(['fl_date', 'tail_num'])
.dep_time
.transform('rank').astype(int)))

fig, ax = plt.subplots(figsize=(15, 5))
sns.boxplot(x='turn', y='dep_delay', data=flights, ax=ax)
sns.despine()

png

Doesn’t really look like it. Maybe other planes are swapped in when one gets
delayed, but we don’t have data on scheduled flights per plane.

Do flights later in the day have longer delays?

plt.figure(figsize=(15, 5))
(df[['fl_date', 'tail_num', 'dep_time', 'dep_delay', 'distance']]

.dropna()

.assign(hour=lambda x: x.dep_time.dt.hour)

.query('5 < dep_delay < 600')

.pipe((sns.boxplot, 'data'), 'hour', 'dep_delay'))
sns.despine()
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png

There could be something here. I didn’t show it here since I filtered them out,
but the vast majority of flights to leave on time.

Let’s try scikit-learn’s new Gaussian Process module to create a graph inspired
by the dplyr introduction. This will require scikit-learn

planes = df.assign(year=df.fl_date.dt.year).groupby("tail_num")
delay = (planes.agg({"year": "count",

"distance": "mean",
"arr_delay": "mean"})

.rename(columns={"distance": "dist",
"arr_delay": "delay",
"year": "count"})

.query("count > 20 & dist < 2000"))
delay.head()

tail_num count delay dist
D942DN 120 9.232143 829.783333
N001AA 139 13.818182 616.043165
N002AA 135 9.570370 570.377778
N003AA 125 5.722689 641.184000
N004AA 138 2.037879 630.391304

X = delay['dist'].values
y = delay['delay']

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, WhiteKernel

@prep.cached('flights-gp')
def fit():

http://scikit-learn.org/dev/modules/gaussian_process.html
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html


CHAPTER 2. METHOD CHAINING 26

kernel = (1.0 * RBF(length_scale=10.0, length_scale_bounds=(1e2, 1e4))
+ WhiteKernel(noise_level=.5, noise_level_bounds=(1e-1, 1e+5)))

gp = GaussianProcessRegressor(kernel=kernel,
alpha=0.0).fit(X.reshape(-1, 1), y)

return gp

gp = fit()
X_ = np.linspace(X.min(), X.max(), 1000)
y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True)

ax = delay.plot(kind='scatter', x='dist', y = 'delay', figsize=(12, 6),
color='k', alpha=.25, s=delay['count'] / 10)

ax.plot(X_, y_mean, lw=2, zorder=9)
ax.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)),

y_mean + np.sqrt(np.diag(y_cov)),
alpha=0.25)

sizes = (delay['count'] / 10).round(0)

for area in np.linspace(sizes.min(), sizes.max(), 3).astype(int):
plt.scatter([], [], c='k', alpha=0.7, s=area,

label=str(area * 10) + ' flights')
plt.legend(scatterpoints=1, frameon=False, labelspacing=1)

ax.set_xlim(0, 2100)
ax.set_ylim(-20, 65)
sns.despine()
plt.tight_layout()

png
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Thanks for reading! This section was a bit more abstract, since we were talking
about styles of coding rather than how to actually accomplish tasks. I’m some-
times guilty of putting too much work into making my data wrangling code
look nice and feel correct, at the expense of actually analyzing the data. This
isn’t a competition to have the best or cleanest pandas code; pandas is always
just a means to the end that is your research or business problem. Thanks
for indulging me. Next time we’ll talk about a much more practical topic:
performance.



Chapter 3

Indexes

Today we’re going to be talking about pandas’ Indexes. They’re essential to
pandas, but can be a difficult concept to grasp at first. I suspect this is partly
because they’re unlike what you’ll find in SQL or R.

Indexes offer

• a metadata container
• easy label-based row selection and assignment
• easy label-based alignment in operations

One of my first tasks when analyzing a new dataset is to identify a unique
identifier for each observation, and set that as the index. It could be a sim-
ple integer, or like in our first chapter, it could be several columns (carrier,
origin dest, tail_num date).

To demonstrate the benefits of proper Index use, we’ll first fetch some weather
data from sensors at a bunch of airports across the US. See here for the example
scraper I based this off of. Those uninterested in the details of fetching and
prepping the data and skip past it.

At a high level, here’s how we’ll fetch the data: the sensors are broken up by
“network” (states). We’ll make one API call per state to get the list of airport
IDs per network (using get_ids below). Once we have the IDs, we’ll again
make one call per state getting the actual observations (in get_weather). Feel
free to skim the code below, I’ll highlight the interesting bits.

%matplotlib inline

import os
import json
import glob
import datetime

28

http://pandas.pydata.org/pandas-docs/version/0.18.0/api.html#index
https://github.com/akrherz/iem/blob/master/scripts/asos/iem_scraper_example.py
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from io import StringIO

import requests
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

import prep

sns.set_style('ticks')

# States are broken into networks. The networks have a list of ids, each representing a station.
# We will take that list of ids and pass them as query parameters to the URL we built up ealier.
states = """AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ME
MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT
WA WI WV WY""".split()

# IEM has Iowa AWOS sites in its own labeled network
networks = ['AWOS'] + ['{}_ASOS'.format(state) for state in states]

def get_weather(stations, start=pd.Timestamp('2014-01-01'),
end=pd.Timestamp('2014-01-31')):

'''
Fetch weather data from MESONet between ``start`` and ``stop``.
'''
url = ("http://mesonet.agron.iastate.edu/cgi-bin/request/asos.py?"

"&data=tmpf&data=relh&data=sped&data=mslp&data=p01i&data=v"
"sby&data=gust_mph&data=skyc1&data=skyc2&data=skyc3"
"&tz=Etc/UTC&format=comma&latlon=no"
"&{start:year1=%Y&month1=%m&day1=%d}"
"&{end:year2=%Y&month2=%m&day2=%d}&{stations}")

stations = "&".join("station=%s" % s for s in stations)
weather = (pd.read_csv(url.format(start=start, end=end, stations=stations),

comment="#")
.rename(columns={"valid": "date"})
.rename(columns=str.strip)
.assign(date=lambda df: pd.to_datetime(df['date']))
.set_index(["station", "date"])
.sort_index())

float_cols = ['tmpf', 'relh', 'sped', 'mslp', 'p01i', 'vsby', "gust_mph"]
weather[float_cols] = weather[float_cols].apply(pd.to_numeric, errors="corce")
return weather

def get_ids(network):
url = "http://mesonet.agron.iastate.edu/geojson/network.php?network={}"
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r = requests.get(url.format(network))
md = pd.io.json.json_normalize(r.json()['features'])
md['network'] = network
return md

There isn’t too much in get_weather worth mentioning, just grabbing some
CSV files from various URLs. They put metadata in the “CSV”s at the top of
the file as lines prefixed by a #. Pandas will ignore these with the comment='#'
parameter.

I do want to talk briefly about the gem of a method that is json_normalize .
The weather API returns some slightly-nested data.

url = "http://mesonet.agron.iastate.edu/geojson/network.php?network={}"
r = requests.get(url.format("AWOS"))
js = r.json()

js['features'][:2]

[{'geometry': {'coordinates': [-94.2723694444, 43.0796472222],
'type': 'Point'},
'id': 'AXA',
'properties': {'sid': 'AXA', 'sname': 'ALGONA'},
'type': 'Feature'},

{'geometry': {'coordinates': [-93.569475, 41.6878083333], 'type': 'Point'},
'id': 'IKV',
'properties': {'sid': 'IKV', 'sname': 'ANKENY'},
'type': 'Feature'}]

If we just pass that list off to the DataFrame constructor, we get this.

pd.DataFrame(js['features']).head()

index geometry id properties type
0 {’coordinates’: [-94.2723694444, 43.0796472222… AXA {‘sname’: ‘ALGONA’, ‘sid’: ‘AXA’} Feature
1 {’coordinates’: [-93.569475, 41.6878083333], ’… IKV {‘sname’: ‘ANKENY’, ‘sid’: ‘IKV’} Feature
2 {’coordinates’: [-95.0465277778, 41.4058805556… AIO {‘sname’: ‘ATLANTIC’, ‘sid’: ‘AIO’} Feature
3 {’coordinates’: [-94.9204416667, 41.6993527778… ADU {‘sname’: ‘AUDUBON’, ‘sid’: ‘ADU’} Feature
4 {’coordinates’: [-93.848575, 42.0485694444], ’… BNW {‘sname’: ‘BOONE MUNI’, ‘sid’: ‘BNW’} Feature

In general, DataFrames don’t handle nested data that well. It’s often bet-
ter to normalize it somehow. In this case, we can “lift” the nested items

http://pandas.pydata.org/pandas-docs/version/0.18.0/generated/pandas.io.json.json_normalize.html
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(geometry.coordinates, properties.sid, and properties.sname) up to the
top level.

pd.io.json.json_normalize(js['features'])

index geometry.coordinates geometry.type id properties.sid properties.sname type
0 [-94.2723694444, 43.0796472222] Point AXA AXA ALGONA Feature
1 [-93.569475, 41.6878083333] Point IKV IKV ANKENY Feature
2 [-95.0465277778, 41.4058805556] Point AIO AIO ATLANTIC Feature
3 [-94.9204416667, 41.6993527778] Point ADU ADU AUDUBON Feature
4 [-93.848575, 42.0485694444] Point BNW BNW BOONE MUNI Feature
… … … … … … …
40 [-95.4112333333, 40.753275] Point SDA SDA SHENANDOAH MUNI Feature
41 [-95.2399194444, 42.5972277778] Point SLB SLB Storm Lake Feature
42 [-92.0248416667, 42.2175777778] Point VTI VTI VINTON Feature
43 [-91.6748111111, 41.2751444444] Point AWG AWG WASHINGTON Feature
44 [-93.8690777778, 42.4392305556] Point EBS EBS Webster City Feature

45 rows × 6 columns

Sure, it’s not that difficult to write a quick for loop or list comprehension to
extract those, but that gets tedious. If we were using the latitude and longitude
data, we would want to split the geometry.coordinates column into two. But
we aren’t so we won’t.

Going back to the task, we get the airport IDs for every network (state) with
get_ids. Then we pass those IDs into get_weather to fetch the actual weather
data.

import os

ids = pd.concat([get_ids(network) for network in networks], ignore_index=True)
gr = ids.groupby('network')

store = 'data/weather.h5'

if not os.path.exists(store):
os.makedirs("data/weather", exist_ok=True)

for k, v in gr:
weather = get_weather(v['id'])
weather.to_csv("data/weather/{}.csv".format(k))

weather = pd.concat([
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pd.read_csv(f, parse_dates=['date'], index_col=['station', 'date'])
for f in glob.glob('data/weather/*.csv')

]).sort_index()

weather.to_hdf("data/weather.h5", "weather")
else:

weather = pd.read_hdf("data/weather.h5", "weather")

weather.head()

tmpf relh sped mslp p01i vsby gust_mph \
station date
01M 2014-01-01 00:15:00 33.80 85.86 0.0 NaN 0.0 10.0 NaN

2014-01-01 00:35:00 33.44 87.11 0.0 NaN 0.0 10.0 NaN
2014-01-01 00:55:00 32.54 90.97 0.0 NaN 0.0 10.0 NaN
2014-01-01 01:15:00 31.82 93.65 0.0 NaN 0.0 10.0 NaN
2014-01-01 01:35:00 32.00 92.97 0.0 NaN 0.0 10.0 NaN

skyc1 skyc2 skyc3
station date
01M 2014-01-01 00:15:00 CLR M M

2014-01-01 00:35:00 CLR M M
2014-01-01 00:55:00 CLR M M
2014-01-01 01:15:00 CLR M M
2014-01-01 01:35:00 CLR M M

OK, that was a bit of work. Here’s a plot to reward ourselves.

airports = ['W43', 'AFO', '82V', 'DUB']

g = sns.FacetGrid(weather.loc[airports].reset_index(),
col='station', hue='station', col_wrap=2, size=4)

g.map(sns.regplot, 'sped', 'gust_mph')

<seaborn.axisgrid.FacetGrid at 0x1180087b8>
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png

Set Operations

Indexes are set-like (technically multisets, since you can have duplicates), so
they support most python set operations. Since indexes are immutable you
won’t find any of the inplace set operations. One other difference is that
since Indexes are also array-like, you can’t use some infix operators like - for
difference. If you have a numeric index it is unclear whether you intend to
perform math operations or set operations. You can use & for intersection, |
for union, and ˆ for symmetric difference though, since there’s no ambiguity.

For example, lets find the set of airports that we have both weather and flight
information on. Since weather had a MultiIndex of airport, datetime, we’ll
use the levels attribute to get at the airport data, separate from the date
data.
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# Bring in the flights data

flights = pd.read_hdf('data/flights.h5', 'flights')

weather_locs = weather.index.levels[0]
# The `categories` attribute of a Categorical is an Index
origin_locs = flights.origin.cat.categories
dest_locs = flights.dest.cat.categories

airports = weather_locs & origin_locs & dest_locs
airports

Index(['ABE', 'ABI', 'ABQ', 'ABR', 'ABY', 'ACT', 'ACV', 'AEX', 'AGS', 'ALB',
...

'TUL', 'TUS', 'TVC', 'TWF', 'TXK', 'TYR', 'TYS', 'VLD', 'VPS', 'XNA'],
dtype='object', length=267)

print("Weather, no flights:\n\t", weather_locs.difference(origin_locs | dest_locs), end='\n\n')

print("Flights, no weather:\n\t", (origin_locs | dest_locs).difference(weather_locs), end='\n\n')

print("Dropped Stations:\n\t", (origin_locs | dest_locs) ^ weather_locs)

Weather, no flights:
Index(['01M', '04V', '04W', '05U', '06D', '08D', '0A9', '0CO', '0E0', '0F2',

...
'Y50', 'Y51', 'Y63', 'Y70', 'YIP', 'YKM', 'YKN', 'YNG', 'ZPH', 'ZZV'],
dtype='object', length=1909)

Flights, no weather:
Index(['ADK', 'ADQ', 'ANC', 'BET', 'BKG', 'BQN', 'BRW', 'CDV', 'CLD', 'FAI',
'FCA', 'GUM', 'HNL', 'ITO', 'JNU', 'KOA', 'KTN', 'LIH', 'MQT', 'OGG',
'OME', 'OTZ', 'PPG', 'PSE', 'PSG', 'SCC', 'SCE', 'SIT', 'SJU', 'STT',

'STX', 'WRG', 'YAK', 'YUM'],
dtype='object')

Dropped Stations:
Index(['01M', '04V', '04W', '05U', '06D', '08D', '0A9', '0CO', '0E0', '0F2',

...
'Y63', 'Y70', 'YAK', 'YIP', 'YKM', 'YKN', 'YNG', 'YUM', 'ZPH', 'ZZV'],
dtype='object', length=1943)
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Flavors

Pandas has many subclasses of the regular Index, each tailored to a specific
kind of data. Most of the time these will be created for you automatically, so
you don’t have to worry about which one to choose.

1. Index
2. Int64Index
3. RangeIndex: Memory-saving special case of Int64Index
4. FloatIndex
5. DatetimeIndex: Datetime64[ns] precision data
6. PeriodIndex: Regularly-spaced, arbitrary precision datetime data.
7. TimedeltaIndex
8. CategoricalIndex
9. MultiIndex

You will sometimes create a DatetimeIndex with pd.date_range (pd.period_range
for PeriodIndex). And you’ll sometimes make a MultiIndex directly too (I’ll
have an example of this in my post on performace).

Some of these specialized index types are purely optimizations; others use in-
formation about the data to provide additional methods. And while you might
occasionally work with indexes directly (like the set operations above), most of
they time you’ll be operating on a Series or DataFrame, which in turn makes
use of its Index.

Row Slicing
We saw in part one that they’re great for making row subsetting as easy as
column subsetting.

weather.loc['DSM'].head()

date tmpf relh sped mslp p01i vsby gust_mph skyc1 skyc2 skyc3
2014-01-01 00:54:00 10.94 72.79 10.3 1024.9 0.0 10.0 NaN FEW M M
2014-01-01 01:54:00 10.94 72.79 11.4 1025.4 0.0 10.0 NaN OVC M M
2014-01-01 02:54:00 10.94 72.79 8.0 1025.3 0.0 10.0 NaN BKN M M
2014-01-01 03:54:00 10.94 72.79 9.1 1025.3 0.0 10.0 NaN OVC M M
2014-01-01 04:54:00 10.04 72.69 9.1 1024.7 0.0 10.0 NaN BKN M M

Without indexes we’d probably resort to boolean masks.

http://pandas.pydata.org/pandas-docs/version/0.18.0/generated/pandas.Index.html#pandas.Index
http://pandas.pydata.org/pandas-docs/version/0.18.0/generated/pandas.date_range.html
http://pandas.pydata.org/pandas-docs/version/0.18.0/generated/pandas.period_range.html
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weather2 = weather.reset_index()
weather2[weather2['station'] == 'DSM'].head()

index station date tmpf relh sped mslp p01i vsby gust_mph skyc1 skyc2 skyc3
884855 DSM 2014-01-01 00:54:00 10.94 72.79 10.3 1024.9 0.0 10.0 NaN FEW M M
884856 DSM 2014-01-01 01:54:00 10.94 72.79 11.4 1025.4 0.0 10.0 NaN OVC M M
884857 DSM 2014-01-01 02:54:00 10.94 72.79 8.0 1025.3 0.0 10.0 NaN BKN M M
884858 DSM 2014-01-01 03:54:00 10.94 72.79 9.1 1025.3 0.0 10.0 NaN OVC M M
884859 DSM 2014-01-01 04:54:00 10.04 72.69 9.1 1024.7 0.0 10.0 NaN BKN M M

Slightly less convenient, but still doable.

Indexes for Easier Arithmetic, Analysis
It’s nice to have your metadata (labels on each observation) next to you actual
values. But if you store them in an array, they’ll get in the way of your
operations. Say we wanted to translate the Fahrenheit temperature to Celsius.

# With indecies
temp = weather['tmpf']

c = (temp - 32) * 5 / 9
c.to_frame()

tmpf
station date
01M 2014-01-01 00:15:00 1.0

2014-01-01 00:35:00 0.8
2014-01-01 00:55:00 0.3
2014-01-01 01:15:00 -0.1
2014-01-01 01:35:00 0.0

... ...
ZZV 2014-01-30 19:53:00 -2.8

2014-01-30 20:53:00 -2.2
2014-01-30 21:53:00 -2.2
2014-01-30 22:53:00 -2.8
2014-01-30 23:53:00 -1.7

[3303647 rows x 1 columns]

# without
temp2 = weather.reset_index()[['station', 'date', 'tmpf']]
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temp2['tmpf'] = (temp2['tmpf'] - 32) * 5 / 9
temp2.head()

index station date tmpf
0 01M 2014-01-01 00:15:00 1.0
1 01M 2014-01-01 00:35:00 0.8
2 01M 2014-01-01 00:55:00 0.3
3 01M 2014-01-01 01:15:00 -0.1
4 01M 2014-01-01 01:35:00 0.0

Again, not terrible, but not as good. And, what if you had wanted to keep
Fahrenheit around as well, instead of overwriting it like we did? Then you’d
need to make a copy of everything, including the station and date columns.
We don’t have that problem, since indexes are immutable and safely shared
between DataFrames / Series.

temp.index is c.index

True

Indexes for Alignment
I’ve saved the best for last. Automatic alignment, or reindexing, is fundamental
to pandas.
All binary operations (add, multiply, etc.) between Series/DataFrames first
align and then proceed.
Let’s suppose we have hourly observations on temperature and windspeed. And
suppose some of the observations were invalid, and not reported (simulated be-
low by sampling from the full dataset). We’ll assume the missing windspeed
observations were potentially different from the missing temperature observa-
tions.

dsm = weather.loc['DSM']

hourly = dsm.resample('H').mean()

temp = hourly['tmpf'].sample(frac=.5, random_state=1).sort_index()
sped = hourly['sped'].sample(frac=.5, random_state=2).sort_index()

temp.head().to_frame()
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date tmpf
2014-01-01 00:00:00 10.94
2014-01-01 02:00:00 10.94
2014-01-01 03:00:00 10.94
2014-01-01 04:00:00 10.04
2014-01-01 05:00:00 10.04

sped.head()

date
2014-01-01 01:00:00 11.4
2014-01-01 02:00:00 8.0
2014-01-01 03:00:00 9.1
2014-01-01 04:00:00 9.1
2014-01-01 05:00:00 10.3
Name: sped, dtype: float64

Notice that the two indexes aren’t identical.

Suppose that the windspeed : temperature ratio is meaningful. When we go
to compute that, pandas will automatically align the two by index label.

sped / temp

date
2014-01-01 00:00:00 NaN
2014-01-01 01:00:00 NaN
2014-01-01 02:00:00 0.731261
2014-01-01 03:00:00 0.831810
2014-01-01 04:00:00 0.906375

...
2014-01-30 13:00:00 NaN
2014-01-30 14:00:00 0.584712
2014-01-30 17:00:00 NaN
2014-01-30 21:00:00 NaN
2014-01-30 23:00:00 NaN
dtype: float64

This lets you focus on doing the operation, rather than manually aligning things,
ensuring that the arrays are the same length and in the same order. By deault,
missing values are inserted where the two don’t align. You can use the method
version of any binary operation to specify a fill_value
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sped.div(temp, fill_value=1)

date
2014-01-01 00:00:00 0.091408
2014-01-01 01:00:00 11.400000
2014-01-01 02:00:00 0.731261
2014-01-01 03:00:00 0.831810
2014-01-01 04:00:00 0.906375

...
2014-01-30 13:00:00 0.027809
2014-01-30 14:00:00 0.584712
2014-01-30 17:00:00 0.023267
2014-01-30 21:00:00 0.035663
2014-01-30 23:00:00 13.700000
dtype: float64

And since I couldn’t find anywhere else to put it, you can control the axis the
operation is aligned along as well.

hourly.div(sped, axis='index')

date tmpf relh sped mslp p01i vsby gust_mph
2014-01-01 00:00:00 NaN NaN NaN NaN NaN NaN NaN
2014-01-01 01:00:00 0.959649 6.385088 1.0 89.947368 0.0 0.877193 NaN
2014-01-01 02:00:00 1.367500 9.098750 1.0 128.162500 0.0 1.250000 NaN
2014-01-01 03:00:00 1.202198 7.998901 1.0 112.670330 0.0 1.098901 NaN
2014-01-01 04:00:00 1.103297 7.987912 1.0 112.604396 0.0 1.098901 NaN
… … … … … … … …
2014-01-30 19:00:00 NaN NaN NaN NaN NaN NaN NaN
2014-01-30 20:00:00 NaN NaN NaN NaN NaN NaN NaN
2014-01-30 21:00:00 NaN NaN NaN NaN NaN NaN NaN
2014-01-30 22:00:00 NaN NaN NaN NaN NaN NaN NaN
2014-01-30 23:00:00 1.600000 4.535036 1.0 73.970803 0.0 0.729927 NaN

720 rows × 7 columns

The non row-labeled version of this is messy.

temp2 = temp.reset_index()
sped2 = sped.reset_index()

# Find rows where the operation is defined
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common_dates = pd.Index(temp2.date) & sped2.date
pd.concat([

# concat to not lose date information
sped2.loc[sped2['date'].isin(common_dates), 'date'],
(sped2.loc[sped2.date.isin(common_dates), 'sped'] /
temp2.loc[temp2.date.isin(common_dates), 'tmpf'])],
axis=1).dropna(how='all')

index date 0
1 2014-01-01 02:00:00 0.731261
2 2014-01-01 03:00:00 0.831810
3 2014-01-01 04:00:00 0.906375
4 2014-01-01 05:00:00 1.025896
8 2014-01-01 13:00:00 NaN
… … …
351 2014-01-29 23:00:00 0.535609
354 2014-01-30 05:00:00 0.487735
356 2014-01-30 09:00:00 NaN
357 2014-01-30 10:00:00 0.618939
358 2014-01-30 14:00:00 NaN

170 rows × 2 columns
And we have a bug in there. Can you spot it? I only grabbed the dates from
sped2 in the line sped2.loc[sped2['date'].isin(common_dates), 'date'].
Really that should be sped2.loc[sped2.date.isin(common_dates)] |
temp2.loc[temp2.date.isin(common_dates)]. But I think leaving the
buggy version states my case even more strongly. The temp / sped version
where pandas aligns everything is better.

Merging

There are two ways of merging DataFrames / Series in pandas.

1. Relational Database style with pd.merge
2. Array style with pd.concat

Personally, I think in terms of the concat style. I learned pandas before I ever
really used SQL, so it comes more naturally to me I suppose.

Concat Version
pd.concat([temp, sped], axis=1).head()
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date tmpf sped
2014-01-01 00:00:00 10.94 NaN
2014-01-01 01:00:00 NaN 11.4
2014-01-01 02:00:00 10.94 8.0
2014-01-01 03:00:00 10.94 9.1
2014-01-01 04:00:00 10.04 9.1

The axis parameter controls how the data should be stacked, 0 for vertically,
1 for horizontally. The join parameter controls the merge behavior on the
shared axis, (the Index for axis=1). By default it’s like a union of the two
indexes, or an outer join.

pd.concat([temp, sped], axis=1, join='inner')

date tmpf sped
2014-01-01 02:00:00 10.94 8.000
2014-01-01 03:00:00 10.94 9.100
2014-01-01 04:00:00 10.04 9.100
2014-01-01 05:00:00 10.04 10.300
2014-01-01 13:00:00 8.96 13.675
… … …
2014-01-29 23:00:00 35.96 18.200
2014-01-30 05:00:00 33.98 17.100
2014-01-30 09:00:00 35.06 16.000
2014-01-30 10:00:00 35.06 21.700
2014-01-30 14:00:00 35.06 20.500

170 rows × 2 columns

Merge Version
Since we’re joining by index here the merge version is quite similar. We’ll see
an example later of a one-to-many join where the two differ.

pd.merge(temp.to_frame(), sped.to_frame(), left_index=True, right_index=True).head()

date tmpf sped
2014-01-01 02:00:00 10.94 8.000
2014-01-01 03:00:00 10.94 9.100
2014-01-01 04:00:00 10.04 9.100
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date tmpf sped
2014-01-01 05:00:00 10.04 10.300
2014-01-01 13:00:00 8.96 13.675

pd.merge(temp.to_frame(), sped.to_frame(), left_index=True, right_index=True,
how='outer').head()

date tmpf sped
2014-01-01 00:00:00 10.94 NaN
2014-01-01 01:00:00 NaN 11.4
2014-01-01 02:00:00 10.94 8.0
2014-01-01 03:00:00 10.94 9.1
2014-01-01 04:00:00 10.04 9.1

Like I said, I typically prefer concat to merge. The exception here is one-to-
many type joins. Let’s walk through one of those, where we join the flight
data to the weather data. To focus just on the merge, we’ll aggregate hour
weather data to be daily, rather than trying to find the closest recorded weather
observation to each departure (you could do that, but it’s not the focus right
now). We’ll then join the one (airport, date) record to the many (airport,
date, flight) records.

Quick tangent, to get the weather data to daily frequency, we’ll need to resam-
ple (more on that in the timeseries section). The resample essentially splits the
recorded values into daily buckets and computes the aggregation function on
each bucket. The only wrinkle is that we have to resample by station, so we’ll
use the pd.TimeGrouper helper.

idx_cols = ['unique_carrier', 'origin', 'dest', 'tail_num', 'fl_num', 'fl_date']
data_cols = ['crs_dep_time', 'dep_delay', 'crs_arr_time', 'arr_delay',

'taxi_out', 'taxi_in', 'wheels_off', 'wheels_on', 'distance']

df = flights.set_index(idx_cols)[data_cols].sort_index()

def mode(x):
'''
Arbitrarily break ties.
'''
return x.value_counts().index[0]

aggfuncs = {'tmpf': 'mean', 'relh': 'mean',
'sped': 'mean', 'mslp': 'mean',
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'p01i': 'mean', 'vsby': 'mean',
'gust_mph': 'mean', 'skyc1': mode,
'skyc2': mode, 'skyc3': mode}

# TimeGrouper works on a DatetimeIndex, so we move `station` to the
# columns and then groupby it as well.
daily = (weather.reset_index(level="station")

.groupby([pd.TimeGrouper('1d'), "station"])

.agg(aggfuncs))

daily.head()

sped mslp relh skyc2 skyc1 vsby p01i \
date station
2014-01-01 01M 2.262500 NaN 81.117917 M CLR 9.229167 0.0

04V 11.131944 NaN 72.697778 M CLR 9.861111 0.0
04W 3.601389 NaN 69.908056 M OVC 10.000000 0.0
05U 3.770423 NaN 71.519859 M CLR 9.929577 0.0
06D 5.279167 NaN 73.784179 M CLR 9.576389 0.0

gust_mph tmpf skyc3
date station
2014-01-01 01M NaN 35.747500 M

04V 31.307143 18.350000 M
04W NaN -9.075000 M
05U NaN 26.321127 M
06D NaN -11.388060 M

Now that we have daily flight and weather data, we can merge. We’ll use the
on keyword to indicate the columns we’ll merge on (this is like a USING (...)
SQL statement), we just have to make sure the names align.

The merge version
m = pd.merge(flights, daily.reset_index().rename(columns={'date': 'fl_date', 'station': 'origin'}),

on=['fl_date', 'origin']).set_index(idx_cols).sort_index()

m.head()

airline_id \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 19805

1662 2014-01-06 19805
N202AA 1332 2014-01-27 19805
N426AA 1467 2014-01-15 19805

1662 2014-01-09 19805
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origin_airport_id \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 10140

1662 2014-01-06 10140
N202AA 1332 2014-01-27 10140
N426AA 1467 2014-01-15 10140

1662 2014-01-09 10140

origin_airport_seq_id \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 1014002

1662 2014-01-06 1014002
N202AA 1332 2014-01-27 1014002
N426AA 1467 2014-01-15 1014002

1662 2014-01-09 1014002

origin_city_market_id \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 30140

1662 2014-01-06 30140
N202AA 1332 2014-01-27 30140
N426AA 1467 2014-01-15 30140

1662 2014-01-09 30140

origin_city_name \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 Albuquerque

1662 2014-01-06 Albuquerque
N202AA 1332 2014-01-27 Albuquerque
N426AA 1467 2014-01-15 Albuquerque

1662 2014-01-09 Albuquerque

origin_state_nm \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 New Mexico

1662 2014-01-06 New Mexico
N202AA 1332 2014-01-27 New Mexico
N426AA 1467 2014-01-15 New Mexico

1662 2014-01-09 New Mexico

dest_airport_id \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 11298

1662 2014-01-06 11298
N202AA 1332 2014-01-27 11298
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N426AA 1467 2014-01-15 11298
1662 2014-01-09 11298

dest_airport_seq_id \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 1129803

1662 2014-01-06 1129803
N202AA 1332 2014-01-27 1129803
N426AA 1467 2014-01-15 1129803

1662 2014-01-09 1129803

dest_city_market_id \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 30194

1662 2014-01-06 30194
N202AA 1332 2014-01-27 30194
N426AA 1467 2014-01-15 30194

1662 2014-01-09 30194

dest_city_name \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 Dallas/Fort Worth

1662 2014-01-06 Dallas/Fort Worth
N202AA 1332 2014-01-27 Dallas/Fort Worth
N426AA 1467 2014-01-15 Dallas/Fort Worth

1662 2014-01-09 Dallas/Fort Worth

... sped \
unique_carrier origin dest tail_num fl_num fl_date ...
AA ABQ DFW N200AA 1090 2014-01-27 ... 6.737500

1662 2014-01-06 ... 9.270833
N202AA 1332 2014-01-27 ... 6.737500
N426AA 1467 2014-01-15 ... 6.216667

1662 2014-01-09 ... 3.087500

mslp relh \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 1014.620833 34.267500

1662 2014-01-06 1029.016667 27.249167
N202AA 1332 2014-01-27 1014.620833 34.267500
N426AA 1467 2014-01-15 1027.800000 34.580000

1662 2014-01-09 1018.379167 42.162500

skyc2 skyc1 vsby \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 M FEW 10.0
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1662 2014-01-06 M CLR 10.0
N202AA 1332 2014-01-27 M FEW 10.0
N426AA 1467 2014-01-15 M FEW 10.0

1662 2014-01-09 M FEW 10.0

p01i gust_mph \
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 0.0 NaN

1662 2014-01-06 0.0 NaN
N202AA 1332 2014-01-27 0.0 NaN
N426AA 1467 2014-01-15 0.0 NaN

1662 2014-01-09 0.0 NaN

tmpf skyc3
unique_carrier origin dest tail_num fl_num fl_date
AA ABQ DFW N200AA 1090 2014-01-27 41.8325 M

1662 2014-01-06 28.7900 M
N202AA 1332 2014-01-27 41.8325 M
N426AA 1467 2014-01-15 40.2500 M

1662 2014-01-09 34.6700 M

[5 rows x 40 columns]

Since data-wrangling on its own is never the goal, let’s do some quick analysis.
Seaborn makes it easy to explore bivariate relationships.

m.sample(n=10000).pipe((sns.jointplot, 'data'), 'sped', 'dep_delay');
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Looking at the various sky coverage states:

m.groupby('skyc1').dep_delay.agg(['mean', 'count']).sort_values(by='mean')

skyc1 mean count
M -1.948052 77
CLR 11.162778 112128
FEW 16.979653 169020
BKN 18.195789 49773
SCT 18.772815 14552
OVC 21.133868 57624
VV 30.568094 9296

import statsmodels.api as sm

https://en.wikipedia.org/wiki/METAR#Cloud_reporting
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Statsmodels (via patsy can automatically convert dummy data to dummy vari-
ables in a formula with the C function).

mod = sm.OLS.from_formula('dep_delay ~ C(skyc1) + distance + tmpf + relh + sped + mslp', data=m)
res = mod.fit()
res.summary()

Table 3.14: OLS Regression Results

Dep. Variable: dep_delay R-squared: 0.025
Model: OLS Adj. R-squared: 0.025
Method: Least Squares F-statistic: 973.9
Date: Wed, 06 Jul 2016 Prob (F-statistic): 0.00
Time: 18:04:28 Log-Likelihood: -2.1453e+06
No. Observations: 410372 AIC: 4.291e+06
Df Residuals: 410360 BIC: 4.291e+06
Df Model: 11
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Intercept -328.3264 10.830 -30.317 0.000 -349.552 -307.100
C(skyc1)[T.CLR] -4.0838 0.257 -15.898 0.000 -4.587 -3.580
C(skyc1)[T.FEW] -0.4889 0.232 -2.108 0.035 -0.944 -0.034
C(skyc1)[T.M] -16.2566 8.681 -1.873 0.061 -33.272 0.759
C(skyc1)[T.OVC] -0.0036 0.281 -0.013 0.990 -0.554 0.547
C(skyc1)[T.SCT] 2.1157 0.427 4.955 0.000 1.279 2.953
C(skyc1)[T.VV ] 9.2641 0.518 17.870 0.000 8.248 10.280
distance 0.0008 0.000 6.066 0.000 0.001 0.001
tmpf -0.1857 0.005 -38.705 0.000 -0.195 -0.176
relh 0.1671 0.004 39.366 0.000 0.159 0.175
sped 0.6129 0.018 33.917 0.000 0.577 0.648
mslp 0.3308 0.010 31.649 0.000 0.310 0.351

Omnibus: 456692.764 Durbin-Watson: 1.872
Prob(Omnibus): 0.000 Jarque-Bera (JB): 76171140.285
Skew: 5.535 Prob(JB): 0.00
Kurtosis: 68.820 Cond. No. 2.07e+05

fig, ax = plt.subplots()
ax.scatter(res.fittedvalues, res.resid, color='k', marker='.', alpha=.25)
ax.set(xlabel='Predicted', ylabel='Residual')

http://patsy.readthedocs.org/
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sns.despine()

png

Those residuals should look like white noise. Looks like our linear model isn’t
flexible enough to model the delays, but I think that’s enough for now.

We’ll talk more about indexes in the Tidy Data and Reshaping section. Let
me know if you have any feedback. Thanks for reading!

http://twitter.com/tomaugspurger
http://twitter.com/tomaugspurger


Chapter 4

Performance

Wes McKinney, the creator of pandas, is kind of obsessed with performance.
From micro-optimizations for element access, to embedding a fast hash table
inside pandas, we all benefit from his and others’ hard work. This post will
focus mainly on making efficient use of pandas and NumPy.

One thing I’ll explicitly not touch on is storage formats. Performance is just
one of many factors that go into choosing a storage format. Just know that
pandas can talk to many formats, and the format that strikes the right balance
between performance, portability, data-types, metadata handling, etc., is an
ongoing topic of discussion.

%matplotlib inline

import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

if int(os.environ.get("MODERN_PANDAS_EPUB", 0)):
import prep # noqa

sns.set_style('ticks')
sns.set_context('talk')

Constructors

It’s pretty common to have many similar sources (say a bunch of CSVs) that
need to be combined into a single DataFrame. There are two routes to the
same end:

50

https://twitter.com/wesmckinn
https://github.com/pydata/pandas/tree/master/pandas/src/klib
http://pandas.pydata.org/pandas-docs/version/0.18.0/io.html
http://blog.cloudera.com/blog/2016/03/feather-a-fast-on-disk-format-for-data-frames-for-r-and-python-powered-by-apache-arrow/
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1. Initialize one DataFrame and append to that
2. Make many smaller DataFrames and concatenate at the end

For pandas, the second option is faster. DataFrame appends are expensive
relative to a list append. Depending on the values, pandas might have to
recast the data to a different type. And indexes are immutable, so each time
you append pandas has to create an entirely new one.

In the last section we downloaded a bunch of weather files, one per state,
writing each to a separate CSV. One could imagine coming back later to read
them in, using the following code.

The idiomatic python way

files = glob.glob('weather/*.csv')
columns = ['station', 'date', 'tmpf', 'relh', 'sped', 'mslp',

'p01i', 'vsby', 'gust_mph', 'skyc1', 'skyc2', 'skyc3']

# init empty DataFrame, like you might for a list
weather = pd.DataFrame(columns=columns)

for fp in files:
city = pd.read_csv(fp, columns=columns)
weather.append(city)

This is pretty standard code, quite similar to building up a list of tuples, say.
The only nitpick is that you’d probably use a list-comprehension if you were just
making a list. But we don’t have special syntax for DataFrame-comprehensions
(if only), so you’d fall back to the “initialize empty container, append to said
container” pattern.

But there’s a better, pandorable, way

files = glob.glob('weather/*.csv')
weather_dfs = [pd.read_csv(fp, names=columns) for fp in files]
weather = pd.concat(weather_dfs)

Subjectively this is cleaner and more beautiful. There’s fewer lines of code.
You don’t have this extraneous detail of building an empty DataFrame. And
objectively the pandorable way is faster, as we’ll test next.

We’ll define two functions for building an identical DataFrame. The first
append_df, creates an empty DataFrame and appends to it. The second,
concat_df, creates many DataFrames, and concatenates them at the end. We
also write a short decorator that runs the functions a handful of times and
records the results.
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import time

size_per = 5000
N = 100
cols = list('abcd')

def timed(n=30):
'''
Running a microbenchmark. Never use this.
'''
def deco(func):

def wrapper(*args, **kwargs):
timings = []
for i in range(n):

t0 = time.time()
func(*args, **kwargs)
t1 = time.time()
timings.append(t1 - t0)

return timings
return wrapper

return deco

@timed(60)
def append_df():

'''
The pythonic (bad) way
'''
df = pd.DataFrame(columns=cols)
for _ in range(N):

df.append(pd.DataFrame(np.random.randn(size_per, 4), columns=cols))
return df

@timed(60)
def concat_df():

'''
The pandorabe (good) way
'''
dfs = [pd.DataFrame(np.random.randn(size_per, 4), columns=cols)

for _ in range(N)]
return pd.concat(dfs, ignore_index=True)

t_append = append_df()
t_concat = concat_df()

timings = (pd.DataFrame({"Append": t_append, "Concat": t_concat})
.stack()
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.reset_index()

.rename(columns={0: 'Time (s)',
'level_1': 'Method'}))

timings.head()

index level_0 Method Time (s)
0 0 Append 0.230751
1 0 Concat 0.150536
2 1 Append 0.237916
3 1 Concat 0.181461
4 2 Append 0.274258

plt.figure(figsize=(4, 6))
sns.boxplot(x='Method', y='Time (s)', data=timings)
sns.despine()
plt.tight_layout()
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Datatypes

The pandas type system essentially NumPy’s with a few extensions
(categorical, datetime64 with timezone, timedelta64). An advantage of
the DataFrame over a 2-dimensional NumPy array is that the DataFrame can
have columns of various types within a single table. That said, each column
should have a specific dtype; you don’t want to be mixing bools with ints with
strings within a single column. For one thing, this is slow. It forces the column
to be have an object dtype (the fallback python-object container type),
which means you don’t get any of the type-specific optimizations in pandas or

http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
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NumPy. For another, it means you’re probably violating the maxims of tidy
data, which we’ll discuss next time.

When should you have object columns? There are a few places where the
NumPy / pandas type system isn’t as rich as you might like. There’s no integer
NA (at the moment anyway), so if you have any missing values, represented by
NaN, your otherwise integer column will be floats. There’s also no date dtype
(distinct from datetime). Consider the needs of your application: can you treat
an integer 1 as 1.0? Can you treat date(2016, 1, 1) as datetime(2016, 1,
1, 0, 0)? In my experience, this is rarely a problem other than when writing
to something with a stricter schema like a database. But at that point it’s fine
to cast to one of the less performant types, since you’re just not doing numeric
operations anymore.

The last case of object dtype data is text data. Pandas doesn’t have any fixed-
width string dtypes, so you’re stuck with python objects. There is an important
exception here, and that’s low-cardinality text data, for which you’ll want to
use the category dtype (see below).

If you have object data (either strings or python objects) that needs to be con-
verted, checkout the to_numeric, to_datetime and to_timedelta methods.

Iteration, Apply, And Vectorization

We know that “Python is slow” (scare quotes since that statement is too broad
to be meaningful). There are various steps that can be taken to improve your
code’s performance from relatively simple changes, to rewriting your code in
a lower-level language, to trying to parallelize it. And while you might have
many options, there’s typically an order you would proceed in.

First (and I know it’s cliché to say so, but still) benchmark your code. Make
sure you actually need to spend time optimizing it. There are many options
for benchmarking and visualizing where things are slow.

Second, consider your algorithm. Make sure you aren’t doing more work than
you need to. A common one I see is doing a full sort on an array, just to select
the N largest or smallest items. Pandas has methods for that.

df = pd.read_csv("data/627361791_T_ONTIME.csv")
delays = df['DEP_DELAY']

# Select the 5 largest delays
delays.nlargest(5).sort_values()

62914 1461.0
455195 1482.0
215520 1496.0

http://pandas.pydata.org/pandas-docs/version/0.18.0/generated/pandas.to_numeric.html
http://pandas.pydata.org/pandas-docs/version/0.18.0/generated/pandas.to_datetime.html
http://pandas.pydata.org/pandas-docs/version/0.18.0/generated/pandas.to_timedelta.html
https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/
https://github.com/nvdv/vprof
https://jiffyclub.github.io/snakeviz/
https://github.com/rkern/line_profiler
https://docs.python.org/3.5/library/timeit.html
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454520 1500.0
271107 1560.0
Name: DEP_DELAY, dtype: float64

delays.nsmallest(5).sort_values()

307517 -112.0
40118 -85.0
36065 -46.0
86280 -44.0
27749 -42.0
Name: DEP_DELAY, dtype: float64

We follow up the nlargest or nsmallest with a sort (the result of
nlargest/smallest is unordered), but it’s much easier to sort 5 items that
500,000. The timings bear this out:

%timeit delays.sort_values().tail(5)

10 loops, best of 3: 121 ms per loop

%timeit delays.nlargest(5).sort_values()

100 loops, best of 3: 15.1 ms per loop

“Use the right algorithm” is easy to say, but harder to apply in practice since
you have to actually figure out the best algorithm to use. That one comes
down to experience.

Assuming you’re at a spot that needs optimizing, and you’ve got the correct
algorithm, and there isn’t a readily available optimized version of what you
need in pandas/numpy/scipy/scikit-learn/statsmodels/…, then what?

The first place to turn is probably a vectorized NumPy implementation. Vec-
torization here means operating directly on arrays, rather than looping over
lists scalars. This is generally much less work than rewriting it in something
like Cython, and you can get pretty good results just by making effective use of
NumPy and pandas. While not every operation can be vectorized, many can.

Let’s work through an example calculating the Great-circle distance between
airports. Grab the table of airport latitudes and longitudes from the BTS
website and extract it to a CSV.

import requests
import zipfile

https://en.wikipedia.org/wiki/Great-circle_distance
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=288&DB_Short_Name=Aviation%20Support%20Tables
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=288&DB_Short_Name=Aviation%20Support%20Tables
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headers = {
'Pragma': 'no-cache',
'Origin': 'http://www.transtats.bts.gov',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.8',
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36'\

'(KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36',
'Content-Type': 'application/x-www-form-urlencoded',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Cache-Control': 'no-cache',
'Referer': 'http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=288&DB_Short_'

'Name=Aviation%20Support%20Tables',
'Connection': 'keep-alive',
'DNT': '1',

}

if not os.path.exists('data/airports.csv.zip'):
with open('url_4.txt') as f:

data = f.read().strip()

r = requests.post('http://www.transtats.bts.gov/DownLoad_Table.asp?Table_ID=288&Has'
'_Group=0&Is_Zipped=0', data=data, headers=headers)

with open('data/airports.csv.zip', 'wb') as f:
f.write(r.content)

zf = zipfile.ZipFile('data/airports.csv.zip')
fp = zf.extract(zf.filelist[0], path='data')
airports = pd.read_csv(fp)

coord = (pd.read_csv(fp, index_col=['AIRPORT'],
usecols=['AIRPORT', 'LATITUDE', 'LONGITUDE'])

.groupby(level=0).first()

.dropna()

.sample(n=500, random_state=42)

.sort_index())

coord.head()

AIRPORT LATITUDE LONGITUDE
8F3 33.623889 -101.240833
A03 58.457500 -154.023333
A09 60.482222 -146.582222
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AIRPORT LATITUDE LONGITUDE
A18 63.541667 -150.993889
A24 59.331667 -135.896667

For whatever reason, suppose we’re interested in all the pairwise distances (I’ve
limited it to just a sample of 500 airports to make this manageable. In the real
world you probably don’t need all the pairwise distances and would be better
off with a tree. Remember: think about what you actually need, and find the
right algorithm for that).

MultiIndexes have an alternative from_product constructor for getting the
Cartesian product of the arrays you pass in. We’ll give it coords.index twice
(to get its Cartesian product with itself). That gives a MultiIndex of all the
combination. With some minor reshaping of coords we’ll have a DataFrame
with all the latitude/longitude pairs.

idx = pd.MultiIndex.from_product([coord.index, coord.index],
names=['origin', 'dest'])

pairs = pd.concat([coord.add_suffix('_1').reindex(idx, level='origin'),
coord.add_suffix('_2').reindex(idx, level='dest')],
axis=1)

pairs.head()

LATITUDE_1 LONGITUDE_1 LATITUDE_2 LONGITUDE_2
origin dest
8F3 8F3 33.623889 -101.240833 33.623889 -101.240833

A03 33.623889 -101.240833 58.457500 -154.023333
A09 33.623889 -101.240833 60.482222 -146.582222
A18 33.623889 -101.240833 63.541667 -150.993889
A24 33.623889 -101.240833 59.331667 -135.896667

idx = idx[idx.get_level_values(0) <= idx.get_level_values(1)]

len(idx)

125250

We’ll break that down a bit, but don’t lose sight of the real target: our great-
circle distance calculation.

The add_suffix (and add_prefix) method is handy for quickly renaming the
columns.

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://en.wikipedia.org/wiki/Cartesian_product
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coord.add_suffix('_1').head()
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AIRPORT LATITUDE_1 LONGITUDE_1
8F3 33.623889 -101.240833
A03 58.457500 -154.023333
A09 60.482222 -146.582222
A18 63.541667 -150.993889
A24 59.331667 -135.896667

Alternatively you could use the more general .rename like coord.rename(columns=lambda
x: x + '_1').

Next, we have the reindex. Like I mentioned in the prior chapter, indexes are
crucial to pandas. .reindex is all about aligning a Series or DataFrame to
a given index. In this case we use .reindex to align our original DataFrame
to the new MultiIndex of combinations. By default, the output will have the
original value if that index label was already present, and NaN otherwise. If
we just called coord.reindex(idx), with no additional arguments, we’d get a
DataFrame of all NaNs.

coord.reindex(idx).head()

LATITUDE LONGITUDE
origin dest
8F3 8F3 NaN NaN

A03 NaN NaN
A09 NaN NaN
A18 NaN NaN
A24 NaN NaN

That’s because there weren’t any values of idx that were in coord.index,
which makes sense since coord.index is just a regular one-level Index, while
idx is a MultiIndex. We use the level keyword to handle the transition from
the original single-level Index, to the two-leveled idx.

level : int or name
Broadcast across a level, matching Index values on the passed Mul-
tiIndex level

coord.reindex(idx, level='dest').head()

LATITUDE LONGITUDE
origin dest
8F3 8F3 33.623889 -101.240833
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A03 58.457500 -154.023333
A09 60.482222 -146.582222
A18 63.541667 -150.993889
A24 59.331667 -135.896667

If you ever need to do an operation that mixes regular single-level indexes with
Multilevel Indexes, look for a level keyword argument. For example, all the
arithmatic methods (.mul, .add, etc.) have them.

This is a bit wasteful since the distance from airport A to B is the same as B to
A. We could easily fix this with a idx = idx[idx.get_level_values(0) <=
idx.get_level_values(1)], but we’ll ignore that for now.

Quick tangent, I got some… let’s say skepticism, on my last piece about the
value of indexes. Here’s an alternative version for the skeptics

from itertools import product, chain
coord2 = coord.reset_index()

x = product(coord2.add_suffix('_1').itertuples(index=False),
coord2.add_suffix('_2').itertuples(index=False))

y = [list(chain.from_iterable(z)) for z in x]

df2 = (pd.DataFrame(y, columns=['origin', 'LATITUDE_1', 'LONGITUDE_1',
'dest', 'LATITUDE_1', 'LONGITUDE_2'])

.set_index(['origin', 'dest']))
df2.head()

LATITUDE_1 LONGITUDE_1 LATITUDE_1 LONGITUDE_2
origin dest
8F3 8F3 33.623889 -101.240833 33.623889 -101.240833

A03 33.623889 -101.240833 58.457500 -154.023333
A09 33.623889 -101.240833 60.482222 -146.582222
A18 33.623889 -101.240833 63.541667 -150.993889
A24 33.623889 -101.240833 59.331667 -135.896667

It’s also readable (it’s Python after all), though a bit slower. To me the
.reindex method seems more natural. My thought process was, “I need
all the combinations of origin & destination (MultiIndex.from_product).
Now I need to align this original DataFrame to this new MultiIndex
(coords.reindex).”

With that diversion out of the way, let’s turn back to our great-circle distance
calculation. Our first implementation is pure python. The algorithm itself isn’t
too important, all that matters is that we’re doing math operations on scalars.
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import math

def gcd_py(lat1, lng1, lat2, lng2):
'''
Calculate great circle distance between two points.
http://www.johndcook.com/blog/python_longitude_latitude/

Parameters
----------
lat1, lng1, lat2, lng2: float

Returns
-------
distance:
distance from ``(lat1, lng1)`` to ``(lat2, lng2)`` in kilometers.

'''
# python2 users will have to use ascii identifiers (or upgrade)
degrees_to_radians = math.pi / 180.0
�1 = (90 - lat1) * degrees_to_radians
�2 = (90 - lat2) * degrees_to_radians

�1 = lng1 * degrees_to_radians
�2 = lng2 * degrees_to_radians

cos = (math.sin(�1) * math.sin(�2) * math.cos(�1 - �2) +
math.cos(�1) * math.cos(�2))

# round to avoid precision issues on identical points causing ValueErrors
cos = round(cos, 8)
arc = math.acos(cos)
return arc * 6373 # radius of earth, in kilometers

The second implementation uses NumPy. Aside from numpy having a builtin
deg2rad convenience function (which is probably a bit slower than multiplying
by a constant $\frac{\pi}{180}$), basically all we’ve done is swap the math
prefix for np. Thanks to NumPy’s broadcasting, we can write code that works
on scalars or arrays of conformable shape.

def gcd_vec(lat1, lng1, lat2, lng2):
'''
Calculate great circle distance.
http://www.johndcook.com/blog/python_longitude_latitude/

Parameters
----------
lat1, lng1, lat2, lng2: float or array of float
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Returns
-------
distance:
distance from ``(lat1, lng1)`` to ``(lat2, lng2)`` in kilometers.

'''
# python2 users will have to use ascii identifiers
�1 = np.deg2rad(90 - lat1)
�2 = np.deg2rad(90 - lat2)

�1 = np.deg2rad(lng1)
�2 = np.deg2rad(lng2)

cos = (np.sin(�1) * np.sin(�2) * np.cos(�1 - �2) +
np.cos(�1) * np.cos(�2))

arc = np.arccos(cos)
return arc * 6373

To use the python version on our DataFrame, we can either iterate…

%%time
pd.Series([gcd_py(*x) for x in pairs.itertuples(index=False)],

index=pairs.index)

CPU times: user 1.7 s, sys: 30 ms, total: 1.73 s
Wall time: 2.16 s

origin dest
8F3 8F3 0.000000

A03 4744.967448
A09 4407.533212
A18 4744.593127
A24 3820.092688

...
ZXV ZAZ 6748.190727

ZBF 1736.084217
ZBX 832.642824
ZKB 12843.096516
ZXV 0.000000

dtype: float64
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Or use DataFrame.apply.

%%time
r = pairs.apply(lambda x: gcd_py(x['LATITUDE_1'], x['LONGITUDE_1'],

x['LATITUDE_2'], x['LONGITUDE_2']), axis=1);

CPU times: user 35 s, sys: 437 ms, total: 35.4 s
Wall time: 44 s

But as you can see, you don’t want to use apply, especially with axis=1 (calling
the function on each row). It’s doing a lot more work handling dtypes in the
background, and trying to infer the correct output shape that are pure overhead
in this case. On top of that, it has to essentially use a for loop internally.

You rarely want to use DataFrame.apply and almost never should use it with
axis=1. Better to write functions that take arrays, and pass those in directly.
Like we did with the vectorized version

%%time
r = gcd_vec(pairs['LATITUDE_1'], pairs['LONGITUDE_1'],

pairs['LATITUDE_2'], pairs['LONGITUDE_2'])

CPU times: user 47.9 ms, sys: 16.3 ms, total: 64.2 ms
Wall time: 64.3 ms

r.head()

origin dest
8F3 8F3 0.000000

A03 4744.967484
A09 4407.533240
A18 4744.593111
A24 3820.092639

dtype: float64

I try not to use the word “easy” when teaching, but that optimization was easy
right? Why then, do I come across uses of apply, in my code and others’, even
when the vectorized version is available? The difficulty lies in knowing about
broadcasting, and seeing where to apply it.

For example, the README for lifetimes (by Cam Davidson Pilon, also author
of Bayesian Methods for Hackers, lifelines, and Data Origami) used to have an
example of passing this method into a DataFrame.apply.

https://github.com/CamDavidsonPilon/lifetimes
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/lifelines
https://dataorigami.net
https://github.com/CamDavidsonPilon/lifetimes/blob/5b4f7de0720413b6951ac0a4b0082bd50255a231/lifetimes/estimation.py#L249
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data.apply(lambda r: bgf.conditional_expected_number_of_purchases_up_to_time(
t, r['frequency'], r['recency'], r['T']), axis=1

)

If you look at the function I linked to, it’s doing a fairly complicated com-
putation involving a negative log likelihood and the Gamma function from
scipy.special. But crucially, it was already vectorized. We were able to
change the example to just pass the arrays (Series in this case) into the func-
tion, rather than applying the function to each row.

bgf.conditional_expected_number_of_purchases_up_to_time(
t, data['frequency'], data['recency'], data['T']

)

This got us another 30x speedup on the example dataset. I bring this
up because it’s very natural to have to translate an equation to code and
think, “Ok now I need to apply this function to each row”, so you reach for
DataFrame.apply. See if you can just pass in the NumPy array or Series itself
instead.

Not all operations this easy to vectorize. Some operations are iterative by
nature, and rely on the results of surrounding computations to proceed. In
cases like this you can hope that one of the scientific python libraries has
implemented it efficiently for you, or write your own solution using Numba /
C / Cython / Fortran.

Other examples take a bit more thought or knowledge to vectorize. Let’s look
at this example, taken from Jeff Reback’s PyData London talk, that groupwise
normalizes a dataset by subtracting the mean and dividing by the standard
deviation for each group.

import random

def create_frame(n, n_groups):
# just setup code, not benchmarking this
stamps = pd.date_range('20010101', periods=n, freq='ms')
random.shuffle(stamps.values)
return pd.DataFrame({'name': np.random.randint(0,n_groups,size=n),

'stamp': stamps,
'value': np.random.randint(0,n,size=n),
'value2': np.random.randn(n)})

df = create_frame(1000000,10000)

https://github.com/CamDavidsonPilon/lifetimes/blob/5b4f7de0720413b6951ac0a4b0082bd50255a231/lifetimes/estimation.py#L249
http://nbviewer.jupyter.org/github/jreback/pydata2015-london/blob/master/notebooks/idioms.ipynb


CHAPTER 4. PERFORMANCE 66

def f_apply(df):
# Typical transform
return df.groupby('name').value2.apply(lambda x: (x-x.mean())/x.std())

def f_unwrap(df):
# "unwrapped"
g = df.groupby('name').value2
v = df.value2
return (v-g.transform(np.mean))/g.transform(np.std)

Timing it we see that the “unwrapped” version, get’s quite a bit better perfor-
mance.

%timeit f_apply(df)

1 loop, best of 3: 5.88 s per loop

%timeit f_unwrap(df)

10 loops, best of 3: 88.3 ms per loop

Pandas GroupBy objects intercept calls for common functions like mean, sum,
etc. and substitutes them with optimized Cython versions. So the unwrapped
.transform(np.mean) and .transform(np.std) are fast, while the x.mean
and x.std in the .apply(lambda x: x - x.mean()/x.std()) aren’t.

Groupby.apply is always going to be around, beacuse it offers maximum flexi-
bility. If you need to fit a model on each group and create additional columns
in the process, it can handle that. It just might not be the fastest (which may
be OK sometimes).

This last example is admittedly niche. I’d like to think that there aren’t
too many places in pandas where the natural thing to do .transform((x -
x.mean()) / x.std()) is slower than the less obvious alternative. Ideally the
user wouldn’t have to know about GroupBy having special fast implementa-
tions of common methods. But that’s where we are now.

Categoricals

Thanks to some great work by Jan Schulz, Jeff Reback, and others, pandas 0.15
gained a new Categorical data type. Categoricals are nice for many reasons
beyond just efficiency, but we’ll focus on that here.

Categoricals are an efficient way of representing data (typically strings) that
have a low cardinality, i.e. relatively few distinct values relative to the size of

http://stackoverflow.com/q/35924126/1889400
http://stackoverflow.com/q/35924126/1889400
https://twitter.com/janschulz
https://twitter.com/janschulz
http://pandas.pydata.org/pandas-docs/version/0.18.0/categorical.html
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the array. Internally, a Categorical stores the categories once, and an array
of codes, which are just integers that indicate which category belongs there.
Since it’s cheaper to store a code than a category, we save on memory (shown
next).

import string

s = pd.Series(np.random.choice(list(string.ascii_letters), 100000))
print('{:0.2f} KB'.format(s.memory_usage(index=False) / 1000))

800.00 KB

c = s.astype('category')
print('{:0.2f} KB'.format(c.memory_usage(index=False) / 1000))

100.42 KB

Beyond saving memory, having codes and a fixed set of categories offers up a
bunch of algorithmic optimizations that pandas and others can take advantage
of.

Matthew Rocklin has a very nice post on using categoricals, and optimizing
code in general.

Going Further

The pandas documentation has a section on enhancing performance, focusing
on using Cython or numba to speed up a computation. I’ve focused more on
the lower-hanging fruit of picking the right algorithm, vectorizing your code,
and using pandas or numpy more effetively. There are further optimizations
availble if these aren’t enough.

Summary

This post was more about how to make effective use of numpy and pandas,
than writing your own highly-optimized code. In my day-to-day work of data
analysis it’s not worth the time to write and compile a cython extension. I’d
rather rely on pandas to be fast at what matters (label lookup on large arrays,
factorizations for groupbys and merges, numerics). If you want to learn more
about what pandas does to make things fast, checkout Jeff Tratner’ talk from
PyData Seattle talk on pandas’ internals.

Next time we’ll look at a differnt kind of optimization: using the Tidy Data
principles to facilitate efficient data analysis.

https://twitter.com/mrocklin
http://matthewrocklin.com/blog/work/2015/06/18/Categoricals
http://pandas.pydata.org/pandas-docs/version/0.18.0/enhancingperf.html
http://www.jeffreytratner.com/slides/pandas-under-the-hood-pydata-seattle-2015.pdf
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Reshaping & Tidy Data

Structuring datasets to facilitate analysis (Wickham 2014)

So, you’ve sat down to analyze a new dataset. What do you do first?

In episode 11 of Not So Standard Deviations, Hilary and Roger discussed their
typical approaches. I’m with Hilary on this one, you should make sure your
data is tidy. Before you do any plots, filtering, transformations, summary
statistics, regressions… Without a tidy dataset, you’ll be fighting your tools to
get the result you need. With a tidy dataset, it’s relatively easy to do all of
those.

Hadley Wickham kindly summarized tidiness as a dataset where

1. Each variable forms a column
2. Each observation forms a row
3. Each type of observational unit forms a table

And today we’ll only concern ourselves with the first two. As quoted at the
top, this really is about facilitating analysis: going as quickly as possible from
question to answer.

%matplotlib inline

import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

if int(os.environ.get("MODERN_PANDAS_EPUB", 0)):
import prep # noqa

68

http://www.jstatsoft.org/v59/i10/paper
https://www.patreon.com/NSSDeviations?ty=h
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pd.options.display.max_rows = 10
sns.set(style='ticks', context='talk')

NBA Data

This StackOverflow question asked about calculating the number of days of
rest NBA teams have between games. The answer would have been difficult to
compute with the raw data. After transforming the dataset to be tidy, we’re
able to quickly get the answer.

We’ll grab some NBA game data from basketball-reference.com using pandas’
read_html function, which returns a list of DataFrames.

fp = 'data/nba.csv'

if not os.path.exists(fp):
tables = pd.read_html("http://www.basketball-reference.com/leagues/NBA_2016_games.html")
games = tables[0]
games.to_csv(fp)

else:
games = pd.read_csv(fp, index_col=0)

games.head()

index Date Start (ET) Unnamed: 2 Visitor/Neutral PTS Home/Neutral PTS.1 Unnamed: 7 Notes
0 October NaN NaN NaN NaN NaN NaN NaN NaN
1 Tue, Oct 27, 2015 8:00 pm Box Score Detroit Pistons 106.0 Atlanta Hawks 94.0 NaN NaN
2 Tue, Oct 27, 2015 8:00 pm Box Score Cleveland Cavaliers 95.0 Chicago Bulls 97.0 NaN NaN
3 Tue, Oct 27, 2015 10:30 pm Box Score New Orleans Pelicans 95.0 Golden State Warriors 111.0 NaN NaN
4 Wed, Oct 28, 2015 7:30 pm Box Score Philadelphia 76ers 95.0 Boston Celtics 112.0 NaN NaN

Side note: pandas’ read_html is pretty good. On simple websites it almost
always works. It provides a couple parameters for controlling what gets selected
from the webpage if the defaults fail. I’ll always use it first, before moving on
to BeautifulSoup or lxml if the page is more complicated.

As you can see, we have a bit of general munging to do before tidying. Each
month slips in an extra row of mostly NaNs, the column names aren’t too
useful, and we have some dtypes to fix up.

column_names = {'Date': 'date', 'Start (ET)': 'start',
'Unamed: 2': 'box', 'Visitor/Neutral': 'away_team',
'PTS': 'away_points', 'Home/Neutral': 'home_team',

http://stackoverflow.com/questions/22695680/python-pandas-timedelta-specific-rows
https://www.crummy.com/software/BeautifulSoup/
http://lxml.de/
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'PTS.1': 'home_points', 'Unamed: 7': 'n_ot'}

games = (games.rename(columns=column_names)
.dropna(thresh=4)
[['date', 'away_team', 'away_points', 'home_team', 'home_points']]
.assign(date=lambda x: pd.to_datetime(x['date'], format='%a, %b %d, %Y'))
.set_index('date', append=True)
.rename_axis(["game_id", "date"])
.sort_index())

games.head()

away_team away_points home_team \
game_id date
1 2015-10-27 Detroit Pistons 106.0 Atlanta Hawks
2 2015-10-27 Cleveland Cavaliers 95.0 Chicago Bulls
3 2015-10-27 New Orleans Pelicans 95.0 Golden State Warriors
4 2015-10-28 Philadelphia 76ers 95.0 Boston Celtics
5 2015-10-28 Chicago Bulls 115.0 Brooklyn Nets

home_points
game_id date
1 2015-10-27 94.0
2 2015-10-27 97.0
3 2015-10-27 111.0
4 2015-10-28 112.0
5 2015-10-28 100.0

A quick aside on that last block.

• dropna has a thresh argument. If at least thresh items are missing, the
row is dropped. We used it to remove the “Month headers” that slipped
into the table.

• assign can take a callable. This lets us refer to the DataFrame in the
previous step of the chain. Otherwise we would have to assign temp_df
= games.dropna()... And then do the pd.to_datetime on that.

• set_index has an append keyword. We keep the original index around
since it will be our unique identifier per game.

• We use .rename_axis to set the index names (this behavior is new in
pandas 0.18; before .rename_axis only took a mapping for changing
labels).

The Question: > How many days of rest did each team get between
each game?
Whether or not your dataset is tidy depends on your question. Given our
question, what is an observation?
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In this case, an observation is a (team, game) pair, which we don’t have yet.
Rather, we have two observations per row, one for home and one for away.
We’ll fix that with pd.melt.

pd.melt works by taking observations that are spread across columns
(away_team, home_team), and melting them down into one column with
multiple rows. However, we don’t want to lose the metadata (like game_id and
date) that is shared between the observations. By including those columns
as id_vars, the values will be repeated as many times as needed to stay with
their observations.

tidy = pd.melt(games.reset_index(),
id_vars=['game_id', 'date'], value_vars=['away_team', 'home_team'],
value_name='team')

tidy.head()

index game_id date variable team
0 1 2015-10-27 away_team Detroit Pistons
1 2 2015-10-27 away_team Cleveland Cavaliers
2 3 2015-10-27 away_team New Orleans Pelicans
3 4 2015-10-28 away_team Philadelphia 76ers
4 5 2015-10-28 away_team Chicago Bulls

The DataFrame tidy meets our rules for tidiness: each variable is in a column,
and each observation (team, date pair) is on its own row. Now the translation
from question (“How many days of rest between games”) to operation (“date
of today’s game - date of previous game - 1”) is direct:

# For each team... get number of days between games
tidy.groupby('team')['date'].diff().dt.days - 1

0 NaN
1 NaN
2 NaN
3 NaN
4 NaN

...
2455 7.0
2456 1.0
2457 1.0
2458 3.0
2459 2.0
Name: date, dtype: float64
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That’s the essence of tidy data, the reason why it’s worth considering what
shape your data should be in. It’s about setting yourself up for success so that
the answers naturally flow from the data (just kidding, it’s usually still difficult.
But hopefully less so).

Let’s assign that back into our DataFrame

tidy['rest'] = tidy.sort_values('date').groupby('team').date.diff().dt.days - 1
tidy.dropna().head()

index game_id date variable team rest
4 5 2015-10-28 away_team Chicago Bulls 0.0
8 9 2015-10-28 away_team Cleveland Cavaliers 0.0
14 15 2015-10-28 away_team New Orleans Pelicans 0.0
17 18 2015-10-29 away_team Memphis Grizzlies 0.0
18 19 2015-10-29 away_team Dallas Mavericks 0.0

To show the inverse of melt, let’s take rest values we just calculated and place
them back in the original DataFrame with a pivot_table.

by_game = (pd.pivot_table(tidy, values='rest',
index=['game_id', 'date'],
columns='variable')

.rename(columns={'away_team': 'away_rest',
'home_team': 'home_rest'}))

df = pd.concat([games, by_game], axis=1)
df.dropna().head()

away_team away_points home_team \
game_id date
18 2015-10-29 Memphis Grizzlies 112.0 Indiana Pacers
19 2015-10-29 Dallas Mavericks 88.0 Los Angeles Clippers
20 2015-10-29 Atlanta Hawks 112.0 New York Knicks
21 2015-10-30 Charlotte Hornets 94.0 Atlanta Hawks
22 2015-10-30 Toronto Raptors 113.0 Boston Celtics

home_points away_rest home_rest
game_id date
18 2015-10-29 103.0 0.0 0.0
19 2015-10-29 104.0 0.0 0.0
20 2015-10-29 101.0 1.0 0.0
21 2015-10-30 97.0 1.0 0.0
22 2015-10-30 103.0 1.0 1.0
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One somewhat subtle point: an “observation” depends on the question being
asked. So really, we have two tidy datasets, tidy for answering team-level
questions, and df for answering game-level questions.

One potentially interesting question is “what was each team’s average days of
rest, at home and on the road?” With a tidy dataset (the DataFrame tidy,
since it’s team-level), seaborn makes this easy (more on seaborn in a future
post):

sns.set(style='ticks', context='paper')

g = sns.FacetGrid(tidy, col='team', col_wrap=6, hue='team', size=2)
g.map(sns.barplot, 'variable', 'rest');

png

An example of a game-level statistic is the distribution of rest differences in
games:

df['home_win'] = df['home_points'] > df['away_points']
df['rest_spread'] = df['home_rest'] - df['away_rest']
df.dropna().head()
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away_team away_points home_team \
game_id date
18 2015-10-29 Memphis Grizzlies 112.0 Indiana Pacers
19 2015-10-29 Dallas Mavericks 88.0 Los Angeles Clippers
20 2015-10-29 Atlanta Hawks 112.0 New York Knicks
21 2015-10-30 Charlotte Hornets 94.0 Atlanta Hawks
22 2015-10-30 Toronto Raptors 113.0 Boston Celtics

home_points away_rest home_rest home_win rest_spread
game_id date
18 2015-10-29 103.0 0.0 0.0 False 0.0
19 2015-10-29 104.0 0.0 0.0 True 0.0
20 2015-10-29 101.0 1.0 0.0 False -1.0
21 2015-10-30 97.0 1.0 0.0 True -1.0
22 2015-10-30 103.0 1.0 1.0 False 0.0

delta = (by_game.home_rest - by_game.away_rest).dropna().astype(int)
ax = (delta.value_counts()

.reindex(np.arange(delta.min(), delta.max() + 1), fill_value=0)

.sort_index()

.plot(kind='bar', color='k', width=.9, rot=0, figsize=(12, 6))
)
sns.despine()
ax.set(xlabel='Difference in Rest (Home - Away)', ylabel='Games');

png
Or the win percent by rest difference

fig, ax = plt.subplots(figsize=(12, 6))
sns.barplot(x='rest_spread', y='home_win', data=df.query('-3 <= rest_spread <= 3'),
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color='#4c72b0', ax=ax)
sns.despine()

png

Stack / Unstack

Pandas has two useful methods for quickly converting from wide to long format
(stack) and long to wide (unstack).

rest = (tidy.groupby(['date', 'variable'])
.rest.mean()
.dropna())

rest.head()

date variable
2015-10-28 away_team 0.000000

home_team 0.000000
2015-10-29 away_team 0.333333

home_team 0.000000
2015-10-30 away_team 1.083333
Name: rest, dtype: float64

rest is in a “long” form since we have a single column of data, with multiple
“columns” of metadata (in the MultiIndex). We use .unstack to move from
long to wide.

rest.unstack().head()
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variable away_team home_team
2015-10-28 0.000000 0.000000
2015-10-29 0.333333 0.000000
2015-10-30 1.083333 0.916667
2015-10-31 0.166667 0.833333
2015-11-01 1.142857 1.000000

unstack moves a level of a MultiIndex (innermost by default) up to the columns.
stack is the inverse.

rest.unstack().stack()

date variable
2015-10-28 away_team 0.000000

home_team 0.000000
2015-10-29 away_team 0.333333

home_team 0.000000
2015-10-30 away_team 1.083333

...
2016-04-11 home_team 0.666667
2016-04-12 away_team 1.000000

home_team 1.400000
2016-04-13 away_team 0.500000

home_team 1.214286
dtype: float64

With .unstack you can move between those APIs that expect there data in
long-format and those APIs that work with wide-format data. For example,
DataFrame.plot(), works with wide-form data, one line per column.

with sns.color_palette() as pal:
b, g = pal.as_hex()[:2]

ax=(rest.unstack()
.query('away_team < 7')
.rolling(7)
.mean()
.plot(figsize=(12, 6), linewidth=3, legend=False))

ax.set(ylabel='Rest (7 day MA)')
ax.annotate("Home", (rest.index[-1][0], 1.02), color=g, size=14)
ax.annotate("Away", (rest.index[-1][0], 0.82), color=b, size=14)
sns.despine()
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png
The most conenient form will depend on exactly what you’re doing. When
interacting with databases you’ll often deal with long form data. Pandas’
DataFrame.plot often expects wide-form data, while seaborn often expect
long-form data. Regressions will expect wide-form data. Either way, it’s good
to be comfortable with stack and unstack (and MultiIndexes) to quickly move
between the two.

Mini Project: Home Court Advantage?

We’ve gone to all that work tidying our dataset, let’s put it to use. What’s the
effect (in terms of probability to win) of being the home team?

Step 1: Create an outcome variable
We need to create an indicator for whether the home team won. Add it as a
column called home_win in games.

df['home_win'] = df.home_points > df.away_points

Step 2: Find the win percent for each team
In the 10-minute literature review I did on the topic, it seems like people include
a team-strength variable in their regressions. I suppose that makes sense; if
stronger teams happened to play against weaker teams at home more often
than away, it’d look like the home-effect is stronger than it actually is. We’ll
do a terrible job of controlling for team strength by calculating each team’s
win percent and using that as a predictor. It’d be better to use some kind of
independent measure of team strength, but this will do for now.
We’ll use a similar melt operation as earlier, only now with the home_win
variable we just created.
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wins = (
pd.melt(df.reset_index(),

id_vars=['game_id', 'date', 'home_win'],
value_name='team', var_name='is_home',
value_vars=['home_team', 'away_team'])

.assign(win=lambda x: x.home_win == (x.is_home == 'home_team'))

.groupby(['team', 'is_home'])

.win

.agg({'n_wins': 'sum', 'n_games': 'count', 'win_pct': 'mean'})
)
wins.head()

n_games win_pct n_wins
team is_home
Atlanta Hawks away_team 41 0.512195 21.0

home_team 41 0.658537 27.0
Boston Celtics away_team 41 0.487805 20.0

home_team 41 0.682927 28.0
Brooklyn Nets away_team 41 0.170732 7.0

Pause for visualiztion, because why not

g = sns.FacetGrid(wins.reset_index(), hue='team', size=7, aspect=.5, palette=['k'])
g.map(sns.pointplot, 'is_home', 'win_pct').set(ylim=(0, 1));
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png
(It’d be great if there was a library built on top of matplotlib that auto-labeled
each point decently well. Apparently this is a difficult problem to do in general).

g = sns.FacetGrid(wins.reset_index(), col='team', hue='team', col_wrap=5, size=2)
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g.map(sns.pointplot, 'is_home', 'win_pct')

<seaborn.axisgrid.FacetGrid at 0x1173ae2b0>

png
Those two graphs show that most teams have a higher win-percent at home
than away. So we can continue to investigate. Let’s aggregate over home /
away to get an overall win percent per team.

win_percent = (
# Use sum(games) / sum(games) instead of mean
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# since I don't know if teams play the same
# number of games at home as away
wins.groupby(level='team', as_index=True)

.apply(lambda x: x.n_wins.sum() / x.n_games.sum())
)
win_percent.head()

team
Atlanta Hawks 0.585366
Boston Celtics 0.585366
Brooklyn Nets 0.256098
Charlotte Hornets 0.585366
Chicago Bulls 0.512195
dtype: float64

win_percent.sort_values().plot.barh(figsize=(6, 12), width=.85, color='k')
plt.tight_layout()
sns.despine()
plt.xlabel("Win Percent")

<matplotlib.text.Text at 0x1160d38d0>
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png

Is there a relationship between overall team strength and their home-court
advantage?

plt.figure(figsize=(8, 5))
(wins.win_pct

.unstack()

.assign(**{'Home Win % - Away %': lambda x: x.home_team - x.away_team,
'Overall %': lambda x: (x.home_team + x.away_team) / 2})

.pipe((sns.regplot, 'data'), x='Overall %', y='Home Win % - Away %')
)
sns.despine()
plt.tight_layout()

png

Let’s get the team strength back into df. You could you pd.merge, but I prefer
.map when joining a Series.

df = df.assign(away_strength=df['away_team'].map(win_percent),
home_strength=df['home_team'].map(win_percent),
point_diff=df['home_points'] - df['away_points'],
rest_diff=df['home_rest'] - df['away_rest'])

df.head()

away_team away_points home_team \
game_id date
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1 2015-10-27 Detroit Pistons 106.0 Atlanta Hawks
2 2015-10-27 Cleveland Cavaliers 95.0 Chicago Bulls
3 2015-10-27 New Orleans Pelicans 95.0 Golden State Warriors
4 2015-10-28 Philadelphia 76ers 95.0 Boston Celtics
5 2015-10-28 Chicago Bulls 115.0 Brooklyn Nets

home_points away_rest home_rest home_win rest_spread \
game_id date
1 2015-10-27 94.0 NaN NaN False NaN
2 2015-10-27 97.0 NaN NaN True NaN
3 2015-10-27 111.0 NaN NaN True NaN
4 2015-10-28 112.0 NaN NaN True NaN
5 2015-10-28 100.0 0.0 NaN False NaN

away_strength home_strength point_diff rest_diff
game_id date
1 2015-10-27 0.536585 0.585366 -12.0 NaN
2 2015-10-27 0.695122 0.512195 2.0 NaN
3 2015-10-27 0.365854 0.890244 16.0 NaN
4 2015-10-28 0.121951 0.585366 17.0 NaN
5 2015-10-28 0.512195 0.256098 -15.0 NaN

import statsmodels.formula.api as sm

df['home_win'] = df.home_win.astype(int) # for statsmodels

mod = sm.logit('home_win ~ home_strength + away_strength + home_rest + away_rest', df)
res = mod.fit()
res.summary()

Optimization terminated successfully.
Current function value: 0.552792
Iterations 6

Table 5.5: Logit Regression Results

Dep. Variable: home_win No. Observations: 1213
Model: Logit Df Residuals: 1208
Method: MLE Df Model: 4
Date: Wed, 06 Jul 2016 Pseudo R-squ.: 0.1832
Time: 18:01:53 Log-Likelihood: -670.54
converged: True LL-Null: -820.91

LLR p-value: 7.479e-64
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coef std err z P>|z| [0.025 0.975]
Intercept 0.0707 0.314 0.225 0.822 -0.546 0.687
home_strength 5.4204 0.465 11.647 0.000 4.508 6.333
away_strength -4.7445 0.452 -10.506 0.000 -5.630 -3.859
home_rest 0.0894 0.079 1.137 0.255 -0.065 0.243
away_rest -0.0422 0.067 -0.629 0.529 -0.174 0.089

The strength variables both have large coefficeints (really we should be using
some independent measure of team strength here, win_percent is showing up
on the left and right side of the equation). The rest variables don’t seem to
matter as much.

With .assign we can quickly explore variations in formula.

(sm.Logit.from_formula('home_win ~ strength_diff + rest_spread',
df.assign(strength_diff=df.home_strength - df.away_strength))

.fit().summary())

Optimization terminated successfully.
Current function value: 0.553499
Iterations 6

Table 5.7: Logit Regression Results

Dep. Variable: home_win No. Observations: 1213
Model: Logit Df Residuals: 1210
Method: MLE Df Model: 2
Date: Wed, 06 Jul 2016 Pseudo R-squ.: 0.1821
Time: 18:01:53 Log-Likelihood: -671.39
converged: True LL-Null: -820.91

LLR p-value: 1.165e-65

coef std err z P>|z| [0.025 0.975]
Intercept 0.4610 0.068 6.756 0.000 0.327 0.595
strength_diff 5.0671 0.349 14.521 0.000 4.383 5.751
rest_spread 0.0566 0.062 0.912 0.362 -0.065 0.178

mod = sm.Logit.from_formula('home_win ~ home_rest + away_rest', df)
res = mod.fit()
res.summary()
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Optimization terminated successfully.
Current function value: 0.676549
Iterations 4

Table 5.9: Logit Regression Results

Dep. Variable: home_win No. Observations: 1213
Model: Logit Df Residuals: 1210
Method: MLE Df Model: 2
Date: Wed, 06 Jul 2016 Pseudo R-squ.: 0.0003107
Time: 18:01:53 Log-Likelihood: -820.65
converged: True LL-Null: -820.91

LLR p-value: 0.7749

coef std err z P>|z| [0.025 0.975]
Intercept 0.3667 0.094 3.889 0.000 0.182 0.552
home_rest 0.0338 0.069 0.486 0.627 -0.102 0.170
away_rest -0.0420 0.061 -0.693 0.488 -0.161 0.077

Overall not seeing to much support for rest mattering, but we got to see some
more tidy data.

That’s it for today. Next time we’ll look at data visualization.



Chapter 6

Visualization and Exploratory
Analysis

A few weeks ago, the R community went through some hand-wringing about
plotting packages. For outsiders (like me) the details aren’t that important,
but some brief background might be useful so we can transfer the takeaways
to Python. The competing systems are “base R”, which is the plotting system
built into the language, and ggplot2, Hadley Wickham’s implementation of the
grammar of graphics. For those interested in more details, start with

• Why I Don’t Use ggplot2
• Why I use ggplot2
• Comparing ggplot2 and base r graphics

The most important takeaways are that

1. Either system is capable of producing anything the other can
2. ggplot2 is usually better for exploratory analysis

Item 2 is not universally agreed upon, and it certainly isn’t true for every type
of chart, but we’ll take it as fact for now. I’m not foolish enough to attempt a
formal analogy here, like “matplotlib is python’s base R”. But there’s at least
a rough comparison: like dplyr/tidyr and ggplot2, the combination of pandas
and seaborn allows for fast iteration and exploration. When you need to, you
can “drop down” into matplotlib for further refinement.

Overview

Here’s a brief sketch of the plotting landscape as of April 2016. For some
reason, plotting tools feel a bit more personal than other parts of this series
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http://simplystatistics.org/2016/02/11/why-i-dont-use-ggplot2/
http://varianceexplained.org/r/why-I-use-ggplot2/
http://flowingdata.com/2016/03/22/comparing-ggplot2-and-r-base-graphics/
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so far, so I feel the need to blanket this who discussion in a caveat: this is my
personal take, shaped by my personal background and tastes. Also, I’m not
at all an expert on visualization, just a consumer. For real advice, you should
listen to the experts in this area. Take this all with an extra grain or two of
salt.

Matplotlib

Matplotlib is an amazing project, and is the foundation of pandas’ built-in
plotting and Seaborn. It handles everything from the integration with vari-
ous drawing backends, to several APIs handling drawing charts or adding and
transforming individual glyphs (artists). I’ve found knowing the pyplot API
useful. You’re less likely to need things like Transforms or artists, but when
you do the documentation is there.

Matplotlib has built up something of a bad reputation for being verbose. I
think that complaint is valid, but misplaced. Matplotlib lets you control es-
sentially anything on the figure. An overly-verbose API just means there’s an
opportunity for a higher-level, domain specific, package to exist (like seaborn
for statistical graphics).

Pandas’ builtin-plotting

DataFrame and Series have a .plot namespace, with various chart types avail-
able (line, hist, scatter, etc.). Pandas objects provide additional metadata
that can be used to enhance plots (the Index for a better automatic x-axis then
range(n) or Index names as axis labels for example).

And since pandas had fewer backwards-compatibility constraints, it had a bit
better default aesthetics. The matplotlib 2.0 release will level this, and pandas
has deprecated its custom plotting styles, in favor of matplotlib’s (technically I
just broke it when fixing matplotlib 1.5 compatibility, so we deprecated it after
the fact).

At this point, I see pandas DataFrame.plot as a useful exploratory tool for
quick throwaway plots.

Seaborn

Seaborn, created by Michael Waskom, “provides a high-level interface for draw-
ing attractive statistical graphics.” Seaborn gives a great API for quickly ex-
ploring different visual representations of your data. We’ll be focusing on that
today

http://twitter.com/mbostock
https://twitter.com/oceankidbilly
https://twitter.com/arnicas
http://matplotlib.org/
http://matplotlib.org/api/pyplot_api.html
http://matplotlib.org/users/transforms_tutorial.html
http://matplotlib.org/api/artist_api.html
http://pandas.pydata.org/pandas-docs/version/0.18.0/visualization.html
http://matplotlib.org/style_changes.html
https://github.com/pydata/pandas/issues/11783
https://github.com/pydata/pandas/issues/11727
https://github.com/pydata/pandas/issues/11727
https://stanford.edu/~mwaskom/software/seaborn/
https://stanford.edu/~mwaskom/software/seaborn/
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Bokeh

Bokeh is a (still under heavy development) visualiztion library that targets the
browser.
Like matplotlib, Bokeh has a few APIs at various levels of abstraction. They
have a glyph API, which I suppose is most similar to matplotlib’s Artists API,
for drawing single or arrays of glpyhs (circles, rectangles, polygons, etc.). More
recently they introduced a Charts API, for producing canned charts from data
structures like dicts or DataFrames.

Other Libraries

This is a (probably incomplete) list of other visualization libraries that I don’t
know enough about to comment on

• Altair
• Lightning
• HoloViews
• Glueviz
• vispy
• bqplot
• Plotly

It’s also possible to use Javascript tools like D3 directly in the Jupyter notebook,
but we won’t go into those today.

Examples

I do want to pause and explain the type of work I’m doing with these packages.
The vast majority of plots I create are for exploratory analysis, helping me
understand the dataset I’m working with. They aren’t intended for the client
(whoever that is) to see. Occasionally that exploratory plot will evolve towards
a final product that will be used to explain things to the client. In this case I’ll
either polish the exploratory plot, or rewrite it in another system more suitable
for the final product (in D3 or Bokeh, say, if it needs to be an interactive
document in the browser).
Now that we have a feel for the overall landscape (from my point of view),
let’s delve into a few examples. We’ll use the diamonds dataset from gg-
plot2. You could use Vincent Arelbundock’s RDatasets package to find it
(pd.read_csv('http://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv')),
but I wanted to checkout feather.

import os
import feather

http://bokeh.pydata.org/en/latest/
http://bokeh.pydata.org/en/latest/
https://github.com/ellisonbg/altair
http://lightning-viz.org/
http://holoviews.org/
http://www.glueviz.org/en/stable/
http://vispy.org/
https://github.com/bloomberg/bqplot
https://plot.ly/python/
https://github.com/vincentarelbundock/Rdatasets
https://github.com/wesm/feather
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import numpy as np
import pandas as pd
import seaborn as sns

if int(os.environ.get("MODERN_PANDAS_EPUB", 0)):
import prep # noqa

%load_ext rpy2.ipython

%%R
suppressPackageStartupMessages(library(ggplot2))
library(feather)
write_feather(diamonds, 'diamonds.fthr')

import feather
df = feather.read_dataframe('diamonds.fthr')
df.head()

index carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53940 entries, 0 to 53939
Data columns (total 10 columns):
carat 53940 non-null float64
cut 53940 non-null category
color 53940 non-null category
clarity 53940 non-null category
depth 53940 non-null float64
table 53940 non-null float64
price 53940 non-null int32
x 53940 non-null float64
y 53940 non-null float64
z 53940 non-null float64
dtypes: category(3), float64(6), int32(1)
memory usage: 2.8 MB
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It’s not clear to me where the scientific community will come down on Bokeh
for exploratory analysis. The ability to share interactive graphics is compelling.
The trend towards more and more analysis and communication happening in
the browser will only enhance this feature of Bokeh.
Personally though, I have a lot of inertia behind matplotlib so I haven’t
switched to Bokeh for day-to-day exploratory analysis.
I have greatly enjoyed Bokeh for building dashboards and webapps with Bokeh
server. It’s still young, and I’ve hit some rough edges, but I’m happy to put
up with some awkwardness to avoid writing more javascript.

sns.set(context='talk', style='ticks')

%matplotlib inline

Matplotlib

Since it’s relatively new, I should point out that matplotlib 1.5 added support
for plotting labeled data.

fig, ax = plt.subplots()

ax.scatter(x='carat', y='depth', data=df, c='k', alpha=.15);

png

http://bokeh.pydata.org/en/latest/docs/user_guide/interaction.html
http://stackoverflow.com/questions/36610328/control-bokeh-plot-state-with-http-request
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This isn’t limited to just DataFrames. It supports anything that uses
__getitem__ (square-brackets) with string keys. Other than that, I don’t
have much to add to the matplotlib documentation.

Pandas Built-in Plotting

The metadata in DataFrames gives a bit better defaults on plots.

df.plot.scatter(x='carat', y='depth', c='k', alpha=.15)
plt.tight_layout()

png

We get axis labels from the column names. Nothing major, just nice.

Pandas can be more convenient for plotting a bunch of columns with a shared
x-axis (the index), say several timeseries.

from pandas_datareader import fred

gdp = fred.FredReader(['GCEC96', 'GPDIC96'], start='2000-01-01').read()

gdp.rename(columns={"GCEC96": "Government Expenditure",
"GPDIC96": "Private Investment"}).plot(figsize=(12, 6))

plt.tight_layout()

http://matplotlib.org/
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png

Seaborn

The rest of this post will focus on seaborn, and why I think it’s especially great
for exploratory analysis.

I would encourage you to read Seaborn’s introductory notes, which describe its
design philosophy and attempted goals. Some highlights:

Seaborn aims to make visualization a central part of exploring and
understanding data.

It does this through a consistent, understandable (to me anyway) API.

The plotting functions try to do something useful when called with
a minimal set of arguments, and they expose a number of customiz-
able options through additional parameters.

Which works great for exploratory analysis, with the option to turn that into
something more polished if it looks promising.

Some of the functions plot directly into a matplotlib axes object,
while others operate on an entire figure and produce plots with
several panels.

The fact that seaborn is built on matplotlib means that if you are familiar with
the pyplot API, your knowledge will still be useful.
Most seaborn plotting functions (one per chart-type) take an x, y, hue, and
data arguments (only some are required, depending on the plot type). If you’re

https://stanford.edu/~mwaskom/software/seaborn/introduction.html#introduction
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working with DataFrames, you’ll pass in strings referring to column names, and
the DataFrame for data.

sns.countplot(x='cut', data=df)
sns.despine()
plt.tight_layout()

png

sns.barplot(x='cut', y='price', data=df)
sns.despine()
plt.tight_layout()
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png

Bivariate relationships can easily be explored, either one at a time:

sns.jointplot(x='carat', y='price', data=df, size=8, alpha=.25,
color='k', marker='.')

plt.tight_layout()
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png

Or many at once

g = sns.pairplot(df, hue='cut')
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png

pairplot is a convenience wrapper around PairGrid, and offers our first look
at an important seaborn abstraction, the Grid. Seaborn Grids provide a link
between a matplotlib Figure with multiple axes and features in your dataset.

There are two main ways of interacting with grids. First, seaborn provides
convenience-wrapper functions like pairplot, that have good defaults for com-
mon tasks. If you need more flexibility, you can work with the Grid directly
by mapping plotting functions over each axes.

def core(df, �=.05):
mask = (df > df.quantile(�)).all(1) & (df < df.quantile(1 - �)).all(1)
return df[mask]

cmap = sns.cubehelix_palette(as_cmap=True, dark=0, light=1, reverse=True)

(df.select_dtypes(include=[np.number])
.pipe(core)
.pipe(sns.PairGrid)
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.map_upper(plt.scatter, marker='.', alpha=.25)

.map_diag(sns.kdeplot)

.map_lower(plt.hexbin, cmap=cmap, gridsize=20)
);

/Users/tom.augspurger/Envs/blog/lib/python3.5/site-packages/matplotlib/axes/_axes.py:519: UserWarning: No labelled objects found. Use label='...' kwarg on individual plots.
warnings.warn("No labelled objects found. "

png

This last example shows the tight integration with matplotlib. g.axes is an
array of matplotlib.Axes and g.fig is a matplotlib.Figure. This is a pretty
common pattern when using seaborn: use a seaborn plotting method (or grid)
to get a good start, and then adjust with matplotlib as needed.

I think (not an expert on this at all) that one thing people like about the
grammar of graphics is its flexibility. You aren’t limited to a fixed set of



CHAPTER 6. VISUALIZATION AND EXPLORATORY ANALYSIS 99

chart types defined by the library author. Instead, you construct your chart by
layering scales, aesthetics and geometries. And using ggplot2 in R is a delight.

That said, I wouldn’t really call what seaborn / matplotlib offer that limited.
You can create pretty complex charts suited to your needs.

agged = df.groupby(['cut', 'color']).mean().sort_index().reset_index()

g = sns.PairGrid(agged, x_vars=agged.columns[2:], y_vars=['cut', 'color'],
size=5, aspect=.65)

g.map(sns.stripplot, orient="h", size=10, palette='Blues_d')

<seaborn.axisgrid.PairGrid at 0x116c30c88>

png

g = sns.FacetGrid(df, col='color', hue='color', col_wrap=4)
g.map(sns.regplot, 'carat', 'price')

<seaborn.axisgrid.FacetGrid at 0x1139d50f0>
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png

Initially I had many more examples showing off seaborn, but I’ll spare you.
Seaborn’s documentation is thorough (and just beautiful to look at).

We’ll end with a nice scikit-learn integration for exploring the parameter-space
on a GridSearch object.

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

For those unfamiliar with machine learning or scikit-learn, the basic idea is
your algorithm (RandomForestClassifer) is trying to maximize some objec-
tive function (percent of correctly classified items in this case). There are
various hyperparameters that affect the fit. We can search this space by try-
ing out a bunch of possible values for each parameter with the GridSearchCV
estimator.

df = sns.load_dataset('titanic')

clf = RandomForestClassifier()
param_grid = dict(max_depth=[1, 2, 5, 10, 20, 30, 40],

min_samples_split=[2, 5, 10],
min_samples_leaf=[2, 3, 5])

est = GridSearchCV(clf, param_grid=param_grid, n_jobs=4)

y = df['survived']
X = df.drop(['survived', 'who', 'alive'], axis=1)

X = pd.get_dummies(X, drop_first=True)
X = X.fillna(value=X.median())
est.fit(X, y);

https://stanford.edu/~mwaskom/software/seaborn/
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Let’s unpack the scores (a list of tuples) into a DataFrame.

scores = est.grid_scores_
rows = []
params = sorted(scores[0].parameters)
for row in scores:

mean = row.mean_validation_score
std = row.cv_validation_scores.std()
rows.append([mean, std] + [row.parameters[k] for k in params])

scores = pd.DataFrame(rows, columns=['mean_', 'std_'] + params)

/Users/tom.augspurger/Envs/blog/lib/python3.5/site-packages/sklearn/sklearn/model_selection/_search.py:620: DeprecationWarning: The grid_scores_ attribute is deprecated in favor of the more elaborate results_ attribute. The grid_scores_ attribute will not be available from 0.20
DeprecationWarning)

And visualize it, seeing that max-depth should probably be at least 10.

sns.factorplot(x='max_depth', y='mean_', data=scores, col='min_samples_split',
hue='min_samples_leaf')

<seaborn.axisgrid.FacetGrid at 0x10ecbca90>

png

Thanks for reading! I want to reiterate at the end that this is just my way
of doing data visualization. Your needs might differ, meaning you might need
different tools. You can still use pandas to get it to the point where it’s ready
to be visualized!

As always, feedback is welcome.

https://twitter.com/tomaugspurger
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Timeseries

Pandas started out in the financial world, so naturally it has strong timeseries
support.

The first half of this post will look at pandas’ capabilities for manipulating
time series data. The second half will discuss modelling time series data with
statsmodels.

%matplotlib inline

import os
import numpy as np
import pandas as pd
import pandas_datareader.data as web
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style='ticks', context='talk')

if int(os.environ.get("MODERN_PANDAS_EPUB", 0)):
import prep # noqa

Let’s grab some stock data for Goldman Sachs using the pandas-datareader
package, which spun off of pandas:

gs = web.DataReader("GS", data_source='yahoo', start='2006-01-01',
end='2010-01-01')

gs.head().round(2)

Date Open High Low Close Volume Adj Close
2006-01-03 126.70 129.44 124.23 128.87 6188700 114.19
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http://pandas-datareader.readthedocs.io/en/latest/
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Date Open High Low Close Volume Adj Close
2006-01-04 127.35 128.91 126.38 127.09 4861600 112.62
2006-01-05 126.00 127.32 125.61 127.04 3717400 112.57
2006-01-06 127.29 129.25 127.29 128.84 4319600 114.17
2006-01-09 128.50 130.62 128.00 130.39 4723500 115.54

There isn’t a special data-container just for time series in pandas, they’re just
Series or DataFrames with a DatetimeIndex.

Special Slicing

Looking at the elements of gs.index, we see that DatetimeIndexes are made
up of pandas.Timestamps:

Looking at the elements of gs.index, we see that DatetimeIndexes are made
up of pandas.Timestamps:

gs.index[0]

Timestamp('2006-01-03 00:00:00')

A Timestamp is mostly compatible with the datetime.datetime class, but
much amenable to storage in arrays.

Working with Timestamps can be awkward, so Series and DataFrames with
DatetimeIndexes have some special slicing rules. The first special case is
partial-string indexing. Say we wanted to select all the days in 2006. Even
with Timestamp’s convenient constructors, it’s a pai

gs.loc[pd.Timestamp('2006-01-01'):pd.Timestamp('2006-12-31')].head()

Date Open High Low Close Volume Adj Close
2006-01-03 126.699997 129.440002 124.230003 128.869995 6188700 114.192601
2006-01-04 127.349998 128.910004 126.379997 127.089996 4861600 112.615331
2006-01-05 126.000000 127.320000 125.610001 127.040001 3717400 112.571030
2006-01-06 127.290001 129.250000 127.290001 128.839996 4319600 114.166019
2006-01-09 128.500000 130.619995 128.000000 130.389999 4723500 115.539487

Thanks to partial-string indexing, it’s as simple as

gs.loc['2006'].head()
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Date Open High Low Close Volume Adj Close
2006-01-03 126.699997 129.440002 124.230003 128.869995 6188700 114.192601
2006-01-04 127.349998 128.910004 126.379997 127.089996 4861600 112.615331
2006-01-05 126.000000 127.320000 125.610001 127.040001 3717400 112.571030
2006-01-06 127.290001 129.250000 127.290001 128.839996 4319600 114.166019
2006-01-09 128.500000 130.619995 128.000000 130.389999 4723500 115.539487

Since label slicing is inclusive, this slice selects any observation where the year
is 2006.

The second “convenience” is __getitem__ (square-bracket) fall-back indexing.
I’m only going to mention it here, with the caveat that you should never
use it. DataFrame __getitem__ typically looks in the column: gs['2006']
would search gs.columns for '2006', not find it, and raise a KeyError. But
DataFrames with a DatetimeIndex catch that KeyError and try to slice the
index. If it succeeds in slicing the index, the result like gs.loc['2006'] is
returned. If it fails, the KeyError is re-raised. This is confusing because in
pretty much every other case DataFrame.__getitem__ works on columns, and
it’s fragile because if you happened to have a column '2006' you would get just
that column, and no fall-back indexing would occur. Just use gs.loc['2006']
when slicing DataFrame indexes.

Special Methods

Resampling
Resampling is similar to a groupby: you split the time series into groups (5-day
buckets below), apply a function to each group (mean), and combine the result
(one row per group).

gs.resample("5d").mean().head()

Date Open High Low Close Volume Adj Close
2006-01-03 126.834999 128.730002 125.877501 127.959997 4771825 113.386245
2006-01-08 130.349998 132.645000 130.205002 131.660000 4664300 116.664843
2006-01-13 131.510002 133.395005 131.244995 132.924995 3258250 117.785765
2006-01-18 132.210002 133.853333 131.656667 132.543335 4997766 117.520237
2006-01-23 133.771997 136.083997 133.310001 135.153998 3968500 119.985052

gs.resample("W").agg(['mean', 'sum']).head()
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Open High Low Close Volume Adj Close mean sum mean sum mean
sum mean sum mean sum mean sum 2006-01-08 126.834999 507.339996
128.730002 514.920006 125.877501 503.510002 127.959997 511.839988
4771825 19087300 113.386245 453.544981 2006-01-15 130.684000 653.419998
132.848001 664.240006 130.544000 652.720001 131.979999 659.899994
4310420 21552100 116.948397 584.741984 2006-01-22 131.907501 527.630005
133.672501 534.690003 131.389999 525.559998 132.555000 530.220000
4653725 18614900 117.512408 470.049631 2006-01-29 133.771997 668.859986
136.083997 680.419983 133.310001 666.550003 135.153998 675.769989 3968500
19842500 119.985052 599.925260 2006-02-05 140.900000 704.500000 142.467999
712.339996 139.937998 699.689988 141.618002 708.090011 3920120 19600600
125.723572 628.617860

You can up-sample to convert to a higher frequency. The new points are filled
with NaNs.

gs.resample("6H").mean().head()

Date Open High Low Close Volume Adj Close
2006-01-03 00:00:00 126.699997 129.440002 124.230003 128.869995 6188700.0 114.192601
2006-01-03 06:00:00 NaN NaN NaN NaN NaN NaN
2006-01-03 12:00:00 NaN NaN NaN NaN NaN NaN
2006-01-03 18:00:00 NaN NaN NaN NaN NaN NaN
2006-01-04 00:00:00 127.349998 128.910004 126.379997 127.089996 4861600.0 112.615331

Rolling / Expanding / EW
These methods aren’t unique to DatetimeIndexes, but they often make sense
with time series, so I’ll show them here.

gs.Close.plot(label='Raw')
gs.Close.rolling(28).mean().plot(label='28D MA')
gs.Close.expanding().mean().plot(label='Expanding Average')
gs.Close.ewm(alpha=0.03).mean().plot(label='EWMA($\\alpha=.03$)')

plt.legend(bbox_to_anchor=(1.25, .5))
plt.tight_layout()
plt.ylabel("Close ($)")
sns.despine()
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png

Each of .rolling, .expanding, and .ewm return a deferred object, similar to
a GroupBy.

roll = gs.Close.rolling(30, center=True)
roll

Rolling [window=30,center=True,axis=0]

m = roll.agg(['mean', 'std'])
ax = m['mean'].plot()
ax.fill_between(m.index, m['mean'] - m['std'], m['mean'] + m['std'],

alpha=.25)
plt.tight_layout()
plt.ylabel("Close ($)")
sns.despine()
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Grab Bag

Offsets
These are similar to dateutil.relativedelta, but works with arrays.

gs.index + pd.DateOffset(months=3, days=-2)

DatetimeIndex(['2006-04-01', '2006-04-02', '2006-04-03', '2006-04-04',
'2006-04-07', '2006-04-08', '2006-04-09', '2006-04-10',

'2006-04-11', '2006-04-15',
...

'2010-03-15', '2010-03-16', '2010-03-19', '2010-03-20',
'2010-03-21', '2010-03-22', '2010-03-26', '2010-03-27',

'2010-03-28', '2010-03-29'],
dtype='datetime64[ns]', name='Date', length=1007, freq=None)

Holiday Calendars
There are a whole bunch of special calendars, useful for traders probabaly.

from pandas.tseries.holiday import USColumbusDay

USColumbusDay.dates('2015-01-01', '2020-01-01')
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DatetimeIndex(['2015-10-12', '2016-10-10', '2017-10-09', '2018-10-08',
'2019-10-14'],
dtype='datetime64[ns]', freq='WOM-2MON')

Timezones
Pandas works with pytz for nice timezone-aware datetimes. The typical work-
flow is

1. localize timezone-naive timestamps to some timezone
2. convert to desired timezone

If you already have timezone-aware Timestamps, there’s no need for step one.

# tz naiive -> tz aware..... to desired UTC
gs.tz_localize('US/Eastern').tz_convert('UTC').head()

Date Open High Low Close Volume Adj Close
2006-01-03 05:00:00+00:00 126.699997 129.440002 124.230003 128.869995 6188700 114.192601
2006-01-04 05:00:00+00:00 127.349998 128.910004 126.379997 127.089996 4861600 112.615331
2006-01-05 05:00:00+00:00 126.000000 127.320000 125.610001 127.040001 3717400 112.571030
2006-01-06 05:00:00+00:00 127.290001 129.250000 127.290001 128.839996 4319600 114.166019
2006-01-09 05:00:00+00:00 128.500000 130.619995 128.000000 130.389999 4723500 115.539487

Modeling Time Series

The rest of this post will focus on time series in the econometric sense. My
indented reader for this section isn’t all that clear, so I apologize upfront for
any sudden shifts in complexity. I’m roughly targeting material that could
be presented in a first or second semester applied statisctics course. What
follows certainly isn’t a replacement for that. Any formality will be restricted
to footnotes for the curious. I’ve put a whole bunch of resources at the end for
people earger to learn more.

We’ll focus on modelling Average Monthly Flights. Let’s download the data. If
you’ve been following along in the series, you’ve seen most of this code before,
so feel free to skip.

import os
import io
import glob
import zipfile
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import requests
import statsmodels.api as sm

def download_one(date):
'''
Download a single month's flights
'''
month = date.month
year = date.year
month_name = date.strftime('%B')
headers = {

'Pragma': 'no-cache',
'Origin': 'http://www.transtats.bts.gov',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.8',
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.87 Safari/537.36',
'Content-Type': 'application/x-www-form-urlencoded',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Cache-Control': 'no-cache',
'Referer': 'http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time',
'Connection': 'keep-alive',
'DNT': '1',

}
os.makedirs('data/timeseries', exist_ok=True)
with open('url_7.txt') as f:

data = f.read().strip()

r = requests.post('http://www.transtats.bts.gov/DownLoad_Table.asp?Table_ID=236&Has_Group=3&Is_Zipped=0',
headers=headers, data=data.format(year=year, month=month, month_name=month_name),
stream=True)

fp = os.path.join('data/timeseries', '{}-{}.zip'.format(year, month))

with open(fp, 'wb') as f:
for chunk in r.iter_content(chunk_size=1024):

if chunk:
f.write(chunk)

return fp

def download_many(start, end):
months = pd.date_range(start, end=end, freq='M')
# We could easily parallelize this loop.
for i, month in enumerate(months):

download_one(month)
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def unzip_one(fp):
zf = zipfile.ZipFile(fp)
csv = zf.extract(zf.filelist[0], path='data/timeseries')
return csv

def time_to_datetime(df, columns):
'''
Combine all time items into datetimes.

2014-01-01,1149.0 -> 2014-01-01T11:49:00
'''
def converter(col):

timepart = (col.astype(str)
.str.replace('\.0$', '') # NaNs force float dtype
.str.pad(4, fillchar='0'))

return pd.to_datetime(df['fl_date'] + ' ' +
timepart.str.slice(0, 2) + ':' +
timepart.str.slice(2, 4),
errors='coerce')

return datetime_part
df[columns] = df[columns].apply(converter)
return df

def read_one(fp):
df = (pd.read_csv(fp, encoding='latin1')

.rename(columns=str.lower)

.drop('unnamed: 21', axis=1)

.pipe(time_to_datetime, ['dep_time', 'arr_time', 'crs_arr_time',
'crs_dep_time'])

.assign(fl_date=lambda x: pd.to_datetime(x['fl_date'])))
return df

store = 'data/ts.hdf5'

if not os.path.exists(store):
if not os.path.exists('data/timeseries'):

download_many('2000-01-01', '2016-01-01')

zips = glob.glob(os.path.join('data/timeseries', '*.zip'))
csvs = [unzip_one(fp) for fp in zips]
dfs = [read_one(fp) for fp in csvs]
df = pd.concat(dfs, ignore_index=True)

cat_cols = ['unique_carrier', 'carrier', 'tail_num', 'origin', 'dest']
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df[cat_cols] = df[cat_cols].apply(pd.Categorical)
df.to_hdf(store, 'ts', format='table')

else:
df = pd.read_hdf(store, 'ts')

with pd.option_context('display.max_rows', 100):
print(df.dtypes)

fl_date datetime64[ns]
unique_carrier category
carrier category
tail_num category
fl_num int64
origin category
dest category
crs_dep_time datetime64[ns]
dep_time datetime64[ns]
taxi_out float64
wheels_off float64
wheels_on float64
taxi_in float64
crs_arr_time datetime64[ns]
arr_time datetime64[ns]
distance float64
carrier_delay float64
weather_delay float64
nas_delay float64
security_delay float64
late_aircraft_delay float64
dtype: object

We can calculate the historical values with a resample.

daily = df.fl_date.value_counts().sort_index()
y = daily.resample('MS').mean()
y.head()

2000-01-01 1882.387097
2000-02-01 1926.896552
2000-03-01 1951.000000
2000-04-01 1944.400000
2000-05-01 1957.967742
Freq: MS, Name: fl_date, dtype: float64
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Note that I use the "MS" frequency code there. Pandas defaults to end of month
(or end of year). Append an 'S' to get the start.

ax = y.plot()
ax.set(ylabel='Average Monthly Flights')
sns.despine()

png

import statsmodels.formula.api as smf
import statsmodels.tsa.api as smt
import statsmodels.api as sm

One note of warning: I’m using the development version of statsmodels (commit
de15ec8 to be precise). Not all of the items I’ve shown here are available in
the currently-released version.
Think back to a typical regression problem, ignoring anything to do with time
series for now. The usual task is to predict some value y using some a linear
combination of features in X.
y�=��0�+��1X1�+�…�+��pXp�+��
When working with time series, some of the most important (and sometimes
only) features are the previous, or lagged, values of y.
Let’s start by trying just that “manually”: running a regression of y on lagged
values of itself. We’ll see that this regression suffers from a few problems:
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multicollinearity, autocorrelation, non-stationarity, and seasonality. I’ll explain
what each of those are in turn and why they’re problems. Afterwards, we’ll
use a second model, seasonal ARIMA, which handles those problems for us.

First, let’s create a dataframe with our lagged values of y using the .shift
method, which shifts the index i periods, so it lines up with that observation.

X = (pd.concat([y.shift(i) for i in range(6)], axis=1,
keys=['y'] + ['L%s' % i for i in range(1, 6)])

.dropna())
X.head()

index y L1 L2 L3 L4 L5
2000-06-01 1976.133333 1957.967742 1944.400000 1951.000000 1926.896552 1882.387097
2000-07-01 1937.032258 1976.133333 1957.967742 1944.400000 1951.000000 1926.896552
2000-08-01 1960.354839 1937.032258 1976.133333 1957.967742 1944.400000 1951.000000
2000-09-01 1900.533333 1960.354839 1937.032258 1976.133333 1957.967742 1944.400000
2000-10-01 1931.677419 1900.533333 1960.354839 1937.032258 1976.133333 1957.967742

We can fit the lagged model using statsmodels (which uses patsy to translate
the formula string to a design matrix).

mod_lagged = smf.ols('y ~ trend + L1 + L2 + L3 + L4 + L5',
data=X.assign(trend=np.arange(len(X))))

res_lagged = mod_lagged.fit()
res_lagged.summary()

Table 7.8: OLS Regression Results

Dep. Variable: y R-squared: 0.881
Model: OLS Adj. R-squared: 0.877
Method: Least Squares F-statistic: 221.7
Date: Wed, 06 Jul 2016 Prob (F-statistic): 2.40e-80
Time: 18:02:39 Log-Likelihood: -1076.6
No. Observations: 187 AIC: 2167.
Df Residuals: 180 BIC: 2190.
Df Model: 6
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Intercept 208.2440 65.495 3.180 0.002 79.008 337.480

http://patsy.readthedocs.org
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trend -0.1123 0.106 -1.055 0.293 -0.322 0.098
L1 1.0489 0.075 14.052 0.000 0.902 1.196
L2 -0.0001 0.108 -0.001 0.999 -0.213 0.213
L3 -0.1450 0.108 -1.346 0.180 -0.358 0.068
L4 -0.0393 0.109 -0.361 0.719 -0.254 0.175
L5 0.0506 0.074 0.682 0.496 -0.096 0.197

Omnibus: 55.872 Durbin-Watson: 2.009
Prob(Omnibus): 0.000 Jarque-Bera (JB): 322.488
Skew: 0.956 Prob(JB): 9.39e-71
Kurtosis: 9.142 Cond. No. 5.97e+04

There are a few problems with this approach though. Since our lagged values
are highly correlated with each other, our regression suffers from multicollinear-
ity. That ruins our estimates of the slopes.

sns.heatmap(X.corr())

<matplotlib.axes._subplots.AxesSubplot at 0x112cee160>

png

https://en.wikipedia.org/wiki/Multicollinearity
https://en.wikipedia.org/wiki/Multicollinearity
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Second, we’d intuitively expect the �is to gradually decline to zero. The imme-
diately preceding period should be most important (�1 is the largest coefficient
in absolute value), followed by �2, and �3… Looking at the regression summary
and the bar graph below, this isn’t the case (the cause is related to multi-
collinearity).

ax = res_lagged.params.drop(['Intercept', 'trend']).plot.bar(rot=0)
plt.ylabel('Coefficeint')
sns.despine()

png
Finally, our degrees of freedom drop since we lose two for each variable (one for
estimating the coefficient, one for the lost observation as a result of the shift).
At least in (macro)econometrics, each observation is precious and we’re loath
to throw them away, though sometimes that’s unavoidable.

Autocorrelation
Another problem our lagged model suffered from is autocorrelation (also know
as serial correlation). Roughly speaking, autocorrelation is when there’s a
clear pattern in the residuals of your regression (the observed minus the pre-
dicted). Let’s fit a simple model of y�=��0�+��1T �+��, where T is the time trend
(np.arange(len(y))).

# `Results.resid` is a Series of residuals: y - ŷ
mod_trend = sm.OLS.from_formula(

https://en.wikipedia.org/wiki/Autocorrelation
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'y ~ trend', data=y.to_frame(name='y')
.assign(trend=np.arange(len(y))))

res_trend = mod_trend.fit()

Residuals (the observed minus the expected, or $\hat{e_t} = y_t -
\hat{y_t}$) are supposed to be white noise. That’s one of the assumptions
many of the properties of linear regression are founded upon. In this case
there’s a correlation between one residual and the next: if the residual at time
t was above expectation, then the residual at time t�+�1 is much more likely
to be above average as well (et�>�0���Et[et�+�1]>0).

We’ll define a helper function to plot the residuals time series, and some diag-
nostics about them.

def tsplot(y, lags=None, figsize=(10, 8)):
fig = plt.figure(figsize=figsize)
layout = (2, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))

y.plot(ax=ts_ax)
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax)
[ax.set_xlim(1.5) for ax in [acf_ax, pacf_ax]]
sns.despine()
plt.tight_layout()
return ts_ax, acf_ax, pacf_ax

Calling it on the residuals from the linear trend:

tsplot(res_trend.resid, lags=36);

https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/Gauss–Markov_theorem
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png

The top subplot shows the time series of our residuals et, which should be white
noise (but it isn’t). The bottom shows the autocorrelation of the residuals as
a correlogram. It measures the correlation between a value and it’s lagged self,
e.g. corr(et,�et�−�1),corr(et,�et�−�2),…. The partial autocorrelation plot in the
bottom-right shows a similar concept. It’s partial in the sense that the value
for corr(et,�et�−�k) is the correlation between those two periods, after controlling
for the values at all shorter lags.

Autocorrelation is a problem in regular regressions like above, but we’ll use it to
our advantage when we setup an ARIMA model below. The basic idea is pretty
sensible: if your regression residuals have a clear pattern, then there’s clearly
some structure in the data that you aren’t taking advantage of. If a positive
residual today means you’ll likely have a positive residual tomorrow, why not
incorporate that information into your forecast, and lower your forecasted value
for tomorrow? That’s pretty much what ARIMA does.

It’s important that your dataset be stationary, otherwise you run the risk of
finding spurious correlations. A common example is the relationship between
number of TVs per person and life expectancy. It’s not likely that there’s an
actual causal relationship there. Rather, there could be a third variable that’s
driving both (wealth, say). Granger and Newbold (1974) had some stern words
for the econometrics literature on this.

https://www.otexts.org/fpp/2/2#autocorrelation
http://www.tylervigen.com/spurious-correlations
http://wolfweb.unr.edu/homepage/zal/STAT758/Granger_Newbold_1974.pdf
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We find it very curious that whereas virtually every textbook on
econometric methodology contains explicit warnings of the dangers
of autocorrelated errors, this phenomenon crops up so frequently in
well-respected applied work.

(:fire:), but in that academic passive-aggressive way.
The typical way to handle non-stationarity is to difference the non-stationary
variable until is is stationary.

y.to_frame(name='y').assign(Δy=lambda x: x.y.diff()).plot(subplots=True)
sns.despine()

png
Our original series actually doesn’t look that bad. It doesn’t look like nominal
GDP say, where there’s a clearly rising trend. But we have more rigorous
methods for detecting whether a series is non-stationary than simply plotting
and squinting at it. One popular method is the Augmented Dickey-Fuller test.
It’s a statistical hypothesis test that roughly says:
H0 (null hypothesis): y is non-stationary, needs to be differenced
HA (alternative hypothesis): y is stationary, doesn’t need to be differenced
I don’t want to get into the weeds on exactly what the test statistic is, and
what the distribution looks like. This is implemented in statsmodels as
smt.adfuller. The return type is a bit busy for me, so we’ll wrap it in a
namedtuple.

http://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.adfuller.html


CHAPTER 7. TIMESERIES 119

from collections import namedtuple

ADF = namedtuple("ADF", "adf pvalue usedlag nobs critical icbest")

ADF(*smt.adfuller(y))._asdict()

OrderedDict([('adf', -1.9904608794641487),
('pvalue', 0.29077127047555601),
('usedlag', 15),
('nobs', 176),
('critical',
{'1%': -3.4680615871598537,
'10%': -2.5756015922004134,
'5%': -2.8781061899535128}),

('icbest', 1987.6605732826176)])

So we failed to reject the null hypothesis that the original series was non-
stationary. Let’s difference it.

ADF(*smt.adfuller(y.diff().dropna()))._asdict()

OrderedDict([('adf', -3.5862361055645211),
('pvalue', 0.0060296818910968268),
('usedlag', 14),
('nobs', 176),
('critical',
{'1%': -3.4680615871598537,
'10%': -2.5756015922004134,
'5%': -2.8781061899535128}),

('icbest', 1979.6445486427308)])

This looks better. It’s not statistically significant at the 5% level, but who
cares what statisticins say anyway.

We’ll fit another OLS model of Δy�=��0�+��1LΔyt�−�1�+�et

data = (y.to_frame(name='y')
.assign(Δy=lambda df: df.y.diff())
.assign(LΔy=lambda df: df.Δy.shift()))

mod_stationary = smf.ols('Δy ~ LΔy', data=data.dropna())
res_stationary = mod_stationary.fit()

tsplot(res_stationary.resid, lags=24);
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So we’ve taken care of multicolinearity, autocorelation, and stationarity, but
we still aren’t done.

Seasonality

We have strong monthly seasonality:

smt.seasonal_decompose(y).plot();
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There are a few ways to handle seasonality. We’ll just rely on the SARIMAX
method to do it for us. For now, recognize that it’s a problem to be solved.

ARIMA

So, we’ve sketched the problems with regular old regression: multicollinear-
ity, autocorrelation, non-stationarity, and seasonality. Our tool of choice,
smt.SARIMAX, which stands for Seasonal ARIMA with eXogenous regressors,
can handle all these. We’ll walk through the components in pieces.

ARIMA stands for AutoRegressive Integrated Moving Average. It’s a relatively
simple yet flexible way of modeling univariate time series. It’s made up of three
components, and is typically written as ARIMA(p,�d,�q).

ARIMA stands for AutoRegressive Integrated Moving Average, and it’s a rel-
atively simple way of modeling univariate time series. It’s made up of three
components, and is typically written as ARIMA(p,�d,�q).

AutoRegressive
The idea is to predict a variable by a linear combination of its lagged values
(auto-regressive as in regressing a value on its past self ). An AR(p), where p
represents the number of lagged values used, is written as

yt�=�c�+��1yt�−�1�+��2yt�−�2�+�…�+��pyt�−�p�+�et
c is a constant and et is white noise. This looks a lot like a linear regression

https://www.otexts.org/fpp/8/3
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model with multiple predictors, but the predictors happen to be lagged values
of y (though they are estimated differently).

Integrated
Integrated is like the opposite of differencing, and is the part that deals with sta-
tionarity. If you have to difference your dataset 1 time to get it stationary, then
d�=�1. We’ll introduce one bit of notation for differencing: Δyt�=�yt�−�yt�−�1
for d�=�1.

Moving Average
MA models look somewhat similar to the AR component, but it’s dealing with
different values.

yt�=�c�+�et�+��1et�−�1�+��2et�−�2�+�…�+��qet�−�q
c again is a constant and et again is white noise. But now the coefficients are
the residuals from previous predictions.

Combining
Putting that together, an ARIMA(1, 1, 1) process is written as

Δyt�=�c�+��1Δyt�−�1�+��tet�−�1�+�et
Using lag notation, where Lyt�=�yt�−�1, i.e. y.shift() in pandas, we can
rewrite that as

(1�−��1L)(1�−�L)yt�=�c�+�(1�+��L)et
That was for our specific ARIMA(1,�1,�1) model. For the general
ARIMA(p,�d,�q), that becomes

(1�−��1L�−�…�−��pLp)(1�−�L)dyt�=�c�+�(1�+��L�+�…�+��qLq)et
We went through that extremely quickly, so don’t feel bad if things aren’t clear.
Fortunately, the model is pretty easy to use with statsmodels (using it correctly,
in a statistical sense, is another matter).

mod = smt.SARIMAX(y, trend='c', order=(1, 1, 1))
res = mod.fit()
tsplot(res.resid[2:], lags=24);

https://www.otexts.org/fpp/8/4
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res.summary()

Table 7.11: Statespace Model Results

Dep. Variable: fl_date No. Observations: 192
Model: SARIMAX(1, 1, 1) Log Likelihood -1104.663
Date: Wed, 06 Jul 2016 AIC 2217.326
Time: 18:02:47 BIC 2230.356
Sample: 01-01-2000 HQIC 2222.603

- 12-01-2015
Covariance Type: opg

coef std err z P>|z| [0.025 0.975]
intercept 0.7993 4.959 0.161 0.872 -8.921 10.519
ar.L1 0.3515 0.564 0.623 0.533 -0.754 1.457
ma.L1 -0.2310 0.577 -0.400 0.689 -1.361 0.899
sigma2 6181.2832 350.439 17.639 0.000 5494.435 6868.131
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Ljung-Box (Q): 209.30 Jarque-Bera (JB): 424.36
Prob(Q): 0.00 Prob(JB): 0.00
Heteroskedasticity (H): 0.86 Skew: 1.15
Prob(H) (two-sided): 0.54 Kurtosis: 9.93

There’s a bunch of output there with various tests, estimated parameters, and
information criteria. Let’s just say that things are looking better, but we still
haven’t accounted for seasonality.

A seasonal ARIMA model is written as ARIMA(p,�d,�q)×(P,�D,�Q)s. Lowercase
letters are for the non-seasonal component, just like before. Upper-case letters
are a similar specification for the seasonal component, where s is the periodicity
(4 for quarterly, 12 for monthly).

It’s like we have two processes, one for non-seasonal component and one for
seasonal components, and we multiply them together with regular algebra rules.

The general form of that looks like (quoting the statsmodels docs here)

$$\phi_p(L)\tilde{\phi}_P(LˆS)\Deltaˆd\Delta_sˆD y_t = A(t) +
\theta_q(L)\tilde{\theta}_Q(Lˆs)e_t$$
where

• �p(L) is the non-seasonal autoregressive lag polynomial
• $\tilde{\phi}_P(LˆS)$ is the seasonal autoregressive lag polynomial
• ΔdΔs

D is the time series, differenced d times, and seasonally differenced
D times.

• A(t) is the trend polynomial (including the intercept)
• �q(L) is the non-seasonal moving average lag polynomial
• $\tilde{\theta}_Q(Lˆs)$ is the seasonal moving average lag polynomial

I don’t find that to be very clear, but maybe an example will help. We’ll fit a
seasonal ARIMA(1,�1,�2)×(0,�1,�2)12.

So the nonseasonal component is

• p�=�1: period autoregressive: use yt�−�1
• d�=�1: one first-differencing of the data (one month)
• q�=�2: use the previous two non-seasonal residual, et�−�1 and et�−�2, to

forecast

And the seasonal component is

• P�=�0: Don’t use any previous seasonal values
• D�=�1: Difference the series 12 periods back: y.diff(12)

http://www.statsmodels.org/dev/examples/notebooks/generated/statespace_sarimax_stata.html
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• Q�=�2: Use the two previous seasonal residuals

mod_seasonal = smt.SARIMAX(y, trend='c',
order=(1, 1, 2), seasonal_order=(0, 1, 2, 12),
simple_differencing=False)

res_seasonal = mod_seasonal.fit()

res_seasonal.summary()

Table 7.14: Statespace Model Results

Dep. Variable: fl_date No. Observations: 192
Model: SARIMAX(1, 1, 2)x(0, 1, 2, 12) Log Likelihood -992.148
Date: Wed, 06 Jul 2016 AIC 1998.297
Time: 18:02:52 BIC 2021.099
Sample: 01-01-2000 HQIC 2007.532

- 12-01-2015
Covariance Type: opg

coef std err z P>|z| [0.025 0.975]
intercept 0.7824 5.279 0.148 0.882 -9.564 11.129
ar.L1 -0.9880 0.374 -2.639 0.008 -1.722 -0.254
ma.L1 0.9905 0.437 2.265 0.024 0.133 1.847
ma.L2 0.0041 0.091 0.045 0.964 -0.174 0.182
ma.S.L12 -0.7869 0.066 -11.972 0.000 -0.916 -0.658
ma.S.L24 0.2121 0.063 3.366 0.001 0.089 0.336
sigma2 3645.3266 219.295 16.623 0.000 3215.517 4075.137

Ljung-Box (Q): 47.28 Jarque-Bera (JB): 464.42
Prob(Q): 0.20 Prob(JB): 0.00
Heteroskedasticity (H): 0.29 Skew: -1.30
Prob(H) (two-sided): 0.00 Kurtosis: 10.45

tsplot(res_seasonal.resid[12:], lags=24);
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png

Things look much better now.

One thing I didn’t really talk about is order selection. How to choose
p,�d,�q,�P,�D and Q. R’s forecast package does have a handy auto.arima
function that does this for you. Python / statsmodels don’t have that at
the minute. The alternative seems to be experience (boo), intuition (boo),
and good-old grid-search. You can fit a bunch of models for a bunch of
combinations of the parameters and use the AIC or BIC to choose the best.
Here is a useful reference, and this StackOverflow answer recommends a few
options.

Forecasting

Now that we fit that model, let’s put it to use. First, we’ll make a bunch of
one-step ahead forecasts. At each point (month), we take the history up to
that point and make a forecast for the next month. So the forecast for January
2014 has available all the data up through December 2013.

pred = res_seasonal.get_prediction(start='2001-03-01')
pred_ci = pred.conf_int()

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://www.otexts.org/fpp/8/7
http://stackoverflow.com/a/22770973
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ax = y.plot(label='observed')
pred.predicted_mean.plot(ax=ax, label='Forecast', alpha=.7)
ax.fill_between(pred_ci.index,

pred_ci.iloc[:, 0],
pred_ci.iloc[:, 1], color='k', alpha=.2)

ax.set_ylabel("Monthly Flights")
plt.legend()
sns.despine()

png

There are a few places where the observed series slips outside the 95% confi-
dence interval. The series seems especially unstable before 2005.

Alternatively, we can make dynamic forecasts as of some month (January 2013
in the example below). That means the forecast from that point forward only
use information available as of January 2013. The predictions are generated in
a similar way: a bunch of one-step forecasts. Only instead of plugging in the
actual values beyond January 2013, we plug in the forecast values.

pred_dy = res_seasonal.get_prediction(start='2002-03-01', dynamic='2013-01-01')
pred_dy_ci = pred_dy.conf_int()

ax = y.plot(label='observed')
pred_dy.predicted_mean.plot(ax=ax, label='Forecast')
ax.fill_between(pred_dy_ci.index,
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pred_dy_ci.iloc[:, 0],
pred_dy_ci.iloc[:, 1], color='k', alpha=.25)

ax.set_ylabel("Monthly Flights")

# Highlight the forecast area
ax.fill_betweenx(ax.get_ylim(), pd.Timestamp('2013-01-01'), y.index[-1],

alpha=.1, zorder=-1)
ax.annotate('Dynamic $\\longrightarrow$', (pd.Timestamp('2013-02-01'), 550))

plt.legend()
sns.despine()

png

Resources

This is a collection of links for those interested.

Time series modeling in Python
• Statsmodels Statespace Notebooks
• Statsmodels VAR tutorial
• ARCH Library by Kevin Sheppard

http://www.statsmodels.org/dev/examples/index.html#statespace
http://www.statsmodels.org/dev/vector_ar.html#var
https://github.com/bashtage/arch
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General Textbooks
• Forecasting: Principles and Practice: A great introduction
• Stock and Watson: Readable undergraduate resource, has a few chapters

on time series
• Greene’s Econometric Analysis: My favorite PhD level textbook
• Hamilton’s Time Series Analysis: A classic
• Lutkehpohl’s New Introduction to Multiple Time Series Analysis: Ex-

tremely dry, but useful if you’re implementing this stuff

Conclusion

Congratulations if you made it this far, this piece just kept growing (and I still
had to cut stuff). The main thing cut was talking about how SARIMAX is im-
plemented on top of using statsmodels’ statespace framework. The statespace
framework, developed mostly by Chad Fulton over the past couple years, is
really nice. You can pretty easily extend it with custom models, but still get
all the benefits of the framework’s estimation and results facilities. I’d recom-
mend reading the notebooks. We also didn’t get to talk at all about Skipper
Seabold’s work on VARs, but maybe some other time.

As always, feedback is welcome.

https://www.otexts.org/fpp/
http://wps.aw.com/aw_stock_ie_3/178/45691/11696965.cw/
http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
http://www.amazon.com/Time-Analysis-James-Douglas-Hamilton/dp/0691042896
http://www.amazon.com/New-Introduction-Multiple-Time-Analysis/dp/3540262393
http://www.statsmodels.org/dev/examples/notebooks/generated/statespace_local_linear_trend.html
http://www.statsmodels.org/dev/examples/index.html#statespace
https://twitter.com/tomaugspurger
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