
Robust P2P Personalized Learning
Karim Boubouh

UM6P
Benguerir, Morocco

karim.boubouh@um6p.ma

Amine Boussetta
UM6P

Benguerir, Morocco
amine.boussetta@um6p.ma

Yahya Benkaouz
Mohammed V University

Rabat, Morocco
yahya.benkaouz@um5.ac.ma

Rachid Guerraoui
EPFL

Switzerland
rachid.guerraoui@epfl.ch

Abstract—Decentralized machine learning over peer-to-peer
networks is very appealing for it enables to learn personalized
models without sharing users data, nor relying on any central
server. Peers can improve upon their locally trained model across
a network graph of other peers with similar objectives. Whilst
they offer an inherently scalable scheme with a very simple cost-
efficient learning model, peer-to-peer networks are also fragile.
In particular, they can be very easily disrupted by unfairness,
free-riding, and adversarial behaviors.

In this paper, we present CDPL (Contribution Driven P2P
Learning), a novel Byzantine-resilient distributed algorithm to
train personalized models across similar peers. We convey theo-
retically and empirically the effectiveness of CDPL in terms of
speed of convergence as well as robustness to Byzantine behavior.

Index Terms—peer-to-peer machine learning, personalized
models, Byzantine failures, robustness

I. INTRODUCTION

The rapid adoption of connected personal devices (e.g.,
mobile phones, smartwatches, and connected objects) results
in a tremendous amount of valuable data being continuously
generated. Data have been usually transferred, stored and
computed in the cloud (Fig. 1a). But privacy concerns call
for more decentralized schemes where data would remain on
user devices.

As devices are gaining prominent storage and computation
capabilities, we indeed witness a shift towards a new scheme
where data is kept on users devices. For example, Google
advocated Federated Learning [1], a scheme that enables
the training of models using data distributed across many
clients. Clients collaboratively train a global model under the
coordination of a central server (Fig. 1b) which orchestrates
the training, including clients selection, updates collection, and
weights aggregation. The server represents however a single
point of failure (SPOF) and may become a bottleneck when
the number of clients increases significantly [2].

In this paper, we consider a fully decentralized peer-to-peer
system. Here, peers aim to learn a machine learning model
based on their local data with no interaction with any central
entity. Each peer has a local model that it trains according
to its own learning objective. The learning is in this sense
personalized. Peers collaborate with similar ones to enhance
the accuracy of their pre-trained models (Fig. 1c). Two peers
are considered similar if they have close data distributions. In
practice, this pairwise similarity can be derived for instance,
from peer profiles (e.g., interests, locations, subscriptions).

The efficiency of personalized learning depends heavily on
the willingness of the collaborating peers to participate in
the learning process effectively. We argue that it is crucial
for a collaborative learning algorithm based on a peer-to-
peer scheme to address the problem of adversarial behavior
from some of the peers, besides traditional challenges related
to distributed systems such as asynchrony and failures. This
is the challenge that we take up in this paper. We assume
the presence of Byzantine peers that aim to compromise the
system: these include for example free-riders that do not
contribute, i.e., peers that do not send anything to the system,
as well as peers that send corrupt models.

We present CDPL (Contribution Driven P2P Learning), a
novel fairness-aware incentive distributed algorithm to collab-
oratively learn personalized models in a peer to peer scheme.
Our approach essentially relies on the evaluation of neighbor
models before performing any update and continuously incen-
tivizing peers to communicate good models. For pedagogical
reasons, we first consider the static case, and then show how
CDPL can work in a dynamic environment where peers can
join and leave the network at any time.

Our CDPL algorithm can be viewed as a robust, i.e.,
Byzantine-resilient, extension of Model Propagation [3],
which is not resilient even to a single misbehaving peer.
We prove that CDPL converges, and does so at least as fast
as Model Propagation, when there is no misbehaving peers.
In other words, we show that in terms of convergence, our
algorithm has no overhead with respect to the state of the
art approach which is clearly not robust. Interestingly, CDPL
can defend against an arbitrary number of Byzantine neighbors
(even the extreme case where all the neighbors are Byzantine).
For this, we establish an upper bound on the loss function at
iteration T , for each honest peer, in terms of their initial loss
value.

The rest of the paper is organized as follows. We first define
the problem of interest in Section II. Then, we describe in
Section III the basic Model Propagation approach and prove
its vulnerability to misbehaving peers. Our CDPL algorithm
is presented in details in Section IV for static and then
dynamic networks. We analyze the convergence of CDPL
and its robustness against Byzantine peers in Section V. Our
experimental results are described in Section VI, where we
evaluate CDPL extensively in different settings. Finally, we
review related works in Section VII before concluding the
paper in Section VIII.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

��� ����	
��������������
������

���� ���������	
�����

���� ��
������������

�

Fig. 1: Machine learning paradigms: Centralized, Federated and Personalized (P2P) machine learning.
(a) Centralized Learning: The server creates a global model based on the collected users data. (b) Distributed Learning
(sometimes called Federated learning): Data is not shared with the server. Users receive a model from the server and use their
data to improve the model. The updates are then communicated to the server to perform aggregation and output a new model.
(c) Personalized Learning: Users train their models locally, then exchange their model parameters to enhance their own models
without relying on any central server.

II. PROBLEM DEFINITION

In this paper, we consider a set of users aiming to train
a machine learning model based on their local data while
considering other users’ models in the network graph. This
graph represents a semantic overlay on top of the communi-
cation layer, defining a gateway between pairs of users sharing
similar tasks and objectives. Each user maintains her own raw
data and has her own learning objective. The idea is to take
profit of similar users’ data to enhance the accuracy of the
built models. Each user should learn a model that involves
her local data, her personal learning objective, and the models
of similar users.

Formally speaking, users are organized in an undirected
connected graph G = (V,E). The vertex set V of size
n represents peers. We denote by E the set of weighted
edges between peers. The weights values reflect a notion of
similarity. We denote by W ∈ R

n×n the symmetric non-
negative similarity matrix associated with G. Given two peers
i and j, Wij is the weight of the edge (i, j) ∈ E representing
the similarity between the objectives of i and j: Wij tends to
be large (resp. small) if i and j have similar objectives (resp.
dissimilar). Furthermore, if i is not linked to j, the similarity is
equal to zero (i.e. Wij = 0). We set also Wij = 0 if i = j. We
assume that each peer i has access to its neighbors associated
weights without having a global view of the network. We
denote by Ni = {j : Wij > 0} the set of neighbors of peer i,
and Dii =

∑n
j=1 Wij .

Each peer i owns a set of mi ≥ 0 training examples Si =
{xj

i , y
j
i }mi

j=1 drawn from the peer’s local data distribution μi

over a feature space X and a label space Y defining a personal
supervised learning task. We consider i.i.d. training data (i.e.
independent and identically distributed) following [3].

Given a convex loss function � : Rp×X×Y , the goal of the
peer i is to build a model θi ∈ R

p with a small expected loss
E(xi,yi) ∼ μi�(θi;xi; yi). Each peer i learns a local model by
minimizing its local loss over Si:

θloci ∈ argmin
θ∈Rp

Li(θ) =

mi∑
j=1

�(θ, xj
i , y

j
i) (1)

Note that the size of the training samples may vary from
one peer to another, depending on their activity. In fact, peers
may have very few or no data at all (e.g., a device with
small storage capacity, or new peers joining the network).
Therefore, they may have very different models in terms of
accuracy. Any exchange with a neighbor may weaken the
peer’s model or improve it depending on the quality of the
received model. Peers have to prevent such behavior from
affecting their models, especially if the neighbor is a malicious
peer. We discuss below the model threat considered in our
work.

A Byzantine peer is omniscient. It can collude with other
Byzantine peers and has unlimited resources. Moreover, it can
impersonate honest peers but cannot control their machines.
Special cases of Byzantine attacks are: crash failures, com-
munication failures, free riders who enjoy the system with
no contribution by sending random vectors or re-sending the
same received models and, attacks that introduce a backdoor,
make the models diverge or converge to ineffective solutions,
to name a few.

III. PEER-TO-PEER PERSONALIZED LEARNING

Training models in isolation based only on local data can
result in weak models if peers have very little data, or models
that generalize very poorly. Our goal is to make all the net-
work peers participate in a decentralized collaborative learning
scheme where they can smooth their pre-trained models, to
benefit from the shared information while maintaining accurate
models with respect to their local data.

We formulate the problem (as in [3]) using graph regulariza-
tion [4] to favor models that are smooth on the network graph.
Denoting Θ = [θ1; . . . ; θn] ∈ R

n×p as the vector of locally

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

�������	�
����
����
�����

������������

��� ���������
����
���
���������� ��� ���������
������������	�������
���� ��� ��������	�
����������������

������

������

������

������

��� ��� �	

����

������

������

������

������

��� ���

Fig. 2: Model Propagation steps.
(a) Initialization: peer i learns a local model based on its data. (b) Communication step: peers i and j exchange their model
parameters asynchronously. (c) Update step: peer i updates its model based on the received models of its neighbors.

learned models θi for each peer i. The objective function we
aim to minimize is as follows:

Q =
1

2

⎛⎝ n∑
i<j

Wij‖θi − θj‖2+μ

n∑
i=1

Diici‖θi − θloci ‖2
⎞⎠ (2)

Where μ is a trade-off parameter to control the effect of
the network (first term) on the locally computed model, and
ci (in the second term) represents the confidence a peer has
in its locally trained model. Large confidence values prevent
peers from diverging too much from their original models,
while low confidence values enable greater contribution from
the network.

A. Model Propagation

We first present a decentralized algorithm to solve (2).
Note that (2) has a closed form solution, but it requires the
knowledge of the global network and the local models of all
peers. In our settings, the peers only have information about
their neighborhood. Regarding the time and communication
models, we assume that each peer becomes active when its
local clock ticks following a Poisson distribution. At each time
t ≥ 0 peers maintain (possibly outdated) knowledge about the
models of their neighbors. For each peer i, we consider Matrix
Θ̃i(t) ∈ R

n×p, where Θ̃i
i(t) ∈ R

p is the peer’s model at time
t, and for j �= i, Θ̃i

j(t) ∈ R
p is peer i’s last knowledge of the

model received by peer j.
1) Decentralized Algorithm: (Algorithm 1) Upon initializa-

tion, each peer i learns a local model θloci based only on its
local training data (Fig. 2a). Once the local model is learned,
each peer communicates with its neighbors to retrieve the
information about the size of their data mj . This latter is used
to calculate the confidence value ci = mi

maxjmj
(plus some

small constant when mi = 0) representing a normalization
factor proportional to the size of the local data of the peer i.

At each timestamp t, peer i wakes up and performs the
following two consecutive steps:

• Communication step (Fig. 2b): peer i selects randomly
one neighbor j ∈ Ni and both peers exchange their
models.

Θ̃j
i (t+ 1) = Θ̃j

j(t) and Θ̃i
j(t+ 1) = Θ̃i

i(t)

• Update step (Fig. 2c): both peers update their models as
follows. For l ∈ {i, j}:

Θ̃l
l(t+ 1) =(α+ αcl)

−1(
α

∑
k∈Nl

Wlk

Dll
Θ̃k

l (t+ 1) + αclθ
loc
l

)

with α ∈ (0, 1) such that μ = 1−α
α , and α = 1− α.

2) Convergence: The Model Propagation algorithm con-
verges after t rounds [3] to a state where the peers reach
an optimal model Θ∗ within the network graph. Furthermore,
since the algorithm is an asynchronous gossip based algorithm,
the speed of convergence is much faster than synchronous
algorithms in large decentralized peer-to-peer networks [5].

B. Model Propagation Weakness

Peer-to-peer learning can be of great help for peers to
improve their models throughout the network graph. However,
such a scheme induces a higher risk of Byzantine failure. In
this direction, a confidence value based on data sizes presents
many problems. First, the confidence value requires revealing
the probably sensitive information about the size of peers local
data. Second, it does not present any information related to the
quality of the peer data. We formalize the non resilience of
this scheme in Proposition 1.

Proposition 1 (Robustness): The Model Propagation algo-
rithm 1 is not resilient to even a single Byzantine peer.

Proof: As defined in Section II, a Byzantine peer is
omniscient and can impersonate other peers in the network.
Thus, a single peer can make the whole network converge to
a chosen model θb by proposing the vector θ̂b to every peer i:

θ̂b =
Dbb

Wb

⎡⎣θb + ᾱ

α
ci(θb − θloci)−

∑
j∈Ni/{b}

Wij

Dii
θj(t)

⎤⎦
Moreover, if there is a mechanism that filters models based on
their norm, the Byzantine peer can select the data size variable

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Model Propagation

Input : weighted connected graph G, trade-off parameter α
Output : θj optimal model for every peer j ∈ G.

1: upon event < mp.Init > do
2: for peer ∈ G do
3: θloc ← learn(data);
4: θ ← θloc; Θ̃ ← {⊥}k×p; � k number of neighbors

5: c ← size(data)

max(size(data), size(neighbors.data))
;

6: end event

7: upon event < p2p.Receive|neighbor, [θj] > do
8: Θ̃[neighbor] ← θj ;
9: trigger < p2p.Send|neighbor, [θ] >;

10: calculateUpdate();
11: end event

12: procedure exchange()
13: neighbor ← randomNeighbor(neighbors);
14: trigger < p2p.Send|neighbor, [θ] >;

15: procedure calculateUpdate()
16: σ = {⊥}k×p;
17: for neighbor ∈ neighbors do
18: σ ← σ +

W [neighbor]

D
Θ̃[neighbor];

19: θ ← (α+ αc)−1(ασ + αcθloc);

mb > maxj∈(1,··· ,n) mj to be large enough in order to control
the term θb − θloci and consequently, the norm of θ̂b.

Remark: Even in a weaker threat model where imperson-
ation is not allowed, the algorithm is still not Byzantine
resilient and the number of Byzantine peers necessary depends
on the graph topology. If the graph is complete, then a single
Byzantine peer can damage the whole system in the first
update by sending the vector θ̂b to all peers. If the graph is not
fully connected, then a single Byzantine peer can damage the
whole network in less than T rounds, where T is the number
of edges in the shortest path linking the Byzantine peer and
the farthest peer in the network. If the graph is disconnected,
then it suffices to have a Byzantine peer in each cluster to
achieve the same damage.

IV. CONTRIBUTION DRIVEN P2P LEARNING

In the algorithm presented in the previous section, the
confidence value for each peer is derived from the data size
of its neighbors. In our alternative, we suggest using the
quality of the received models instead of the size of the
data. In other words, peers will derive a contribution factor
from each received model, then decide whether the suggested
exchange will contribute to their models. While this approach
increases the time complexity of the algorithm as it requires

evaluating the received models, it constitutes a serious filter
against Byzantine peers and allows peers to defend against
extreme scenarios where all the neighbors are Byzantine.

A. Contribution Factor

The contribution factor cf aims to ensure an up to date
quantification of the quality of the peers models, hence the
quality of their contribution in the collaboration. Instead of
relying on the size of the data received from peer j, the
contribution factor cf j

i represents how the model of peer j
can potentially contribute to peer i’s model. By convention,
we set cf j

i = 1 if i = j.
Let ζi be a random variable representing the set of random

samples drawn from the dataset of peer i. Let Li(θj , ζi) be the
loss using the model θj on the test set ζi. Let pij = bi

Li(θj ,ζi)
be

the corresponding accuracy of θj on the same test set, where
bi is a generic constant satisfying the negative correlation
between the loss and the accuracy.

As shown in CDPL (Algorithm 2), when a given peer
i receives a model Θ̃j

i (t + 1) from a peer j, during the
communication step, the peer i evaluates the accuracy of the
received model.

The contribution factor of Θ̃j
i (t+ 1) is computed based on

pii and pij as follows:

cj
′

i =
pij
pii

Peer i then updates the contribution factor of peer j by
integrating its historical contribution as follows:

cji (t+ 1) = γ ∗ cji (t) + (1− γ) ∗ cj′i
where γ ∈ [0, 1] is a trade-off parameter to control the effect

of the peer j’s transactional history on the currently calculated
contribution factor.

To avoid potential accuracy decrease in peer i‘s model, we
set a threshold cfth to determine whether the update should
be accepted or ignored. Finally, if the update is accepted, we
proceed to the aggregation as described in the update step
using:

ci =
1

max(cji)
for j ∈ Ni ∪ {i}

B. Fairness Control

The contribution factor drives the exchange scheme by
limiting the effect of weak models, while still responding back
to enable peers with fewer data points to take advantage of
the collaboration. However, free-riders can join the collabo-
rative learning without performing any computation either to
save resources or to keep the added value of their data for
themselves. Instead, they may send random models in each
exchange step, and wait for the other peers to send back their
models. Hence, we suggest an incentive approach to establish
a notion of fairness between peers and encourage them to
participate with better models.

The literature of peer-to-peer systems suggests many ap-
proaches to tackle these issues: (1) reciprocal-based [6] where

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 CDPL: Contribution Driven P2P Learning

Input : weighted connected graph G, trade-off parameter α,
contribution factor threshold cfth, fairness control ε, random
sample Δ from test-set.
Output : θj optimal model for every peer j ∈ G.

1: upon event < mp.Init > do
2: for peer ∈ G do
3: θloc ← learn(data);
4: θ ← θloc; Θ̃ ← {⊥}k×p;
5: banned, cf, p ← {⊥}
6: end event

7: procedure exchange()
8: neighbor ← randomNeighbor(neighbors);
9: trigger < p2p.Send|neighbor, [θ] >;

10: upon event < p2p.Receive|neighbor, [θj] > do
11: accepted, pj = evaluateModel(θj)
12: if accepted then
13: Θ̃[neighbor] ← θj ;
14: calculateUpdate();
15: else
16: if fairnessControl(neighbor, pj) then
17: trigger < p2p.Send|neighbor, [θ] >;

18: end event

19: procedure evaluateModel(neighbor, θj)
20: pi ← accuracy(θ,Δ)
21: pj ← accuracy(θj ,Δ)
22: cf [neighbor] = γ ∗ cf [neighbor] + (1− γ) ∗ pi

pj

23: if cf [neighbor] ≥ cfth then
24: return true, pj
25: else
26: return false, pj

27: procedure fairnessControl(neighbor, pj)
28: if not neighbor ∈ banned then
29: diff =

pj−p[neighbor]
p[neighbor]

30: if diff < ε then
31: banned ← banned ∪ {neighbor}
32: else
33: return true
34: return false

35: procedure calculateUpdate()
36: σ = {⊥}k×p;

37: c ← 1

max(1,max(cf [neighbors]))
;

38: for neighbor ∈ neighbors do
39: σ ← σ +

W [neighbor]

D
Θ̃[neighbor];

40: θ ← (α+ αc)−1(ασ + αcθloc);

peers give preference to peers investing their resources in the
collaboration; (2) reputation-based [7], where the peers get
benefits depending on the amount of resources they invest; (3)
punishment-based [8] where free-riders requests are eventually
ignored and forced to disconnect from the network. Inspired
from these approaches, our idea is to keep track of the
quality of models received from neighbors. If a peer keeps
sending models of decreasing quality, it will be considered as
a misbehaving peer and will be banned, thus prevented from
any future exchanges during the training cycle. Meanwhile,
weaker models can be tolerated during the first communication
round since peers may have few data points.

We define the scheme of detecting misbehaving peer as
follows: each peer i keeps note of the previous value pij of
peer j, denoted as pij(t−1) and initialized with value 0. Once
a peer i receives a new model from peer j, peer i compares
the accuracy pij(t) of the received model with the previous
accuracy pij(t−1) by computing the percentage difference as
follows:

pij(t)− pij(t− 1)

pij(t− 1)

If the computed percentage is smaller than a threshold ε
representing the maximum decrease in j’ model accuracy
tolerated by i, the peer j is banned from collaboration. The

value of ε can considerably affect the collaboration experience,
as large values may lead to honest peers being banned, while
small values can intensify the effect of the Byzantine attacks.

C. DYNAMIC CDPL

So far, we considered the network graph as a given parame-
ter of our algorithm. We assumed a static undirected weighted
graph where the edges represent the actual similarities between
peers. However, the assumption of having such a relevant
graph is impractical in many situations. In addition to the
challenges related to building such a graph, a realistic graph
would be dynamic as peers may join or leave the network
at any time. Furthermore, peers profiles and preferences may
change over time, necessitating the adaptation of the graph
to these changes. Conceiving an optimal graph under these
requirements is challenging as peers have no global view of
the network. It was suggested in [9] to learn the collaboration
graph and the personalized models by optimizing a joint ob-
jective function (weights and model parameters). The problem
becomes bi-convex and solvable by alternating optimization
of the two sub-problems. Specifically, they used a variant of
coordinate descent to optimize the weights of the collaboration
graph. However, such a scheme is still not robust against
misbehaving peers.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

We suggest DYNAMIC CDPL, an extended version of
CDPL algorithm to jointly learn a contribution-based net-
work graph where peers only retain up to date neighbors
that contribute positively to their models. Peers with weak
contributions or suspicious behaviors are eventually unpaired
from peers neighbors list.

1) Initialization: To bootstrap the collaboration, we start
with an oracle graph as input if such a graph exists. In this
scenario, peers already have a set of relevant neighbors with
whom they can start the collaboration. Otherwise, we start
with a random network graph incorporating random neighbors
(typically a small number) drawn from a peer sampling
service [10] without having any information about the global
network. We assume that the peer sampling service guarantees
a uniform random sampling of peers even under Byzantine
attacks following [11], [12].

2) Dynamic graph updates: During the collaboration
scheme, peers update their set of neighbors depending on how
beneficial their contributions are. For a peer i participating in
the collaboration, two undesirable situations can happen: (1) a
misbehaving peer j is detected and banned; or (2) a proposed
update from j is ignored. In the first situation, peer i samples
a random peer k from the peer sampling service to replace j.
In the second scenario, i samples one peer k from the peer
sampling service and evaluates its contribution factor cfk. If
cfk > cfj , then the peer i sends an unfriend message to peer
j and replace it with k.

V. CDPL ANALYSIS

In this section, we discuss and prove the properties of our
CDPL algorithm in terms of convergence and robustness.

A. Convergence

In honest environments, the original algorithm is proved
to converge to an optimal solution. However, the speed of
convergence depends heavily on the quality of neighbors’
models. In contrast, CDPL allows peers to limit the effect
of weak models resulting in faster convergence speed.

Proposition 2 (Convergence): CDPL (Algorithm 2) con-
verges, at least as fast as Model Propagation (Algorithm 1)
to an optimal solution:

Θ∗ = argmin
Θ∈Rn×p

Q(Θ)

Proof: The closed form solution to the minimization
problem Q defined in [3] is:

Θ∗ = ᾱ(I − ᾱ(I − C)− αP)−1CΘloc

Note that, it is necessary for the Matrix (I − ᾱ(I −C)−αP)
to have a spectral radius less than 1, in order to be invertible.
This is true in particular when P is a stochastic matrix and
(I − C) have diagonal entries less than 1. In our algorithm,
Cii = ci = 1

max(cji)
for j ∈ Ni ∪ {i} and P = D−1W

is a stochastic matrix by construction, so both conditions
are satisfied. Convergence is then proved using the same
arguments as in [3].

We show now that our algorithm reaches the optimal
solution as least as fast as Model Propagation. We assume in
this section that ∀i ∈ (1, · · · , n),Li is a convex function. Let
a1i (resp. a2i) be generic constants such that Li(

1
α+ᾱci

θ) =
aiLi(θ) (resp.Li(ciθ) = a2iLi(θ)). We have then:

Li(θi(t+ 2)) =

Li

⎛⎝ 1

α+ ᾱci

⎛⎝α
∑
j∈Ni

Wij

Dii
θj(t+ 1) + ᾱciθ

loc
i

⎞⎠⎞⎠
= aiLi

⎛⎝⎛⎝α
∑
j∈Ni

Wij

Dii
θj(t+ 1) + ᾱciθ

loc
i

⎞⎠⎞⎠
Since

∑
j∈Ni

Wij

Dii
= 1 and α+ ᾱ = 1, we obtain by applying

Jensen Inequality:

Li(θi(t+ 2)) ≤ (3)

a1i

⎛⎝α
∑
j∈Ni

Wij

Dii
Li(θj(t+ 1)) + ᾱa2iLi(θ

loc
i)

⎞⎠ (4)

Since loss and accuracy are negatively correlated, we set bi
to be a generic constant such that Li(θj) =

bi
pij

. We split the
reasoning into two scenarios:

• ∀j ∈ Ni, Li(θj) ≤ bi
cfth

• ∃j ∈ Ni, Li(θj) >
bi

cfth

Clearly, the first scenario results in an update for both
algorithms. Thus, similar convergence properties are expected
for both algorithms. The interesting scenario is the second one.
In this case, some neighbors are proposing a model with a bad
quality loss, which will be accounted for in the weighted sum
of Algorithm 1 update but rejected in our algorithm (CDPL).
Therefore, the loss function in CDPL can increase with a
bounded magnitude, as opposed to Model Propagation where
the increase is not controlled, which can be interpreted as a
fast convergence.

B. Robustness

The presence of Byzantine adversaries is a realistic and
natural assumption, especially in open environments such
as peer-to-peer networks. Here, we discuss the resilience of
CDPL against Byzantine peers.

Given a node i with ni neighbors, an extreme Byzantine
attack is when all the neighbors of i are Byzantine peers
colluding to deviate peer i’s model. We prove that CDPL
guarantees an upper bound impact of the Byzantine peers on
the model of peer i in terms of accuracy, even in the worst
scenario where the number of Byzantine peers f = ni.

Proposition 3 (upper bound): If CDPL (Algorithm 2) is
run for T iterations under a Byzantine attack, then ∃M >
0, Li(θi(T)) ≤ MLi(θ

loc
i) (i.e. the accuracy decrease is

bounded).
Proof: This is a direct result of Proposition 2. Let us

consider the extreme case where a peer i have only Byzantine
peers in its neighborhood. The contribution factor is a strong
filter against peers with low accuracy models. Therefore, a

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

(a) Test accuracy (b) Test loss (c) Standard deviation accuracy

Fig. 3: Convergence of CDPL vs. Model Propagation with/without confidence.
(a) Accuracy: the use of the contribution factor results in faster convergence compared to confidence (less than 20 rounds).
(b) Test loss: the contribution factor performs much better in minimizing the loss, as it avoids aggregating weak models.
(c) Standard deviation in peers accuracy: in all settings, peers perform well in smoothing their models.

Byzantine worker is forced to provide models above the
threshold to be considered in the update. The worst attack
is then to send models with the lowest acceptable accuracy.
Specifically:

cj
′

i > cfth =⇒ pij
pii

> cfth =⇒ Li(θj) <
1

cfth
Li(θi)

Using the same assumptions on the individual loss functions
in Proposition 2, we obtain using Equation 3:

Li(θi(t+ 1)) ≤

a1i

⎛⎝α
∑
j∈Ni

Wij

Dii
Li(θj(t)) + ᾱa2iLi(θ

loc
i)

⎞⎠
≤ a1i

⎛⎝ α

cfth

∑
j∈Ni

Wij

Dii

⎞⎠Li

(
θi(t) + a1iᾱa2iLi(θ

loc
i)

)
Rewriting the last inequality leads to:

Li(θi(T)) ≤[
a1i

α

cfth

]T
Li(θi(0)) +

(
T∑

k=1

[
a1i

α

cfth

]k−1
)
ᾱa1ia2iLi(θ

loc
i)

Since θi(0) = θloci , the last inequality reduces to:

Li(θi(T)) ≤

Li(θ
loc
i)

([
a1i

α

cfth

]T
+

(
T∑

k=1

[
a1i

α

cfth

]k−1
)
ᾱa1ia2i

)
If we further choose cfth > a1iα, then:

Li(θi(∞)) ≤ Li(θ
loc
i)

(
ᾱa1ia2i

1− a1i
α

cfth

)

Remark: Note that the upper bound presented in Proposition
3 does not hold for Model Propagation (Algorithm 1). In
fact, local models can vanish in the update equation when a
Byzantine worker sends a large value as its data size, leaving

only a weighted average of received models, which can be as
well Byzantine.

In dynamic environments, DYNAMIC CDPL can be very
appealing, as it allows the discovery of potentially better peers
resulting in a fast convergence even if peers profiles and
preferences are continuously changing.

Proposition 4: DYNAMIC CDPL algorithm converges, at
least as fast as Model Propagation (Algorithm 1).

Proof sketch: A run of DYNAMIC CDPL algorithm
can be divided into three phases: first, the algorithm tries to
select the best neighbors for each peer by evaluating their
contribution factor and setting the weights of non similar
neighbors to zero (using the ban rule described in IV-B). In
the second phase, the algorithm adjusts the weights of the
neighbors depending on their contribution factor. In the last
phase, the weights either stop updating or change with a small
magnitude. Since the Matrix W and the coefficient ci are
still satisfying the conditions stated in Proposition 2 proof,
we only need to show that the weight matrix W eventually
reaches a stable state where every peer has identified a set of
very similar neighbors, based on the contribution factor. The
problem reduces then to the first setup where the matrix is
static which convergence is proven in Proposition 2.

VI. EXPERIMENTAL RESULTS

To demonstrate the advantages of the CDPL approach com-
pared to Model Propagation in terms of speed of convergence
and robustness, we have implemented a peer-to-peer simu-
lation network to enable end-to-end communication between
peers of the network graph. In the following, we present
the implementation environment, the considered metrics, and
the obtained results. Moreover, our implementation provides
experimental results of Model Propagation compared to the
theoretical results presented in [3].

A. Implementation Environment

For this study, we have considered image classification as
a learning task performed by 50 peers. The dataset we have

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

(a) Ignored model vs. banned peers.

 10080

0.89

0.88

0.87

0.86

0.85

0.84

0.83

 0 20 40 60Communication rounds

Te
st

 a
cc

ur
ac

y
(b) Effect of cfth on convergence speed

 0.750.25 0.500.25 0.000.75 0.50
0.880

0.885

0.890

0.895

0.900

0.905

Ban threshold

Te
st

 a
cc

ur
ac

y

(c) Effect of ε on convergence speed

Fig. 4: Banning peers and ignoring updates in CDPL.

considered is the well-known MNIST dataset [13]. MNIST
consists of 10 categories, including digits ranging from 0 to
9, with a total of 70,000 data samples (60,000 for training and
10,000 for testing). Each peer of the network graph is assigned
a non-overlapping i.i.d. sample from the MNIST training set
drawn uniformly at random from a normal distribution with
mean μ = m/n (m is the size of the MNIST training set)
and width σ = 1

2μ. Peers were assigned the same test set. The
network graph was built using a random network generator
that randomly samples the number of neighbors for each peer
from a uniform distribution. For all the experiments (unless
mentioned otherwise), we set the trade-off parameter γ to
0.2 allowing 80% change in the contribution factor derived
from the proposed model. The remaining 20% accounts for the
history of the peer’s contributions embedded in the previous
contribution factor. We fix the contribution factor threshold
cfth to 0.8 allowing aggregation of even slightly less accurate
models. The fairness control threshold ε was set to −0.1 to
allow a 10% decrease in peers accuracy during the collabora-
tion. The parameter α was set to 0.5.

All experiments were conducted on a computer running
Ubuntu 18.04 LTS, with Intel(R) Xeon(R) W-2123 CPU
3.60GHz and 32.0G of RAM. The source code was written
in Python language, and makes use of scikit-learn 0.21.3.
The source code of our implementation is available on:
https://github.com/karimboubouh/peernet.

The focus of our experiments was precisely to study the
impact of the following parameters and configurations on
the algorithms outcome: (1) Confidence factor; (2) Byzantine
peers; (3) Data unbalancedness; (4) Network density. To study
the impact of these parameters, we have considered the follow-
ing metrics: accuracy, loss, and the number of communication
rounds to study the convergence behavior. Precision, recall,
and F1 score have been used to analyze the accuracy of
Byzantine peers detection. In the following subsections, we
present the main findings of our study.

B. Convergence Rate

In our first set of experiments, we study the speed of con-
vergence of the algorithm in three different configurations: (1)
not considering any confidence; (2) using confidence based on

peers data sizes; (3) using the contribution factor (CDPL). In
Figure 3a, we plot the test accuracy as a function of the number
of communication rounds performed to reach convergence. We
observe that CDPL starts at a higher accuracy and converges
faster (in less than 20 rounds). However, all configurations
converge to an optimal solution after a sufficient number of
rounds. Figure 3b shows a significant drop in loss when using
the contribution factor compared to the other configurations.
This behavior is expected as the CDPL algorithm selects
only models with small losses. Thus, the models will not
experience a significant variation in accuracy because of the
aggregation of bad and good models. Figure 3c indeed shows
that the standard deviation of the models accuracy during
the collaboration task is minimum using CDPL. Furthermore,
Figure 3c shows that the algorithms in all configurations
perform well with higher smoothness degrees.

C. Effect of the CDPL Parameters

In this subsection, we compare different values of the con-
tribution factor thresholds cfth and fairness control thresholds
ε. These parameters control the interaction with the network as
they can allow for more tolerated or restricted collaboration.
During this collaboration, each peer can ignore a proposed
update if it does not satisfy the requirement of the peer defined
by the thresholds cfth and ε. Figure 4a shows the number
of updates being ignored during the collaboration, as well as
the number of peers banned after exchanging models with
decreased accuracy. We observe that peers with decreasing
accuracy are banned in the first few iterations, while peers keep
ignoring updates if they hold no added value. This behavior
shows that our algorithm can detect and filter suspicious peers
at an early stage.

Figure 4b demonstrates that higher values of cfth can result
in faster convergence and better accuracy. However, imposing
large cfth values may prevent peers from taking advantage
of important updates offered by their neighbors. The fairness
control threshold ε on the other hand, plays a crucial role
in preventing Byzantine peers from affecting peers models.
However, as reported in Figure 4c, enforcing a large increase in
accuracy from neighbors may significantly reduce the overall

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

(a) Accuracy (5 Byzantine peers) (b) Byzantine peers detection

(c) Accuracy (25 Byzantine peers) (d) Byzantine peers detection

Fig. 5: The effect of Byzantine peers attacks on peers models
compared to other configurations.

accuracy. This is due to the fact that peers will keep banning
any peer not ensuring an ε increase of the model accuracy.

D. Effect of Byzantine Peers

We consider that every Byzantine peer aims to compromise
the models of its neighbors by communicating random models
in each communication step of the algorithms. In figures 5a
and 5c, we study the behavior of honest peers in the presence
of 5 and 25 Byzantine peers out of 50 peers. We measure
the accuracy of honest peers models during the exchange to
study the effect of attacks on those peers. Figures 5a and 5c
show the great advantage of using CDPL in order to protect
against Byzantine attacks. In the case of Model Propagation,
the accuracy drops drastically from the first few iterations.
At the same time, CDPL does not experience any decrease in
accuracy as it ignores any model not reaching the contribution
factor threshold. From figures 5b and 5d, we see that it
takes less than 20 rounds for all peers to detect and filter
any Byzantine peer aiming to disturb the collaboration task.
The full detection happens after few communication rounds,
mainly because peers may exchange models with honest peers
first before encountering a Byzantine peer, which takes two
rounds to detect it.

E. Effect of Data Unbalancedness

We perform several experiments to study the effect of the
training data on convergence. For each peer, data is sampled
uniformly at random from a normal distribution without re-
placement with mean μ = m/n (m is the size of the training
set) while varying the width σ ∈ [0, 1]. When σ = 0, all the
peers will have the same number of training examples. Large
values of σ allow more variation in the datasets. Figure 6a
shows how the loss evolves while increasing the value of σ.

(a) Loss vs. data unbalancedness (b) Accuracy with non-iid data

Fig. 6: Effect of data unbalancedness and non-iid data.

Fig. 7: Graph density vs. total test loss.

In Figure 6b, we study the behavior of the algorithm out
of our i.i.d. data assumption. We observe that in the case of
peers holding non-iid data, even the CDPL failed to drive the
peers to generalize their models and reach a good accuracy,
even after running the algorithm for 200 rounds. The average
accuracy of the models did not cross the value of 60%.

F. Effect of Network Density

To study the effect of network density, we consider an
Erdős–Rényi graph generator with a density parameter d ∈
[0, 1] to control the density of the generated graph. Small val-
ues of d results in a sparse graph. While increasing the values
of d, the network graph gets denser, and peers receive more
neighbors. Figure 7 presents the behavior of the algorithm
in terms of test loss with respect to the graph sparsity. We
conclude from the experiments that when the network graph
is sparse, the algorithm has a negligible effect on the system,
as each peer communicates with few peers. With the increase
of graph density, the algorithm smooths the model of each peer
with more neighbors (e.i., smoothing over the cluster resulting
in personalized models). Finally, at a particular density factor,
the graph gets almost fully connected and the models converge
to a global model.

VII. RELATED WORK

Research in decentralized machine learning has mainly
focused on distributed optimization techniques [14]–[16]. The
goal has mainly been to learn a single global model by mini-
mizing the average of the local losses of agents participating
in the learning task [17]–[19].

We consider in this paper a completely decentralized setting
where agents have each their own local model and person-
alized learning objectives, which they seek to improve by

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

communicating in a peer-to-peer manner with other agents
in the network. Several such approaches have recently been
presented [3], [9], [20], [21]. The approach of [3] used the idea
of alternative direction method of multipliers [22]. The work
of [20] tackled the privacy issue by proposing a differentially
private algorithm that enables peers to learn personalized
models under strong privacy requirements efficiently. To learn
personalized models, the approach of [9] suggested to jointly
learn the network graph with the models to achieve lower com-
munication costs. The approach of [21] suggested a distributed
algorithm for learning personalized models that requires no
hyperparameters tuning.

None of these approaches however tackled the issues of
Byzantine peers. Clearly, in a realistic peer-to-peer environ-
ment, Byzantine peers may join the collaboration as free-riders
to take advantage of the exchanged updates without investing
any resources. In the worst cases, peers can be subject to
Byzantine attacks from single or colluding peers aiming to
corrupt their models. Many recent Byzantine-resilient ML
algorithms [23]–[26] have been proposed to defend against
a proportion of malicious workers in the training phase.
However, these techniques are not applicable to our case.
Essentially, we deal with personalized models, one per peer,
instead of one single distributed model as assumed in that
line of research. In fact, our paper is the first to account
for Byzantine peers in the context of personalized peer-to-
peer learning. Also, most of those papers actually assume a
centralized architecture where a parameter server (possibly
replicated) supervises many workers in order to optimize a
function using a variant of Gradient Descent: we do not
assume any parameter server. Finally, the filtering of bad
workers is done using gradients. In our setup, we work directly
with the parameter vectors instead of the gradients which
makes our protocol independent of the optimization scheme.

VIII. CONCLUSION

This paper proposes CDPL (Contribution Driven P2P
Learning), a fairness-aware incentive distributed algorithm, to
collaboratively learn personalized models in a peer-to-peer
network. The originality of CDPL is its resilience to Byzantine
peers. Our algorithm relies on the evaluation of neighbors
models before performing any updates, which make it able to
defend against an arbitrary number of Byzantine peers. Peers
are continuously incentivized to communicate better models.
We show theoretically and empirically that CDPL is robust and
converges faster compared to the classical Model Propagation
approach that is not Byzantine-resilient. As future work, we
plan to explore the tightness of the bounds presented in this
work as well as enhance the time complexity of our algorithm.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics (AISTATS), 2017.

[2] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in International
Conference on Neural Information Processing Systems (NIPS), 2017.

[3] P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized col-
laborative learning of personalized models over networks,” in Artificial
Intelligence and Statistics (AISTATS), 2017.

[4] P. S. Dhillon, S. Sellamanickam, and S. S. Keerthi, “Semi-supervised
multi-task learning of structured prediction models for web information
extraction,” in Conference on Information and Knowledge Management
(CIKM), 2011.

[5] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proceedings of the
IEEE, vol. 98, pp. 1847–1864, 2010.

[6] K. G. Anagnostakis and M. B. Greenwald, “Exchange-based incentive
mechanisms for peer-to-peer file sharing,” International Conference on
Distributed Computing Systems (ICDCS), pp. 524–533, 2004.

[7] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in International
conference on World Wide Web (WWW), 2003, pp. 640–651.

[8] M. Karakaya, I. Korpeoglu, and Ö. Ulusoy, “Counteracting free riding in
peer-to-peer networks,” Comput. Networks, vol. 52, pp. 675–694, 2008.

[9] V. Zantedeschi, A. Bellet, and M. Tommasi, “Fully decentralized joint
learning of personalized models and collaboration graphs,” in Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS),
2020.

[10] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Transactions on Computer
Systems (TOCS), vol. 25, p. 8, 2007.

[11] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine resilient random membership sampling,” Comput. Networks,
vol. 53, pp. 2340–2359, 2009.

[12] G. P. Jesi, D. Hales, and M. van Steen, “Identifying malicious peers
before it’s too late: A decentralized secure peer sampling service,” First
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO), pp. 237–246, 2007.

[13] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[14] A. Nedic and A. E. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE Transactions on Automatic Control
(TACON), vol. 54, pp. 48–61, 2009.

[15] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal of
Optimization Theory and Applications (JOTA), pp. 516–545, 2010.

[16] E. Wei and A. E. Ozdaglar, “Distributed alternating direction method
of multipliers,” IEEE Conference on Decision and Control (CDC), pp.
5445–5450, 2012.

[17] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic Control (TACON), pp. 592–606, 2012.

[18] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning
in fixed topology networks,” in International Conference on Neural
Information Processing Systems (NIPS), 2017, pp. 5906–5916.

[19] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized
training over decentralized data,” in International Conference on Ma-
chine Learning (ICML), 2018.

[20] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized
and private peer-to-peer machine learning,” in Artificial Intelligence and
Statistics (AISTATS), 2018.

[21] I. Almeida and J. M. F. Xavier, “Djam: Distributed jacobi asynchronous
method for learning personal models,” IEEE Signal Processing Letters
(SPL), vol. 25, pp. 1389–1392, 2018.

[22] S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
pp. 1–122, 2011.

[23] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer,
“Byzantine-tolerant machine learning,” ArXiv, vol. 1703.02757, 2017.

[24] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vul-
nerability of distributed learning in byzantium,” in Proceedings of the
35th International Conference on Machine Learning (ICML), 2018, pp.
3521–3530.

[25] G. Damaskinos, E. M. E. Mhamdi, R. Guerraoui, R. Patra, and M. Taziki,
“Asynchronous byzantine machine learning (the case of sgd),” in Inter-
national Conference on Machine Learning (ICML), 2018.

[26] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conference on Machine Learning (ICML), 2018, pp. 5650–5659.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 16:16:18 UTC from IEEE Xplore. Restrictions apply.

