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Résumé substantiel en français

Fiabilité du Deep Learning avec simulation d’événements rares :
théorie et pratique.

Avant-propos : La présente thèse explore des méthodologies avancées pour évaluer la
fiabilité des prédictions de réseaux neuronaux profonds (DNNs), en se concentrant sur leur
robustesse face à des perturbations aléatoires. Elle présente des contributions significatives
dans l’application des algorithmes de simulation d’événements rares pour la robustesse des
DNNs. Le résumé qui suit constitue un essai de reconstitution synthétique du contexte,
des concepts et des contributions de cette thèse dans la langue de Voltaire.

Contexte Technologique et Motivation

L’évaluation de la fiabilité des systèmes d’ingénierie complexes est une tâche critique
pour garantir que les innovations technologiques ne se traduisent pas par des risques
accrus pour les individus et les sociétés. Dans une ère où la technologie de l’Intelligence
Artificielle (IA) devient omniprésente dans divers secteurs et est prédite de perturber
plusieurs domaines critiques pour la sécurité, la quantification rigoureuse de la fiabilité
des systèmes pilotés par l’IA est d’une importance capitale. Puisque de nombreuses
applications modernes de l’IA s’appuient principalement sur des modèles de Deep Learning,
il est judicieux de prioriser l’évaluation de leur fiabilité.

Le Deep Learning englobe une variété de modèles d’apprentissage automatique conçus
pour relever un large éventail de défis en grande dimension. Ces tâches incluent, mais ne
se limitent pas à, la vision par ordinateur (CV), le traitement automatique du langage
naturel (NLP) et la reconnaissance vocale. Ces différents modèles partagent généralement
quatre caractéristiques clés :

1. L’utilisation d’architectures ’compositionnelles’ profondes, où le modèle est le résultat
de la composition fonctionnelle ou de l’empilement de couches neuronales.
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Résumé en français

2. L’utilisation de matériel massivement parallèle (par exemple, les GPU) pour accélérer
l’inférence.

3. L’utilisation de la Différentiation Automatique (AD) pour calculer les gradients du
modèle.

4. L’utilisation d’algorithmes de Descente de Gradient Stochastique (SGD) et de leurs
variantes pour optimiser les paramètres du modèle.

Parmi les modèles de Deep Learning, les Réseaux Neuronaux Artificiels Profonds,
également connus sous le nom de Deep Neural Networks (DNNs), occupent une position de
premier plan. L’objectif principal de cette thèse est d’étudier la fiabilité de ces modèles en
utilisant des techniques d’échantillonnage spécifiques appelées algorithmes de Simulation
d’Événements Rares. En effet, bien que les DNNs représentent actuellement l’état de
l’art dans des domaines tels que la vision par ordinateur, la reconnaissance vocale et le
traitement automatique du langage naturel, leur application dans des systèmes critiques
est encore limitée en raison d’un manque de garanties de robustesse face aux perturbations
des données d’entrées (inputs). Cette préoccupation en matière de robustesse concerne
tant le bruit conçu de manière adversariale que les corruptions aléatoires.

L’accent principal de cette thèse est mis sur l’évaluation de l’impact des perturbations
aléatoires. Nous avons donc développé de nouvelles méthodes pour mesurer précisément la
fiabilité des DNNs lorsqu’ils sont confrontés à différentes distributions de bruit, en tirant
parti des caractéristiques communes des modèles de Deep Learning mentionnées ci-dessus.

Contexte Scientifique

Cette thèse offre une exploration approfondie de trois domaines scientifiques : l’Ingénierie
de Fiabilité Statistique, la Simulation d’Événements Rares et la Robustesse des Réseaux
de Neurones Profonds (DNNs). Chaque domaine joue un rôle important dans l’avancement
de la compréhension des systèmes complexes, avec un focus particulier dans la dernière
partie dans sur l’application aux DNNs. Nous proposons des introductions plutôt larges
à ces différents sujets tout en soulignant leur rôle dans le développement de méthodes
efficaces d’évaluation de la fiabilité pour les modèles d’Apprentissage Profond.

Les trois premiers chapitres de cette thèse sont consacrés aux concepts et méthodes
fondamentaux dans les trois domaines scientifiques mentionnés ci-dessus. Nous commençons
par donner de courts résumés ci-dessous, suivis par des présentations plus approfondies du
contenu de chaque chapitre :
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Résumé en français

Chapitre 1 : - Ce chapitre offre une introduction au domaine de l’ingénierie de
fiabilité statistique, discutant de ses principes fondamentaux et méthodes avancées (pour
les modèles statiques), et préparant le terrain pour leur application dans divers domaines
technologiques.

Chapitre 2 : - Le chapitre se penche sur les méthodologies et l’importance de la
simulation d’événements rares. Il couvre diverses techniques et leurs applications plus
larges, en mettant l’accent sur leur rôle dans la compréhension et l’atténuation des risques
associés aux événements rares.

Chapitre 3 : - Se concentrant sur les DNNs, ce chapitre examine les défis de la
robustesse adversarial, le développement de mécanismes défensifs et le concept de robustesse
certifiée. Il fournit une exploration détaillée des approches formelles et statistiques pour
assurer la fiabilité des DNN, en tirant parti des caractéristiques partagées de ces modèles.

Ingénierie de Fiabilité Statistique

L’exploration commence par une introduction approfondie à l’Ingénierie de Fiabilité
Statistique (SRE), une discipline fondamentale pour l’évaluation et l’amélioration de la
fiabilité des systèmes à travers divers champs d’ingénierie.

Principes fondamentaux : Nous introduisons d’abord les principes de base et les
méthodologies de l’ingénierie de fiabilité, traditionnellement appliqués dans des domaines
tels que l’ingénierie mécanique et structurelle. La discussion englobe l’évolution de
ces principes et leur applicabilité large, préparant le terrain pour leur pertinence dans
les contextes technologiques modernes, y compris les systèmes d’Apprentissage Profond.
L’accent est mis sur les concepts statistiques fondamentaux qui sous-tendent les évaluations
de fiabilité, cruciaux pour comprendre les comportements des systèmes sous incertitude et
les modes de défaillance potentiels.

Estimateurs de fiabilité : Un examen détaillé des méthodes classiques d’estimation
en ingénierie de fiabilité est ensuite présenté. Cela inclut un regard approfondi sur des
méthodes comme la méthode de Fiabilité d’Ordre Premier (FORM) et la méthode de
Fiabilité d’Ordre Second (SORM), qui offrent des approximations probabilistes simples
pour l’évaluation des défaillances. De plus, une exploration de la technique de Line
Sampling est incluse, fournissant un aperçu de son application potentielle dans l’analyse
de fiabilité statistique complexe et de haute dimension.
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Simulation d’Événements Rares

Après l’introduction à l’ingénierie de fiabilité, la thèse fait la transition vers le domaine
de la Simulation d’Événements Rares, une technique clé dans l’étude des événements
extrêmes.

Concepts et défis : Nous introduisons en premier lieu le concept de simulation
d’événements rares et présentons les principaux défis techniques associés à leurs ap-
plications. La nature statistique précise des événements rares est discutée, soulignant
les limitations et l’inefficacité des méthodes de simulation et d’analyse conventionnelles.
Nous pouvons alors introduire des méthodes spécifiques de simulation d’événements rares
comme des outils puissants pour modéliser et étudier les événements rares, en soulignant
leur importance dans le cadre une évaluation des risques complète et rigoureuse.

Algorithmes de simulation : Une exploration de différentes méthodes de simulation
d’événements rares est fournie, détaillant leurs avantages et applications dans différentes
situations. La discussion comprend une analyse complète des techniques d’échantillonnage
d’importance, qui impliquent de modifier les distributions de probabilité pour améliorer
l’étude des événements rares. De plus, les méthodes de fractionnement d’importance
sont examinées pour leur capacité à décomposer des événements rares complexes en sous-
événements imbriqués, plus facile à appréhender en termes de techniques d’échantillonage.

Robustesse des Réseaux de Neurones Profonds

Le troisième domaine déplace spécifiquement l’accent sur le champ des DNNs, examinant
leur robustesse dans des environnements adverses et stochastiques. Après un bref aperçu
des concepts centraux et architectures d’Apprentissage Profond, nous nous penchons sur
les problèmes de robustesse adversarial empirique et certifiée, mettant en lumière à la fois
leurs similitudes et différences avec l’évaluation de la fiabilité statistique.

Robustesse adversarial : Nous présentons des aspects critiques de la robustesse ad-
versarial dans les DNNs, en nous concentrant sur leur cohérence de performance face à des
entrées délibérément manipulées. La nature et les méthodologies des attaques adverses,
leur impact sur le comportement des DNN, et le développement de stratégies défensives
sont explorés. Cette discussion est cruciale pour comprendre les avancements en cours
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dans les techniques adverses et l’évolution correspondante des stratégies de robustesse
pour les réseaux de neurones profonds.

Robustesse certifiée : La robustesse certifiée dans les DNNs implique de valider et
d’assurer leur performance sous conditions adverses. La section contraste les méthodes de
vérification formelle, qui fournissent des garanties mathématiques du comportement du
réseau, avec des approches de vérification statistique, offrant des évaluations probabilistes
basées sur des données simulées. Cette comparaison met en lumière l’approche multifacette
pour atteindre la robustesse dans les DNNs, combinant la rigueur théorique avec les
contraintes d’applicabilité pratique.

Contributions

Cette thèse présente trois contributions de recherche significatives qui font avancer le
domaine de l’évaluation de la fiabilité statistique pour les réseaux de neurones profonds. Ces
contributions englobent divers aspects de la fiabilité des réseaux neuronaux et introduisent
de nouvelles méthodologies pour aborder ces problèmes difficiles. Nous donnons plus bas
des résumés des chapitres associés à chacune de ces contributions.

Chapitre 4 : Notre première contribution, publiée à NeurIPS 2021 [1], se concentre sur
“l’Évaluation Statistique Efficace de la Robustesse des Réseaux Neuronaux à la Corruption”.
Cette recherche aborde le problème crucial de l’évaluation de la robustesse des réseaux
neuronaux à la corruption, introduisant un cadre statistique efficace pour une évaluation
fiable et évolutive de la performance sous une gamme de scénarios de corruption. Dans
cet article, nous adoptons une approche de test d’hypothèse statistique plutôt qu’une
approche d’estimation de probabilité et montrons qu’en utilisant une technique spécifique
d’estimation d’événements rares séquentielle, il est possible d’obtenir des limites fiables
sur le nombre d’itérations nécessaires pour un niveau de confiance donné.

Chapitre 5 : La deuxième contribution, intitulée “Estimation de la Robustesse Statis-
tique des Réseaux Neuronaux Informée par Gradient”, a été publiée à AISTATS 2023
[2]. Ce travail propose une approche novatrice exploitant l’information de gradient pour
fournir des estimations plus précises et efficaces de la fiabilité des réseaux neuronaux,
particulièrement dans le contexte de la robustesse statistique locale. Plus axé sur une
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estimation efficace en termes d’échantillons, cet article est un travail prometteur qui
montre que l’information de gradient, facilement accessible via la rétropropagation, peut
en effet accélérer considérablement la convergence. Cependant, cela implique l’utilisation
de schémas de Monte Carlo séquentiels plus complexes . Un réglage fin est alors crucial et
nous fournissons des détails d’implémentation précis pour les applications aux Réseaux
Neuronaux Profonds.

Chapitre 6 : Enfin, notre troisième contribution est intitulée “Estimation Rapide de la
Fiabilité des Réseaux Neuronaux avec Échantillonnage d’Importance Conduit par Attaque
Adversarial” et est adaptée d’un article récemment accepté pour la conférence UAI 2024 [3].
Elle introduit un nouvel algorithme pour des évaluations de fiabilité efficaces et précises des
classifieurs différentiables, combinant des idées de l’analyse de fiabilité et de la robustesse
adversarial. Des algorithmes d’Attaque Adversarial sont utilisés pour améliorer l’efficacité
de l’Échantillonnage d’Importance. Nous montrons que cette approche est à la fois plus
rapide et plus facile à implémenter, dans de nombreux cas, par rapport aux méthodes de
simulation d’événements rares présentées dans les premiers travaux, bien qu’elle repose
fortement sur l’efficacité des attaques adversarials, qui peut être remise en cause en très
grande dimension.

Ces contributions renforcent collectivement la compréhension et l’application pratique de
l’ingénierie de fiabilité statistique pour les réseaux de neurones profonds, fournissant de
nouvelles méthodologies, algorithmes et insights qui facilitent l’évaluation de la robustesse
locale et de la fiabilité des réseaux neuronaux dans divers contextes stochastiques.

Remarque : Dans cette thèse, nous nous intéressons à la fiabilité d’un classifieur de
Réseau Neuronal entraîné. C’est un sujet distinct, bien que lié, à celui de l’utilisation
des Réseaux Neuronaux comme modèles substituts pour les systèmes physiques dans le
contexte de la fiabilité pour divers domaines de l’ingénierie, par exemple, comme étudié
dans le travail de Chojaczyk, Teixeira, Neves, et al. [4]. Ici, les Réseaux Neuronaux ne
sont pas des modèles substituts, mais les objets principaux de notre étude.
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Conclusion du résumé

En conclusion, cette thèse représente, nous espérons, une avancée notable dans
l’évaluation de la fiabilité des Réseaux Neuronaux Profonds (DNNs), un domaine crucial
dans l’ère actuelle de l’Intelligence Artificielle. Les trois contributions majeures présentées
apportent des perspectives nouvelles et des méthodologies innovantes pour aborder les
défis inhérents à la robustesse des DNNs face aux perturbations aléatoires.

L’importance de cette recherche réside dans sa capacité à combiner les principes de
l’ingénierie de la fiabilité statistique et les avancées en simulation d’événements rares
dans le domaine du Deep Learning, offrant ainsi des outils et des analyses plus précis
pour évaluer la performance et la sûreté des systèmes d’IA. Ces méthodes étendent non
seulement la compréhension théorique de la fiabilité des DNNs, mais ouvrent également la
voie à des applications pratiques plus sûres et fiables dans des domaines critiques pour
la sécurité et au-delà. La portée et la profondeur des recherches menées dans cette thèse
soulignent en effet l’importance croissante de développer des modèles de Deep Learning
robustes et fiables, un impératif dans un monde de plus en plus dirigé par l’IA. Nous
espérons que les résultats obtenus ici puissent constituer une base solide pour les recherches
futures et pour l’adoption responsable des technologies d’IA dans des contextes sensibles,
garantissant ainsi une avancée technologique sûre et bénéfique pour la société.
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GPU Graphics Processing Unit
ANN Artificial Neural Network
DNN Deep Neural Network
CNN Convolutional Neural Network
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Notations

N set of natural integers
R set of real numbers

x,y, z vectors, in bold font and lowercase
〈·, ·〉 scalar product

(Ω,F ,P) overarching probability space
E[·] expected value of r.v. in (Ω,F ,P)
V[·] variance of a r.v. in (Ω,F ,P)
‖ · ‖2 euclidian norm
∇f gradient function of f
L(Z) probability distribution of a r.v. Z
Z ∼ ν Z is a r.v. with probability distribution ν
X state space, a.k.a. the X-space or physical space
U standard normal space, a.k.a. the U-space
x0 original or expected state of a system

[k : n] subset of N defined as {i ∈ N, s.t. k ≤ i ≤ n}
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Introduction

Context and Motivation

Assessing the reliability of complex engineering systems is a critical task to ensure
that fast-paced technological innovations do not come at the expense of increased risks
to individuals and societies. In an era where Artificial Intelligence (AI) technology is
becoming ubiquitous across industries and is predicted to disrupt several safety-critical
fields, the rigorous quantification of AI-driven systems reliability is of utmost importance.
Since many modern AI applications rely predominantly on Deep Learning models, it is
prudent to prioritize the assessment of their reliability.

Deep Learning encompasses a variety of machine learning models developed to address
a wide range of challenges dealing with large, high-dimensional datasets. These tasks
include, but are not limited to, Computer Vision (CV), Natural Language Processing
(NLP), and Speech Processing. These various models typically share four key attributes:

1. The use of deep ’compositional’ architectures, the result of the functional composition
or stacking of neural layers.

2. The use of massively parallel hardware (e.g. GPUs) to accelerate inference.
3. The use of Automatic Differentiation (AD) to compute gradients of the model.
4. The use of Stochastic Gradient Descent (SGD) algorithms, and variations thereof,

to optimize the model parameters.

Among Deep Learning models, Deep Artificial Neural Networks, also known as Deep
Neural Networks (DNNs) [5], hold a prominent position. This thesis primary objective is
to delve into the study of the reliability of these models using specific sampling techniques
called Rare Event Simulation algorithms. Indeed, while DNNs currently represent the
state-of-the-art in fields like computer vision, voice recognition, and natural language
processing, their application in critical systems is still limited due to a perceived lack of
robustness in the face of input perturbations. This robustness concern applies to both
adversarially crafted perturbations [6] and random corruptions [7], [8].

The primary focus of this thesis is to assess the impact of random perturbations. We
have thus developed new methods to precisely measure the reliability of DNNs when faced
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with different noise distributions, leveraging the aforementioned common characteristics of
Deep Learning models.

Scientific Background

This thesis encompasses a comprehensive exploration of three pivotal scientific domains:
Statistical Reliability Engineering, Rare Event Simulation, and the Robustness of Deep
Neural Networks (DNNs). Each area plays an integral role in advancing the understanding
of complex systems, with a particular focus on the latter part in the context of DNNs. We
offer rather broad introductions to these different subjects while emphasizing their role in
developing efficient reliability assessment methods for Deep Learning models.

Background Chapters Summaries

The three first chapters of this thesis are dedicated to the fundamental concepts and
methods in the three scientific domains mentioned above. We first give short summaries
below, followed by more in-depth presentations of each chapter’s content:

Chapter 1: - This chapter offers an introduction to the field of statistical reliability
engineering, discussing its foundational principles and advanced methods (for static models),
and setting the stage for their application in diverse technological domains.

Chapter 2: - The chapter delves into the methodologies and significance of rare event
simulation. It covers various techniques and their broader applications, emphasizing their
role in understanding and mitigating risks associated with rare events.

Chapter 3: - Focusing on DNNs, this chapter examines the challenges of adversarial
robustness, the development of defensive mechanisms, and the concept of certified ro-
bustness. It provides a detailed exploration of both formal and statistical approaches to
ensuring DNN reliability, leveraging the shared characteristics of these models.

Statistical Reliability Engineering

The exploration begins with a thorough introduction to Statistical Reliability Engi-
neering (SRE), a discipline fundamental to the assessment and enhancement of system
reliability across various engineering fields.
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Foundations of SRE. We first introduce the core principles and methodologies of
reliability engineering, traditionally applied in fields such as mechanical and structural
engineering. The discussion encompasses the evolution of these principles and their
broad applicability, setting the stage for their relevance in modern technological contexts,
including Deep Learning systems. The focus is on the foundational statistical concepts
that underpin reliability assessments, crucial for understanding system behaviors under
uncertainty and potential failure modes.

Reliability Estimators. A detailed examination of classical estimation methods in
reliability engineering is presented. This includes an in-depth look at methods like the First
Order Reliability Method (FORM) and the Second Order Reliability Method (SORM),
which offer simple probabilistic approximations for failure assessment. Additionally, an
exploration of the Line Sampling technique is included, providing insight into its potential
application in complex, high-dimensional statistical reliability analysis.

Rare Event Simulation

Following the introduction to reliability engineering, the thesis transitions into the
domain of Rare Event Simulation, a key technique in the study of extreme events.

Concepts and Challenges. We introduce the concept of rare event simulation and
present the main technical challenges associated with their applications. The precise
statistical nature of rare events is discussed, highlighting the limitations and inefficiency of
conventional simulation and analysis methods. We can then introduce specific rare event
simulation methods as powerful tools to model and study rare events, emphasizing their
significance in comprehensive and rigorous risk assessment.

Simulation Algorithms. An exploration of different rare event simulation methods is
provided, detailing their advantages and applications in different situations. The discussion
includes a comprehensive analysis of importance sampling techniques, which involve
modifying probability distributions to enhance the study of rare events. Additionally,
importance splitting methods are examined for their ability to decompose complex rare
events into simpler, more analyzable components.
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Robustness of Deep Neural Networks

The third domain shifts the focus specifically to the field of DNNs, examining their
robustness in adversarial and stochastic environments. After a brief overview of the central
concepts and architectures of Deep Learning, we delve into the issues of empirical and
certified adversarial robustness, highlighting both their similarity and differences with
statistical reliability assessment.

Adversarial Robustness. We present critical aspects of adversarial robustness in DNNs,
focusing on their performance consistency in the face of deliberately manipulated inputs.
The nature and methodologies of adversarial attacks, their impact on DNN behavior,
and the development of defensive strategies are explored. This discussion is crucial for
understanding the ongoing advancements in adversarial techniques and the corresponding
evolution of robustness strategies in DNNs.

Certified Robustness. Certified robustness in DNNs involves validating and ensuring
their performance under adversarial conditions. The section contrasts formal verification
methods, which provide mathematical guarantees of network behavior, with statistical
verification approaches, offering probabilistic assessments based on simulated data. This
comparison sheds light on the multifaceted approach to achieving robustness in DNNs,
combining theoretical rigor with practical applicability.

Main Contributions

This thesis presents three significant research contributions that advance the field of
statistical reliability assessment for deep neural networks. These contributions encompass
various aspects of neural network reliability and introduce novel methodologies to address
these challenging problems. We next give summaries of the chapters associated with each
of these contributions.

Chapter 4: Our first contribution, published at NeurIPS 2021 [1], focuses on "Efficient
Statistical Assessment of Neural Network Corruption Robustness." This research addresses
the critical issue of assessing neural network robustness to corruption, introducing an
efficient statistical framework for reliable and scalable performance evaluation under a
range of corruption scenarios. In this paper, we take a statistical hypothesis-testing
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approach rather than a probability estimation approach and show that, while using a
specific sequential rare event estimation technique, it is possible to obtain reliable bounds
on the number of iterations needed for a given confidence level.

Chapter 5: The second contribution, untitled "Gradient-Informed Neural Network
Statistical Robustness Estimation," was published at AISTATS 2023 [2]. This work
proposes a novel approach leveraging gradient information to provide more accurate
and efficient estimations of neural network reliability, particularly in the context of local
statistical robustness. More focused on sample efficient estimation, this paper is a promising
work that shows that gradient information, readily accessible through back-propagation,
can indeed substantially speed up convergence. However, it does come at the expense of
more involved sequential Monte Carlo schemes [9]. Fine-tuning is then crucial and we
provide precise implementation details for applications to Deep Neural Networks.

Chapter 6: Finally, our third contribution is untitled "Fast Reliability Estimation of
Neural Networks with Adversarial Attack-Driven Importance Sampling", and is adapted
from a work recently accepted at the 40th conference on Uncertainty in Artificial Intelli-
gence (UAI 2024) [3]. It introduces a new algorithm for efficient and accurate reliability
assessments of differentiable classifiers, combining ideas from reliability analysis and adver-
sarial robustness. Adversarial attack algorithms are used to improve Importance Sampling
efficiency. We show that this approach is both faster and easier to implement, in many
cases, in comparison to rare event simulation methods presented in the first works, though
it does heavily rely on the effectiveness of adversarial attacks.

These contributions collectively enhance the understanding and practical application
of statistical reliability engineering for deep neural networks, providing new methodologies,
algorithms, and insights that facilitate the assessment of neural network performance,
local robustness, and reliability in various stochastic contexts.

Note: In this thesis we are interested in the reliability of a trained Neural Network
classifier. This is a distinct, though related, subject to that of using Neural Networks
as surrogate models for physical systems in the context of reliability for various fields of
engineering, for example, as studied in the work of Chojaczyk, Teixeira, Neves, et al. [4].
Here, Neural Networks are not surrogate models, but the primary objects of our study.
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CHAPTER 1

Introduction to Statistical Reliability Engineering

“The price of reliability is the pursuit of the utmost simplicity.
It is a price which the very rich find most hard to pay.”

– C. A. R. Hoare, The Emperor’s Old Clothes [10], 1981

1.1 Overview of Statistical Reliability Engineering

Statistical Reliability Engineering is a field dedicated to assessing and quantifying
the reliability of complex engineering systems by leveraging probabilistic principles. In
this section, we provide an overview of the motivations behind this discipline and present
some illustrative examples, setting the stage for a deeper exploration of reliability analysis.
Note: In this thesis we consider only static models, as defined in structural reliability [11].

1.1.1 Key Concepts

Statistical Reliability Engineering emerges from the necessity to handle the uncertainty
inherent in the performance of complex systems. It relies on a foundation of probability
theory to evaluate the likelihood of system failure. At its core, it involves modeling
and analyzing the behavior of systems when faced with variations or perturbations in
their inputs. The ultimate goal is to provide reliable and accurate estimates of system
performance, helping engineers and designers make informed decisions.

This discipline employs a rigorous probabilistic framework, introducing concepts such
as state spaces, random variables, and limit state functions to precisely define and hence
quantify system reliability. A critical concept is the probability of failure, which is the
probability of a system failing when subjected to perturbations of its inputs around a
nominal or expected state x0, denoted by PF(x0) or simply PF. Additionally, a critical level
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of failure, PC , represents the acceptable threshold for system performance, beyond which
the system’s reliability is considered inadequate. The goal is to ensure that PF < PC .

1.1.2 Real-World Examples

Let’s consider three examples from the real world that illustrate the significance of
Statistical Reliability Engineering:

- Aircraft Structural Design [12]: In the design of aircraft structures, it is crucial
to ensure the structural components can withstand various operational conditions,
such as turbulence, extreme temperatures, and mechanical stresses. Statistical Relia-
bility Engineering plays a vital role in assessing the reliability of these components
by accounting for uncertainties in material properties and environmental factors.
Engineers and designers aim to achieve a low enough PF, ensuring that PF ≤ PC ,
where PC represents an acceptable critical level of failure based on factors like the
expected total number of flight hours and overall risk tolerance.

- Medical Device Reliability [13]: Medical devices, such as pacemakers or insulin
pumps, must operate reliably to ensure patient safety. These devices may encounter
variations in physiological conditions, usage patterns, or component performance.
Statistical Reliability Engineering is employed to assess the reliability of these medical
devices, considering uncertainties and variations in their operating environments.
An acceptable PC for these devices is determined based on the number of hours they
are expected to operate and the acceptable level of risk in healthcare.

- Self-Driving Car Reliability [14]: In the realm of autonomous vehicles, such as
self-driving cars, ensuring reliability is of utmost importance. These vehicles operate
under various conditions and are exposed to uncertainties in traffic, weather, and
sensor performance. Statistical Reliability Engineering can be employed to assess
the likelihood of system failures during autonomous operations. Here, an acceptable
PC can be defined based on the number of hours of autonomous driving and the
acceptable risk level, ensuring that the system operates safely.

These examples emphasize the real-world applications of Statistical Reliability En-
gineering in ensuring the safety and dependability of systems operating in uncertain
conditions. The mathematical framework introduced in the subsequent section will provide
a rigorous understanding of the principles and techniques employed in this discipline.
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1.2 Mathematical Framework

Statistical Reliability Engineering relies on a probabilistic framework for assessing
system reliability under uncertainty. This section introduces the mathematical objects
of this discipline, emphasizing probabilistic transformations, random variables, and limit
state functions. In this section, knowledge of fundamental concepts of probability theory
(random variables, expected value, variance, etc.) is assumed, as presented for example
in the monograph of Feller [15] or more recently in the monograph of J-F. Le Gall [16].
Thereafter, as is customary, we suppose the existence of a triplet (Ω,F ,P) where Ω is
the sample space representing all possible outcomes, F is the σ-algebra representing all
events on Ω and P is a probability measure on (Ω,F). Throughout this thesis, E[·] and
V[·] denote respectively the expectation and the variance operators 1 on random variables
and random vectors. Of particular interest in F is the event of a system failure, denoted
SF, as we seek to accurately estimate or bound its probability PF = P[SF].

1.2.1 Random Variables and Limit State Functions

Key to statistical reliability engineering are the random variables modeling the input
uncertainty:

- Random Variable X: Represents the system’s noisy inputs in the state space X ,
also called the X-space. Formally, X is a deterministic mapping from the sample
space Ω to the state space X . Throughout this thesis, we denote its probability
distribution by νX and its cumulative distribution function (cdf) by FX . Domain
experts specify νX either directly or through data analysis. It is generally centered
around the state x0, i.e. E[X] = x0. In addition, it often has finite second moment
V[X] = Σx. A common model for uncertainty is additive noise, in which X = x0 + Z,
where Z is a centered random variable (i.e. E[Z] = 0) with finite variance.

- Random Variable U = T (X): This random variable arises from mapping, via
a bijective transform T , the random variable X into the standard normal space,
denoted U and also called the U-space. The U-space plays a crucial role in many
statistical reliability methods introduced in this thesis.

1. As in [15], we use the same notation for the variance of real-valued random variables and the
variance-covariance matrix of random vectors, defined as V[X] ∆= E[(X− E[X])(X− E[X])T ].
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In this thesis: We assume that the state space X is a Borel subset of Rd of positive
measure (e.g. X = [0, 1]d) and that X = (X1, · · · , Xd) is a random vector with a joint
probability density function (pdf) pX w.r.t. Lebesgue measure so that νX(dx) = pX(x)dx.
Accordingly, the U-space is simply Rd, and the mapping T is designed so that U follows
the standard normal distribution on Rd. Therefore, working in the U-space is generally
more convenient, as the uncertainty distribution νX in the X-space can be quite intricate.
The precise nature of the transform T is discussed further below (see section 1.2.2).

Limit State Functions. The system’s safety performance is described at each point
of the state space by a deterministic scalar function g : X → R, known as the limit state
function (LSF). It defines the boundary between safe region XS and failure region XF in
the state space, and more generally gives a measure of how close or far the system is to
this boundary. Formally, there exists a threshold value τ such that

XS := {x ∈ X , g(x) > τ} (1.1)

XF := {x ∈ X , g(x) ≤ τ}. (1.2)

For simplicity and without loss of generality, in this thesis, we assume that τ = 0. In the
space U-space, the LSF is represented by the function G, defined as,

∀u ∈ Rd, G(u) := g(T −1(u)). (1.3)

Accordingly, we define the safe and failure regions in the U-space as

US := {u ∈ Rd, G(u) > 0} (1.4)

UF := {u ∈ Rd, G(u) ≤ 0}. (1.5)

Of particular interest are also the boundaries of these failure and safety regions, denoted
by ∂g and ∂G in the X-space and the U-space respectively, and defined as

∂g := {x ∈ X , g(x) = 0} (1.6)

∂G := {u ∈ Rd, G(u) = 0}. (1.7)

The regularity of the LSF also plays an important role in reliability assessment. In essence,
all reliability methods introduced in this chapter assume that G is at least differentiable.
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As will be discussed in this thesis, the dimension of the problem and the shape of the LSF
boundary are key factors of the ’hardness’ of a statistical reliability estimation problem.

1.2.2 Isoprobabilistic Transformations

Isoprobabilistic transformations are vital for simplifying the reliability problem. In
this section, after introducing the concept of copulas, we present two important families of
isoprobabilistic transformations predominantly used in Statistical Reliability Engineering.
We conclude with a brief discussion of the regularity of isoprobabilistic transforms.

Copulas and Sklar’s Theorem

The notion of copulas, introduced by Sklar [17], is an important concept in statistical
analysis, precious for modeling complex dependence structures in multivariate distributions.
The main idea of copulas is to disentangle the multivariate dependence structure from the
marginal law of each component in a random vector.

Definition of Copulas. From a probabilistic standpoint, a copula is the joint cdf of a
random vector Z = (Z1, . . . , Zd) taking its values in [0, 1]d and such that the marginal law
of each component Zi is the uniform distribution on [0, 1]. Analytically, a copula C is a
function from the unit cube [0, 1]d to the unit interval [0, 1] with the following properties:

- For any vector (u1, . . . , ud) ∈ [0, 1]d, it holds that C(u1, . . . , ud) = 0 if at least one of
the ui equals 0.

- For any vector (u1, . . . , ud) ∈ [0, 1]d, it holds that C(1, . . . , 1, ui, 1, . . . , 1) = ui.

- C is an increasing and positive function, meaning here that the volume of any
hyperrectangle [a1, b1]× . . .× [ad, bd] under C is non-negative, for any 0 ≤ ai ≤ bi ≤ 1.

We next present Sklar’s Theorem, the fundamental result of the theory of copulas.

Theorem 1 (Sklar’s Theorem [17]). Given any multivariate cumulative distribution
function F of a random vector (X1, . . . , Xd) with marginal cumulative distribution functions
F1, . . . , Fd, there exists a copula C such that for all x1, . . . , xd in the extended real line,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1.8)

Furthermore, if the marginal distributions are continuous, then the copula C is unique.
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This result essentially means that a given distribution ν on Rd can be characterized by
its marginals and a copula function. Moreover, this characterization is unique as long as
its marginals are continuous, i.e. for all x ∈ R and i ∈ [1 : d], we have PZ∼ν [Zi = x] = 0.

Gaussian Copulas. Of particular interest are Gaussian copulas, derived from the
multivariate normal distribution, defined by their correlation matrix ΣC ∈ [−1, 1]d, which
captures the linear dependencies between variables. Mathematically, if Φ is the cdf of
univariate normal distribution and ΦΣC

is the cdf of a multivariate normal distribution
with correlation matrix ΣC and zero mean, the associated Gaussian copula CΣC

is given
by:

∀(u1, · · · , ud) ∈ [0, 1]d, CGauss
ΣC

(u1, . . . , ud) = ΦΣC
(Φ−1(u1), . . . ,Φ−1(ud)). (1.9)

Notably Gaussian copulas model linear dependence between variables in a transformed
normal space, despite the individual marginals not necessarily being normal. Therefore, a
distribution on Rd with Gaussian copula CGauss

Σ has independent components iff Σ = Id.

Elliptic Copulas. Another important family of copulas is that of the elliptic copulas, a
substantial generalization of Gaussian copulas to elliptic distributions [18]. A centered
Rd-valued r.v. Z is said to be elliptic if, its characteristic function ϕZ, defined as

∀t ∈ Rd, ϕZ(t) ∆= E[ei〈t,Z〉] (1.10)

can be expressed using a positive-definite matrix Σ and a scalar function ψ : R 7→ R, s.t.

∀t ∈ Rd, ϕZ(t) = ψ(〈t,Σ · t〉). (1.11)

The associated copula function is then noted Cψ
Σ. Important families of elliptic

distributions include the already covered Gaussian distributions
(
taking ψ(x) = e−

x
2
)
,

the symmetric multivariate Laplace distributions
(
taking ψ(x) = 1

1+x

)
, as well as the

multivariate Logistic distributions [19] and the multivariate Student t-distributions [20].
In contrast to Gaussian copulas, elliptic copulas can model complex non-linear dependency
between variables, e.g. where Σ = Id and yet the components are not independent.
The theory of copulas thus provides a robust framework for analyzing and modeling
dependencies in multivariate distributions, which is of paramount importance in fields
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such as reliability engineering [21] and quantitative finance [22], where understanding
interdependencies can significantly impact risk assessment and decision-making processes.
We next show how knowledge of the copula of the r.v. X and its marginals can be used to
construct isoprobabilistic transforms.

Nataf Transforms

We now suppose the random vector X is known (or assumed) to have a Gaussian copula
with correlation matrix ΣC , and its marginal cdfs, denoted F1, . . . , Fd, are known. One
can then use the method introduced by Nataf [23] to build an isoprobabilistic transform
T Nataf. This transformation can be written as T Nataf ≡ T Nataf

2 ◦T Nataf
1 , where T Nataf

1 , T Nataf
2

are given by,

T Nataf
1 : Rd 7→ Rd

x→ T Nataf
1 (x) ∆=


Φ−1(F1(x1))

...
Φ−1(Fd(xd))

 (1.12)

T Nataf
2 : Rd 7→ Rd

v→ T Nataf
2 (v) := Γv (1.13)

where Φ is the cdf of the standard normal law and Γ is the inverse of the lower triangular
factor in the Cholesky decomposition of ΣC . Thus, X is first mapped to the centered
Gaussian r.v. Z = T Nataf

1 (X), with correlation ΣC , and then mapped to the U with a
simple linear operation. In the case where the marginal laws of X are already Gaussian,
with Xi ∼ N (µi, σi) for all i ∈ [1 : d], the transform T Nataf

1 can be replaced by the linear
normalization transform T Gauss

1 , with T Gauss
1 (x) ∆=

(
x1−µ1
σ1

, . . . , xd−µd
σd

)
, for all x in Rd.

Lebrun and Dutfoy [24] highlighted that the assumption of a Gaussian copula is quite
restrictive and thus proposed a generalization of this method to elliptic copulas.

Rosenblatt Transforms

A different type of isoprobabilistic transform was introduced by Rosenblatt [25]. In
contrast with Nataf transforms it does not require any assumption on the copula of
X. However, it can be more computationally involved as it requires computing cdf of
the conditional probability law L(Xj|X1, . . . , Xj−1), denoted Fj|1:j−1, for all j in [2 : d].
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Formally Fj|1:j−1 can be defined, when it exists, as the following limit,

∀x = (x1, . . . , xd) ∈ X ,∀j ∈ [2 : d],

Fj|1:j−1(xj|x1, . . . , xj) = lim
δ→0

P[X1 ∈ [x1, x1 + δ1], . . . , Xj−1 ∈ [xj−1, xj−1 + δj−1], Xj ≤ xj]
P[x1 ≤ X1 ≤ x1 + δ1, . . . , xj−1 ≤ Xj−1 ≤ xj−1 + δj−1]

Noting F1:j the joint cdf of the subvector (X1, . . . , Xj) for j in [2 : d] we can write Fj|1:j−1

as,

Fj|1:j−1(xj|x1, . . . , xj−1) =
∂j−1F1:j(x1,...,xj)

∂x1···∂xj−1
∂j−1F1:j−1(x1,...,xj−1)

∂x1···∂xj−1

(1.14)

Denoting the joint pdf (X1, . . . , Xj) by pX1:j for j ∈ [1 : d], this can be written again as,

Fj|1:j−1(xj|x1:j−1) = 1
pX1:j−1(x1:j−1)

∫ xj

−∞
pX1:j−1(x1, . . . , xj−1, x)dx (1.15)

where x1:j−1 is an abbreviation for x1, . . . , xj−1.
Once the conditional cdfs are determined the Rosenblatt Transform T Ros can be decom-
posed as T Ros = T Ros

1 ◦ T Ros
2 where T Ros

1 ,T Ros
2 are invertible functions given by,

T Ros
1 : Rd 7→ Rd

x→ T Ros
1 (x) ∆=


F1(x1)

F2|1(x2|x1)
...

Fd|1:d−1(xd|x1:d−1)

 (1.16)

T Ros
2 : Rd 7→ Rd

v→ T Ros
2 (v) :=


Φ−1(v1)
Φ−1(v2)

...
Φ−1(vd)

 (1.17)

The idea is to first map X to the r.v. V = T Ros
1 (X) following the uniform distribution on

[0, 1]d, denoted U([0, 1]d). Then to map V to the r.v. U = T Ros
2 (V), via a component-wise

application of the inverse of the cdf of the standard normal distribution. In some cases,
the Nataf and Rosenblatt transform coincide, for example, Lebrun and Dutfoy [26] showed
that when X has a Gaussian copula, then the transforms T Nataf and T Ros are identical.
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Regularity of the Mapping to the Standard Space

As mentioned above an isoprobabilistic transformation, denoted as T : X → Rd, is an
invertible mapping that changes the original input space to the standard normal space,
such that each component of U = T (X) follows a standard normal distribution. Typically
T is not only bijective but also a diffeomorphism: a differentiable bijective mapping
whose reciprocal function T −1 is also differentiable. Indeed, this is necessary in most
cases, as the limit state function G = g ◦ T −1 must be differentiable for many reliability
estimation methods to be applied. In fact, from equation (1.12) and (1.13) it can be seen
that T Nataf will have the same regularity as the marginals cdfs F1, . . . , Fd. Therefore if
these functions are of class Ck (k continuously differentiable) then the Nataf Transform
is a Ck-diffeomorphism (both T and T −1 are of class Ck). In contrast, we can see from
equation (1.15) that the regularity of Rosenblatt Transform T Ros can be limited by the
regularity of the pdf of X. However for a pdf of class C∞, for example when X is Gaussian,
this distinction is inconsequential. Since many continuous distributions have differentiable
pdfs (exceptions include the Laplace distribution, whose pdf is not differentiable at zero),
in the rest of the thesis, we assume T is at least a C1-diffeomorphism.

1.2.3 Probability of Failure

Given this probabilistic framework, the probability of failure can be rewritten using
the fact that SF = [X ∈ XF],

PF = P[X ∈ XF] =
∫
X

1XF(x)pX(x)dx =
∫
X

1g(x)≤0pX(x)dx. (1.18)

In the standard normal space, we obtain, using SF = [U ∈ UF],

PF =
∫

Rd
1UF(u)φd(u)du =

∫
Rd

1G(u)≤0φd(u)du (1.19)

where φd is the joint probability density function (pdf) of the standard normal distribution
on Rd, i.e.

∀u ∈ Rd, φd(u) = 1
(2π)d/2 e

−
‖u‖22

2 . (1.20)

The mathematical framework introduced here is essential for applying various statistical
assessment methods, leveraging probabilistic concepts to quantify the reliability of complex
systems under uncertainty. We next present several important reliability estimators.
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1.3 Statistical Reliability Estimators

In this section, we introduce four key statistical reliability engineering estimators: the
First-Order Reliability Method (FORM), the Second-Order Reliability Method (SORM),
the First-Order Second Moment Method (FOSM), and the Line Sampling (LS) method.
These estimators originate from structural reliability [11], where they are used to assess
the reliability of mechanical structures. Important additional classes of estimators are
covered next in chapter 2, which focuses on rare event simulation methods.

1.3.1 First-Order Reliability Method

The First-Order Reliability Method (FORM) is a cornerstone of Statistical Reliability
Engineering. It approximates the probability of failure by linearizing the limit state
function at the Most Probable Failure Point (MPFP), also known as the Design Point.

Definition and Importance of the MPFP

The MPFP, or design point, is defined, when it exists, as the point in the U-space
with the highest probability density on the subspace of Rd where G(u) ≤ 0. Therefore,
formally, the MPFP, noted u∗, can be defined, when it exists, by

u∗ = argmin
u∈Rd

‖u‖2
2 s.t. G(u) ≤ 0. (1.21)

This point is crucial as it represents the most likely failure point in the transformed
standard normal space. Its existence and uniqueness are essential assumptions of the
FORM and SORM methods, presented below. It is possible however to adapt these
methods in the case where several MPFPs exist, see the end of section 1.3.2 for more
details. Another crucial assumption is that G is at least differentiable around the MPFP.

Finding the MPFP. The difficulty of this step globally depends on the shape of the
failure region boundary ∂G and the dimension of the problem d. In the case of Neural
Networks, where the limit state function is non-linear and the input dimension can be in
the order of hundreds of thousands, this task can be challenging. Even in low-dimensional
spaces, precisely locating it can be challenging if the boundary ∂G has a complex geometry
and if the computational budget is limited. After presenting the ideal FORM estimator,
we discuss examples of MPFP search algorithms below (see section 1.3.1).
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FORM Procedure and Probability Integration

The main idea of FORM estimation is to approximate the LSF by linearization at the
MPFP using a first-order Taylor expansion, i.e.

G(u) ≈ L∗(u) = G(u∗)︸ ︷︷ ︸
=0

+〈∇G(u∗), (u− u∗)〉 (1.22)

where 〈·, ·〉 denotes the scalar product on Rd. The ideal FORM estimator for the probability
of failure can then be formulated as:

P FORM
F = P[L∗(U) ≤ 0]. (1.23)

As U is a Gaussian r.v. and L∗ is linear, L∗(U) is also a Gaussian random variable.
We now assume that ∇G(u∗) is not the null vector. Otherwise PFORM

F = 1, which is
uninformative. Under this assumption, we obtain,

P FORM
F = Φ

(
−µL

∗

σL∗

)
, (1.24)

where µL∗ = E[L∗(U)] and σL∗ =
√

V[L∗(U)]. Using equation (1.22) we obtain,

µL∗ = 〈∇G(u∗),E[U]︸ ︷︷ ︸
=0

〉 − 〈∇G(u∗),u∗〉 = −〈∇G(u∗),u∗〉 (1.25)

σL∗ =
√

V[〈∇G(u∗),U]〉 =
√
〈∇G(u∗),∇G(u∗)〉 = ‖∇G(u∗)‖2. (1.26)

Thus,
P FORM
F = Φ(−〈α∗,u∗〉)

where α∗ = −∇G(u∗)
‖∇G(u∗)‖ . An important point here is that, since u∗ is a solution to the

constrained optimization problem (1.21), we know by the Lagrange Multiplier Theorem
that ∇G(u∗) and u∗ = 1

2∇u‖u‖2|u=u∗ are colinear. Since it’s also clear that they must be
of opposite directions, we obtain α∗ = u∗

‖u∗‖ and thus finally, the ideal FORM estimator
can be rewritten as,

P FORM
F = Φ(−βHL) (1.27)

where βHL = 〈α∗,u∗〉 = ‖u∗‖2, is known as the Hasofer-Lind reliability index [27].
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MPFP

Figure 1.1 – Illustration of FORM, applied in R2 to the LSF given by
∀u = (u1, u2) ∈ R2, G(u) = (u1 − 3)2 + (u2 − 3)2 − 1

2(u1 + u2)2.

In practice, the FORM procedure can be broken down into 3 steps:

1. Design an Isoprobabilistic Transformation T that maps random variables from the
X-space to standard Gaussian vectors in the U-space.

2. Use an optimization algorithm to find an approximate MPFP uopt ≈ u∗ in the
U-space and compute the approximate Hasofer-Lind reliability index β̂HL = ‖uopt‖2.

3. Compute the failure probability estimation as P̂ FORM
F = Φ(−β̂HL).

Note that when uopt is not exactly an MPFP, it may not be colinear to its associated
normal vector αopt = −∇G(uopt)

‖∇G(uopt)‖ , and thus the computations above fall short, and we might
want to compute instead an alternate reliability index given by

βopt = G(uopt)
‖∇G(uopt)‖2

+ 〈αopt,uopt〉. (1.28)

We illustrate the FORM procedure in Figure 1.1, with a quadratic LSF on R2.
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We next discuss methods commonly used to solve problem (1.21) in reliability analysis.

HL-RF Algorithms and Other MPFP Search Methods

The Hasofer and Lind [27], Rackwitz and Flessler [28] (HL-RF) algorithm, was designed
in the 70s as an efficient MPFP search method. The basic idea of the HL-RF algorithm is
to iteratively locate the MPFP in the standard normal space using a linear approximation
of the limit state function at each iteration to update the estimate of the MPFP. This leads
to a simple yet efficient Newton-type optimization algorithm outlined in the pseudo-code
(1) below, where the usual choice of the step size is η = 1. Given a threshold value ε, the
ConvergeCriterion procedure in (1) checks that one of the following conditions is met:

- The distance between the current MPFP estimate and the last estimate is small
enough, formally: ‖uk+1 − uk‖2 ≤ ε.

- The previous and the current estimate of the LSF gradient at the MPFP are close
enough: ‖∇G(uk+1)−∇G(uk)‖2 ≤ ε.

- The difference between the current and the previous reliability index estimates is
small enough, that is: |βk − βk+1| ≤ ε.

Algorithm 1 HL-RF Algorithm
Require: Limit state function G, Limit state gradient function ∇G, Initial estimate u0,

Convergence criterion ConvergeCriterion, Convergence threshold ε, Maximum number of
iterations K, Descent step size η ∈ (0, 1]

Ensure: Approximate MPFP uHL-RF

Initialize iteration counter k ← 0
Initialize MPFP estimate uk ← u0
while k < K do

Compute gradient ∇G(uk)
Compute normal vector αk ← −∇G(uk)

‖∇G(uk)‖2

Compute reliability estimate βk ← G(uk)
‖∇G(uk)‖2

+ 〈αk,uk〉
Compute descent direction dk ← βkαk − uk
Update uk+1 ← uk + ηdk . When η = 1, uk+1 = βkαk

if ConvergeCriterion(uk,uk+1, ε) is True then
break

end if
k ← k + 1

end while
return uHL-RF = uk
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However, this method does not come with convergence guarantees and fails to converge in
some cases, as noted by Liu and Der Kiureghian [29]. Indeed, the step size η in (1) might
be too large and overshoot. Therefore a first improved version, called the MHL-RF (M
for modified), was proposed by Liu and Der Kiureghian [29], in which the step size η is
adjusted adaptively at each iteration via a line search with merit function m1 given, by,

m1(u; c) = 1
2

∥∥∥∥∥u− 〈∇G(u),u〉
‖∇G(u)‖2 ∇G(u)

∥∥∥∥∥
2

+ 1
2c ·G(u)2 (1.29)

where c is a fine-tuning parameter. This improves robustness but still has issues, as the
descent direction dk described in (1) is not necessarily a descent direction for m1 and m1

can attain local minima at points which are not optimal for (1.21). A second improved
HL-RF algorithm, abbreviated iHL-RF, was introduced in the 90s by Zhang and Der
Kiureghian [30] to enhance convergence efficiency through an adaptive step size adjustment
using the rule proposed in the 60s by Armijo [31] and the merit function m2 given by,

m2(u; c) = 1
2 ‖u‖

2 + c|G(u)|. (1.30)

We give more details and numerical experiments on the implementations of HL-RF
algorithms for Neural Networks in chapter 6, where these algorithms are compared with
techniques from the field of Neural Networks Adversarial Robustness (see section 3.2).
In addition to the HL-RF algorithms, other methods can be used for MPFP identification
in reliability analysis. We give below brief presentations of three alternatives:

- Gradient Projection Methods (GP): The Gradient Projection method, as pre-
sented by Rosen [32], consists of projecting the gradient of the objective function at
each step so that the new estimate should lie in the feasible space (in our case ∂G).
In (1.21), the objective function is f : u → 1

2‖u‖
2 and its gradient is the identity

function. The descent direction of the GP method is given by:

dGP
k = −(I −αkα

T
k ) · uk. (1.31)

Since G is non-linear, the next estimate of the MPFP can lie outside of the failure
boundary ∂G. Therefore it is pushed towards it by a second descent with direction
−G(u)
‖∇G(u)‖2

αk, until the next point satisfies G(u) = 0 within desired accuracy. As above,
the descent step size must be adjusted, for example, using Armijo’s rule [31].
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- Augmented Lagrangian (AL): In the context of MPFP search (1.21), the La-
grangian function is given by

J(u, λ) = ‖u‖
2

2 + λG(u). (1.32)

The augmented Lagrangian is then obtained by adding a term,

J#
c (u, λ) = ‖u‖

2

2 + λG(u) + c

2G(u)2. (1.33)

It can be shown [33] that for c large enough, u∗ is a local minima of J#
c . The

Augmented Lagrangian methods then consist of sequentially applying the duality
method for the Lagrangian Jc for increasing values of c. While this algorithm
theoretically converges, in practice the initialization of c and λ is crucial [30].

- Sequential Quadratic Programming (SQP): Sequential Quadratic Program-
ming is an effective method for nonlinear optimization problems like the MPFP
search [34]. In the context of (1.21), SQP iteratively solves a quadratic programming
subproblem, approximating the objective function and constraints of the original
problem. The descent direction dSQP

k at iteration k can be obtained as a solution of:

min
∆u∈Rd

1
2∆uTBk∆u +∇uk∆u s.t. G(uk) +∇G(uk)T∆u = 0. (1.34)

In general, the selection of an appropriate search method depends on the limit state
function’s complexity, the problem’s dimensionality, and the computational budget.

Limitations of FORM

From the above analysis, we obtain the following error decomposition:

P̂ FORM
F = PF + (P FORM

F − PF)︸ ︷︷ ︸
Linear Approximation Error

+ (P̂ FORM
F − P FORM

F )︸ ︷︷ ︸
Optimization-Related Error

. (1.35)

While FORM is computationally efficient and widely used, it has limitations:

- Assumes linearity in the U-Space, which does not hold in many complex systems.

- Relies on the assumption that finding the MPFP is relatively easy, which in practice
can be difficult, especially for high dimensional input spaces.
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1.3.2 Second-Order Reliability Method

The Second-Order Reliability Method (SORM) is an advanced reliability assessment
technique that employs a second-order Taylor expansion to approximate the performance
function at the MPFP. Therefore this method accounts for the curvature of the limit state
function, offering a more accurate estimation of failure probability, particularly when the
limit state function has strong curvature at the failure region boundary ∂G.

Quadratic Approximation

In SORM, the approximation of the performance function at the MPFP is mathemati-
cally represented by a second-order Taylor expansion. A crucial assumption for the rest of
this section is that G is twice continuously differentiable. Specifically, the performance
function G is approximated by considering its Hessian matrix HG(u∗) at the MPFP:

G(u) ≈ Q∗(u) := G(u∗)︸ ︷︷ ︸
=0

+〈∇G(u∗), (u− u∗)〉+ 1
2〈(u− u∗),HG(u∗)(u− u∗)〉. (1.36)

This approximation integrates the second-order effects by incorporating the curvature
of the limit state function through the Hessian matrix.

SORM Reliability Estimator

The ideal SORM estimator for the probability of failure, PF, is derived using the above
approximation and is expressed using the quadratic function defined in Eq. (1.36) as:

P SORM
F = P[Q∗(U) ≤ 0] =

∫
Rd

1Q∗(u)≤0φd(u)du.

This integral is intractable in general and it must be approximated. A commonly used
approximation introduced by Breitung [35], valid when βHL is large enough, is given by:

P SORM
F ≈ Φ(−βHL)

d−1∏
i=1

(1 + βκi)−
1
2 , (1.37)

where βHL is the Hasofer-Lind reliability index, and (κi)i∈[1:d−1] represent the eigenvalues of
HG(u∗) restricted to the subspace orthogonal to α∗, denoted H = span(α∗)⊥. Of course,
this formula is only applicable if: mini∈[1:d−1] κi > −1/β. The product term accounts for
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the effect of curvatures, thereby refining the probability of failure estimate compared to
FORM. A more refined approximation, proposed by Hohenbichler and Rackwitz [36], is
known to be more accurate for smaller values βHL and is given by

P SORM
F ≈ P̃ SORM

F = Φ(−βHL)
d−1∏
i=1

(
1 + φ(βHL)

Φ(−βHL)κi
)− 1

2

, (1.38)

where, φ(·) is the standard normal distribution’s pdf. Both these approximations are
obtained by first simplifying the quadratic polynomial Q∗ in a carefully chosen orthogonal
basis O = (e′1, · · · , e′d) such that e′d = α∗, and so that

Q∗(u) ≈ Q̃(u′) = βHL − u′d + 1
2

d−1∑
i=1

κiu
′
i
2
, (1.39)

where u′ = (u′1, · · · , u′d) is the expression of u in this orthogonal basis.
As in the FORM procedure, in practice, the MPFP is approximately located via an
optimization algorithm. We denote uopt the approximate MPFP and direction αopt, and
β̂HL = ‖uopt‖2 and (κ̂i)i∈[1:d−1] the eigenvalues of HG restricted to span(αopt

⊥). The SORM
is then given by,

P̂ SORM
F = Φ(−β̂HL)

d−1∏
i=1

1 + φ(β̂HL)
Φ(−β̂HL)

κ̂i

− 1
2

. (1.40)

Efficiency and Accuracy Comparison with FORM

From the analysis above, we obtain the following error decomposition for the SORM
method,

P̂ SORM
F = PF + (P SORM

F − PF)︸ ︷︷ ︸
Quadratic Approx. Error

+ (P̃ SORM
F − P SORM

F )︸ ︷︷ ︸
Integral Approx. Error

+ (P̂ SORM
F − P̃ SORM

F )︸ ︷︷ ︸
Optimization-Related Error

.

While SORM generally provides a more accurate estimate than FORM, especially for
non-linear limit state functions, it requires the computation of the second-order derivative,
which can be computationally intensive. The efficiency of SORM is lower compared to
FORM, particularly when the derivatives are evaluated numerically (via finite-difference
or auto-differentiation) as opposed to analytically. The number of performance function
evaluations needed for SORM is higher than that required for FORM, making it less
efficient in terms of computational resources. In high dimension in particular, the derivation
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of the Hessian matrix HG has a prohibitively high computational cost, as it scales in O(d2)
whereas Gradient derivation has complexity O(d). Moreover, the eigenvalues of HG(u∗)
in the subspace u∗ must be computed to obtain the estimate P̂ SORM

F . This means an
additional cost of O(d3) complexity. In the case of Deep Neural Networks, the Hessian
can in principle be obtained rather efficiently via auto-differentiation. However, in use
cases where the input dimension is in the order 104 or more, SORM becomes too costly.
As an important sidenote, here, We presented only the curvature-fitting variant of SORM,
though there exists a second variant, called the point-fiiting SORM, in which the LSF
surface ∂G is approximated by a paraboloid function around the MPFP. We refer to the
HDR of J-M. Bourinet [37] for more details on this method.

FORM/SORM Estimation with Multiple Design Points

The FORM and SORM estimation procedures presented up to this point heavily rely
on both the existence and the unicity of the MPFP. When the latter assumption is not
met, it is still possible to adapt these estimators, following the approach introduced by
Der Kiureghian and Dakessian [38].

1.3.3 First-Order Second-Moment Method

The First-Order Second-Moment (FOSM) method, also known as the Mean-Values
First-Order Second-Moment (MVFOSM) method in reliability engineering, provides an
efficient approach to reliability analysis. It utilizes a first-order Taylor expansion of the
performance function around the mean values of the input variables. We present here an
application of this method in the U-space, where the estimator has a very simple form.

Methodological Overview of FOSM

The probability of failure in FOSM is estimated using the standard normal cumulative
distribution function (cdf), applied to the normalized mean of the performance function.

FOSM approximates the random performance score G(U) using the following First-
Order Taylor expansion at the mean value of the random input, which in the U-space is
simply 0, i.e.,

G(u) ≈ L(u) = G(0) + 〈∇G(0),u〉. (1.41)
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The FOSM estimator is thus given by,

P FOSM
F = Φ

(
−µL
σL

)

where µL = E[L(U)] and σL =
√

V[L(U) are the mean and standard deviation of L(U),
respectively. Now, µL and σL are easily derived from the first-order Taylor expansion of G
at the mean value U. Indeed, taking equation (1.41) with u = U, we obtain

µL = E[L(U)] = G(0) + 〈∇G(0),E[U]︸ ︷︷ ︸
=0

〉 = G(0) (1.42)

σL =
√

V[L(U)] = ‖∇G(0)‖2. (1.43)

Therefore, the FOSM estimator in the U-space is simply given by,

P FOSM
F = Φ

(
− G(0)
‖∇G(0)‖2

)
. (1.44)

Comparison with FORM and Limitations

Although, both FORM and FOSM methods rely on first-order Taylor expansions, the
functional assumption underlying FOSM is much stricter. Indeed, while FORM estimation
assumes that the failure region boundary ∂G be linear, the FOSM estimation works
under the assumption that G itself is a globally linear function. FOSM is known for its
computational efficiency, as it does not require the identification of the Most Probable
Point (MPFP) like FORM and SORM. In addition, if the limit state function is linear,
then it becomes exact. It is particularly suitable for preliminary assessments and systems
where the performance function’s behavior is only moderately non-linear. While FOSM
offers simplicity and efficiency, its accuracy will often be less than FORM or SORM’s
in scenarios involving more complex limit state functions. In particular, this method’s
simplistic linear approximation at the origin may not accurately capture the actual failure
region in complex systems, including for Deep Neural Networks applications.

1.3.4 Line Sampling

Line Sampling, as introduced by Koutsourelakis, Pradlwarter, and Schuëller [39] is an
essential reliability engineering estimator used to assess complex systems, typically in the
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Standard Normal Space. It follows a stochastic procedure as opposed to other methods
introduced in this section. Line Sampling is particularly advantageous for complex and
high-dimensional systems, offering a ubiquitous and robust estimation method.

Line Sampling Procedure

The first step of the Line Sampling Procedure is to find an importance direction α

which should point to the region of dominant contribution to the probability of failure.
Given this importance direction, the Line Sampling procedure involves generating samples
in the orthogonal space H = span(α)⊥. It then estimates the probability of failure for
each sample along a line parallel to this direction. The final estimator P̂ LS

F is calculated as
the average of individual estimators P̂ i

F, making it a valuable tool for assessing system
reliability in the presence of random perturbations. The LS algorithm is outlined in the
pseudo-code (2) below and illustrated in Figure 1.2.

-4 -2 0 u1 2 4
u1

-4

-2

0

u2
2

4

u 2

u

1

v1

2

v2

3

v3

4

v4 5
v5

Failure region: {u 2 : G(u) 0}
MPFP
Random points on hyperplane 
Importance direction 

Figure 1.2 – Illustration of Line Sampling in R2.
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Algorithm 2 Line Sampling Procedure
Require: Importance direction α, Number of samplesN , Line search algorithm LineSearch
Ensure: Estimated probability of failure P̂ LS

F
1: Initialize estimate P̂ LS

F ← 0
2: for i from 1 to N do
3: Generate a normal sample in Rd: ui ∼ N (0, Id)
4: Project sample ui on H: vi ← (Id −ααT ) · ui
5: Use LineSearch to find βi minimum such that G(vi + βiα) = 0
6: Compute line estimate P̂ i

F = Φ(−βi)
7: Update estimate P̂ LS

F ← P̂ LS
F + 1

N
× P̂ i

F
8: end for

Advantages and Limitations

While FORM and SORM provide valuable approximations of system reliability, they
work best when the LSF is approximately linear or quadratic. In scenarios where the
system’s behavior deviates significantly from these assumptions, the accuracy of the
estimates may be compromised. It’s not the case with LS which can adapt to complex
failure region boundaries. Another key advantage of LS is the ability to increase the
estimation precision by increasing the number of samples, which follows from the law of
large numbers. Besides, it may not require knowledge of the LSF gradients if an importance
direction can be found without it. With that in mind, LS also has key limitations:

- Line Sampling relies on carefully determining the importance direction α, and the
estimator’s accuracy depends on this selection.

- The convergence of LS to the true failure probability PF is not guaranteed, particularly
when several important failure regions exist, in which case it will underestimate it.

- Similarly, if there are several roots of the LSF in one direction, or if the failure region
is bidirectional from the origin, then the standard LS technique presented here will
fail to converge to the true failure probability.

We note the last point can be addressed by replacing the line search step at line 5 in
the pseudo-code above with a more sophisticated root search method. As with FORM
and SORM, when several important failure regions exist one can extend the algorithm by
performing sequential optimization techniques where each newly discovered failure region
is used to modify the LSF so that other failure regions can be found more easily [38].
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1.4 Chapter Conclusion

In this chapter, we introduced the foundational principles of Statistical Reliability
Engineering, with a focus on classical reliability estimators, including the First Order
Reliability Method (FORM), the Second Order Reliability Method (SORM) and Line
Sampling (LS). While these methods have their merits and have been applied successfully
in various engineering fields, their limitations become apparent when dealing with complex
systems, particularly deep learning models, including neural network classifiers.

Statistical Reliability Engineering is the science of assessing the reliability of complex
systems in the presence of uncertainties and variations. It leverages probability theory
within a measure-theoretic probabilistic framework. The key concepts include the proba-
bility of failure (PF ), representing the likelihood of system failure, and the critical level of
failure (PC), which defines an acceptable threshold for system performance. Real-world
examples demonstrate the application of this discipline to ensure the reliability of aircraft
structural components, medical devices, and emerging technologies like self-driving cars.

One of the primary limitations of classical estimators is their reliance on linear assump-
tions and the assumption of data distributions approximating the Standard Normal Space
(SNS). While it’s true that many distributions can be mapped to the Gaussian distribution
through transformations, the central issue lies elsewhere. Deep learning systems, including
neural network classifiers, inherently exhibit characteristics that challenge the applicability
of classical reliability estimators. These characteristics encompass non-linearity, high
dimensionality, and complex data distributions.

Indeed, the non-linearity of deep learning models introduces complexities that can
render linear approximations insufficient. High dimensionality, a hallmark of deep learning
systems, leads to input spaces that classical methods find challenging to navigate efficiently.
These limitations serve as a strong motivation to explore advanced techniques for reliability
estimation, particularly for rare events in challenging scenarios. In the next chapter,
"Introduction to Rare Event Simulation", we delve into these advanced methods, addressing
the intricacies of estimating rare event probabilities and their application in the context of
deep learning systems.

Rare event simulation offers a promising solution to the reliability concerns posed
by neural network classifiers and deep learning systems. By addressing the issues of
non-linearity, high dimensionality, and complex data distributions, we can enhance the
assessment of reliability and improve the safety and robustness of deep learning applications.
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This chapter is a primer on Statistical Reliability Engineering,
covering only the necessary conceptual and mathematical back-
grounds to apply static reliability analysis in various fields, including
Deep Neural Networks applications, presented in chapter 3.
A complete introduction to statistical reliability is given in the re-
cent monograph of Der Kiureghian [40]. We also omitted important
topics in reliability analysis such as kriging and surrogate models,
for which we refer the reader to the HDR of J-M. Bourinet [37].

To go further
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CHAPTER 2

Introduction to Rare Event Simulation

“It is impossible that the improbable will never happen.”

– Emil J. Gumbel, Statistics of Extremes [41], 1958

In the context of rare event simulation, various techniques and methods are used to
efficiently estimate the probability of events that occur with (very) low probability. This
chapter introduces several important strategies and methods for rare event simulation.

2.1 Motivation

2.1.1 Rare Events: Probability Estimation and Simulation

General Motivation. Rare event simulation (RES) is important in various scientific
fields, including nuclear physics, systems biology, as well as mechanical and telecommu-
nication engineering [42]. Rare event simulation in physics and engineering addresses
phenomena that, despite their low probability (typically < 10−3), are pivotal for un-
derstanding fundamental processes or have serious safety implications. This motivates
the development of robust simulation methods capable of accurately representing these
infrequent but critical events. Since each simulation of the underlying physical model
often has a high computational cost, these methods should also be as efficient as possible.

Use in Reliability Engineering. In reliability engineering, complex systems are de-
signed so that the probability of a failure PF is low enough. Thus, in many cases the event
of a failure SF is by design a rare event. The reliability methods presented in chapter 1
can, under the appropriate assumptions, estimate rare event probability PF. However,
they do not generate rare events per design. More precisely, they do not output samples
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from the rare event conditional distribution νXF = L(X|X ∈ XF), given by

νXF(dx) := 1XF(x)νX(dx)
νX(XF) = 1XF(x)

PF
pX(x)dx. (2.1)

In contrast, the methods introduced in the present chapter output in one go both
an estimation P̂F of the failure probability and a (potentially random) number NF of
weighted rare event samples X(F)

1 , . . . ,X(F)
NF

which, at least asymptotically, allow to compute
expectations under the exact conditional law νXF . This can be a useful plus, e.g., in the
case of Neural Networks, rare events can be used to augment the training dataset and
make the model more robust (see section 3.2.2 in the next chapter on model hardening).
The most decisive advantage of rare event simulation, however, (shared only with Line
Sampling among methods in chapter 1), is the ability to increase the estimation precision
at will by increasing the computational cost in return. The efficiency of these methods
is therefore quantified as the gain in precision obtained per unit of computational cost.
The most direct rare event sampling technique is the crude Monte Carlo simulation.
Unfortunately, as is shown below, this method is fundamentally inefficient for rare events.
This inadequacy justifies the development of more sophisticated Monte Carlo sampling
techniques, presented in the following sections throughout this chapter.

Conditional Distribution in the U-space. Instead of simulating rare events directly
in the original space, it is sometimes possible to work in a transformed standard normal
space (see section 1.2.2). As with methods presented in chapter 1, working in the U-space
is often simpler. In that case, the conditional distribution of interest is πF, given by

πF(du) := 1UF(u)π0(du)
π0(UF) = 1UF(u)

PF
φd(u)du. (2.2)

where φd is the pdf of the standard normal distribution on Rd.

2.1.2 Inefficiency of Crude Monte Carlo Simulation

Monte Carlo methods are widely used for estimating probabilities and expectations by
simulating random variables [43]. While these methods are powerful due to their simplicity
and generality, they can exhibit significant limitations when applied to the simulation of
rare events, which are critical in the fields of reliability engineering and risk assessment.
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Monte Carlo Integration. For the rest of this chapter, we consider a given absolutely
continuous random vector Z taking values in a Borel set Z ⊂ Rd and with pdf pZ. Given a
bounded and non-negative measurable function ϕ : Z 7→ R+, the objective of Monte Carlo
integration is to estimate the integral I(ϕ), defined as

I(ϕ) :=
∫
Z
ϕ(z)pZ(z)dz = E[ϕ(Z)], (2.3)

as precisely as possible, by simulating random variables. The Monte Carlo method was
initially formalized in the 1940s by Stanislas Ulam and John von Neumann [44] and has
since then become a crucial tool in practically all fields of science and engineering.

In its simplest form, which we call Crude Monte Carlo (CMC), it consists of simulating
independent samples drawn from the same distribution as Z and then estimating I(ϕ) by
the empirical mean of ϕ over these samples. Mathematically, this can be expressed as

ÎCMC
N (ϕ) = 1

N

N∑
i=1

ϕ(Zi), (2.4)

where N is the number of samples and Z1, · · · ,ZN
i.i.d.∼ pZ represent the random samples.

A natural assumption for the convergence of this estimator is that I(ϕ) is finite. Since ϕ
is bounded, this is the case, and so the strong law of large numbers ensures that

P[ lim
N→∞

ÎCMC
N (ϕ) = I(ϕ)] = 1. (2.5)

However, a pivotal assumption here is the ability to generate independent samples
with pdf pZ. More fundamentally, given that simulations are typically computer-based,
this process hinges on the ability to simulate a sequence of independent random numbers
using computers, which is a research area in itself [45]. The three main solutions are
pseudorandom number generators (PRNGs) which mimic randomness with deterministic
iterative algorithms [46], "true" random number generators (TRNGs) which gather entropy
from hardware or sensors [47], and quasi-Monte Carlo methods as an alternative to uniform
random sampling [48]. In this thesis, we rely on the availability of an efficient PRNG
for generating samples from the uniform distribution over [0, 1]d. Thus, the challenge
is to simulate non-uniform random variables using these uniform samples. When the
components of Z are independent, and their cdfs are known, a straightforward component-
wise transformation of uniform samples in [0, 1]d is applicable. However, in more complex
scenarios, such as when pZ is only known up to a normalization constant, other methods
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like Rejection Sampling and Monte Carlo by Markov Chains (MCMC) [49] can be necessary.
We refer the reader to appendix A for more details on these sampling techniques and next
focus on the application of Crude Monte Carlo in the context of rare event analysis.

CMC for Rare Event Simulation. The inefficiency of Crude Monte Carlo simulation
in the context of rare events can be attributed to its reliance on the Law of Large Numbers.
We seek to estimate the probability P(F ) of a rare event F ∈ F defined as F = [Z ∈ A]
where A is a measurable subset of Z. This corresponds to estimating the integral I(1A)
where 1A is the indicator function of the set A, that is 1A(x) is 1 if x is in A and 0
otherwise. In this context, Crude Monte Carlo estimation is obtained by simulating a
large number of independent samples and then calculating the proportion of samples that
fall into the event A. Mathematically, this can be expressed as:

P̂CMC
F = 1

N

N∑
i=1

1A(Zi) = 1
N

N∑
i=1

Bi, (2.6)

where B1 = 1A(Z1), . . . , BN = 1A(ZN). It is clear that B1, . . . , BN are independent
Bernoulli random variables with parameter p = P(F ). Consequently, the variance of P̂CMC

F

is given by:

V[P̂CMC
F ] = 1

N2

N∑
i=1

V[Bi] = P(F )(1− P(F ))
N

. (2.7)

In practice, this variance is estimated by its empirical counterpart V̂[P̂CMC
F ] given by

V̂[P̂CMC
F ] = P̂CMC

F (1− P̂CMC
F )

N
. (2.8)

The fundamental problem with CMC in rare event simulation arises from the very low
probability of the event F . As a consequence, the vast majority of the N samples do not
contribute to the sum in equation (2.6), leading to an estimate P̂CMC

F with a high relative
variance. This inefficiency can be quantified via the relative standard error, also called the
relative error or the coefficient of variation, denoted by ∆N [P̂CMC

F ] and defined as:

∆N [P̂CMC
F ] :=

√
V(P̂CMC

F )
E[P̂CMC

F ]
=

√√√√1− P(F )
N · P(F ) ≈

√
1

N · P(F ) . (2.9)

Therefore the coefficient of variation of CMC scales P(F )−1/2, which limits its application
to rare event probability estimation. Following the central limit theorem (CLT), which
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holds here since E[1A(Z)2] = P(F ) <∞, an asymptotic confidence interval (CI) for P̂CMC
F

at level (1− α) can be computed using the following formula:

CICMC =
P̂CMC

F − z1−α/2

√
P(F )(1− P(F ))

N
, P̂CMC

F + z1−α/2

√
P(F )(1− P(F ))

N


where z1−α/2 is the critical value from the standard normal distribution corresponding

to the tail probability α/2, i.e. z1−α/2 = Φ−1(1− α/2). This CI is unusable in practice as
it involves P(F ), however using equation (2.8) one obtains the following empirical CI:

ĈICMC =
P̂CMC

F − z1−α/2

√
P̂CMC
F (1− P̂CMC

F )
N

, P̂CMC
F + z1−α/2

√
P̂CMC
F (1− P̂CMC

F )
N

 .
Importantly, these CIs only make sense when N � 1

P(F ) . In practice, this means that an
impractically large number of samples is needed to estimate or obtain reliable bounds on
low probabilities, making CMC an intrinsically inefficient method for rare event simulation.

We next illustrate this issue in the context of reliability analysis. See also Figure 2.1.

Example: Estimating the Probability of a System Failure

We now consider the problem of assessing the reliability of a complex engineering
system where failure occurs only under rare conditions. Let’s say the probability of failure
is PF = 10−7. Using Crude Monte Carlo, we would simulate the system’s operation
numerous times and count the number of failures to estimate this probability, in each
simulation. Using equation (2.9) the minimum number of simulations Nmin achieve a
relative standard error less than 5%, can be calculated as:

Nmin = 1− PF

PF × 0.052 ' 4× 109. (2.10)

Thus, about 4 billion simulations are needed for a relatively satisfying accuracy. Such a
large number of simulations can be computationally prohibitive, especially when each call
to the LSF is expensive, demonstrating the impracticality of Crude Monte Carlo for rare
event estimation. This inefficiency motivates the need for advanced variance reduction
techniques such as Importance Sampling, which we explore in the next two sections.
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Figure 2.1 – Illustration of CMC, with 200 samples, in R2.
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2.2 Basic Importance Sampling

2.2.1 General Principles

Importance Sampling (IS) is a variance reduction technique for Monte Carlo simulation,
which is particularly common in rare event simulation. We first present IS in the general
setting introduced in section 2.1.2, where the objective is to approximate the integral I(ϕ),
defined in equation (2.3), as efficiently as possible. In IS, an alternative pdf, denoted q, is
introduced to improve computational efficiency [50]. The associated distribution is called
the importance distribution. From this point forward, by a slight abuse of notation and for
simplicity, we sometimes identify a probability distribution by its pdf. Throughout the
next two sections, we also consider an alternative random vector Z̃ with distribution q.
To properly define the IS estimator, q must satisfy the following condition:

∀z ∈ Z, q(z) = 0 =⇒ ϕ(z)pZ(z) = 0. (C1)

We denote by Q the set of eligibles pdfs on Z satisfying (C1) and we suppose that q ∈ Q.
The fundamental idea of IS is then to rewrite the integral I(ϕ) as an expectation under
the importance distribution. Indeed,

E[ϕ(Z)] =
∫
Z\∂[ϕpZ]

ϕ(z)pZ(z)dz =
∫
Z\∂[q]

ϕ(z)pZ(z)
q(z) q(z)dz = E[ϕ(Z̃)wq(Z̃)], (2.11)

where ∂[f ] := {z ∈ Z : f(z) = 0} for all f : Z 7→ R and wq is a weight function given by,

∀z ∈ Z \ ∂[q], wq(z) := pZ(z)
q(z) . (2.12)

This weight function is sometimes called the likelihood ratio, as it involves a ratio of
densities [43]. A practical assumption for IS is the ability to efficiently draw independent
samples with distribution q. Additionally, we assume, for now, that the weight function w
can be efficiently evaluated (which is not true, e.g., if the normalization constant of pZ is
unknown). The basic importance sampling estimator of I(ϕ) can then be formulated as,

Î ISN (ϕ; q) = 1
N

N∑
i=1

wq(Z̃i)ϕ(Z̃i), (2.13)
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where Z̃1, . . . , Z̃N are i.i.d. samples from distribution q. As a direct result from equation
(2.11), we note that it is an unbiased estimator of integral I(ϕ), i.e. E[Î ISN (ϕ; q)] = I(ϕ).
Thus, by the strong law of large numbers, we have,

P[ lim
N→∞

Î ISN (ϕ; q) = I(ϕ)] = 1. (2.14)

Importantly, at this point, there is no guarantee that IS can be more efficient than CMC.
The variance σ2

q (ϕ) = V[wq(Z̃)ϕ(Z̃)] plays a crucial role in understanding the computational
efficiency of Importance Sampling. Indeed, by the independence of Z̃1, . . . , Z̃N the variance
of the IS estimator is readily computed as:

V[Î ISN (ϕ; q)] =
σ2
q (ϕ)
N

. (2.15)

Therefore, it is natural to seek an importance distribution q that minimizes this variance.
When such a minimizer exists, we call it the optimal density and denote it by q∗. In our
case, since ϕ is a non-negative and bounded function, this optimal distribution exists as
long as I(ϕ) is non-zero, it then attains a zero variance and is given by,

q∗(z) = ϕ(z)pZ(z)
I(ϕ) . (2.16)

Indeed, on the one hand, it is clear q∗ is a pdf that satisfies condition (C1), and on the
other one can readily check σ2

q (ϕ) = 0 iff q = q∗, noting that

σ2
q (ϕ) =

∫
Z\∂[q]

(
ϕ(z)pZ(z)
q(z) − I(ϕ)

)2

q(z)dz

=
∫
Z\∂[q]

(
q∗(z)I(ϕ)− q(z)I(ϕ)

q(z)

)2

q(z)dz

= I(ϕ)2
∫
Z\∂[q]

(
q∗(z)
q(z) − 1

)2

q(z)dz. (2.17)

Crucially, the normalization constant of q∗ is unknown, as it is the integral want to
estimate. As mentioned above, sampling is then difficult and requires methods like MCMC
(see appendix A). Moreover, we cannot evaluate the weight function which involves I(ϕ).
Thus a common approach is to use a pdf q in Q, with which both sampling and weight
evaluation are simple and that is close enough to the optimal density q∗ in a certain sense.
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Self-normalized IS. Until now we supposed that one could readily evaluate the weight
function wq. As mentioned above, however, this is not the case when either the importance
density q or the nominal density pZ itself are only known up to a normalization constant.
Let us assume now that q(·) = qu(·)

Cq
and pZ(·) = pu(·)

Cz
, where qu and pu are known non-

negative functions on Z but Cq and Cz are unknown normalization constants. Then it is
still possible to apply a modified version of IS called self-normalized IS, in which both the
integral I(ϕ) and the ratio of normalization constants Cq

Cz
are estimated simultaneously.

However, in that case, it is required that q satisfies the following condition:

∀z ∈ Z, q(z) = 0 =⇒ pZ(z) = 0, (C2)

which is stronger than condition C1. The self-normalized IS estimator is then given by,

ÎSNISN (ϕ; q) =
1
N

∑N
i=1 w̃q(Z̃i)ϕ(Z̃i)

1
N

∑N
i=1 w̃q(Z̃i)

(2.18)

where Z̃1, . . . , Z̃N are i.i.d. samples with density q and w̃q is the unnormalized weight
function given by,

∀z ∈ Z \ ∂[q], w̃q(z) := pu(z)
qu(z)

(
= Cq
Cz
wq(z)

)
. (2.19)

The next result assures us that the self-normalized IS estimator is consistent.

Theorem 2. Let pZ(·) = pu(·)
Cz

be a pdf on Z and q(·) = qu(·)
Cq

be a density satisfying (C2).
Then the self-normalized IS estimator proposed in (2.18) converges almost surely to the
integral I(ϕ), i.e.

P[ lim
N→∞

ÎSNIS
N (ϕ; q) = I(ϕ)] = 1. (2.20)

Moreover, the empirical mean of the unnormalized weights converges a.s. to Cq
Cz
, i.e.

P

[
lim
N→∞

1
N

N∑
i=1

w̃q(Z̃i) = Cq
Cz

]
= 1. (2.21)

Proof. The strong LLN assures the numerator in the equation (2.18) converges a.s. to its
expected value E[w̃q(Z̃)ϕ(Z̃)] = Cq

Cz
E[wq(Z̃)ϕ(Z̃)] = Cq

Cz
I(ϕ). Similarly, the denominator

converges a.s. to its expectation E[w̃q(Z̃)] = Cq
Cz
6= 0. Thus, by the continuous mapping

theorem, as the ratio of these random sequences, ÎSNISN converges a.s. to I(ϕ).
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Mixture IS and Defensive IS. A commonly used strategy, called Mixture IS, is to
use a mixture of M densities for the importance density: q = ∑M

m=1 αmqm where q1, . . . , qm

are densities on Z and α1, . . . , αM are positive reals in (0, 1) such that ∑M
m=1 αm = 1 [43].

A known failure of IS happens when the rate of decay of the importance density q does
not match with that of q∗2 ∝ (ϕ(z)pZ(z))2 outside of the important region (see example 1
in [51]). This can be understood by rewriting σ2

q (ϕ) as,

σ2
q (ϕ) =

∫
Z

(ϕ(z)pZ(z))2

q(z) dz − I(ϕ)2. (2.22)

A special case of Mixture IS, called Defensive IS, was introduced by Hesterberg [52] to
mitigate this phenomenon. In Defensive IS, the proposed importance density qDIS is a
mixture between the nominal density pZ and an importance density q close enough to the
optimal density q∗, formally,

∀z ∈ Z, qDIS(z) = λpZ(z) + (1− λ)q(z) (2.23)

where λ ∈ (0, 1) can be interpreted as the rate of "defensiveness". The important point
here is that

σ2
qDIS

(ϕ) ≤ 1
λ

∫
Z
ϕ(z)2pZ(z)dz − I(ϕ)2 ≤ 1

λ
(σ2

pZ
(ϕ) + (1− λ)I(ϕ)2). (2.24)

One can easily see that σ2
pZ

(ϕ) is the variance of the CMC estimator. Therefore, unfortu-
nately, this is not a good bound when CMC is very inefficient, as in rare event simulation.
Still, this illustrates how mixtures can be used to increase estimation robustness in IS.

Challenges in IS. Multimodal distributions, i.e. distributions with more than one
mode, present a unique challenge in Importance Sampling. While it is not the focus of this
thesis, it is an important issue to have in mind. We refer to the work of Oh and Berger
[53], where multimodal distributions are tackled using a mixture of importance densities.
In more recent work of Qiu and Wang [54], propose a more data-driven strategy: they
use instead specific DNN-based isoprobabilistic transforms called Normalizing Flows (see
section A.4). Another important challenge faced in IS is that of high-dimensional input
spaces. Being especially relevant in the context of the reliability estimation of DNNs, this
issue deserves a thorough and separate discussion and is the topic of section 2.2.3.

We next focus on the application of IS in the context of rare event simulation.
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2.2.2 Importance Sampling for Rare Event Simulation

As mentioned above, in rare event simulation, ϕ is the indicator function 1A and we
seek to estimate the probability PF = P[Z ∈ A]. Henceforth, we suppose, for simplicity,
that it is possible to work in the U-space, for example, using an isoprobabilistic transform.
Thus, we identify the random vector Z with a canonical Gaussian vector U in Rd, so that
Z = Rd and the nominal density is φd, i.e. the pdf of the standard Gaussian law on Rd.
This assumption is quite restrictive, as most methods introduced in this chapter can, in
principle, be adapted for any absolutely continuous distribution on Rd. However, we note
this is a working assumption for most of the methods presented in the previous chapter.
Additionally, in the same vein, we now suppose that A is the zero-superlevel set of a given
continuous score function S : Rd 7→ R, that is:

A = {u ∈ Rd : S(u) ≥ 0}. (2.25)

Thus, the probability of the rare event PF can be written as,

PF = P[S(U) ≥ 0] =
∫

Rd
1R+(S(u))φd(u)du. (2.26)

In this context, the set Q of eligible pdfs consists of densities q satisfiying the condition:

∀u ∈ Rd, S(u) ≥ 0 =⇒ q(u) > 0. (C3)

Given an importance density q in Q, the IS estimator of PF is given by,

P̂ IS
F = 1

N

N∑
i=1

1A(Ũi)wq(Ũi) = 1
N

N∑
i=1

1
S(Ũi)≥0wq(Ũi), (2.27)

where Ũ1, . . . , ŨN are i.i.d. samples from q, and wq is the function defined in eq. (2.12).
As in the general case, if q is in Q, the IS estimator is unbiased, i.e. E[P̂ IS

F ] = PF, and thus
by the strong LLN, its estimator is consistent: P[limN→∞ P̂

IS
F = PF] = 1. The variance

of this estimator is V[P̂ IS
F ] = σ2

q

N
where σ2

q := V[1
S(Ũ)≥0wq(Ũ)] = E[1S(U)≥0wq(U)] − P 2

F.
Consequently, assuming that E[wq(Ũ)2] = E[wq(U)] is finite, the CLT ensures that√
N(P̂ IS

F − PF) converges in law to the centered normal distribution with variance σ2
q , i.e.

∀x ∈ R, lim
N→∞

P

[√
N(P̂ IS

F − PF)
σq

≤ x

]
= Φ (x) . (2.28)
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Therefore, an asymptotic CI at level (1− α) for IS given by:

CIIS =
P̂ IS

F − z1−α/2

√
σ2
q

N
, P̂ IS

F + z1−α/2

√
σ2
q

N


where z1−α/2 = Φ−1(1− α/2). This CI is unusable in practice as it involves σ2

q , however,
one can use the following empirical CI:

ĈIIS =
P̂ IS

F − z1−α/2

√
σ̂2
q

N
, P̂ IS

F + z1−α/2

√
σ̂2
q

N



where σ̂2
q = 1

N−1
∑N
i=1

(
1A(Ũi)wq(Ũi)− P̂ IS

F

)2
is the unbiased estimator of the variance σ2

q .

This variance is zero, and therefore minimal, at the optimal density q∗, given above
in equation (2.16) for a generic non-negative integrand ϕ. In rare event simulation, it
coincides with the pdf of the conditional distribution πF = L(U|S(U) ≥ 0), that is:

q∗(u) = 1S(u)≥0φd(u)
PF

(2.29)

However, as we saw before, this density is impractical, as sampling from an unnormalized
density is difficult and the associated weight function wq cannot be evaluated without
knowledge of the probability PF, which we seek to estimate. Moreover, even if we could
generate i.i.d. samples U∗1, . . . ,U∗N , from q∗ it is not possible to use self-normalized IS
either, as this density does not satisfy the condition (C2). An alternative is thus to find
an importance density fairly close to the optimum, in a sense we formalize below. We first
write the relative error, a.k.a the coefficient of variation, of the IS estimator as

∆N [P̂ IS
F ] :=

√
V[P̂ IS

F ]
E[P̂ IS

F ]
=

√√√√ σ2
q

NP 2
F
. (2.30)

Using equation (2.17), we obtain:

∆2
N [P̂ IS

F ] = 1
N

∫
Rd

(
q∗(u)
q(u) − 1

)2

q(u)du = Dχ2(q∗||q)
N

, (2.31)

where Dχ2(·||·) represents the chi-squared divergence [55]. Thus, IS is more sample efficient
than CMC as long as Dχ2(q∗||q) < P−1

F , though other quantities are relevant. In particular,
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the Kullback-Leibler divergence can be used in practice for optimization, see section 2.3.2.
We end this section by presenting a heuristic from the field of reliability engineering.

MPFP-Based Importance Sampling

In the context of reliability analysis, Melchers [56] proposed a heuristic based on
the MPFP, denoted as u∗, introduced in section 1.3.1 for the FORM/SORM estimators.
The importance distribution is choosen as N (u∗, Id), thus the importance density is
qMPP(u) := 1

(2π)d/2 exp
(
−‖u−u∗‖2

2

)
. The rationale here is that failure inputs are sampled

more frequently near the MPFP (vs. near the origin, see Figure 2.2). Moreover, those
samples would exhibit a relatively low likelihood ratio variance, as the MPFP is the
failure point closest to the origin (see the example just below). It is also advantageous
computationally, as it trades off optimization in the space of pdfs with optimization in Rd.
Unfortunately, as discussed before, this optimization task is difficult in high-dimension.
Yet, we show in chapter 6 that it is feasible for DNNs and leads to efficient estimation.

-4 -2 0 u1 2 4
u1

-4

-2

0

u2

2

4

u 2

u

IS failure points, PIS
F = 1.21 10 2 ±1.5 10 3

IS safe points
Failure region: {u 2 : G(u) 0}, PF = 1.34 10 2

MPFP

Figure 2.2 – Illustration of MPFP-based Importance Sampling, with 200 samples, in R2.
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2.2.3 Importance Sampling in High-Dimensional Spaces

In high-dimensional settings, the application of Importance Sampling methods faces
significant challenges. The primary concern is the phenomenon of weight degeneracy, which
can lead to inefficient estimations even when using close-to-optimal importance densities.

The Curse of Dimensionality and Weight Degeneracy

In high-dimensional spaces, the curse of dimensionality (COD) amplifies the difficulty of
efficiently in regions that contribute to the rare event A and adversely affects the variance
of the likelihood ratio. COD was studied and observed in the context of importance
sampling by Li, Bengtsson, and Bickel [57]. In particular, in a quite general IS setting, they
show that the maximum of the normalized weights converges to 1 as both dimension d and
the number of samples N go to infinity, while log(N)

d1/3
(N,d)→∞→ 0. Consequently, even adaptive

Importance Sampling methods, presented in the next section, may fail to effectively use a
large number of samples in these critical regions. Put differently, the weight degeneracy
phenomenon arises when the quasi-totality of the samples drawn from the importance
density q receives extremely small or even zero-importance normalized weights. In rare
event simulation, this occurs as the rare event becomes more difficult to locate, making
it increasingly unlikely for samples to both fall into the rare event region A and have
reasonably high likelihood under the nominal density φd, resulting in negligible estimation
weights wq,A(u) = 1A(u)wq(u). We next study the effect of the dimension on wq alone.

Examples: Gaussian Mean Shift and Variance Change

We now illustrate the weight degeneracy phenomenon with two simple examples of
Importance Sampling in the U-space. However, we only look at the effect of dimension on
the weight function wq, which limits the scope of these examples.

Gaussian Mean Shift. The first example is the Gaussian mean shift, where we sample
Ũi independently from the distribution N (λα, Id) where α is a unit vector in Rd and λ a
positive real. The importance weight is easily computed as:

∀u ∈ Rd, wq(u) = exp(−λ〈u,α〉+ λ2

2 ). (2.32)
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The second moment of the likelihood ratio is therefore given by

E[wq(Ũ)2] = e2λ2

(2π)d/2
∫

Rd
exp(−2λ〈u,α〉)e−‖u‖2

2+2λ〈u,α〉−λ2‖α‖2
2du (2.33)

= eλ
2
∫

Rd

e−‖u‖
2
2

(2π)d/2du︸ ︷︷ ︸
=1

= eλ
2
. (2.34)

An important remark here is that the square expected value of the likelihood ratio does
not depend directly on the vector space dimension d, but rather on the shift vector
norm λ. Thus introducing a small shift in a large number of dimensions, e.g. taking
α =

(
1√
d
, . . . , 1√

d

)
and λ = 1, will have the same effect on weight degeneracy as introducing

a larger shift on a single dimension, e.g. taking α = e1 = (1, 0, . . . , 0) and λ = 1.

Isotropic Variance Change. In this second example, the variance is changed such
that U q∼ N (0, σ2Id). In this case, the likelihood ratio is given by,

∀u ∈ Rd, wq(u) = σd exp
(
−1

2‖u‖
2
2

(
1− 1

σ2

))
. (2.35)

Therefore the second moment of the importance weight is computed as,

E[wq(Ũ)2] = E[wq(U)] = σd

(2π)d/2
∫

Rd
exp

(
−‖u‖

2
2

2

(
1− 1

σ2

))
e−
‖u‖22

2 du

= σd

(2π)d/2
∫

Rd
exp

(
−‖u‖

2
2

2

(
2− 1

σ2

))
du. (2.36)

If σ > 1√
2 , we obtain,

E[wq(Ũ)2] =
 σ√

2− 1
σ2

d =
(

σ2
√

2σ2 − 1

)d
. (2.37)

Thus we see that even a small isotropic change in the variance can lead to acute weight
degeneracy in high-dimensional spaces.

Anisotropic Variance Change. We now consider anisotropic variance, where the
intensity of the variance change varies along directions. We restrict the change to diagonal
covariance matrices so that U q∼ N (0, diag(σ1, . . . , σd)) where σ1, . . . , σd are positive reals
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and diag : Rd 7→ Rd×d is the mapping defined by

diag : Rd 3 (a1, . . . , ad)→


a1

. . .
ad

 .

When mini∈[1:d] σi >
1√
2 , we obtain by the same method as above :

E[wq(Ũ)2] =
∏

i∈[1:d]

σ2
i√

2σ2
i − 1

. (2.38)

Thus, while even small isotropic variance changes in high-dimension quickly lead to
weight degeneracy, a sparse, targeted, variance change does not lead to weight degeneracy.

Impact on Estimation Accuracy and Diagnostics

The weight degeneracy phenomenon significantly affects the accuracy of Importance
Sampling. To understand this, it is natural to consider the variance of IS. As discussed
in section 2.2.2, the variance can be expressed as V[P̂ IS

F ] = σ2
q

N
= E[1A(Ũ)wq(Ũ)2]−P 2

F
N

. Now,
roughly speaking, the more the repartition of the weights is unbalanced, the higher the
expectation E[1A(Ũ)wq(Ũ)2], and in turn σ2

q , will be. Note that, in practice, this variance
is estimated as

V̂[P̂ IS
F ] =

σ̂2
q

N
= 1
N(N − 1)

∑
i=1

(1A(Ũi)wq(Ũi)2 − P̂ IS
F )2. (2.39)

Unfortunately, this estimate depends on the weights and thus is generally not a good
diagnostic of (non)convergence [58]. The weight degeneracy phenomenon is often diagnosed
using the effective sample size (ESS), which quantifies the number of effectively contributing
samples. The original idea behind the ESS, in the context of self-normalized IS, can be
found in the technical report of Kong [59]. The ideal ESS, which cannot be computed in
practice, is defined as Neff := N

V[P̂CMC
F ]

V[P̂ IS
F ] . Thus, a small ESS indicates a relative inefficiency

of IS compared to CMC. Using the delta method [60], Kong [59] shows that this quantity
can be approximated by Ñeff = N

1+V[wq(Ũ)]
, which in turn can be estimated by its empirical

counterpart N̂eff, given by
N̂eff = 1∑

i∈[1:N ] w̄2
q(Ũi)2

. (2.40)
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where w̄q(Ũi) = wq(Ũi)∑N

i=1 wq(Ũi)
is the normalized weight of i-th the sample.

While N̂eff is independent of A, it is possible to replace wq by wq,A(·) = 1A(·)wq(·).
Elvira, Martino, and Robert [61] show that, despite its popularity, the ESS comes with
many drawbacks. To cite only one, N̂eff is lower bounded by 1, whereas (by its original
definition) it should clearly be (close to) 0 in cases where IS has (quasi-)infinite variance.
Chatterjee and Diaconis [58] propose an alternative diagnostic quantity Dn, defined as,

DN := max
i∈[1:N ]

w̄q(Ũi) = maxi∈[1:N ] wq(Ũi)∑N
i=1wq(Ũi)

∈ [0, 1], (2.41)

in which case IS is deemed to have converged if Dn is less than a given value, say 0.05.
The use of this metric is motivated by a detailed analysis of its expectation dN = E[DN ],
in particular when performing IS with Gibbs measures 1, see [58, Theorem 3.5].

Alternatives. Many strategies have been proposed to improve basic IS, including:

- Adaptive Importance Sampling [62]: Presented next in section 2.3, Adaptive
Importance Sampling (AIS) is an iterative procedure in which the importance density
is progressively drawn near the target density q∗ at each step, using samples from the
importance density of the previous step. In addition, intermediary target densities
are used at each non-terminal step to reduce the risk of weight degeneracy.

- Multilevel Splitting Methods [63]: The main idea of importance splitting is to
divide the estimation problem into more manageable subproblems, and then combine
the results. This is done by managing a set of samples called particles, which are
killed, resampled, and mutated, in a similar fashion to genetic algorithms. This
reduces the severity of weight degeneracy at each iteration. This approach, also
known as Subset Simulation in reliability analysis, is presented in section 2.4.

- Dimension Reduction Methods [64]: Using projections to carefully choosen
lower-dimensional spaces one can reduce the effective dimensionality of the problem,
making the sampling process more manageable and alleviating weight degeneracy.
El Masri, Morio, and Simatos [65], in particular, propose to use a one-dimension
projection within an AIS procedure and determined without gradient computation.

Nonetheless, efficiently handling weight degeneracy in high-dimensional spaces is an
active area of research and a key issue in applying reliability analysis for Deep Learning.

1. Families of distributions (νβ)β≥0 with pdfs pβ(u) ∝ exp(−βV (u))φd(u), see sections 5.2.2 and A.3.4.
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2.3 Adaptive Importance Sampling

Adaptive Importance Sampling (AIS) refines the Importance Sampling approach by
iteratively updating the importance density q. We refer the reader to the survey of
Bugallo, Elvira, Martino, et al. [66] for a comprehensive overview of AIS. In AIS, the
importance density begins as an initial guess q0 and is adaptively modified through
subsequent iterations. This iterative adjustment, which approximates the target density
q∗, is crucial in cases where the probability landscape is complex and a fixed importance
function is insufficient. Since approximating q∗ from the start is difficult, these methods
also use a multilevel approach, where an intermediary target density qtargetk is used at each
step k. In that case, the algorithm typically stops after some k∗ iterations, s.t. qtargetk∗ ≈ q∗.
In the context of rare event simulation, we first define, for all γ ∈ R, subset A(γ) as the
γ-superlevel set of the score function S, that is

A(γ) := {u ∈ Rd : S(u) ≥ γ}. (2.42)

Accordingly, we note Pγ = P[U ∈ A(γ)] and q(γ) the pdf of the conditional distribution
πγ := L(U|S(U) > γ), that is,

q(γ)(u) := 1A(γ)(u)φd(u)
Pγ

= 1S(u)≥γ(u)φd(u)
Pγ

. (2.43)

Iterative Refinement. Iterative refinement in AIS involves updating the bias distribu-
tion based on feedback from the current sample set. This process can be represented at a
high level of abstraction as:

qk+1 = UpdateFunction(qk, {Ũ(k)
i }i∈[1:N ], γk+1), (2.44)

where qk+1 is the updated distribution for the next iteration, {Ũ(k)
i }i∈[1:N ] are the

samples of the k-th iteration and γk+1 is the ρ-quantile of the score over these samples,
see line 7 below. Various update strategies are discussed throughout this section. The
common attribute of these strategies, however, is that qk+1 is chosen to be as close as
possible, in a sense to be defined, to the intermediary target q(γk+1). This approach is
called Multilevel AIS, distinct from Multilevel Monte Carlo, which consists of combining
estimates from simulations of varying fidelities for better efficiency [67]. Given a generic
update function UpdateFunction the AIS procedure is outlined in the pseudo-code (3).
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Algorithm 3 Generic Multilevel AIS Procedure For Rare Event Simulation
Require: Initial biasing distribution pdf q0, Number of samples N , Updating rule for

the importance density UpdateFunction, Maximum number of iterations K, Quantile
parameter ρ

Ensure: Rare Event Probability estimate P̂AIS
F

1: Stop← False
2: k ← 0
3: while Stop is False and k < K do
4: Generate samples {Ũ(k)

i }i∈[1:N ] ∼ q⊗Nk
5: Compute scores (S1, . . . , SN) = (S(Ũ(k)

1 ), . . . , S(Ũ(k)
N ))

6: Compute ordered scores S(1) ≤ S(2) ≤ . . . ≤ S(N)
7: Compute threshold level γk+1 = min(S(b(1−ρ)Nc), 0)
8: Update qk+1 = UpdateFunction(qk, {Ũ(k)

i }, γk+1)
9: k ← k + 1
10: if γk = 0 then
11: Stop← True
12: end if
13: end while
14: Estimate P̂AIS

F = 1
N

∑N
i=1 1A(Ũ(k)

i )wqk(Ũ
(k)
i )

15: return P̂AIS
F

Adaptive Importance Sampling methods are generally divided into parametric and
nonparametric methods, which are presented in subsections 2.3.1 and 2.3.3 respectively.

2.3.1 Parametric Adaptive Importance Sampling

A common strategy in AIS is to restrict the biasing distribution to a parametric family
of distributions QΘ={Qθ(du) = qθ(u)du,θ ∈ Θ}, where Θ is generally a vector space.
It is convenient for QΘ to contain the nominal probability distribution, i.e. νX in the
X-space or π = N (0, Id) in the U-space. Now, at each iteration k of the algorithm, the
pdf is fully characterized by the current parameter θk, as qk = qθk . Informally the pdf
update procedure UpdateFunction in line 8 is replaced by a parameter update process
UpdateParam. More precisely, at each step k, the ideal next parameter θ∗k+1 is given by,

θ∗k+1 = argmin
θ∈Θ

D(q(γk+1)||qθ), (2.45)
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where D is a divergence (not necessarily a distance) on the space of eligible pdfs Q, which,
for the sake of this thesis, is a functional on Q2 satisfying two following conditions:

Non-negativity : ∀p, q ∈ Q, D(p||q) ≥ 0 (2.46)

Positivity : ∀p, q ∈ Q, D(p||q) = 0⇔ p = q a.e. (2.47)

In many cases D(p||q) can be expressed as an expectation w.r.t. the importance density q.
This is the case, in particular, for f -divergences [68], defined by

Df (p||q) := Eq

[
f

(
p(Ũ)
q(Ũ)

)]
, (2.48)

for all convex function f : R+ → R+ such that f(x) = 0 iff x = 1. In this situation, while
it is not possible to solve the optimization program (2.45) directly, one can either use a
stochastic approximation (SA) method [69], or define θk+1 as,

θk+1 = argmin
θ∈Θ

N∑
i=1

f

q(γk+1)(Ũ(k)
i )

qθ(Ũ(k)
i )

 . (2.49)

Thus, this reduces to locally optimizing an empirical performance metric w.r.t. to θ.
Common choices include the empirical variance, taking f(x) = (x− 1)2 (corresponding to
the χ2-divergence, see eq. (2.31)), and the empirical cross-entropy, with f(x) = x log x,
leading respectively to the variance minimization (VM) and cross-entropy (CE) variants
of parametric AIS. Chan, Glynn, and Kroese [70] compare these methods and show that,
under reasonable assumptions, they converge to the same parameter θ∗, as PF → 0.

Gaussian Families. A natural family when working in the U-space, is the Gaussian
family QGauss := {N (µ,Σ)|θ = (µ,Σ) ∈ Rd×Sd++} where Sd++ denotes the set of positive-
definite symmetrical matrices of size d× d. In high-dimension, estimating a matrix of size
d × d can be too costly. Thus, we are inclined to work instead with the smaller family
of isotropic Gaussian distributions QI-Gauss := {N (µ, σ2Id)|θ = (µ, σ) ∈ Rd × R++} or
with the less restrictive class of Gaussian distributions with uncorrelated components
QU-Gauss := {N (µ, diag(σ1, . . . , σd))|θ = (µ, σ1, σ2, . . . , σd) ∈ Rd × ( 1√

2 ,∞)d}. However, as
we saw in the second example in section 2.2.3, isotropic variance changes in high dimension
readily lead to weight degeneracy, so we favor the use of the latter family of distribution.

We next focus on the cross-entropy approach, which is predominant in parametric AIS.
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2.3.2 Cross-Entropy Based Importance Sampling

The Cross-Entropy (CE) method, as presented, e.g., in the textbook of Rubinstein and
Kroese [62, Chapter 8], is a powerful tool also used for solving both complex optimization
and sampling problems. It has significant application in the domain of Importance
Sampling, in refining the biasing distribution for efficient rare event simulation. The CE
method is rooted in information theory, where it was formulated to minimize the Kullback-
Leibler divergence, a measure of the difference between two probability distributions. In
the context of Adaptive Importance Sampling, the CE-AIS method iteratively updates
the importance density to minimize its cross-entropy w.r.t. to a target density.

Mathematical Formulation

The mathematical core of the CE method in this context ultimately involves minimizing
the Kullback-Leibler (KL) divergence between the biasing distribution and the conditional
rare event distribution, i.e. νXF in the X-space or πF in the U-space. Now, for two
continuous distributions P and Q on Rd, such that P is absolutely continuous w.r.t. Q 2,
the KL divergence is given by:

DKL(P ||Q) :=
∫

Rd
P (dx) log

(
dP

dQ
(x)

)
(2.50)

where dP
dQ

is the Radon-Nikodym derivative of P w.r.t. Q. When both these distributions
are admit densities w.r.t. to the Lebesgue measure, denoted respectively p and q, equation
(2.51) can be rewritten as,

DKL(p||q) :=
∫

Rd
log

(
p(x)
q(x)

)
p(x)dx. (2.51)

In CE-AIS, the iterative process adjusts q to minimize DKL(q∗||q) = DKL(πF||Q),
leading to a distribution that is more focused on the rare event. To understand why it
may be a good idea to minimize this divergence we first note that:

E[1UF(Ũ)2wq(Ũ)2]
P 2
F

=
∫

Rd

φd(u)
q(u)

1UF(u)2

P 2
F

φd(u)du = EU∼πF

[
1UF(U)
PF

wq(U)
]
. (2.52)

2. One also says that Q dominates P and writes ’P � Q’, meaning here that for all Borel set A ∈ B(Rd),
Q(A) = 0 implies that P (A) = 0.
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Now by Jensen’s Inequality, we have,

log
(

EπF

[
1UF(U)
PF

wq(U)
])
≥ EπF

[
log

(
1UF(U)
PF

wq(U)
)]

=
∫
UF

log
(
φF(u)
q(u)

)
φF(u)du

(2.53)

= DKL(πF||Q). (2.54)

Thus, we obtain the following lower bound:

EU∼Q[1UF(U)wq(U)2]
P 2
F

≥ eDKL(πF||Q). (2.55)

In terms of relative error of the IS estimator ∆N [P̂ IS
F ], this rewrites as,

∆N [P̂ IS
F ] ≥ eDKL(πF||Q) − 1 = eDKL(q∗||q) − 1. (2.56)

This inequality shows that the relative error grows at least exponentially as a function of
the Kullback-Leilber divergence between the optimal density and the importance density.
Moreover, Chatterjee and Diaconis [58, Theorem 1.3] provide both an upper and a lower
bound, both of order eDKL(πF||Q), on the number of samples needed in IS to approach
PF within a given level of accuracy. On another note, as a result of equation (2.13), the
inequality (2.56) above can be interpreted in terms of divergence on probability distribution,
as it translates to:

∀q ∈ Q, Dχ2(q∗||q) ≥ eDKL(q∗||q) − 1, (2.57)

which is a classical result in both information theory [71] and distribution testing [55].

Optimization in Practice. An important point for optimization, is that DKL(q∗||qθ)
can be rewritten as

DKL(q∗||qθ) = − log(PF) +
∫

U∼UF
log

(
φd(u)
qθ(u)

)
q∗(u)du

= − log(PF) + EπF [log(wqθ
(U))]

= − 1
PF

Eqθ
[1A(Ũ)wqθ

(Ũ) log(qθ(Ũ))] + C ∝ −Eqθ
[1A(Ũ)wqθ

(Ũ) log(qθ(Ũ))]

where C is independent of the value of θ. Thus, one can readily optimize an empirical
counterpart of DKL(q∗||qθ) as proposed above (see line 9 in the pseudocode below).
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Algorithmic Implementation

The implementation of the (multilevel) Cross-Entropy method in Adaptive Importance
Sampling (CE-AIS) is outlined in pseudocode (4) below.

Algorithm 4 Multilevel CE-AIS Procedure For Rare Event Simulation
Require: Parametric family of densities {qθ|θ ∈ Θ}, Initial parameter θ0 ∈ Θ, Number

of samples N , Updating rule for the importance density UpdateFunction, Maximum
number of iterations K, Quantile parameter ρ

Ensure: Rare Event Probability estimate P̂AIS
F

1: Stop← False
2: q0 ← qθ0

3: k ← 0
4: while Stop is False and k < K do
5: Generate samples {Ũ(k)

i }i∈[1:N ] ∼ q⊗Nk
6: Compute scores (S1, . . . , SN) = (S(Ũ(k)

1 ), . . . , S(Ũ(k)
N ))

7: Compute ordered scores S(1) ≤ S(2) ≤ . . . ≤ S(N)
8: Compute threshold level γk+1 = min(S(b(1−ρ)Nc), 0)
9: Update θk+1 = argmaxθ∈Θ

∑N
i=1 1

S(Ũ(k)
i )≥γk+1

wqθ
(Ũ(k)

i ) log(qθ(Ũ(k)
i ))

10: qk+1 = qθk+1

11: k ← k + 1
12: if γk = 0 then
13: Stop← True
14: end if
15: end while
16: Estimate P̂AIS

F = 1
N

∑N
i=1 1A(Ũ(k)

i )wqk(Ũ
(k)
i )

17: return P̂AIS
F

CE-AIS with Gaussian Families. As mentioned above, in the U-space, it is natural
to use a Gaussian family in parametric AIS. In CE-AIS this approach yields significant
simplifications. Indeed, considering for example the classQGauss defined above parametrized
by θ = (µ,Σ), Rubinstein and Kroese [62] show that the optimal parameter solution of

θ∗k+1 = argmax
θ∈Θ

= EŨ∼qθ
[1
S(Ũ)≥γk+1

wqθ
(Ũ) log(qθ(Ũ))] (2.58)

is given by θ∗k+1 = (µ∗k+1,Σ∗k+1) where,

µ∗k+1 = Eπγk+1
[U] = E[U|S(U) ≥ γk+1], (2.59)

Σ∗k+1 = Vπγk+1
[U] = V[U|S(U) ≥ γk+1]. (2.60)
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Thus, in this case, the optimization program at line 9 in the pseudocode above, can be
replaced by a simple update, obtained with self-normalized IS, θk+1 = (µ̂k+1, Σ̂k+1) where,

µ̂k+1 =
N∑
i=1

w̄qθk
,A(γk+1)(Ũ(k)

i ) · Ũ(k)
i , (2.61)

Σ̂k+1 =
N∑
i=1

w̄qθk
,A(γk+1)(Ũ(k)

i ) · (Ũ(k)
i − µ̂k+1)× (Ũ(k)

i − µ̂k+1)T (2.62)

where w̄qθk
,A(γk+1)(Ũ(k)

i ) is the normalized weight of the i-th sample w.r.t. to level γk+1,
given by,

w̄qθk
,A(γk+1)(Ũ(k)

i ) =
1A(γk+1)(Ũ(k)

i )wqθk
(Ũ(k)

i )∑N
j=1 1A(γk+1)(Ũ(k)

j )wqθk
(Ũ(k)

j )
=

1
S(Ũ(k)

i )≥γk+1
wqθk

(Ũ(k)
i )∑N

j=1 1
S(Ũ(k)

j )≥γk+1
wqθk

(Ũ(k)
j )

.

Improved CE. Papaioannou, Geyer, and Straub [72] propose an improvement of the
Multilevel CE method we have presented, by approaching the optimal density q∗ via a
sequence of unnormalized densities q̃(·; β1), . . . , q̃(·; βK), of the form q̃(·; β) ∝ ψ(·; β)φd(·),
where the function ψ is such that: ∀u ∈ Rd, ψ(u; β) β→∞→ 1A(u). In particular, they propose
to use ψ(u; β) = Φ(β · S(u)). The scheduling, i.e. the choice of the values β1, . . . , βK , and
the stop criterion are based on the empirical counterpart of the coefficient of variation
∆N [·], see equation (2.31). We refer to their work and the Ph.D. thesis of El Masri [73]
for more details on this method and its variants. We note, however, that this method is
somewhat related to the approach we propose in our second work, presented in chapter 5,
in the context of Multilevel Splitting methods, that we introduce next in section 2.4.

Advantages and Limitations. The CE method can be advantageous in settings where
basic Importance Sampling methods struggle, with some caveats. In general, Multivel
AIS’s iterative nature allows for a progressive exploration and exploitation of the sample
space, alleviating the weight degeneracy phenomenon. In parametric AIS, the initial
optimization problem in the space of pdfs is replaced by an optimization problem in Rp

where p is the number of scalar parameters associated with the chosen parametric family.
However, the choice of this latter family is crucial. We saw that in the U-space, choosing
Gaussian families simplifies the optimization problem. A limitation of this approach lies in
the limited expressive power of these families which, for example, cannot accurately model
multimodal distributions. Estimating a matrix also of O(d(d+ 1)/2) parameters is also

70



2.3. Adaptive Importance Sampling

costly, for DNN applications one has to either use the family QU-Gauss defined above or
resort to a dimension reduction technique. These include the failure-informed projection
method, called ’ICEred’, proposed by Uribe, Papaioannou, Marzouk, et al. [64] and the
gradient-free projection method, ’CE-m∗’, proposed by El Masri, Morio, and Simatos [65].

2.3.3 Nonparametric Adaptive Importance Sampling

Nonparametric Adaptive Importance Sampling (NAIS), as presented in the works of
Kim, Roh, and Lee [74] and of Morio [75], is an alternative to the parametric methods
presented above, which can be particularly powerful due to its more flexible data-driven
approach. However, as discussed below, this method does suffer from the curse of dimen-
sionality and thus is not a good candidate for DNN applications.

Concept of NAIS. NAIS differs from parametric Importance Sampling by employing
nonparametric methods to adaptively update the biasing distribution. This approach
allows for a more flexible adjustment of the sampling distribution in response to the
characteristics of the target distribution observed from empirical data, particularly in cases
where parametric models are inadequate or impractical.

Kernel Density Estimation. A key element of NAIS is the use of Kernel Density
Estimation (KDE), specifically the Parzen [76]-Rosenblatt [77] 3 method. KDE is used
to estimate the probability density function of a dataset by averaging over a sample of
kernel functions, typically Gaussian. A significant challenge in KDE is the selection of an
appropriate bandwidth (window size), as a poor choice can lead to overfitting (too narrow
bandwidth) or underfitting (too wide bandwidth).

NAIS in High-Dimension. While NAIS is powerful, its efficiency diminishes in high-
dimensional spaces, which can be related to the inefficiency of KDE in high dimensions.
In high-dimensional spaces, it becomes difficult to accurately estimate densities without a
prohibitively large number of samples [78]. This problem directly impacts the performance
of NAIS as soon as the problem dimension d is higher than 10. For this reason, we believe
NAIS, in this form, is not adapted to applications with DNNs. That being said, a novel
approach to NAIS recently proposed by Demange-Chryst, Bachoc, Morio, et al. [79], using
deep neural networks via variational autoencoder architecture, shows promising results.

We next present the Importance Splitting method, as an alternative to IS techniques.

3. Murray Rosenblatt, the same statistician whose eponymous transform we presented in chapter 1.
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2.4 Importance Splitting

This method, introduced as Subset Simulation (SubSim) by Au and Beck [63] in the
field of reliability analysis, is a variance reduction technique that can be particularly
effective for estimating probabilities of rare events of complex, high-dimensional systems.

2.4.1 Fixed-Levels Importance Splitting

Multilevel 4 Splitting (MLS) a.k.a. Importance Splitting, involves sequentially es-
timating the probability P[F ] of a rare event F ∈ F . The main idea, which can
be traced back to Kahn and Harris [80], is to define a sequence of K nested events
Ω = F0 ⊃ F1 ⊃ . . . ⊃ FK = F , and express P(F ) as the product:

P(F ) =
K∏
i=1

P(Fi |Fi−1), (2.63)

such that the subproblems of estimating the conditional event probabilities P(Fi+1 |Fi) are
easy enough to be solved efficiently. Applying this methodology to the random variable U
in the U-space, the intermediary events will be defined as Fi = [U ∈ Ai]. More precisely,
since in our case P[F ] = P[U ∈ A] with A = {u ∈ Rd : S(u) = 0}, for a given increasing
sequence of levels L0, L1, . . . , LK (with L0 = −∞ and LK = 0), we define the intermediary
subsets A1, . . . , AK as

∀i ∈ [0 : K], Ai := {u ∈ Rd |S(u) ≥ Li}. (2.64)

Accordingly, we denote by πLi = L(U|S(U) > Li) the associated distributions on Rd.

Algorithmic Description. MLS consists of managing a set of N particles, initialized
as samples from the nominal distribution π. Then, at each step k, like in a genetic
algorithm, all the particles whose score is below a certain threshold are ’killed’, i.e. deleted
from the pool of particles. To keep an identical number of particles, each of these killed
particles is replaced by a mutated copy of a particle selected at random and with equal
probability amongst the surviving particles. However, unlike in a genetic algorithm, the
precise statistical nature of the mutations is crucial and we discuss it in the next paragraph.
Notwithstanding this process is performed until reaching the last level LK = 0, which

4. Multilevel is here used with the same meaning as in ’Multilevel AIS’, unrelated to Multilevel Monte
Carlo, see section 2.3 for more details.
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corresponds to the rare event. This algorithm is outlined in the pseudo-code 5 below. Note
that, since the levels are predefined, extinctions can occur (see line 4 below), in which case
one has to rerun the simulation from the start.

Algorithm 5 Subset Simulation with Fixed Levels in the U-space
Require: Sequence of levels L1, L2, . . . , LK , Number of kernel iteration T , Proposal

strength parameter v, Family of kernel (KerL)L≤0 leaving invariant the distributions
(πL)L≤0

Ensure: Probability estimate of the rare event
1: Generate initial samples U(0)

1 , . . . ,U(0)
N

i.i.d.∼ π0 = N (0, Id)
2: for k = 1 to K do
3: Determine set of surviving particles Isurv = {i ∈ [1 : N ] : S(U(k−1)

i ) ≥ Lk}
4: if Isurv is ∅ then
5: Restart simulation.
6: end if
7: Estimate the probability P[Fk|Fk−1] as P̂k = Card(Isurv)

N
= Nk

N

8: for each index i in [1 : N ] \ Isurv do
9: Select randomly the index a of surviving particle: J ∼ U(Isurv)

10: Sample mutated particle: Û ∼ KerLk(U
(k−1)
J , du;T, v)

11: Define next particle of index i as the mutated particle: U(k)
i = Û

12: end for
13: for each index i in Isurv do
14: Define next particle of index i as the old particle U(k)

i = U(k−1)
i

15: end for
16: end for
17: Compute the probability estimate P̂MLS

F = ∏K
k=1 P̂k = ∏K

k=1
Nk
N

Mutation via MCMC. Mutations are applied to each cloned particle to generate a
new set of particles from the set of surviving particles only while reducing correlation
among them. In the U-space, these mutation proposals can be obtained via a simple
MCMC method, which is essentially the Metropolis-Hastings algorithm (see appendix
A), outlined in algorithm 6. Notice that this algorithm does require a kernel leaving the
nominal law π = N (0, Id) invariant. Conveniently, in the U-space, it can be realized by a
simple Gaussian transition kernel Kerπ(·, ·; v), defined by,

∀u ∈ Rd,Kerπ(u, du; v) := N ((1− v)u, v2

1 + v2 Id) (2.65)

where v ∈ R++ is called the strength parameter.
Indeed, one readily checks that Kerπ(·, ·; v) it satisfies the detailed balance condition for π.
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Algorithm 6 KerL(u, du;T, v): MCMC kernel with invariant measure πL
Require: Initial values u ∈ Rd, Level L, Number of iterations T , Kernel leaving π

invariant Kerπ, Score function S, Proposal strength parameter v.
Ensure: r.v. ÛT such that L(ÛT ) ≈ πL, for T large enough.
1: Initialize Û0 = u
2: for t = 1 to T do
3: Generate proposal Û ∼ Kerπ(Ût−1, du; v)
4: if S(Û) > L then
5: Accept the mutation: Ût = Û
6: else
7: Reject the mutation: Ût = Ût−1
8: end if
9: end for
10: return ÛT

Advantages and Limitations

This algorithm has the advantage of being an intuitive and easily implemented method.
Moreover, unlike the adaptive IS presented above, it does not require specifying a parametric
family of distribution or choosing a kernel function for density estimation. It does however
require access to an MCMC transition kernel, and the consistency of the estimator relies
on both the law of large numbers, as the number of particles N goes to infinity, and on
the ergodicity of the Markov Chains, as T →∞. An important result is that the MLS
estimator is unbiased, we refer the reader to the work of Amrein and Künsch [81] for a
proof. For a variance analysis of this estimator, we refer to the HDR of Bourinet [37].

In high-dimension, the MCMC kernel proposed above might encounter difficulties as
noted by Papaioannou, Betz, Zwirglmaier, et al. [82]. In some cases, this can be alleviated
by changing the MCMC kernel, e.g. as proposed by Katafygiotis and Zuev [83].

2.4.2 Adaptive Multilevel Splitting

Adaptive Multilevel Splitting (AMS), is an important adaptive variant of the algorithm
presented in the previous section. This algorithm was first introduced as Subset Simulation
by Au and Beck [63], in the context of reliability analysis, and rediscovered, in a more
general rare event simulation context, the work of Cérou and Guyader [84]. For a
comprehensive overview and a historical perspective on this method, we refer the reader
to the work of Cérou, Guyader, and Rousset [85]. Unlike in the fixed-level approach, AMS
adaptively determines the sequence of levels during the simulation using empirical data.
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Methodology

AMS employs a dynamic approach to identify intermediate levels or thresholds. In each
iteration, these levels are adjusted based on empirical quantiles from the score function,
see line 8. This adaptive process helps in efficiently homing in on the rare event. We
outline the AMS algorithm in the pseudocode 7.

Algorithm 7 AMS in the U-space
Require: Quantile parameter ρ, Number of kernel iteration T , Proposal strength param-

eter v, Family of kernel (KerL)L≤0 leaving invariant the distributions (πL)L≤0,
Ensure: Probability estimate of the rare event P̂AMS

F

1: Generate initial samples U(0)
1 , . . . ,U(0)

N
i.i.d.∼ π0 = N (0, Id)

2: m← b(1− ρ)Nc
3: k ← 0
4: Lk ← −∞
5: while Lk < 0 and k < K do
6: Compute scores (S1, . . . , SN) = (S(Û(k)

1 ), . . . , S(Û(k)
N ))

7: Compute ordered scores S(1) ≤ S(2) ≤ . . . ≤ S(N)
8: Compute threshold level Lk+1 = min(S(m), 0)
9: Let Isurv be the indices of surviving particles
10: for each index i in [1 : N ] \ Isurv do
11: Select uniformly the index of a surviving particle: J ∼ U(Isurv)
12: Sample a mutated particle: Û ∼ KerLk+1(U(k)

J , du;T, v) . See alg.6.
13: Define next particle of index i as the mutated particle: U(k+1)

i = Û
14: end for
15: for each index i in Isurv do
16: Define next particle of index i as the old particle: U(k+1)

i = U(k)
i

17: end for
18: k ← k + 1
19: end while
20: Compute the probability estimate P̂AMS

F = (1− m
N

)k−1 × 1
N

∑N
i=1 1A(U(k)

i )

Advantages Over Fixed Levels Approach

AMS’s adaptability in setting levels based on real-time simulation data makes it
particularly effective in static cases where predefined thresholds might not adequately
capture the dynamics leading to rare events. This method can more accurately and
efficiently home in on critical regions of the state space, enhancing the precision of rare
event probability estimation. One disadvantage over the fixed-levels approach, however, is
that, unlike P̂MLS

F , the AMS estimator P̂AMS
F is not a priori an unbiased estimator PF.
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2.4.3 Last Particle Algorithm

The Last Particle Algorithm is a particular case of the Adaptive Multilevel Splitting
(AMS) method introduced and analyzed by Guyader, Hengartner, and Matzner-Løber
[86], corresponding to an iterative elimination of the particle with the lowest score. This
approach is particularly convenient for performing non-asymptotic analysis (w.r.t. the
number of particles N) of convergence.

Algorithmic Principle

This algorithm distinguishes itself by concentrating on the particle with the minimum
score at each iteration. This targeted approach enables efficient exploration of the state
space near the critical threshold of system failure.

Pseudocode for Estimating Probability of Failure

The Last Particle Algorithm operates under the premise of the previously defined
failure event F = SF. We outline its procedure in the U-space in 0, though it can also be
applied verbatim in the X-space.

Algorithm 8 Last Particle Algorithm for Probability of Failure Estimation
Require: Number of particles N , score function S, Maximum number of iteration K,
Number of mutations per iteration T , Family of kernel (Kerγ)γ≤0 leaving the invariant
the distribution (πγ)γ≤0

Ensure: Probability estimate of the failure event SF
Initialize particles (Ui)i∈[1:N ]

i.i.d.∼ π = N (0, Id)
k ← 0
Lk ← −∞
while Lk < 0 and k < K do

Identify the particle Umin with the lowest score S(Umin)
Define the next level as Lk+1 = S(Umin)
Eliminate Umin and replace at random it by a surviving particle Ucloned
Mutate T -times the clone Uclone with a kernel KerLk+1 leaving πLk+1 invariant
k ← k + 1

end while
Compute Estimate P̂ LP

F = (1− 1
N

)k−1 × 1
N

∑N
i=1 1A(U(k)

i )
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2.5 Chapter Conclusion

This chapter presented a comprehensive study on the methodologies of Rare Event
Simulation, with a particular emphasis on Importance Splitting and Importance Sampling
techniques. While both methods often achieve the objective of being more sample-efficient
than Crude Monte Carlo simulations, they have unique advantages and limitations in the
context of simulating rare events, which can lead to choosing either one of them depending
on the situation. We quickly review these characteristics in the following paragraphs.

Importance Sampling. Importance Sampling, on the other hand, excels in its versatil-
ity and applicability to a wide range of problems. The method’s strength lies in its ability
to reduce variance by using a change of measure, making it particularly useful in rare
event simulation. Nevertheless, the technique requires careful design of the importance
distribution, and improper choice can lead to inefficiency, particularly in high-dimensional
spaces.

Importance Splitting. Importance Splitting is advantageous in scenarios where sequen-
tial decomposition of the rare event is feasible. Its ability to iteratively focus computational
efforts on increasingly critical regions allows for efficient use of resources. However, the
method’s effectiveness is heavily reliant on the choice of splitting levels (scheduling), the
associated score function, and the transition kernel used to perform mutations, which can
be challenging to select optimally.

Comparative Analysis. Comparing both methods, Importance Splitting is often more
intuitive and easier to implement, especially for dynamic problems with a clear sequential
structure, which is not the topic of this thesis as we focus on static models. In contrast,
Importance Sampling is generally more robust as it only relies on the law of large numbers.
That being said, in complex and high-dimensional scenarios, choosing a good importance
density is often difficult while adaptive methods can converge towards the optimal density,
this can come at a high computational cost that may hinder efficiency in practice. In
conclusion, while both Importance Splitting and Importance Sampling provide valuable
tools for Rare Event Simulation, their optimal application depends on the specific char-
acteristics and requirements of the problem at hand. While our first and second works,
presented in chapters 4 and 5 respectively, focus on the importance splitting approach,
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our last work, presented in chapter 6 compares the efficiency of different IS and Multilevel
Splitting algorithms in reliability estimations with Deep Neural Networks.
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CHAPTER 3

Introduction to Deep Learning Robustness

“The best material model of a cat is another, or preferably
the same cat.”
– Norbert Wiener, The Role of Models in Science [87], 1945

Deep learning models have achieved remarkable success in various applications, but
their robustness remains a significant concern. In this chapter, after a brief overview of
deep learning essential concepts and architectures, we delve into critical aspects of deep
learning robustness, exploring both adversarial and certified robustness methods.

3.1 Deep Learning in a Nutshell

Deep Learning, a subset of machine learning, leverages Deep Neural Networks (DNNs)
to learn representations from complex and high-dimensional data. DNNs are characterized
by their depth, which refers to the number of layers through which data is transformed.
As mentioned in the introduction of the thesis, important shared characteristics of these
models include:

1. Compositional Architectures [88]: A DNN is composed of multiple layers, where
each layer can be viewed as a mathematical function. The output of one layer becomes
the input of the next, forming a chain of transformations. Mathematically, a DNN
with L layers can be represented as:

f(x) = fL(fL−1(. . . f2(f1(x)) . . .)) = fL ◦ fL−1 ◦ · · · ◦ f1(x)

where fi is the transformation function of the i-th layer, and x is the input data.

2. Parallel Computing: Modern DNNs are trained on parallel computing architec-
tures, such as GPUs, to handle massive computations efficiently.
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3. Auto-differentiation [89]: This process computes the gradients of the model’s
output w.r.t. its parameters, essential for learning. This is often achieved via
backpropagation [89], which is a method of applying the chain rule of calculus to
compute gradients efficiently.

4. Stochastic Gradient Descent (SGD) [90]: SGD and its variants are optimization
algorithms used to adjust the model’s parameters to minimize a loss function. The
optimization is done iteratively by updating the model parameters in the direction
opposite to the gradient of the loss function.

The first three characteristics of these models are of particular importance in this thesis
as efficient reliability assessment methods for DNNs as they pertain to inference, whereas
the last one pertains to training.

A Brief History of Artificial Neural Networks

The journey of Artificial Neural Networks (ANNs) began with the perceptron model,
introduced by Mcculloch and Pitts [91] in their seminal 1943 paper. This model was an
early attempt to mimic the processing of a biological neuron, as illustrated in Figure 3.1.
Building upon this, Rosenblatt [92] 1 developed the Mark I Perceptron in 1957 (Figure 3.2),

Figure 3.1 – (a) A biological neuron; (b) a Perceptron model with m inputs

a significant step towards linking computational models to biological neural processes.

1. Frank Rosenblatt, unrelated with Murray Rosenblatt, of the Rosenblatt Transform presented in
chapter 1 (see section 1.2.2), though they were both born in the 1920s and PhD graduates from Cornell.
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However, the growth of neural networks encountered a major roadblock with the
1969 publication of a book by Minsky and Papert [93]. Their critique revealed intrinsic
limitations of perceptrons, notably their incapacity to solve non-linearly separable problems
like the Exclusive OR (XOR) classification. This led to the first AI winter, a period (roughly
from the 1970s to the late 1980s) characterized by reduced interest and funding in neural
network research.

Figure 3.2 – F. Rosenblatt with the Mark I Perceptron in 1957 (source: Getty Images).

The resurgence in neural network research began in the late 1980s and continued into the
1990s, thanks to both new theoretical insights [94], [95] and computational advancements
[96], [97]. The field, however, really came back to the forefront of AI research in 2012
with the success of AlexNet [98] in the CV competition ’ImageNet’ [99] which marked
a significant turning point. AlexNet, a convolutional neural network (see section 3.1.3),
demonstrated the power of deep learning models in handling complex tasks like image
recognition with unprecedented accuracy. This success spurred a renewed and intense
interest in neural networks, leading to rapid advancements and the development of more
sophisticated models that continue to push the boundaries of what is possible in machine
learning. In 2015 another important milestone was reached as the model ResNet50, an
instance of the Residual Network architecture introduced by He, Zhang, Ren, et al. [100],
obtained it a sub-human error rate on unseen test data, as illustrated in Figure 3.3.
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Figure 3.3 – ImageNet Competition Winners (2010-2015) and their Top-5 Error Rates.

The revival was not just limited to academic interest; it marked the beginning of a new
era in machine learning, with ANNs becoming key models in various applications, from
speech processing [101] to autonomous driving [102] and protein structure prediction [103].

3.1.1 The Classification Problem in Machine Learning

The classification problem is a fundamental task in machine learning where the goal
is to assign labels or categories to data points based on their features. It is a case of
supervised learning, where a model is trained on a dataset containing inputs and their
corresponding labels. The model learns to map inputs to the correct labels from a set of
training samples, hoping it will able to accurately classify unseen, but similar, data points.

Binary and Multi-Class Classification

Classification tasks can be broadly divided into two categories:

- Binary Classification: This involves categorizing data points into two distinct
classes. The outcome is dichotomous, meaning there are only two possible classes.
Examples include email spam detection (spam or not spam) and medical diagnoses
(disease present or not).

- Multi-Class Classification: In multi-class classification, there are C classes with
C > 2. Each data point is categorized into one of these classes. An example is image
recognition, where images are classified into various categories like cars, planes, etc...
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Mathematical Formulation the Problem

To perform training and inference each data point (image, email, audio recording) is
encoded into a vector of features x in Rd where d is the number of features. Similarly,
in binary classification, labels are mapped to a discrete set, e.g., for spam detection, one
might encode the class "spam" as 1, and the class "not a spam" as 0. In the case of
multi-class classification, it can be useful to use a "one-hot" encoding, whereby each class
label is mapped to a vertex of the simplex SC−1 defined by

SC−1 = {y = (y1, . . . , yC) ∈ [0, 1]C ,
C∑
i=1

yi = 1}. (3.1)

For example, in the Iris classification task [104] one might map the classes "Iris seposa",
"Iris virginica" and "Iris versicolor" to the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.

Roughly speaking, the classification problem can then be formulated as follows: given
a training dataset of n data points Dtrain = {(x1,y1), (x2,y2), . . . , (xn,yn)} where xi ∈ Rd

represents the features of the i-th data point and yi ∈ SC−1 the encoding of its true label,
the goal is to learn a function f such that f(x) ≈ y, in a certain sense to be defined.

More formally, given a loss function L : RC × SC−1 → R+ and a joint distribution D
on Rd × SC−1 one first defines the risk R of a measurable function f : Rd 7→ RC as:

R(f) := E(X,Y)∼D[L(f(X),Y)]. (3.2)

Given a class of hypothesis functionsH, the fundamental objective in statistical learning,
as presented in the textbook of Vapnik [105], is to find a classifier f ∗ in H that minimizes
the risk R function on H, that is,

f ∗ ∈ argmin
f∈H

R(f). (3.3)

Since in practice one only has access to training data Dtrain = {(xi,yi)}ni=1, supposed to
be independent realizations of the distribution D, the common strategy is to minimize
instead the empirical risk Remp, defined as,

∀f ∈ H,Remp(f) := 1
n

n∑
i=1
L(f(xi),yi). (3.4)

A learning algorithm consists of an optimization method producing an (approximate)
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minimizer of the empirical risk inH denoted f̂ . The generalization gap ∆R is the difference
between the real risk and the empirical risk, i.e. ∆R(f) := R(f)−Remp(f). The choice
of the hypothesis class is crucial to obtaining good performance. If this class is not rich
enough, then it leads to under-fitting: even the best classifier in H obtains low performance
in terms of empirical risk (see Fig. 3.4). In contrast, if R is too large, it leads to over-fitting,
where the empirical risk Remp(f̂) is near zero, but f̂ may exhibit a high generalization
gap. The usual countermeasure is to define a regularization function M : H → R+ that
penalizes complexity and define f̂ as a minimizer of the regularized empirical risk given by,

Remp(f ;M) := Remp(f) +M(f).

The complexity of H is often measured by its VC (when C = 2) or Natarajan dimension
(when C > 2) [106], as they relate to upper bounds on the generalization gap ∆R(f̂) [105].
In the context of this thesis, H is mostly a parametric class Hθ = {fθ|θ ∈ Θ} of neural
networks sharing the same architecture. Other common techniques used to build classifiers
include Logistic Regression (LR) [107], Support Vector Machines (SVMs) [108], Decision
Trees (DTs) [109], and Random Forests (RFs) [110]. For neural networks, the parameter
space Θ is a subset of Rp, where p is the total number of scalar parameters of the
architecture, consisting of all the weights and biases at each layer of the neural network,
see section 3.1.2 below. In deep learning, it is not unusual to have p � n, i.e. the
number of parameters largely exceeds the number of training points, in which case the
architecture is said to be over-parametrized. A peculiar phenomenon in deep learning is
that over-parametrization, contrary to intuition drawn from statistical learning theory,
can lead to better generalization [111]. Moreover, this phenomenon occurs even if the
learned model overfits, i.e. Remp(f̂) ≈ 0, which is called ’benign over-fitting’ [112].

Y

X

Y

X

Y

X

Figure 3.4 – Schematic illustration of under-fitting (on the left), of a ’good’/robust fit (in
the center), and over-fitting (on the right), represented for regression for simplicity.
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Loss Function for ANNs. When training ANNs for classification, the cross-entropy
(CE) loss (a.k.a. the logistic loss [113]), is commonly employed [114] and given by:

LCE(fθ(x),y) = −
C∑
c=1

yc log(fθ(x)c), (3.5)

where y is the one-hot encoded true label and log(fθ(x)c) is logit for input x and class c.

SGD and Backpropagation. Optimization of network parameters θ is typically per-
formed using Stochastic Gradient Descent (SGD) [90] and its variants like RMSProp [115],
and Adam [116]. SGD optimizes the loss function iteratively using a subset of the data at
each step, known as a batch. This batch-based approach efficiently handles large datasets.
Backpropagation is an efficient algorithm for computing the gradients of the loss function
w.r.t. each parameter in the network [89]. It consists of a forward pass, where the loss is
computed, followed by a backward pass, where gradients are calculated through the layers
using the chain rule. These gradients are then used to update the network parameters.
The update rule in SGD, considering a batch of data Bt ⊂ Dtrain, is given by:

θt+1 ← θt −
η

Card(Bt)
∑

(x,y)∈Bt
∇θL(fθt(x),y) = θt − ηdt (3.6)

where η is the learning rate, which plays a crucial role in convergence, and ∇θL represents
the gradient of the loss w.r.t. θ. Variants of SGD often consist of adding momentum in
the descent direction (i.e. taking d̃t = (1− β)d̃t−1 + βdt) [117] and setting η adaptively.

Evaluation Metrics. The performance of a classification model is assessed using metrics
such as accuracy (rate of correct prediction), precision (rate of relevant examples amongst
correct predictions), and recall (rate of relevant/positive examples correctly classified).
These metrics, if measured on test data Dtest = {(x′i,y′i)}ni=1 (independent realizations of
the distribution D), provide insights into different aspects of generalization performance.

Challenges. Despite advancements in machine learning, classification tasks present
challenges like the handling of ambiguous or noisy data. Ensuring the model’s ability
to generalize well to unseen data is a crucial aspect of building robust classification
systems. Beyond generalization, Sanyal, Dokania, Kanade, et al. [118] note that the
’benign-overfitting’ phenomenon mentioned above, comes at the price of low robustness to
input perturbations, especially adversarial perturbations, which is the topic of section 3.2.
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3.1.2 Multi-Layer Perceptrons

The Multi-Layer Perceptron (MLP), a.k.a. the dense Neural Network, is a foundational
architecture in deep learning. It consists of an input layer, several hidden layers, and
an output layer. Each layer comprises multiple neurons, and each neuron in one layer
connects to every neuron in the next layer. The mathematical representation of a neuron’s
activation output is given by:

a = σ

(
n∑
i=1

wixi + b

)

where xi are the neuron’s inputs, wi are the weights, b is the bias, and σ is a non-linear
activation function such as the ReLU or the logistic function, given by

ReLU : x→ max(0, x) (3.7)

logistic : x→ (1 + e−x)−1 (3.8)

See also Figure 3.6 for a matrix expression at the layer level. Figure 3.5 illustrates the basic
structure of an MLP. As data passes through each layer, it undergoes a series of linear and
non-linear transformations that enable the network to learn complex patterns from data.
The penultimate layer’s activations correspond to unnormalized outputs (lc)c∈[1:C] called
logits. The final output ŷ of the MLP is computed from logits via the SoftMax function,
that is, ŷc = SoftMax(lc) := elc∑C

j=1 e
lj
∈ [0, 1], so that this final output can be interpreted

as a vector of probabilities. However, most neural networks are uncalibrated, meaning
these probabilities do not accurately approximate the frequencies of class outcomes [119].
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ŷ2

ŷC
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Figure 3.5 – Schematic of a Multi-Layer Perceptron with 3 hidden layers.
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Figure 3.6 – Matrix expression of neural activations at an intermediary layer.

An important result, proved by Hornik, Stinchcombe, and White [95], states that
MLPs with one hidden layer, are universal approximators 2, i.e. any continuous function
f : Rd 7→ RC can be approximated, on a compact set, with arbitrary accuracy, by an MLP.

3.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [96] are specialized for processing data with
a grid-like topology, such as images. CNNs employ a mathematical operation called
convolution, which is a specialized kind of linear operation, as illustrated in Figure 3.7.
Convolutional networks are neural networks that use convolution in place of general matrix
multiplication in at least one of their layers, but they also contain dense layers (see Figure
3.6) and MaxPool layers that sum-up features patches by their maximum, see Figure 3.8.
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Figure 3.7 – Illustration of a 2D convolution with an input matrix I and a kernel K.

2. So are decision trees and polynomials. Thus, while this is a nice theoretical result it does not explain
NNs success in high dimension and it does not explain the benign overfitting phenomenon.
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Figure 3.8 – Schematic view of a CNN taking as input a 224 × 224 pixels image and
outputting a prediction vector of size 100.

3.1.4 Other Neural Network Architectures

In addition to MLPs and CNNs, several other neural network architectures cater to
specific types of data and tasks. These include:

- Recurrent Neural Networks (RNNs) [120]: Designed for sequential data, such
as time series or natural language data.

- Long Short-Term Memory (LSTM) Networks [121]: A type of RNN that is
capable of learning long-term dependencies, commonly used in language modeling
and other sequence tasks.

- Generative Adversarial Networks (GANs) [122]: Composed of two networks,
a generator, and a discriminator, that compete against each other, often used for
image generation.

- Transformer Networks [123]: Based on self-attention mechanisms, transformers
have become the model of choice for a variety of natural language processing tasks.

Each of these architectures has unique characteristics and applications, contributing to
the versatility and power of deep learning methods.

In Conclusion: Deep learning’s power lies in its ability to learn intricate patterns
from large volumes of data. Its diverse applications across various fields have made it a
cornerstone of modern artificial intelligence research.
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3.2 Adversarial Robustness of Neural Networks

Adversarial robustness is a critical facet of deep learning, aiming to study and enhance
a neural network’s resilience against adversarial attacks and perturbations. As discussed
below, this concept can be related to reliability engineering, introduced in chapter 1.

3.2.1 Adversarial Attacks

Adversarial attacks on Deep Neural Networks (DNNs) exploit inherent vulnerabilities,
leading to incorrect predictions or classifications. These attacks consist of adding imper-
ceptible perturbations to a correctly classified input to craft an adversarial example, i.e. a
misclassified input, as illustrated in Figure 3.9. After exploring the concepts of white-box
and black-box attacks, we introduce the mathematical framework of adversarial robustness
and discuss two common adversarial attacks: the Fast Gradient Sign Method (FGSM)
and Projected Gradient Descent (PGD). Finally, we draw a parallel between adversarial
examples and the concept of MPFP, previously introduced in chapter 1 (see section 1.3.1).

Figure 3.9 – An adversarial example crafted for a ResNet50 model trained on ImageNet.
The imperceptibly modified image of a pig (on the right) is classified as an airliner.

White-Box vs. Black-Box Attacks

Adversarial attacks are categorized based on the attacker’s knowledge of the model:

- White-Box Attacks: In white-box settings, attackers have complete knowledge of
the model, including its architecture, parameters, and training data. This allows for
crafting more effective adversarial examples using gradient-based methods [124].

- Black-Box Attacks: Contrarily, black-box attacks occur when attackers have no
access to the model’s internals. Attackers typically use trial-and-error methods or
train surrogate models to approximate the target model’s behavior [125].
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While white-box attacks are more powerful by design, efficient black-box attacks have
been designed [126] and both attack types pose significant threats to DNNs security.

Mathematical Formulation of Adversarial Attacks

Adversarial attacks on DNNs are formulated as optimization problems where the ob-
jective is to find minimal perturbations that lead to misclassification. These perturbations
are often constrained by different norms to ensure they remain imperceptible or within a
realistic bound.

`p Norms for Adversarial Attacks

Before defining the optimization problem, we first introduce various norms used to
quantify the size of perturbations:

- `2-norm: Measures the Euclidean distance between two points. In the context of
adversarial attacks, it represents the root-mean-square of the perturbation and is
defined as ‖δ‖2 =

√∑d
i=1 δ

2
i . It is useful for capturing the overall energy of the

perturbation.

- `∞-norm: Measures the maximum change to any component of a vector. For a
vector in Rd, it given by ‖δ‖∞ = maxi∈[1:d] |δi| for adversarial perturbations. This
norm is commonly used as it limits the maximum perturbation at any pixel in an
image, maintaining visual similarity.

- `1-norm: Represents the sum of absolute values of the vector components and is
defined as ‖δ‖1 = ∑

i |δi|. The `1 norm is less common in adversarial settings but
can be useful for inducing sparse perturbations.

- `0-"norm": Represents the number values of the vector which are non-zero and is
defined as ‖δ‖0 = ∑

i |δi|0. While it is not technically a norm (it is not homogeneous),
it can still be useful to create even sparser perturbations than the `1 norm. For this
reason, `0 attacks are also called, in computer vision, few-pixel attacks.

Choosing a particular norm to model adversarial perturbation is an open problem in
general and will depend on the data type and threat model. The `2 and `∞ norms are the
most common choices and are generally easier to work with. However, works on sparse
adversarial attacks often focus either on `0 [127] or `1 [128] attacks.
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Finding Adversarial Examples

The problem of finding an adversarial example given a distortion budget ε can be
formulated as:

Find δ ∈ Rd s.t. cl(f(x0+δ)) 6= cl(f(x0)) subject to ‖δ‖p ≤ ε, x0+δ ∈ [0, 1]d (P1)

where f represents the DNN, x is the original input, δ is the adversarial perturbation,
‖ · ‖p refers to the norm (`2, `∞, `1 or `0), ε is the distortion budget pertaining to this
norm and cl : RC → [1 : C] is class the operator defined as cl(y) = argmaxi∈[1:C] yi.
Additionally, it is useful to define an adversarial loss Ladv as a surrogate for the condition
"cl(f(x0 + δ)) 6= cl(f(x0))". Though different choices are possible, see [129], the most
common choice is given by:

Ladv(f(x), y) := f(x)y − max
c∈[1:C]\{y}

f(x)c

where y = clf(x0) is the true label of x0.

Finding Minimal Norm Adversarial Attacks

A related, but more ambitious objective is that of finding an adversarial attack with
minimum distortion norm, which can be expressed as:

min
δ
‖δ‖p subject to cl(f(x0 + δ)) 6= cl(f(x0)), x0 + δ ∈ [0, 1]d. (P2)

The choice of `p-norm affects the nature of the perturbation and is selected based on
the desired properties of the adversarial examples (sparsity, imperceptibility, etc...).

We next introduce simple, yet commonly used, adversarial attacks to solve P1.

Fast Gradient Sign Method (FGSM)

The FGSM, introduced by Goodfellow et al. [124], generates adversarial examples by
adding a small, gradient-sign-based perturbation to the input:

xFGSM = x0 + δFGSM = x0 + ε · sign(∇xLadv(f(x0), y))

where ε controls the maximum perturbation magnitude, and ∇xLadv denotes the gradient
of the loss function Ladv w.r.t. to input x. FGSM is an efficient method that does not
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require fine-tuning parameters and produces an adversarial perturbation δFGSM in the `∞
sense, as one can readily check that ‖xadv

FGSM − x0‖∞ = ‖δFGSM‖∞ ≤ ε.

Projected Gradient Descent (PGD)

A more powerful attack, Projected Gradient Descent (PGD) [130], iteratively applies
small adversarial loss descent steps, while ensuring the adversarial example remains in
the feasible set S = Bp(x0, ε) := {x ∈ [0, 1]d : ‖x− x0‖p ≤ ε}, using a projection on that
space, that is:

∀t,xt+1 = ProjS (xt + α · ∇xLadv(f(xt), y)) .

After a number T of iterations, the final adversarial example is defined as xadv
PGD = xT .

Note that, by construction, xadv
PGD is in the set S. As in all descent algorithms, the choice

of α is crucial for convergence. This attack serves as the basis for the more refined FMNA
[131] attack, designed to solve problem P2, and that we use extensively in chapter 6.

Connections in Adversarial Attacks and MPFP Search

The formulation of finding minimal norm adversarial attacks in deep neural networks
and identifying the Maximal Probability Failure Point (MPFP) in statistical reliability en-
gineering showcases an interesting parallel. Both problems involve optimization techniques
but are applied in different contexts with distinct objectives.

Optimization Formulations

- Minimal Norm Adversarial Attack: The objective is to find the smallest per-
turbation that leads to misclassification for a given neural network. Mathematically,
it be rewritten as:

x∗ = argmin
x∈[0,1]d

‖x− x0‖p subject to Ladv(f(x), y) ≤ 0

This problem focuses on minimizing an `p-norm under the constraint of achieving
misclassification.

- Maximal Probability Failure Point (MPP or MPFP): In reliability engineer-
ing, the MPP or MPFP, also known as the Design Point, is defined as the point
in the transformed standard normal space where the system’s failure is most likely.
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Mathematically, it is located by maximizing the joint probability density function φd
subject to the performance function G(u) = 0. The MPFP u∗ can thus expressed as:

u∗ = argmin
u∈Rd

‖u‖2 subject to G(u) ≤ 0

This point has the smallest `2-norm amongst failure points.

Discussion of Unexplored Links

The optimization formulations in adversarial robustness in deep learning and MPFP
identification in reliability engineering share conceptual similarities. The integration of
methodologies from one domain could potentially inform and enhance the other. Well-
established techniques from reliability engineering, particularly those considering input
noise distributions, may offer new perspectives for developing robust DNNs against
adversarial attacks. Conversely, adversarial attack strategies could provide innovative
approaches for probabilistic failure analysis in complex systems. To the best of our
knowledge, this interconnection remains largely unexplored in the literature, offering a
promising avenue for future research, which we explore in detail in chapter 6.

3.2.2 Adversarial Defenses

Adversarial defenses are strategies employed to make deep neural networks more
robust against adversarial attacks. These defenses aim to either prevent successful attacks
or mitigate their impact. This section discusses various defense mechanisms and their
underlying principles.

Types of Adversarial Defenses

- Detection [132]: These defenses use statistical properties of adversarial data to
detect it at inference time. They rely on the hypothesis that adversarial data and
correct data are drawn from different probability distributions and use empirical
methods, such as the Mean Maximum Discrepancy, to perform detection.

- Denoising [133]: These defenses modify the input data before the neural network
processes it. Techniques include image smoothing, cropping, compression, and Deep
learning-based denoising techniques. Input transformation aims to remove adversarial
perturbations while retaining the original content of the input.
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- Adversarial Training (Model Hardening) [134]: This approach involves train-
ing the neural network to be inherently more robust against adversarial attacks.
Techniques include adversarial training, where the training data set Dtrain is aug-
mented with adversarial examples, random training where it’s augmented with
randomly corrupted inputs and finally regularization methods that penalize sensitiv-
ity to small perturbations, e.g. via control of its Lipschitz constant [135], [136].

- Certified Defenses [137]: Certified defenses provide theoretical robustness guaran-
tees within certain constraints. One common approach is interval-bound propagation,
which computes bounds on the output of each layer, given bounded input perturba-
tions [138]. Another approach is the use of abstract interpretation techniques [139]
to over-approximate the set of possible activations in response to input variations.
See section 3.3 for more details on certified bounds.

Challenges and Trade-offs

While adversarial defenses increase the robustness of neural networks, they often come
with trade-offs. For instance, adversarial training can lead to a decrease in the accuracy
of DNNs on clean data. Similarly, input transformations may degrade the quality of
the input, potentially impacting the model’s performance. This seemingly unavoidable
trade-off between accuracy on clean data has always been studied theoretically under the
name of "No-free-Lunch Theorem" [140]. In practice, it is crucial to balance robustness
with other performance metrics including accuracy and computational efficiency.

Recent Advances

Recent research has focused on developing more effective and efficient adversarial
defenses. This includes work on adaptive defenses that dynamically adjust based on the
detected threat level and research into understanding the theoretical limits of adversarial
robustness [141]. Hybrid approaches combining adversarial training and certified defense
strategies are also being explored for enhanced robustness [142].

Adversarial defenses remain an active area of research, with ongoing efforts to improve
their effectiveness and to understand the fundamental principles governing adversarial
robustness in deep neural networks.

94



3.3. Certified Robustness of Neural Networks

3.3 Certified Robustness of Neural Networks

Certified robustness in the context of neural networks is about developing and applying
methodologies that can provide guarantees on a network’s ability to withstand adversarial
attacks within certain bounds. This section delves into the concepts, methods, and
challenges associated with certified robustness in deep learning.

3.3.1 Understanding Certified Robustness

Certified robustness refers to the ability of a neural network to consistently classify
inputs correctly within a specified range of perturbations. Unlike empirical robustness,
presented above, certified robustness provides theoretical assurances, ensuring that the
network’s predictions remain unchanged for perturbations below a certain magnitude.

More generally, formal verification of NNs [143] involves proving input-output properties:
given an input set I ⊂ Rd, an output set O ⊂ RC , and a neural classifier f , the goal is to
prove that the image of I under f is included in O, i.e. that f(I) ⊂ O or equivalently:

∀x ∈ Rd, x ∈ I =⇒ f(x) ∈ O. (P(I,O, f))

A formal verification algorithm (FVA) is a formal procedure that can, ideally, either prove
this property whenever it is true or disprove it otherwise, e.g. by providing an example of
property violation. This problem is further illustrated in Figures 3.10 and 3.11.

Figure 3.10 – Schematic Illustration of formal verification algorithms.
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Figure 3.11 – Formal verification algorithm for Neural Networks robustness.

We now introduce the vocabulary used to characterize different FVAs:

- Local vs. Global: A FVA is local if it considers input sets I defined locally around
an input x0. In local adversarial robustness for example, I is typically an `p-norm
ball around a given input x0, i.e. I = Bp(x0, ε) = {x ∈ X , ‖x − x0‖p ≤ ε}. Most
algorithms considered here are local, as global certification is a much more ambitious
objective. However, a recent work of Levy, Yerushalmi, and Katz [144] aims to tackle
this problem by aggregating local bounds of robustness using statistical methods.

- Sound vs. Unsound: This is perhaps the most important characteristic. A FVA
is sound if it only certifies triplets (I,O, f) such that the property P(I,O, f) is true.
In contrast, it is unsound if there exists a triplet (I1,O1, f1) that would be certified
by the FVA even though there exists at least one violation of the desired property:
i.e. there exists x ∈ I1 such that f1(x1) /∈ O1.

- Complete vs. Incomplete: A FVA is complete if it always certifies a triplet
(I,O, f), whenever the property P(I,O, f) is true. On the contrary it is incomplete
if there exists at least one triplet (I,O, f) such that P(I,O, f) is true, that cannot
be certified by the algorithm (i.e. it can neither prove nor disprove the property).

A fourth, less formal, characteristic is that of scalability: an FVA satisfies this property if
its computational cost grows reasonably w.r.t. with the size of the problem.
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The certification methods of local adversarial robustness generally belong to one of the
following classes of algorithms:

- Complete Verification Methods: Also called, exact verification methods provide
formal guarantees of robustness by exhaustively analyzing all possible perturbations
within a given range. Katz, Barrett, Dill, et al. [143] proposed the first exact
verification method for Neural Networks, using tools from Satisfiability Modulo
Theories (SMT). Notably, they prove in the same work that complete verification of
Neural Networks is an NP-complete problem. See section 3.3.2 for more details.

- Incomplete Verification Methods: These methods use conservative approxima-
tions to provide robustness guarantees. They offer computationally efficient, but
incomplete, verification algorithms. They essentially work by relaxing the problem
of exact verification using different set approximations. Interval bound propagation
and abstract interpretation are prominent examples [139]. See section 3.3.3.

- Probabilistic Verification: This approach combines probabilistic models and
formal methods to obtain certified bounds on the likelihood of adversarial examples
under a certain noise distribution. Weng, Chen, Nguyen, et al. [145] use incom-
plete certification methods to get local upper and lower linear bounds on neural
networks around a given input x0, denoted respectively f (up) and f (low). These
functional bounds are combined with a probabilistic method to produce bounds
[P (low)

F (x0), P (up)
F (x0)] on the probability of errors PF(x0). The main problem with

this approach is that the linear upper and lower bounds are generally very loose.
As show multiple experiments reported in Webb, Rainforth, Teh, et al. [146], these
methods generally output vacuous bounds, i.e. [P (low)

F , P
(up)
F ] ≈ [0, 1].

3.3.2 Complete Formal Verification of Neural Networks

Complete formal verification aims to provide absolute, mathematical guarantees about
the behavior of a neural network, within a specified input range. This process involves
rigorously proving that, under specified conditions, the network will always behave as
expected, without any possibility of adversarial exploitation.

Approaches and Techniques. Approaches like Satisfiability Modulo Theories (SMT)
and Mixed Integer Linear Programming (MILP) are commonly used in complete formal
verification [143]. These techniques exhaustively analyze the network’s response to all
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possible inputs within a given perturbation set, ensuring that no adversarial examples can
lead to incorrect classifications.

Limitations and Challenges. While offering the strongest guarantees, complete formal
verification is computationally expensive and often impractical for large-scale or deep
neural networks. The complexity of these methods scales exponentially with the size of
the network, making them suitable primarily for smaller, simpler models.

3.3.3 Incomplete Formal Verification of Neural Networks

Incomplete formal verification methods provide robustness guarantees without needing
to analyze every possible input. These methods are more scalable than complete verification
techniques but offer weaker assurances.

Approximation-based Methods. Incomplete verification often involves approxima-
tion techniques, such as abstract interpretation or zonotope-based methods, which estimate
the network’s behavior under perturbations [139]. These methods balance between compu-
tational efficiency and the precision of robustness guarantees.

Trade-offs and Applicability. The primary trade-off with incomplete formal verifica-
tion is between computational tractability and the strength of the robustness guarantee.
While these methods can be applied to larger networks, the guarantees they provide are
less strong compared to complete verification.

3.3.4 Randomized Smoothing for Neural Network Robustness

Randomized smoothing was introduced by Cohen, Rosenfeld, and Kolter [147] as a
probabilistic approach to adversarial robustness certification. It works by averaging the
outputs of a neural network across multiple perturbations of the input, leading to smoother
and more stable predictions.

Mechanism and Implementation. Randomized smoothing involves producing N

perturbed versions of an input by adding Gaussian noise and then aggregating the
network’s predictions on these perturbed samples, by a vote mechanism, to determine the
final output. This process effectively smooths the decision boundary, making it harder for
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adversarial perturbations to cause misclassification. The main point of the original paper
[147] is that this gain of robustness can be certified, by using statistical properties of the
Gaussian law.

Advantages and Limitations. The primary advantage of randomized smoothing is
its simplicity and applicability to any neural network architecture. However, the method
relies on asymptotic probabilistic guarantees and may not be suitable for applications
requiring absolute robustness assurances. Moreover, it introduces a new, random classifier
f̃θ, whose computational cost is N times larger than that of the initial neural network fθ.

3.3.5 Challenges in Certified Robustness

Achieving certified robustness is not without challenges. The computational complexity
of exact verification methods often limits their applicability to smaller networks. Con-
servative approximation methods, while scalable, may provide overly cautious estimates,
impacting the model’s usability. Probabilistic verification methods deal with uncertainties
and require careful statistical interpretation. Recent research in certified robustness focuses
on balancing scalability and precision. Efforts include developing hybrid methods that
combine exact and conservative approaches and enhancing probabilistic models for better
accuracy and efficiency [148]. The field is also exploring the use of certified robustness in
real-world applications, such as autonomous vehicles and healthcare systems, where safety
and reliability are paramount [149].
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3.4 Statistical Reliability of Neural Networks

3.4.1 Motivation and Problem Statement

The assessment of statistical reliability in neural networks primarily focuses on their
robustness against input perturbations and uncertainties. This involves understanding how
neural networks behave under varied conditions and quantifying their propensity towards
failure or incorrect outputs.

Challenges and Importance in Safety-Critical Applications

In safety-critical applications, such as autonomous driving, medical diagnostics, and
aerospace engineering, the reliability of neural networks is not merely a theoretical concern
but a practical necessity. The challenges in these domains stem from several key factors:

- Complexity of Neural Network Models: Deep neural networks, with their
intricate architectures and large number of parameters, exhibit complex behaviors
that are not fully understood, making reliability assessment challenging.

- Uncertainty and Variability of Inputs: Safety-critical systems often operate in
dynamic environments with high variability and uncertainty in inputs, which can
significantly impact the performance and reliability of neural networks.

- Regulatory and Ethical Considerations: The deployment of neural networks
in safety-critical applications raises regulatory and ethical questions, necessitating
robust reliability assessments to ensure compliance and public trust.

These challenges highlight the importance of developing advanced methods for assessing
and enhancing the robustness and reliability of neural networks. This thesis aims to address
these issues by exploring novel approaches in statistical reliability engineering, particularly
focusing on the application of rare event simulation techniques to quantify the robustness
of deep neural networks against various types of input perturbations. The goal is not only
to advance the theoretical understanding of neural network reliability but also to provide
practical tools and methodologies that can be applied in real-world safety-critical systems.

Defining the Limit State Function in Neural Networks

For neural networks, the limit state function g is defined in the context of the network’s
output and classification behavior. This function quantifies the deviation from correct
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classification and is pivotal for assessing the reliability of the network.

- Limit State Function g: In the context of neural network robustness, the limit
state function g(x) is defined as:

g(x) := f(x)y0 −max
k 6=y0

f(x)k

where f(x) denotes the logits output of the neural network for input x, y0 is the true
label of the original input x0. The function g represents the difference between the
network’s confidence in the correct class and the highest confidence in any incorrect
class. Thus it is positive if the neural network classification of x is correct, and
reversely if it’s non-negative then x is misclassified. We note however that this is
one possibility out of many options. For example, for any strictly increasing function
ϕ : R→ R such that ϕ(0) = 0, the function ϕ ◦ g is a also possible choice of LSF.

- Transformed Limit State Function G: The transformed limit state functionG(u)
in the standard normal space (U-space) is derived from g through an isoprobabilistic
transformation. It is defined as:

G(u) = g(T −1(u))

where T represents the transformation from the original input space to the standard
normal space. This function plays a crucial role in applying statistical reliability
methods to neural networks. It can obtained as one of the isoprobabilistic transforms
presented in section 1.2.2 or as the inverse of a normalizing flow, see section A.4.

The primary aim of statistical reliability assessment in neural networks is to evaluate
the probability of failure under uncertain input conditions. This includes scenarios where
the network’s output deviates from expected behavior due to various input perturbations.
The failure probability in the original input space and in the standard normal space is
given by:

PF = P[g(X) ≤ 0] =
∫
{x:g(x)≤0}

p(x) dx (3.9)

PF = P[G(U) ≤ 0] =
∫
{u:G(u)≤0}

φd(u) du

where pX and φd denote the pdfs in the original and transformed spaces, respectively.
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3.4.2 Prior State-of-the-Art

The growing integration of NNs in critical applications such as autonomous driving
and healthcare makes the assessment of their statistical reliability essential. Traditional
performance metrics fall short of capturing the probabilistic nature of failures, necessitating
the development of robust methodologies that are universally applicable across various NN
architectures and domains. Recent advancements have begun addressing these challenges.

Webb, Rainforth, Teh, et al. [146] first introduced the problem of estimating the
statistical robustness of Neural Networks, i.e. the probability PF, as defined in equation
(3.9). Moreover, they proposed to do so by using the Adaptive Multiple Splitting (AMS)
method, presented in section 2.4.2. Their approach however comes with no theoretical
guarantees and we show in addition that their implementation is inefficient, in chapter 5.

Baluta, Chua, Meel, et al. [148], in contrast, use crude Monte Carlo simulations though
within the sequential hypothesis testing methodology of Wald [150]. In this approach, the
number of samples used is gradually increased to match the difficulty of the estimation
problem. This is advantageous, as it does not use too much computing power on easy
instances, i.e. when the probability of failure is small. This approach is sound and comes
with strong non-asymptotic guarantees. However, it can only be as efficient as CMC and
thus is not efficient on hard instances where the probability of failure PF is very small, as
we saw in section 2.1.2 of the previous chapter.

In a more recent work Bai, Huang, Lam, et al. [151] introduced a novel approach
using formal verification methods for neural networks (see section 3.3), combined with
Importance Sampling (see section 2.2.2), to obtain strong statistical guarantees. However,
as we saw above, exact verification of neural network outputs is an NP-complete problem
and the solvers currently used do not scale to large Neural Networks. Indeed, they only
applied their method to Neural Networks with 200 hidden neurons at most.

Therefore, significant gaps remain in developing comprehensive methodologies for the
statistical reliability assessment of neural networks. This thesis aims to bridge these gaps by
introducing novel statistical methodologies and frameworks for NN reliability assessment,
contributing to the robust and reliable deployment of NNs in real-world applications. The
necessity of statistical reliability assessment in neural networks transcends theoretical
importance, especially in critical sectors. In this section, we laid the groundwork for
exploring advanced solutions to these challenges in the subsequent chapters.
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3.5 Chapter Conclusion

In this chapter, we have explored the critical aspects of deep learning robustness,
encompassing adversarial and certified robustness. These concepts and methods lay the
foundation for the subsequent chapters in this thesis, which extend the principles of
statistical reliability engineering to assess the robustness of neural networks in the presence
of rare events.

The scientific contributions of this thesis, presented in Chapters 4, 5, and 6, bridge
the gap between traditional statistical reliability engineering and the unique challenges
posed by neural network classifiers. Our contributions address the need for efficient and
reliable statistical assessment of neural network corruption robustness, emphasizing the
importance of estimating reliability in scenarios involving rare events.

Chapter 4, titled "Efficient Statistical Assessment of Neural Network Corruption
Robustness," is the first step in this journey. It builds on the foundation established in this
chapter, introducing efficient methods for assessing the corruption robustness of neural
networks. We will delve into the details of these methods and their contributions to the
broader field of deep learning reliability.
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CHAPTER 4

Efficient Statistical Assessment of Neural Network
Corruption Robustness

4.1 Introduction

Despite state-of-the-art performances on many Computer Vision and NLP tasks, Deep
Neural Networks (DNNs) have been shown to be sensitive to both adversarial and random
perturbations [7], [8]. Concerns about their safety and reliability have come forth as their
applications move to critical fields, such as the defense sector or self-driving vehicles.

Certification A posteriori certification aims at verifying the correct behavior of a
trained network f : Rd → RC . This expected property is usually defined locally (a.k.a.
instance-wise property): the network performs correctly in the neighborhood V(xo) ⊂ Rd

of a particular input xo ∈ Rd. Let us denote ι(·|xo) : Rd → {0, 1} the function indicating a
violation of the expected property. The network is locally correct if ι(x|xo) = 0 for any
x ∈ V(xo).

In classification, the property takes the name of robustness and reads as: the output of
the network remains unchanged over the neighborhood V(xo). It certifies that the network
is robust against inputs corrupted by uncertainties of limited support or adversarial
perturbations of constrained distortion.

The certification mechanism has two desired features as defined in [152]:

- Soundness: it does not certify the network when the property does not hold.

- Completeness: it does certify the network whenever the property holds.

Corruption robustness assessment Adversarial robustness corresponds to a worst-
case analysis whereas corruption robustness considers random perturbations of the inputs.
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The key ingredient is the introduction of a statistical model π0 of epistemic uncertainties
occurring along the acquisition chain of the input. For instance, Franceschi, Fawzi, and
Fawzi [8] take Gaussian and uniform distributions over the lp ball Bp,ε(xo) of radius ε
centered on xo.

This recent trend goes with a quantitative assessment gauging to what extent a given
property holds or does not hold. For instance, Webb, Rainforth, Teh, et al. [146] estimate
the probability p that a property is violated under a given statistical model of the inputs.
This approach makes no assumption about the network under scrutiny as it is used as a
black box. This grants the scalability to tackle deep networks. The main difficulty lies in
the efficiency, i.e. the computational power needed to estimate weak probabilities. Their
lack of soundness stems from the inability to determine if the probability p of violation is
exactly zero or too small to be estimated.

This work presents a scalable and efficient procedure assessing corruption robustness un-
der a large panel of statistical models. It provides completeness and theoretical guarantees
on the lack of soundness.

4.2 Our approach to corruption robustness assess-
ment

Our approach uses statistical hypothesis testing as a certification surrogate. As in [148],
the user sets a low critical probability pc and the test assesses whether p is lower or larger.
However, rather than a testing approach powered by crude Monte Carlo simulations, our
workhorse is a more efficient Sequential Monte Carlo algorithm [153]. This so-called ‘Last
Particle’ simulation was invented by Guyader, Hengartner, and Matzner-Løber [86] and is
a variant of the Adaptive Multi-Level Sampling employed by Webb, Rainforth, Teh, et al.
[146]. We show that, with a carefully chosen termination condition, it is advantageous
both in terms of computational efficiency and theoretical guarantees.

Sect. 4.2.1 presents the ‘Last particle’ simulation that Sect. 4.2.2 applies to statistical
hypothesis testing in the framework of robustness assessment. Alg. 9 gives the pseudo-code
of our procedure.
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4.2.1 The Last Particle simulation

The goal of the Last Particle simulation is to efficiently generate samples drawn
according to a reference probability distribution π0 but in a region R := {y : h(y) > 0} ⊂
Rd where h : Rd → R, is the so-called the score function. Efficiency is the ability to perform
this task using few calls to the score function, even when probability π0(R) is small.

The simulation manages a set of N particles (i.e. samples) which are initially i.i.d.
with respect to π0. The name ‘Last Particle’ comes from the fact that the simulation ‘kills’
the sample with the lowest score at each step. The score of this last particle becomes
the intermediate level Lk at iteration k (Alg. 9, line 6). Then, that particle is refreshed
by sampling according to π0 but conditioned on the event {h(X) > Lk}. This sampling
procedure is performed by Gen(Lk, 1) in line 11 and is detailed in Sect. 4.3. Gen(−∞, N)
then simply means sampling N random vectors according to π0 (line 3).

The algorithm stops when the number of iterations reaches integer m or at any iteration
k if the intermediate threshold Lk is positive which means the simulation has generated
samples as required.

Algorithm 9 Robustness assessment with Last Particle simulation
Require: Number of particles N , critical probability level pc, confidence interval level α
Ensure: Cert
1: Initialize: p← 1− 1/N, k ← 1, Cert← False, Stop← False
2: m← Comp_m(pc, α,N) . See Sect. 4.2.3
3: {xi}Ni=1 ← Gen(−∞, N) . See Sect. 4.3
4: while k ≤ m & Stop = False do
5: i? ← arg mini∈1:N h(xi)
6: Lk ← h(xi?)
7: if Lk > 0 then
8: Stop← True
9: Pest ← pk−1

10: end if
11: xi? ← Gen(Lk, 1) . See Sect. 4.3
12: k ← k + 1
13: end while
14: if Stop = False then
15: Cert← True
16: Pest ← pc
17: end if
18: return Cert, Pest

109



Part II, Chapter 4 – Efficient Statistical Assessment of Neural Network
Corruption Robustness

Consider the function Λ : R→ R+ defined as

Λ(`) := − log π0(h(X) > `). (4.1)

This function is unknown in practice, but one can easily see that it is non-decreasing.
During one run of Alg. 9, the intermediate levels are random variables following an

increasing order by construction: L1 < L2 < · · · < Lk. We here copy the main result of
the Last Particle simulation:

Theorem 3 ([86]). The variables Λ(L1),Λ(L2), · · · are distributed as the successive arrival
times of a Poisson process with rate N : Λ(Lk) = 1/N

∑k
j=1Ej, where Ej ∼

i.i.d.E(1).

As the sum of i.i.d. exponential random variables is distributed 1 as a Gamma random
variable, this theorem states that Λ(Lk) ∼ Γ(k,N) (i.e. scale k and rate N).

4.2.2 Corruption robustness assessment as a statistical test

In the framework of robustness assessment of classifiers, the score function is related
to the usual loss in the adversarial example literature:

h(x) := max
k 6=c(xo)

fk(x)− fc(xo)(x), (4.2)

where f(x) represents the predicted probabilities (or logits) vector and c(x) := arg maxk fk(x)
is the predicted class for input x. Note that h(xo) < 0 and that the violation indicator
function of Sect. 4.1 is simply ι(x|xo) = 1(h(x) > 0). The input π0 models the cor-
ruption distribution around xo. The probability of robustness violation is written as
p := π0(h(X) > 0).

Our approach establishes a hypothesis test parametrized by a low probability pc given
by the user.

- H0: The probability of robustness violation p > pc. The network should not be
certified.

- H1: The probability of robustness violation p < pc. The network can be certified.

For a given true probability of violation p, we establish the following properties.

1. Here and after, ∼ denotes distributional equality between random variables.
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Proposition 1. The probability of false positive Pfp(p) equals:

Pfp(p) := P(Cert = True|p > pc) =
∫−N log p

0 tm−1e−tdt∫+∞
0 tm−1e−tdt

= γ(m,−N log p)
Γ(m) . (4.3)

Proof. Certification means that, according to the Alg. 9, even after m loops, the interme-
diate threshold Lm is still lower than 0. This happens with probability:

Pfp(p) = P(Lm < 0) = P(Λ(Lm) < Λ(0)) = γ(m,−N log p)
Γ(m) , (4.4)

since Λ(Lm) ∼ Γ(m,N) and Λ(0) = − log p ; γ(s, x) being the lower incomplete gamma
function.

Proposition 2. The probability of false negative Pfn(p) equals:

Pfn(p) := P(Cert = False|p < pc) =
∫+∞
−N log p t

m−1e−tdt∫+∞
0 tm−1e−tdt

= γ(m,−N log p)
Γ(m) . (4.5)

Proof. The certification failed because LK > 0 for some K ≤ m, or equivalently Λ(LK) >
Λ(0). Note that this was not true at iteration K − 1 (otherwise the while loop would have
be broken earlier). In other words, K − 1 = sup{i : ∑i

j=1Ej < −N log p, Ej ∼
i.i.d.E(1)}, so

that K − 1 follows the Poisson distribution P(−N log p). The probability of false negative
is the cdf of K − 1 at m− 1:

Pfn(p) = P(K ≤ m) = P(K − 1 ≤ m− 1) = γ(m,−N log p)
Γ(m) , (4.6)

where γ(s, x) is the upper incomplete gamma function.

This shows that Pfn(p) is an increasing function and the worst case happens when p
converges to pc:

∀p < pc, Pfn(p) ≤ Pfn(pc) = 1− Pfp(pc). (4.7)

Remark that the trade-off between false positive and false negative probabilities is hard at
p = pc. Yet, Eq. (4.6) tells that Pfn(p) is quickly vanishing as p→ 0, especially when N is
large.
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4.2.3 Corruption robustness assessment as a certification prob-
lem

In the context of certification, we show that i) our procedure is complete but not sound
and ii) false positive probability drives the lack of soundness.

A false negative is not a bad event since it prevents us from certifying when the
probability p of violation is not zero. At the same time, our procedure always certifies
whenever the property holds since Pfn(0) = 0. On the contrary, a false positive remains an
error since we certify when p > pc > 0. Let us quantify the lack of soundness by

Pns(p) := P(Not Sound |p) =

1− Pfn(p) if p < pc

Pfp(p) otherwise
(4.8)

Let us recall that in our case it holds simply 1− Pfn(p) = Pfp(p).

Proposition 3. A suitable choice of the maximum number of iterations m in Alg. 9 can
control the lack of soundness by the critical probability pc and a required significance level
α ∈ (0, 1) s.t.

Pns(p) ≤ α, ∀p ≥ pc. (4.9)

Proof. This amounts to enforce that Pfp(p) ≤ α, ∀p > pc. Since − log p is a decreasing
function, the worst case occurs in (4.4) when p→ pc. It is thus safe to ensure Pfp(pc) = α.
This is done by carefully selecting m s.t. the α-quantile of the r.v. Γ(m,N) equals − log pc.
The routine Comp_m in Alg. 9 solves this numerically with a line search (see Appendix B.1
for some approximations).

If we assume a Bayesian approach where the pdf of p is denoted by fP : [0, 1]→ R+,
then the probability of not being sound is given by

P(Not Sound) =
∫ pc

0+
(1− Pfn(p))fP (p)dp+

∫ 1

pc
Pfp(p)fP (p)dp (4.10)

≤
∫ pc

0+
fP (p)dp+ α

∫ 1

pc
fP (p)dp = α + (1− α)P(p < pc). (4.11)

The lack of soundness decreases if both α and pc are small. This makes the point with
the state-of-the-art. Baluta, Chua, Meel, et al. [148] are unable to set pc to a low value
because their simulation is based on a crude Monte Carlo, whereas Webb, Rainforth, Teh,
et al. [146] do not give any guarantee similar to our level α.

112



4.3. Sampling procedures

Table 4.1 – Maximum number of iterations m and its approximation m̃1 (see App. B.1)

N pc α = 0.1 α = 0.01 α = 0.001
m m̃1 m m̃1 m m̃1

20 10−10 489 489 512 514 529 532
20 10−30 1430 1431 1470 1471 1499 1502
10 10−10 251 251 267 269 280 283
10 10−30 726 726 754 755 774 777
2 10−10 56 56 64 65 69 73
2 10−30 154 155 167 169 177 180

Efficiency Appendix B.1 proposes approximated closed forms outlining that m scales
as log 1/pc. This is also visible in the typical values given in Table 4.1. A lower significance
level moderately increases the number of iterations. Section 4.3 details how to sample
a new particle at each iteration as needed in line 11, Alg. 9. This method consumes a
fixed number of calls to the network. In total, the maximum number of calls scales as
O(log 1/pc). This is in stark contrast with [148] where the number of calls is proportional
to 1/pc. Note that this is a maximum: our procedure makes an early stop whenever Lk > 0
(line 8, Alg. 9) and outputs Cert = False as well as failure probability estimate Pest.

4.3 Sampling procedures

This section details the crucial ingredient of our procedure: sampling a new input
X whose score h(X) is above a given level L. This random generator is called Gen(L, 1)
in line 11, Alg. 9. Appendix B.2 considers a case where the statistical model π0 and
the network are so simple that this sampling is easy. This section details more general
scenarios making no assumption about the score function. Our sampling is a rejection
procedure relying on reversible proposals and transformations.

4.3.1 Reversible proposals

We call a (parametric) proposal any a random function K : Rd × R+ → Rd. Iterations
of i.i.d. proposal generate a Markov chain which is said to be reversible (detailed balance)
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with respect to the distribution π0 if the following assertion holds:

∀s > 0, X ∼ π0 ⇒ (X, K(X, s)) ∼ (K(X, s),X). (4.12)

A simple example for π0 = N (0n;σ2In) is given in [86]:

K(X, s) := X + sN√
1 + s2

with N ∼ N (0n;σ2In). (4.13)

The rejection method described in Alg. 10 takes as input a set X of particles whose
score is larger than L. It randomly picks one particle in X and applies T times a fresh
proposal, followed by a rejection based on the score. If the selected sample is a realization
of the distribution π0 conditioned by a score larger than L, then one application of the
proposal keeps π0 invariant while the rejection ensures that the score remains above L.
By induction, iterating maintains these two properties, and in fact leaves invariant the
conditional distribution thanks to reversibility (see [86] and App. B.5).

Alg. 9 uses the procedure of Alg. 10 as follows. At iteration k, L is indeed Lk, i.e. the
score of the ‘last’ particle xi? , and X = {xi}i 6=i? which contains (N − 1) particles whose
score is larger than L. The output is one ‘fresh’ particle and the number of particles equals
N from one iteration to another.

The parameter s plays the role of strength: s = 0 implies that the proposal just copies
the input, while s→ +∞ means that K(x, s) does not depend on x. The proposal strength
s is thus important. With a small value, the proposal makes small moves. A large value
explores faster but leads to higher rejection rate. Appendix B.4 presents a strategy to
automatically control its value depending on the past behavior of the algorithm in order
to maintain a given rejection rate.

Theoretically, under some irreducibility assumption, an infinity of iterations in Alg. 10
provides a fresh particle statistically independent of the particles in X as needed in Alg. 9:

Proposition 4. Assume that, the proposal K(x, s) has a density bounded from below
uniformly in x and s ≥ s0. Then the distribution of Λ(Lm) converges towards the Gamma
distribution Γ(N,m) exponentially fast with the number T of proposal applications.

Proof and Remarks. The proof is given in Appendix B.5 and uses a classical probabilistic
coupling argument. It requires the lower bound assumption which is a form of strong
irreducibility of the proposal. This is compliant with the proposals used in this work. In
particular all the formulas given in Prop. 1 and after hold true asymptotically for large
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Algorithm 10 Sampling one particle Gen(L, 1)
Require: threshold L, finite set X of particles whose score is larger than L
Ensure: new particle X
1: X← U(X ) . Draw uniformly a particle in X
2: for k = 1 : T do
3: Z← K(X, s) . π0 reversible proposal. See Sect. 4.3.1
4: if h(Z) > L then . Rejection
5: X← Z
6: end if
7: end for
8: return X

T .

In practice, we choose the number T of iterations approximately proportional to the
inverse of the rejection rate, maintained approximately constant by tuning the proposal
strength s (see App. B.4).

Refreshing a particle consumes T calls to the score function. This is done once per
iteration of Alg. 9. Therefore, our method globally consumes O(T log 1/pc) calls. This
means that the figures in Table 4.1 are to be multiplied by T . Webb, Rainforth, Teh, et
al. [146] also manage a sample of size N , but all the particles are separately refreshed
at each iteration by applying T Metropolis-Hasting transitions. Their number of calls
per iteration is N times larger than our. Moreover, their typical setup is N ≈ 1000 and
T ≈ 1000, while ours is N ≈ 2 and T ≈ 50. Our complexity is thus smaller by 4 orders of
magnitude.

4.3.2 Isoprobabilistic transformation

The proposal (4.13) is simple but reversible only w.r.t. the normal distribution. The
isoprobabilistc transformation method is well known in the field of Statistical Reliability
Engineering [154], see Sect. 1.2.2. It amounts to working with a latent random vector
G ∼ N (0d; Id) and to apply the inverse transformation X = T −1(G,xo) mapping the
normal distribution to the reference model π0. Some well-known examples are:

- X ∼ N (xo, σ2In): D = d and T −1(G,xo) = xo + σG

- X ∼ U (B+∞,ε(xo)): D = d and T −1(G,xo) = xo + ε(2Φ−1(G)− 1) (component-wise)

- X ∼ U(B2,ε(xo)): D = d+ 2 and T −1(G,xo) = xo + εG(1 : d)/‖G‖2
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More complex examples are inverse Rosenblatt or Nataf transformations [154]. See also
section 1.2.2.

This transformation is composed with h to redefine the score function hG = h ◦ T −1

that applies on latent vector G, i.e. random vectors suitable for the proposal (4.13). This
amounts to use Alg. 9 directly on the latent variable with score function hG and in
conjunction with Alg. 10 and proposal (4.13).

4.4 Experimental evaluation

This section presents experimental results on ACAS Xu, MNIST, and ImageNet
datasets with some trained classifications networks listed in App. B.9 together with
implementation details. Experiences were run on a laptop PC (CPU=Intel(R) Core(TM)
i7-9750H, GPU=GeForce RTX 2070) except for experiences on ImageNet which were run
on a Nvidia V100 GPU.

4.4.1 Idealized case

This section considers a setup where π0 = N (xo;σ2In) and score function h is linear.
This setup is ideal because sampling a fresh particle is straightforward (i.e. without Alg. 10)
as shown in App. B.2.

Fig. 4.1 shows the impact of N . In terms of hypothesis testing (see Sect. 4.2.2), a
larger N yields steeper functions: Pfp(p) (resp. Pfn(p)) quickly vanishes to zero as p gets
larger (resp. smaller) than pc. In terms of certification (see Sect. 4.2.3), a small N is not
a bad choice: the probability Pns(p) of not being sound takes lower values in the range
p < pc. For p > pc, Pns(p) is lower than α (as stated by Prop. 3) but converges to 0 more
slowly. Last but not least, the procedure makes only 167 calls to the score function for
N = 2, instead of 1470 for N = 20.

4.4.2 ACAS Xu

We evaluate our method on the ACAS Xu (Airborne Collision Avoidance System
X for unmanned aircrafts) case study [155]. It consists in 45 neural networks used to
approximately compress a large lookup table (2GB) containing discrete decisions (’Clear-of-
conflicts’, ’weak right’, ’strong right’,’weak left’, or ’strong left’) as well as 5 input/output
properties. Each input has dimension d = 5 in this case and 45 ∗ 5 = 225 neural
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Figure 4.1 – Estimated probabilities of false positive, false negative, and not sound
certification, vs. true violation probability p in the ideal setup where pc = 10−30, α = 0.01.
Estimation over 1000 runs.

network/property pairs must be verified. We compare our method with the complete
certification based on DeepPoly [139] and Mixed-Integer Programming from the ERAN
benchmark.

Table 4.2 contains the confusion matrix taking into account the cases for which
the ERAN complete certification fails because the Gurobi optimizer either outputs an
‘infeasible’ status or reaches a timeout (set to 600 seconds). Unsurprisingly, our method is
complete in the sense that it certifies all cases certified by ERAN. It is not sound as it
admits 9 false positives. This is due to the critical probability pc which is not low enough
(the decisions were the same over 10 runs). Yet, our method takes a decision on the 6
unsolved cases by ERAN. In addition our method is faster for all ACAS Xu properties
except for the property 4, confer figure 4.2.

Table 4.2 – ACAS Xu – Confusion matrix comparing ERAN [DeepPoly+MILP] and Last
Particle [N = 2, pc = 10−50, T = 40]

ERAN
Certified Uncertified Infeasible TimeOut

Last Particle Certified 107 9 1 1
Uncertified 0 103 4 0
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Figure 4.2 – ACAS Xu – runtimes in sec. of ERAN (Deep Zonotope) and Last Particle
algorithm [N = 2, pc = 10−50, T = 40]

4.4.3 MNIST

We compare our procedure with the DeepPoly incomplete certification on MNIST [156]
with 4 neural networks from the ERAN benchmark (see App. B.9). Each input in MNIST
is a 28× 28 pixels black and white picture of a digit, so in this case the dimension of the
problem is d = 784. We focus on L∞ uniform robustness since the implementation provided
for DeepPoly cannot deal with L2 norms. We run our algorithm with N = 2, pc = 10−35

and T = 40. As in ACAS Xu experiment, our method runs faster than the ERAN method
as shown in table 4.3. Interestingly, the average runtime of our method decreases with
larger ε since the probability p of violation is bigger, whereas DeepPoly computation time
increases with the size of the input space tested. On the one hand, DeepPoly provides an
efficient lower bound to both corruption and adversarial robustness, on the other hand,
our method provides a fast upper bound. 10 independent LP simulations (runs) on the
same image always give the same output and the standard deviation is thus empirically
negligible in our setting.

4.4.4 ImageNet

For the last experiment, our method analyses 2 neural networks (ResNet50 et MobileNet)
with 100 test images from ImageNet dataset [157] correctly classified by each network.
Inputs in this dataset are (224 × 224)-pixels RGB pictures, thus the dimension of the
problem in this case is d = 150528. These experiments were run on a Nvida V100 GPU.
The average number of calls reported is rounded up and the average runtime is for a pass
over one image. The robustness is again defined against noise uniformly distributed over
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Table 4.3 – MNIST – Comparison ERAN [DeepPoly] and Last Particle [N = 2, pc =
10−35,T = 40]

ERAN Last Particle
ε Certified (%) runtime (sec.) Certified (%) runtime (sec.)
0.015 82 5.69 99 1.04 ± 0.005
0.03 62 5.92 97 1.03 ± 0.01
0.06 28 8.13 93 1.00 ± 0.01
0.1 22 8.84 85 0.96 ± 0.02

L∞ of radius ε. As one can notice, the compute time increases reasonably the input space
dimension and network size.

Table 4.4 – ImageNet - Last Particle [N = 2, pc = 10−15, T = 20]

Network ε Avg. runtime (in sec. ±std) Avg. number of calls Certified (%)

MobileNet
0.02 20.78± 0.74 1388 71
0.03 18.74± 0.18 1274 64
0.06 14.5± 0.11 1037 50

ResNet50
0.02 33.86± 1.14 1537 81
0.03 31.38± 0.48 1434 71
0.06 25.51± 0.67 1160 59

4.5 Conclusion and Limitations

The paper proposes a statistical simulation to assess corruption robustness. It looks
at this problem from a hypothesis testing (false positive/ false negative) and from a
certification (completeness / soundness) points of view. The procedure is scalable, efficient,
complete and comes with guarantees on the lack of soundness. There are two limitations:

- 1) The Last Particle simulation is sequential, which is not GPU-friendly. Yet, we
provide a code processing several inputs xo in parallel.

- 2) Our procedure is general as it uses the network as a black-box classifier. However,
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it does not exploit its gradient easily computed thanks to backpropagation. More
sophisticated mixing kernels using gradient information (e.g. Langevin Monte Carlo,
Hamiltonian Monte Carlo [9]) can accelerate convergence.

Moreover, the statistical guarantees we obtained, though non-asymptotic w.r.t. to the
number of particles N , apply exactly only for the idealized algorithm introduced above,
which corresponds by ergodicity to an asymptotic guarantee for the original algorithm
as T goes to +∞. In practice, we observed that taking T ≈ 40 was sufficient to obtain
convergence, as the results did not change drastically with a higher number of kernel
iterations. However, obtaining non-asymptotic guarantees, under reasonable hypothesis
on the score function s, with both a finite number of samples N and a finite number of
kernel iterations would be a crucial addition, allowing for a more reliable local robustness
testing algorithm.
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CHAPTER 5

Gradient-Informed Neural Network Statistical Robustness
Estimation

5.1 Introduction

In many machine learning applications, test data are captured by a sensor, then
quantized or compressed, and finally transmitted to the model. In each of these steps,
uncertainties may corrupt the pieces of data. For instance, in autonomous driving,
capturing the scene at night implies increasing the ISO parameter of the camera whence a
photo-site noise increase [158]. Statistical (a.k.a. Corruption) robustness is defined as the
ability to perform correctly on test data corrupted by a given random noise distribution
[159].

Statistical robustness is a related but different concept from adversarial robustness,
which is the ability of a model to perform correctly over maliciously perturbed data [124].
Gilmer, Ford, Carlini, et al. [7] study in detail the relationship between these concepts.
Moreover, Franceschi, Fawzi, and Fawzi [160] provide theoretical and empirical evidence
that, for input data of dimension d, there is a ratio of order 1√

d
between the typical power

of an adversarial signal and that of a random perturbation to trigger a misclassification
in a neural network. Neural network classifiers are thus robust against random noise to
a certain extent. Yet, safety requirements in critical applications, e.g. in autonomous
driving [149], ask for very weak probabilities of failure under a typical noise power [161].

Webb, Rainforth, Teh, et al. [146] quantify the local statistical robustness of a model
by its probability of failure. The major difficulty of this quantitative approach is the
estimation of weak probabilities with accuracy and low complexity. The above-mentioned
work resorts to a Sequential Monte Carlo technique (SMC, [162], [163]), dedicated to rare
event analysis: the Adaptive Multi-Level Splitting (AMLS) procedure [86]. Querying the
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model is assumed to be time-consuming and the number of calls gauges the complexity
of the estimator. Although their work proposes experiments on neural networks, it is
not specific to deep learning as they use the model as a black box function. Our paper
proposes an alternative gradient-informed SMC algorithm.

The proposed algorithm trades off the universality of the aforementioned work against
a lower complexity, by leveraging a key feature of neural networks: the computation
of the gradient of the model (here w.r.t. its input) is easily implemented thanks to
auto-differentiation and cheaply run thanks to back-propagation.

5.2 Sketch of the Algorithm

5.2.1 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) is a type MCMC sampling method [9] making
use of gradient computations w.r.t. a given differentiable potential U : Rd 7→ R (see also
appendix A) to generates samples asymptotically distributed according to πU ∝ e−U . We
define (up to a constant) the joint probability measure µ: µ(q, p) ∝ e−H(q,p)dqdp, with

H(q, p) ∆= U(q) + ‖p‖2/2,

and the related Hamiltonian dynamics in continuous time:
dQt = Ptdt,

dPt = −∇U(Qt)dt.
(5.1)

Hamiltonian Monte Carlo method is based on the symplectic and time-reversible
discretization of this dynamics, also known as the Verlet scheme:


Pi+1/2 = Pi − 1

2∇U(Qi)∆t,

Qi+1 = Qi + Pi+1/2∆t,

Pi+1 = Pi+1/2 − 1
2∇U(Qi+1)∆t.

(5.2)

After L iterations of the Verlet scheme, the deterministic map (Q0, P0) 7→ (QL,−PL)
is reversible in time (an involution), and it conserves the flat phase-space measure dqdp.
One can then apply the standard Metropolis accept-reject rule, which consists in accepting
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the proposal (QL,−PL) with probability:

min(1, e−H((QL,−PL))+H(Q0,P0)). (5.3)

The result is denoted (Q̃L; P̃L) ∈ {(Q0, P0), (QL,−PL)}. The obtained Markovian kernel
has stationary joint distribution µ, whose first marginal is the target πU . When L = 1 the
HMC kernel becomes a Metropolis-adjusted discretization of a diffusion with a drift −∇U ,
called the Metropolis Adjusted Langevin Algorithm (MALA, see [164]).

First, we define a one-parameter family of smooth densities, which enables sampling
with the gradient-informed HMC kernel defined above. Second, we recast the rare event
problem as the normalization with respect to π0 of the final density of this family. Finally,
we construct our algorithm as a SMC approach [163] integrating the gradient-informed
HMC kernel.

5.2.2 A Family of Distributions: Gibbs Measures

Let us consider the potential function:

x ∈ Rd 7→ V (x) ∆= |−h(x)|+ ≥ 0, (5.4)

where |a|+ = a if a ≥ 0 and 0 otherwise, and function h defined in Sect. 4.2.2 of the
previous chapter. Here the set {x : V (x) = 0} is the set of latent vectors that give birth
to violations of the local robustness property since the corresponding inputs are classified
with a different label than that of of the original input x0. Roughly speaking, points with
a low potential value are ‘close’ to being misclassified, whereas points with a high potential
are ’far’ from the decision boundary.

Given in addition a tempering parameter β ≥ 0 (called the inverse temperature in
statistical physics) and the reference measure π0 modelling uncertainties in the inputs, we
construct the following family of probabilities:

πβ(dx) ∆= e−βV (x)

Zβ
π0(dx), (5.5)

Zβ =
∫
e−βV (x)π0(dx) = Eπ0

[
e−βV (x)

]
, (5.6)

where Zβ < +∞ is the normalizing constant assumed to be finite.
This family of distributions, called the Gibbs measures, ranges from the reference
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measure π0 for β = 0 to the same distribution but conditioned on the event of failure
when β →∞. Indeed, it happens that

∀x ∈ Rd exp(−βV (x)) β→∞→ 1V (x)=0 (5.7)

In other words, π+∞(dx) = 1s(x)≥0π0(dx)/Z+∞.

We denote the expectation of a test function t over the distribution πβ by Eπβ [t(x)].
An interesting property used to construct our estimator in section 5.2.3 is that for any
couple (α, β) ∈ R2

+, the ratio Zβ/Zα can be expressed as an expectation over the measure
πα:

Zβ = ZαEπα
[
e−(β−α)V (x)

]
. (5.8)

Therefore, if one can sample from measure πα, then one can estimate the ratio Zβ/Zα by
an empirical average.

Connection to the Rare Event Normalizing constants are in general analytically
intractable and hard to integrate numerically. In the family of distributions we con-
sider (5.5), we simply have Z0 = 1, while for β = +∞ the normalizing constant is indeed
the probability we want to estimate:

Z+∞ = Eπ0

[
1s(x)≥0

]
= R[θ, ρ0].Z+∞ =

∫
1V (x)=0π0(dx) = 〈1V=0〉π0

=
∫

1s(x)≥0π0(dx) = 〈1s≥0〉π0
= I[π0, s, θ, φ].

that is the probability that the perturbed input is classified with a different label.

Z+∞,0 =
∫

1V (x)=0π(dx)

= P[predict(x0 + U) 6= predict(x0)], U ∼ π0

The problem becomes the evaluation of the ratio Z+∞/Z0, known to be (in statistical
physics or Bayesian statistics) more tractable than the direct evaluation of normalizations.
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5.2.3 Key Ideas Supporting the Algorithms

Our algorithm is built upon the following key ideas. The first step is to split the estima-
tion problem into several easier intricate ones like in multilevel splitting algorithms [165].
This is driven by a series of increasing parameters 0 = β0 ≤ β1 ≤ · · · ≤ βK−1 ≤ βK = +∞.
Indeed, using equation (5.8) recursively, we have

ZβK = EπβK−1

[
e−(βK−βK−1)V (x)

]
× ZβK−1

=
K−1∏
k=0

Eπβk

[
e−(βk+1−βk)V (x)

]
.

(5.9)

The main idea is then to estimate each expectation term of the product by an empirical aver-
age over a sample of N particles {X(n)

k }Nn=1 with empirical distribution πNβk
∆= 1

N

∑N
n=1 δx(n)

k

,
and then to use a Sequential Monte Carlo (SMC) strategy [162] to sample πNβk+1

from πNβk .
In the present context, we use the following simple iteration of selection and mutation
steps:

Selection For each particle X(n)
k in the sample defining πNβk , kill it with probability

e−(βk+1−βk)[V (x(n)
k

)−minm V (x(m)
k

)]. Let Kk be the number of killed particles. Draw Kk

new particles uniformly among the N −Kk survivors to keep the sample size equal
to N .

Mutation Independently mutate particles using a Markov kernel X(n)
k+1 = Ker(X(n)

k , βk+1)
which leaves invariant the distribution πβk+1 (see Sect. 5.3.1).

The following proposition establishes the soundness of this simulation method.

Proposition 5. The following estimator of R[θ, ρ0] = Z+∞ is unbiased and consistent:

Ẑ+∞ =
K−1∏
k=0

EπN
βk

[
e−(βk+1−βk)V (x)

]
=

K−1∏
k=0

Ẑβk+1

Ẑβk
.

See App. C.2 for the proof.
In a similar way, if one denote

X1(X0) = Ker(X0, V, β1,∆t)

one random step of discretized Langevin scheme leaving πβ1 invariant, then for any test
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function φ, one has :

〈φ 〉πβ1
= 〈E [φ(X1)]〉πβ1

=Zβ0

Zβ1

〈
E
[
φ(X1)e−(β1−β0)V

]〉
πβ0

. (5.10)

The next step is to split the estimation problem into several easier intricate ones like
in multilevel splitting algorithms [165]. This is driven by a series of increasing inverse
temperatures:
β0 ≤ β1 ≤ · · · ≤ βK−1 ≤ βK ,

ZβK = ZβK
ZβK−1

× ZβK−1

=
〈
e−(βK−βK−1)V

〉
πβK−1

ZβK−1

=
〈
E
[
e−(βK−βK−1)V (XK−1(xK2 )−(βK−1−βK−2)V (xK−2

]〉
πβK−2 (dxK2 )

ZβK−2 ,

=
〈

E
[
e−
∑K

k=1(βk−βk−1)V (Xk−1(x0))
]〉

π0(dx0)
Zβ0 ,

where in the last line, we have defined Xk(x0) = Ker(Xk−1(x0), V, βk,∆t) for k ≥ 1 and
X0(x0) = x0 ∼ π0; and then have used (5.10) iteratively on k. Thus we devise a first
simple estimator of I,

Î = 1
N

N∑
n=1

1
V (x(n)

K−1)=0 × e
−
∑K−1

k=1 (βk−βk−1)V (x(n)
k−1), (5.11)

where x(n), n = 1 . . . N denotes N i.i.d. copies with initial X0 ∼ π0.

Estimators of normalizing constants based on (5.11) have been extensively studied in
the Sequential Monte Carlo literature [162], [166]. In statistical physics, it is referred to as
‘Jarzinsky’s equality’ for non-equilibrium 1 processes [167]–[169]. In the present work, we
also adaptively tune the choice of the cooling schedule denoted now β̂Nk at step k. The
latter must be a function of the empirical distribution of the x(n)

k′ for k′ ≤ k that mitigate
the weight degeneracy in (5.11) per unit computation cost. This idea has been for instance
analyzed in [163].

1. Non-equilibrium refers to the fact that the parameter βk defining the chain Xk, may evolve slightly
faster than the typical mixing time of the associated Markov chain.
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5.3 Proposed Algorithm

This section details the algorithm whose pseudo-code is described in Alg. 11.

5.3.1 Sampling Kernel

Given a particle X(n)
k issued from the selection step, the mutation step in our main

method uses the Hamiltonian Monte Carlo method of Sect. 5.2.1. We set U = βkV − log π0

(= − log πβk up to an additive constant), Q0 = X
(n)
k , and we sample P0 independently

according to a standard Gaussian law. We apply L steps of the Verlet scheme (5.2) and
accept the outcome with probability given in (5.3). The result of this Metropolis step
denoted Q̃L in Sect. 5.2.1 defines the sampling kernel:

Ker∆t,L(X(n)
k , βk) ∆= Q̃L. (5.12)

This kernel is invariant for the distribution πβk which is already approximated by the
sample (X(n)

k )n after the selection step. We can adaptively tune the number of times the
kernel is applied by applying the statistical stopping condition, based on auto-correlations,
proposed by [170]. This corresponds to the AutoCorrCond function used at line 20 in the
algorithm 11. In the experiments section 6.3 we chose Tmax such that the condition is never
reached, i.e. T = Tmax. The auto-correlations condition is used to make sure that the
proposed sample has low correlation to the initial value X(n)

k . Similarly the time step ∆t
and the number L of Verlet iterations of the scheme (5.2) are tuned for each particle using
the algorithm 5 of [170], based on previous work from [171] in the context of Bayesian
Analysis. This is a genetic algorithm adapting at each iteration of the kernel the value of
∆t and L parameters using the ESJD (expectd square jump distance) performance metric
[170]. We also use in the experiments section the MALA (Metropolis-Adjusted Langevin
Algorithm) method, in which case L is fixed to 1 and only ∆t is adapted, using the same
genetic algorithm. The BatchKer notation in line 18 outlines the batch processing of the
particles through the Verlet scheme and the Metropolis steps.

Note that the potential in the Verlet scheme need not be equal to the target potential
Ũ 6= U in order for the kernel to exactly leave invariant πU . In particular, if U = − log π0(q)
with π0 a standard isotropic Gaussian, it is possible to choose:

Ũ = −κ∆t log π0(q)
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with −κ∆t = 2
1+
√

1−∆t2 (notice that κ∆t
∆t→0→ 1) which implies the exact energy conservation

H(QL,−PL) = H(Q0, P0) leading to an identically one acceptance rate.

We now address the issue of sampling according to πβk in order to estimate each term
of product (5.9) with Sequential Monte Carlo simulations. We assume that we know at
least how to sample according to the reference measure π0. This gives a first set of inputs
denoted by {x(n)

0 }Nn=1. We define the following independent Markov chains based on (5.12):
for k ∈ [0 : K − 1] and n ∈ [1 : N ],

X
(n)
k+1 = Ker(X(n)

k , βkV − log(π0),∆t), (5.13)

and X(n)
0 = x

(n)
0 ∼ π0.

5.3.2 Adaptive Tempering Parameters

The proposed algorithm also tunes the choice of the cooling schedule (βk)k. A too
rapidly increasing schedule increases the variance of the terms in product (5.11). A too-slow
schedule increases the number of steps to reach the rare event, whence a bigger complexity.
This trade-off has been studied in [163] for instance, where it is recommended to maintain
the Efficient Sample Size constant across the steps. It amounts to set the next tempering
parameter such that

ESS(βk+1) = αN (5.14)

for a user-chosen α ∈ (1/N, 1) where

ESS(β) ∆=

(∑N
n=1 e

−(β−βk)V (X(n)
k

)
)2

(∑N
n=1 e

−2(β−βk)V (X(n)
k

)
) . (5.15)

Note that ESS is a continuous and decreasing function. The value of βk+1 > βk is
numerically found using the bisection method. This process is called AdaptESS in lines 2
and 23. In practice the choice of parameter α in eq. 5.14 is crucial to obtain an efficient
schedule. In the absence of a theoretically founded rule for selecting this parameter, we
propose to fine-tune it for each Neural Network architecture.
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5.4 Experiments

This section compares the efficiency of four Sequential Monte Carlo methods:

H-SMC This is our gradient-informed algorithm, i.e. the SMC Alg. 11 with the HMC
kernel at line 18. The main parameters are T and α, introduced in Sect. 5.3.

MALA-SMC A variant of our method, where the HMC kernel at line 18 is constrained
with L = 1 (instead of being adaptively tuned, see Sect. 5.3.1).

RW-SMC A black-box version of our method, the HMC at line 18 being replaced
by a Metropolis-Hastings kernel [172] with Gaussian proposals Q: Q(X, s) ∆=
X+sG√

1+s2 with G ∼ N (0; I). The parameter s is called the kernel strength and
is tuned adaptively at each iteration. RW stands for "Random Walk".

MLS-SMC This is the Adaptive Multi-Level Splitting SMC used in [146]. It works on
a different family of (non-smooth) distributions πτ (dx) ∆= 1s(x)>τπ0(dx) and uses a
Metropolis-Hastings kernel with uniform noise proposals. The main parameters are
T and the survival rate of particles denoted ρ in [146]. Throughout the experiments,
we use directly their implementation and take ρ = 0.1 following the authors’ choice
in their paper.

Note that the HMC and MALA kernels only work with smooth densities, as those defined
in Sect. 5.2.2. Thus it could not be applied directly to those used in MLS-SMC.
The comparison of H-SMC and RW-SMC allows us to single out the efficiency gain of
adding the gradient information in the kernel. Comparing H-SMC and MALA-SMC (which
are both gradient-based methods) we can evaluate the relative performance of Hamiltonian
Monte Carlo vs. Langevin Monte Carlo kernels for robustness estimation.

All variants of our method are fairly adaptive but still require the user to choose
parameters α, T , and N . In practice, we noticed a good trade-off between speed and
accuracy for α in the range [0.8, 0.95]. Throughout the experience, we let N and T vary
and compare algorithms based on their accuracy and variance for a given computational
cost. All experiments run on a cluster using various GPUs, hence we report the number of
calls to the model and its gradient rather than compute times. We count each call to the
gradient as two calls to the model function to reflect the cost of the back-propagation. Our
code is available on GitHub at: https://github.com/karimtito/stat_reliability_measure.

The tendency to underestimate rare event probabilities in Monte Carlo estimation is a
well-known phenomenon and shall be interpreted (when assessing the quality of algorithms)
as a manifestation of variance due to a heavy tail towards larger values.
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5.4.1 Toy Model

We begin our analysis by a sanity check of the algorithms on a simple problem where
we know the true probability of failure. We consider a linear model s(x) = u>x − τ ,
where u is a fixed unit norm vector in Rd and τ a bias such that the true probability is
pτ = Φ(−τ).

We evaluate the quality of the estimation by the Mean Relative Error (MRE). For an
estimator run nrun times, this metric is given by MRE = n−1

run

∑nrun
i=1 |p̂(i)

c /pτ − 1|. In this
section, we used nrun = 200 for all the experiments. All the estimators are run with
several numbers of particles. A bigger number provides a better estimation quality while
demanding a larger number of calls.
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Figure 5.1 – Mean Relative Error vs. the average number of calls, for target probability
pτ = 10−6 , and number of particles N ∈ {32, 64, 128, 256, 512, 1024}. Gradient-informed
methods (H/MALA-SMC) outperform black box methods (MLS/RW-SMC) on a linear
toy model.

Figure 5.1 and 5.2 compare the efficiency of the four algorithms by plotting the Mean
Relative Error as a function of the average number of calls. Gradient-informed methods
outperform black box methods, especially for a lower number of calls to the score function.
However for the relatively easier instance of rare event simulation (pτ = 10−6 on Fig. 5.1),
the difference in performance is smaller and vanishes for a higher number of calls. On the
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opposite, for the same problem with a higher threshold (pτ = 10−12 on Fig. 5.2), gradient-
informed methods outperform black box methods even at a higher average number of calls.
In particular, the RW-SMC algorithm displays bad performance on this harder estimation
problem, which shows that integrating gradient information in the proposal kernel can
highly increase the efficiency of an SMC method. Finally, on these two problems, we do
not notice a real performance gap between the H-SMC and the MALA-SMC algorithms.
Simply, for a given number of particles N and kernel iteration T the MALA-SMC makes
fewer calls to the gradients, since it only makes one call to the gradient function per
proposal.
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Figure 5.2 – Mean Relative Error vs. the average number of calls, for target probability
pτ = 10−12, and number of particles N ∈ {64, 128, 256, 512, 1024}. Gradient-informed
methods (H/MALA-SMC) outperform black box methods (MLS/RW-SMC) on a linear
toy model.

5.4.2 MNIST

We next compare the aforementioned methods on a robustness estimation problem
for a multilayer perceptron trained on the MNIST dataset [156]. Its architecture is given
in Appendix A. The input dimension is d = 784. We consider a uniform perturbation
E ∼ U([−ε, ε]d) added to a correctly classified image from the test set. To map the
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Gaussian distribution, presupposed by our methods, to this uniform distribution, we use
the transform Tε : x 7→ ε(2Φ(x)− 1), see Sect. 4.3.2. In contrast, the MLS-SMC does not
use such a transform and works directly with the uniform distribution.

In the absence of ground truth, we obtain a reference probability by running an
expensive simulation with the H-SMC algorithm taking N = 4096, T = 200, and 200
repetitions. We plot it on each figure (as a blue dotted line) for reference only and it is
not used to compute any errors. However, it can be seen that all methods converge to this
value, for T large enough, as the number of particles N increases. Figures 5.3, 5.4, 5.5
and 5.6 show the convergence of estimators for different values of T . Those were obtained
with 100 runs and taking N ∈ {32, 64, 128, 256, 512, 1024} (except for T ≥ 200 in Fig. 5.3
where N only takes value in {8, 16}). Figures 5.3 and 5.4 correspond to the same value of
epsilon (ε = 0.15), whereas Fig. 5.5 and 5.6 use a higher value (ε = 0.18).

Looking at figures 5.3 and 5.5, one sees that the failure probabilities estimated by
MLS-SMC are very low for lower values of T . They increase steadily with T and come
closer to the reference but with a higher average number of calls. In figure 5.3, MLS-SMC
at last converges to the same mean log probability for T ≥ 500 whereas the H-SMC
only needs T = 10 and offers a much smaller standard deviation. This confirms the idea
that the slow mixing of the Metropolis-Hastings kernel used by [146] makes it difficult to
estimate low probabilities efficiently. On the contrary, our gradient-informed algorithms
(H-SMC and MALA-SMC) seem to benefit from a better mixing kernel.

This is further highlighted in figures 5.4 and 5.6, where we compare the convergence
of the RW-SMC and H/MALA-SMC. These algorithms are in fact identical except for
the transition kernels proposals, which are gradient-informed only for H/MALA-SMC.
Figure 5.4 shows that the RW-SMC estimates are low compared to the reference value
for low values of T . Figure 5.6 corresponds to an easier estimation problem where this
negative bias is less evident but gradient-informed again display noticeably lower variances
for a given number of calls to the neural network.

Figures 5.4 and 5.6 also allow to compare the convergence of the MALA-SMC and
H-SMC algorithms. Figure 5.4 shows that both algorithms underestimate the probability
of failure for T = 1, with MALA-SMC having a lower bias. However both algorithms
mean estimates are close to the reference probability for T = 5, and MALA-SMC is still
slightly more efficient than H-SMC. This may seem somewhat surpising as MALA-SMC is
only a constrained version of H-SMC. This might mean that our adaptive tuning of the
parameter L, see section 5.3.2, is far from optimal.
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Figure 5.3 – Mean estimate of log10(p) vs Average number of calls, comparing MLS-SMC
and H-SMC on MNIST data, for uniform random noise on hyper-rectangle of radius
ε = 0.15. Error bars show empirical standard deviations over 100 runs.

5.4.3 ImageNet

We conclude our empirical analysis with experiments on two convolutional neural
networks (CNN) architectures trained on ImageNet [99], namely MobileNetV2 [173]
and ResNet18 [100]. The former architecture contains 53 layers and around 3.4 million
parameters, while the latter contains 18 layers and around 11 million parameters. Though
rather light-weight models, they still pose an important challenge for probability of failure
estimation. Note that no experiment was done over ImageNet in [146]. We consider
an additive uniform noise E ∼ U([−ε, ε]d) on two images from the ImageNet validation
dataset correctly classified repspectively by the pre-trained MobileNetV2 model and the
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[H-SMC, T=200, N=4096, α= 0.9]
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H-SMC, T=5, α=0.85
MALA-SMC, T=1, α=0.85
MALA-SMC, T=5, α=0.85
RW-SMC, T=5, α=0.85
RW-SMC, T=10, α=0.85
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Figure 5.4 – Mean estimate of log10(p) vs the Average number of calls, comparing RW-SMC,
MALA-SMC and H-SMC on MNIST data, for uniform random noise on hyper-rectangle
of radius ε = 0.15. Error bars show empirical standard deviations over 100 runs.

pre-trained ResNet18 model.
Figures 5.7 and 5.8 show the convergence of estimators for different values of T .

Those were obtained over 50 runs and taking N ∈ {64, 128, 256, 512}. In figure 5.7 a
value for MLS-SMC is missing from the graph for T = 20, N = 64 (red-dotted line): this
configuration gave a mean estimation of log10(p) equal to −∞ (a zero probability). For the
ResNet18 network the MLS-SMC gave a null estimation of the failure probability, even for
large values T and N , thus it is not represented on figure 5.8. As in MNIST experiments,
the MLS-SMC tends to underestimate the probability of failure, especially for low values of
T . Similarly, we see on figure 5.7 that the RW-SMC clearly underestimates the probability
of failure. On figure 5.8, the negative bias of the RW-SMC is less striking, however it
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Figure 5.5 – Mean estimate of log10(p) vs Average number of calls, comparing MLS-SMC
and H-SMC on MNIST data, for uniform random noise on hyper-rectangle of radius
ε = 0.18. Error bars show empirical standard deviations over 100 runs.

displays higher variance than the H/MALA-SMC. This highlight a lower efficiency of
kernels based on Random Walk proposals (RW-SMC and MLS-SMC) in comparison to
the gradient-informed kernels used in the H-SMC and MALA-SMC algorithms.
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Figure 5.6 – Mean estimate of log10(p) vs the Average number of calls, comparing RW-SMC,
MALA-SMC and H-SMC on MNIST data, for uniform random noise on hyper-rectangle
of radius ε = 0.18. Error bars show empirical standard deviations over 100 runs.
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Algorithm 11 SMC Estimator of the probability of failure
Require: Number of particles N , Generator of i.i.d. reference measure samples Gen,

Kernel Ker, Potential function V , Maximum number of iterations of the kernel T , Max-
imum number of iterations nmax, Minimum relative effective sample size α, Minimum
rare event rate r.

Ensure: Pest
1: X0 ∼ Gen(N) . X is a [N × d] array
2: g ← 1, k ← 1, β1 ← AdaptESS(V (X0), 0, α)
3: . see Sect. 5.3.2
4: while 1

N

∑N
n=1 1

V (X(n)
k−1)=0 < r & k ≤ nmax do

5: G← exp(−(βk − βk−1)V (Xk−1))
6: g ← g × 1

N

∑N
n=1G

(n)

7: Xk ← Xk−1 . Initially copying previous particles
8: U ∼ U([0, 1])⊗N
9: Ikilled ← {i : U (i) > (G(i)/max1≤n≤N G

(n))}
10: . Selection phase
11: for i in Ikilled do
12: X

(i)
k ∼ U({X(j)

k−1}j /∈Ikilled)
13: . Resampling particles uniformly amongst survivors
14: end for
15: StopFlag← False, t← 1, Hist1 ← {Xk}
16: while t ≤ T & StopFlag = False do
17: Xk ← BatchKer((X(n)

k )1≤n≤N , βk)
18: . Mutations, see Sect. 5.3.1
19: Histt+1 ← Histt × {Xk}
20: StopFlag← AutoCorrCond(Histt+1)
21: t← t+ 1
22: end while
23: βk+1 ← AdaptESS(V (Xk), βk, α) . see Sect. 5.3.2
24: k ← k + 1
25: end while
26: Pest ← g × 1

N

∑N
n=1 1

V (X(n)
k−1)=0
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Figure 5.7 – Mean estimate of log10(p) vs Average number of calls to MobileNetV2, with
uniform noise over a hyper-rectangle of radius ε = 0.13, on ImageNet data. Error bars
represent empirical standard deviation over 50 runs.
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Figure 5.8 – Mean estimate of log10(p) vs Average number of calls to ResNet18, with
uniform noise over a hyper-rectangle of radius ε = 0.01, on ImageNet data. Error bars
represent empirical standard deviation over 50 runs.
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5.5 Limitations

Our gradient-informed method can be applied in principle to any machine learning
model that is (almost everywhere) differentiable w.r.t. its input. However, unlike black-box
methods, it cannot be applied to other machine learning models such as random forests
and k-nearest neighbors algorithms. An other issue is that, as for the method from Webb,
Rainforth, Teh, et al. [146], we are currently limited to asymptotic guarantees, see Prop. 5.
Deriving non-asymptotic statistical guarantees, as provided in [1], is left for future work.
Yet another point of contention is the use of the Effective Sample Size (ESS) metric for
inverse temperature scheduling, as presented in 5.3.2. In deed, as pointed out recently by
[61], this metric is based on an approximation relying on multiple assumptions which are
hard to verify in practice. Therefore, developing a better, theoretically-founded, scheduling
method could be a worthy direction for future research.

5.6 Societal Impact

With the development of DNN-based cyber-physical systems, a rigorous quantitative
assessment of their reliability becomes of utmost importance. This paper has proposed
and evaluated examples of state-of-the-art Monte Carlo methods to perform this task,
especially to quickly detect unsatisfactory classifiers whose probabilities of failure are too
large.

5.7 Conclusion

This paper shows how to estimate robustness to random noise in neural network
classifiers more efficiently using a gradient-informed sampling technique. Our technique
plugs MALA and Hamiltonian Monte Carlo methods within Sequential Monte Carlo to this
rare event probability estimation problem. The performance of these gradient-informed
methods is first checked on a linear toy model. We then compare these methods to a
state-of-the-art black-box method for robustness estimation, and a black-box variant of
our algorithm, on deep neural network models trained with MNIST and ImageNet data.
We observe a faster mixing of our algorithm compared to black box methods, which in
turn leads to more efficient estimation highlighted by lower variances for a given number
of calls to the Neural Network functions. Future works include the investigation of novel
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non-asymptotic guarantees on error rates, and the extension of our methods to statistical
hypothesis testing.
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CHAPTER 6

Fast Reliability Estimation of Neural Networks
with Adversarial Attack-Driven Importance Sampling

6.1 Introduction

In the fast-evolving landscape of Deep Learning, ensuring the robustness and reliability
of Neural Networks (NNs) is paramount, particularly for critical decision-making applica-
tions. This chapter introduces a unique approach for estimating the reliability of trained
Neural Networks, with a focus on their performance in the vicinity of clean inputs. We
propose a method that amalgamates adversarial attacks with Importance Sampling (IS),
an established technique in reliability engineering, to refine the efficiency and precision of
reliability assessments in NNs.

Adversarial attacks, traditionally aimed at uncovering NN vulnerabilities, are repur-
posed in our methodology as a strategic guide for the IS process. This approach enables
the identification of the most error-prone regions in the input space, thus directing the
sampling process more efficiently than traditional Monte Carlo methods.

A key contribution of this research is the comparative analysis of our method with
classical techniques from Statistical Reliability Engineering, as introduced in the chapter
1. These techniques include the First Order Reliability Method (FORM), Second Order
Reliability Method (SORM), and Line Sampling (LS), which have not been extensively
applied to DNNs in very high-dimensional spaces, a gap our study aims to fill.

In addition, we compare this IS estimator to other rare event simulation algorithms
introduced in chapter 2. These include Cross-entropy-based Adaptive Importance Sampling
(CE-AIS) and Adaptive Multilevel Splitting (AMS). We show, for various architectures
and datasets, that the proposed method is more efficient and faster than these techniques.

However, this novel estimator is not without limitations. Its effectiveness is inherently
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tied to the efficiency of adversarial attacks; it can only be as good as the adversarial attacks
it relies on. Moreover, the occurrence of weight degeneracy in extremely high-dimensional
data, such as ImageNet data where d = 150528, restricts the applicability of this method.
These constraints highlight the need for continued refinement and adaptation of the
methodology, especially in dealing with large-scale, complex data structures.

In this chapter, we delve into the intricacies of integrating adversarial attack strategies
within the IS framework, addressing both the algorithmic challenges and the theoretical
aspects. We focus on adapting these strategies for high-dimensional reliability analysis in
NNs, confronting computational and conceptual hurdles.

Through empirical studies and experiments using real-world datasets and NN models,
we validate our approach. These evaluations demonstrate the method’s efficacy in rapidly
estimating NN reliability and shed light on failure patterns in high-dimensional models.

We conclude the chapter by discussing the broader impact of our findings, their potential
applications across various domains, and directions for future research. By leveraging
adversarial phenomena within neural networks, this work contributes a novel perspective
to the field of reliability assessment in complex machine learning models.

6.2 Proposed Method

This paper introduces a simple yet innovative approach to speed up the reliability
estimation of Neural Networks by integrating adversarial attacks into the framework
of Importance Sampling (IS). This method is built upon the foundations of Statistical
Reliability Engineering and especially MPFP-based Importance Sampling [154], introduced
in section 2.2.2. Here, we leverage the strengths of specific adversarial attacks to construct
a biased distribution for more effective sampling. The key lies in using these attacks to
shift the focus of the sampling process towards regions in the input space where the NN is
most vulnerable, thus allowing for a more accurate estimation of the model’s reliability.

6.2.1 Adversarial Examples

Adversarial examples are considered a vulnerability of machine learning classifiers (see
Sect. 3.2.1). Given an input x0, in Rd, well classified by a classifier f : Rd 7→ RC , the
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optimal adversarial example is defined as the nearest misclassified input:

x? = argmin
x∈[0,1]d:cl(f(x))6=cl(f(x0))

dist(x,x0), (6.1)

where dist(x,x0) is a distance between x and x0, and cl : RC → [1 : C] is class the operator
defined as cl(y) = argmaxi∈[1:C] yi. In the case where the classifier is a neural network,
the event {cl(f(x)) 6= cl(f(x0))} can be rephrased as {h(x) ≥ 0}, where h is the score
function defined in section 4.2.2 of chapter 4.

If distance dist is the Euclidean norm and in the case of Gaussian noise perturbations,
then the adversarial example (6.1) is indeed a design point, or MPFP, as defined in Sect
1.3.1. More generally, as in the previous chapters, we now suppose the existence of an
isoprobablistic transform T so that it is possible to work in the U-space (see Sect 1.2.2)
and define accordingly the transformed LSF function as: G := −h ◦ T −1. As far as we
know, this connection between adversarial examples and statistical reliability engineering
has never been made before. This implies that algorithms from this later domain, like the
HL-RF method designed in the 70s (see Sect. 1.3.1), could find `2 adversarial examples.
This is not necessarily the case due to the high dimensionality of the input space in modern
classification problems and one might expect that the recent attacks find adversarial
examples more efficiently.

The Carlini and Wagner [129] (CW) attack is known for its precision in scouting
adversarial examples with minimal perturbation. In the U-space, it amounts to solving
the Lagrangian formulation of (1.21):

Define J(u, λ) := ‖u‖2 + λG(u),∀λ ≤ 0 and the optimization problem:

u?λ := arg min
x∈[0,1]d

J(u, λ). (6.2)

This is done with a numerical solver. On top of it, a line search finds λ? s.t. G(u?λ?) = 0.
This attack requires a fair amount of function G gradient computations. Of note, we have
the following property: 2u?λ + λ∇G(u?λ) = 0, or:

cos (u?λ,∇G(u?λ)) = −1. (6.3)

The FMNA attack [131] (abbreviation for "Fast Minimum-norm Adversarial Attack"),
focuses on finding the shortest path to the decision boundary, iteratively refining the input
to project it onto the decision boundary. This is done by using a modified version of the
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PGD attack, presented in section 3.2.1, where at each iteration the distortion budget ε is
chosen adaptively. This method is much faster and almost as precise as CW.

6.2.2 Constructing the Biased Distribution

Utilizing these adversarial attacks, we construct a shifted Gaussian distribution in the
U-space (standard normal space), where the mean of the distribution is adjusted based on
the insights gained from the attack. This results in a biased distribution that is centered
around the region of high failure probability. The steps for constructing this distribution
are as follows:

Mapping to the U-Space: Design an isoprobabilistic transform, as explained in
Sect. 1.2.2, that maps inputs from the X-space to the U-space. In the U-space, the
uncertainties are distributed according to the standard normal law on Rd.

Generating Adversarial Examples: Employ attacks described in Sect. 6.2.1 to find
the adversarial example u? that highlights the NN’s vulnerable point. Select an attack
efficient in high-dimensional spaces and designed to find adversarial examples of minimal
norm, like CW or FMNA.

Creating the Biased Distribution: Formulate a Gaussian distribution in the U-
space centered around the adversarial example, ensuring that the sampling process is
concentrated around the most vulnerable regions of the NN. Run the Importance Sampling
procedure with Yi

i.i.d.∼ N (u?, I). This means that the likelihood ratio function is given by

w(Yi) = φ(Yi)
fY (Yi)

= exp (‖u?‖2/2−Y>i u?). (6.4)

6.2.3 Assumptions

This method relies on the following assumptions:
A1. The design point is unique. This means that u? is a global minimum of J(u, λ?).

If existing, local minima lie further away from the origin. This means that the probability
of failure is dominated by the probability of sampling U around this unique design point.

A2. The attack finds this design point.
A3. The frontier locally around the design point u? is not so curved.
Once the attack produces a point u?, it is easy to check that it lies on the boundary, i.e.

G(u?) = 0, and it is a local minimum because (6.3) holds. However, this does not prove
that u? is the true global minimum. As for assumption A3, if too many random vectors Yi
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drawn for the IS lead to G(Yi) > 0, i.e. are not in the rare event region, the Importance
Sampling estimation will be zero or dominated by too few samples. Statisticians say that
the efficient number of samples is too small which provokes a non-reliable estimation. In
conclusion, we have means for controlling that assumption A3 holds and assumption A2 is
partly fulfilled. Yet, it is impossible to ensure that A1 holds.

6.3 Experimental results

6.3.1 Experimental Setup

We compare the convergence of several Rare Event Simulation methods: our Adversarial-
Attack Driven IS of Sect 6.2 (which we abbreviate by ADV-IS), the Line Sampling
(LS) estimator (see Sect. 1.3.4), the Cross-Entropy Importance Sampling (CE-IS) (see
Sect. 2.3.2) using the Gaussian parametric family QU-Gauss defined in Sect.2.3.1, and two
estimators based on Sequential Monte Carlo (SMC) techniques, the Multilevel Splitting
[63] and the Langevin Monte Carlo within an SMC scheme [174] introduced in the
previous chapter, that we note respectively MLS-SMC and MALA-SMC (MALA stands
for Metropolized Langevin Algorithm). As we saw in the previous chapter, an important
parameter for these SMC methods, in addition to the number of samples N , is the number
T of applications of a transition kernel, which reduces the dependence between samples.
Theoretical guarantees are derived under the perfect independence (T =∞). In practice,
T <∞ has a huge impact on the number of calls to the NN.

We consider three models across two datasets and apply uniform noise to different
instances. For each instance, we compute a reference probability of failure P̂Ref

F by using
an expensive IS compute using the FMNA search method mentioned above and taking N
of the order 106. Crucially, we check a posteriori that all methods converge towards the
same value. Still, this reference probability is not a ground truth, and therefore we also
report metrics independent of its value, as explained below. In addition to benchmarking
the rare event simulation methods, we compute both the FORM estimate PFORM

F and,
whenever possible, the SORM estimate P SORM

F , as defined above, using different search
methods. These estimators are quantitively compared thanks to two metrics:

- The coefficient of variation ∆[·], defined for an estimator P̂F as, ∆[P̂F] =
√

V[P̂F]
E[P̂F] .

- The relative mean absolute error, note RE[·], define as: RE[P̂F] = E[|PF − P̂F|] · P−1
F .
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Label predicted:7 Label predicted:7 Label predicted:7

Figure 6.1 – Input x0,1 (on the left) and examples of perturbations with uniform noise
ε = 0.18.

In practice, we have to estimate these metrics by their empirical counterpart. Moreover,
as RE explicitly involves the failure probability, we will use the reference probability
P̂Ref
F as a surrogate. Crucially, for a fair comparison, these metrics and the complexity

of an estimator (gauged by the number of calls) are measured over the same runs. All
experiments were run on a personal laptop, with a 4060RTX GPU.

6.3.2 MNIST

MLP with two hidden layers

We first compare these methods via experiments on a simple Multi-Layer Perceptron
(MLP) with only 2 hidden layers (each containing 200 neurons) trained on the MNIST
dataset [156], which will be referred to as model M1, and on a first instance we note
x0,1. This dataset consists of 28 × 28, black-and-white, images of hand-written digits.
We consider additive noise perturbations, uniform on the `∞ ball of radius ε = 0.18 and
centered on the input x0,1, see Figure 6.3. This distribution can be mapped to the standard
Gaussian law via an isoprobabilistic transform. At this level of noise, the probability of
misclassification is low. Running an expensive simulation we find that P̂Ref

F ≈ 1.95 · 10−6.
We apply the FORM and SORM methods with three adversarial attacks, the Carlini-

Wagner attack, FMNA attack, and HLRF attack. Indeed, the dimension is d = 784 for
this dataset and it is possible to manipulate matrices of size d× d and in particular to
evaluate, via auto-differentiation, the Hessian of G. Table 6.1 presents the results. At a
glance, it is clear that FORM significantly overestimates the probability of failure when
the FMNA and HLRF attacks approximately locate the MPFP, but underestimates it
with the CW attack. This indicates that the decision boundary at u∗ is not "flat" enough
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Table 6.1 – FORM/SORM estimations of P̂Ref
F ≈ 1.95 · 10−6 for model M1 and input x0,1,

with uniform noise (ε = 0.18).

Attack PFORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 7.2 · 10−8 6.39 · 10−6 −0.69

FMNA 1.17 · 10−4 6.49 · 10−6 −0.995
HLRF 7.53 · 10−5 6.65 · 10−6 −0.977

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 5.26 −4.1 · 10−5 0.19

FMNA 3.68 −1.4 · 10−5 0.16
HLRF 3.79 −2.0 · 10−2 0.01

for a linear approximation to hold. This idea is further reinforced by observing that the
SORM estimators are indeed closer to the actual probability of failure. In addition, we
note that, here, the CW attack performed poorly, as its norm is higher in comparison
with that of the two other attacks. Moreover, the Hessian ∇2h = −∇2G has both positive
and negative eigenvalues at the CW point, whereas it only has non-positive eigenvalues at
the other attack points. We ran all these search algorithms with a limited budget of 100
iterations, thus the failure of the CW attack should be interpreted in this light.

Carlini-Wagner Attack 
 Prediction: 3

FMNA Attack 
 Prediction:3 

HLRF Attack 
 Prediction: 3

Figure 6.2 – Adversarial attacks for model M1 on input x0,1.
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Figure 6.3 – Eigenvalues of the Hessian of score function h at the CW attack (on the left),
at the FMNA attack (in the center), and the HLRF attack (on the right).

We next, look at the convergence of the statistical methods w.r.t. the average number
of calls, noted N̄calls. In Figure 6.4 we see that all methods seem to converge towards the
reference probability as the average number of calls increases, though their convergence rate
differs. In particular, the Sequential Monte Carlo methods, MALA-SMC and MLS-SMC,
converge noticeably slower than the LS and ADV-IS methods. The cross-entropy (CE) AIS
method has a significant overhead as it must first converge towards a good parameter θ in
the parameter space Θ, as explained in Sect. 2.3.2, before exploiting its final distribution
to estimate PF. We focus on the IS and LS methods in Figure 6.5, comparing their speed of
convergence for different adversarial attacks. These figures are obtained by: running each
method 400 times (with different random seeds to obtain standard errors) using a given
number of samples N and repeating the same operation for increasing values of N . For
example, we ran the ADV-IS for values of N in the range {100, 1000, 10000, 50000, 100000}.
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Figure 6.4 – Convergence of different estimators w.r.t. the number of calls to the model
M1.
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Figure 6.5 – Convergence of IS and LS with different attacks.

Finally, we give the best performance of each algorithm (w.r.t. the number of samples
used) in terms of the coefficient of variation multiplied by a measure of the computational
burden. In practice, we use either the number of calls to the model N̄calls (i.e. the metric
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Table 6.2 – Best performance of estimators of PF for the model M1 and input x0,1, with
uniform noise (ε = 0.18).

Method Nbest time (sec.) RE[P̂F]
ADV-IS 5 · 104 5 · 10−2 2.5 · 10−2

CE-IS 3 · 104 2.3 · 10−1 4.3 · 10−2

LS 50 4.3 · 10−2 2.1 · 10−1

MALA 256 2.0 · 10−1 2.1 · 10−1

MLS 1024 2.5 · 10−2 2.6 · 10−1

∆̂2[P̂F]× N̄calls ∆̂2[P̂F]× time N̄calls
ADV-IS 48 4.8 · 10−5 5 · 104

CE-IS 460 7 · 10−4 1.5 · 105

LS 77 2.9 · 10−3 1200
MALA 3000 1.5 · 10−2 4 · 104

MLS 6200 2.7 · 10−3 5.7 · 104

∆̂2[P̂F]×N̄calls), or the duration of the simulation in seconds (i.e. the metric ∆̂2[P̂F]×time).
Table 6.2 reports the results where Nbest denotes the number of samples that gave the
best performance in terms of the metric ∆̂2[P̂F]× N̄calls. All metrics reported in this table
pertain to the ADV-IS method outperforms all other methods, for both metrics mentioned
above. The CE-IS method also obtains good performance, for a relatively low number of
samples Nbest used for estimation. However, the total number of calls needed for CE-IS is
in the order of hundreds of thousands.

MLP with four hidden layers

We now consider a similar MLP architecture with four hidden layers (each hidden
layer containing 200 neurons), denoted M2. Simulation results for the FORM and SORM
algorithms are given in the Appendix. Overall, these results support the idea that the
decision boundaries of neural networks do not appear to be (locally) flat enough to be
accurately approximated by hyperplanes, as the FORM method tends to overestimate the
probability by an order of 10 or more. In contrast, the SORM method shows promising
results, with the caveat that it systematically underestimates the probability of failure,
which can be problematic when considering safety-critical applications. Focusing now on
statistical estimators, we study their empirical convergence, for two images x0,1 and x0,2,
with similar perturbations as in the previous section, i.e. uniform noise on `∞ balls of
radius ε = 0.18. Simulation results are reported in Figure 6.7.
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Figure 6.6 – Convergence of the estimators w.r.t. the number of calls to the model M2, on
the input x0,2
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Figure 6.7 – Convergence of different estimators w.r.t. the number of calls to the model
M2, on the input x0,3

Like in previous experiments, the SMC-based algorithms converge much slower than
both LS and the adversarial-attack-driven IS algorithm, though the gap is slightly less
important in the case of input x0,3, which has a higher probability of failure, leading in
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Table 6.3 – FORM/SORM estimations of PF ≈ 2.4 · 10−7 for the custom CNN model,
with uniform noise (ε = 0.03).

Attack PFORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 3.91 · 10−5 NA −0.97

FMNA 5.22 · 10−5 NA −0.985
HLRF 2.16 · 10−5 NA −0.965

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 3.95 −1.2 · 10−4 1.49

FMNA 3.88 −8.0 · 10−5 0.23
HLRF 4.09 −8.1 · 10−2 0.03

particular to less dramatic underestimation of the MLS algorithm when using a smaller
number of samples. Interestingly, in this example, the MLS algorithm, which is a black-box
method, seems to slightly outperform the MALA-SMC algorithm, introduced in the last
chapter, that uses gradient information [174]. This can be explained again by the relatively
high probability of failure, as PF ≈ 10−2.

6.3.3 CIFAR10

We move on to the CIFAR10 dataset, which is more challenging for rare event simulation
as the dimension of each input is d = 322 × 3 = 3072. We run experiments on a custom
convolutional neural network, which contains four convolutional layers, followed by two
dense layers and contains in total of 476 278 scalar parameters.

As before, we applied the FORM algorithm using different adversarial attacks, and
the associated results are reported in Table 6.3. However, it is not possible to apply the
SORM algorithm, as it requires too much memory capacity and computing power.

Pred. label: Automobile Pred. label: Automobile Pred. label: Automobile

Figure 6.8 – Clean input of the CIFAR10 dataset (on the left) and copies perturbed with
Gaussian noise (σ = 0.02).
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We next focus on the simulation algorithms’ performance. Again, we primarily compare
the LS and adversarial-attack-driven IS algorithm to sequential Monte Carlo methods
used in the literature [146], [174]. The associated results are reported in Figure 6.9 below.
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Figure 6.9 – Convergence of different estimators w.r.t. the number of calls to the CNN.

We obtain similar results to that obtained for MNIST data: Our method and Line
Sampling converge in a few thousand calls whereas state-of-the-art SMC algorithms require
a few hundreads thousands of calls to obtain similar standard errors. That being said,
the performance gap is somewhat smaller, a fact we attribute to the curse of dimension
(COD), leading to weight degeneracy in Importance Sampling [57].

Figure 6.10 compares the performance of the adversarial attacks. We notice again very
small differences in terms of performance for the FMNA and HLRF algorithms. This
means that the HLRF algorithm we have implemented for Neural Networks proves to be a
powerful adversarial attack.
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Figure 6.10 – Convergence of different estimators w.r.t. the number of calls to the CNN.

6.3.4 ImageNet Results

Finally, we conclude this section with experimental results obtained on the ImageNet
[99] dataset, where d = 2242 × 3 = 150528. We test the probabilistic robustness of a
pre-trained ResNet-18 model [100] under uniform noise of size ε = 0.055, around a clean
image. Figure 6.11 illustrates the convergence of ADV-IS, MALA, and MLS estimation
methods. In contrast to previous experiments, we see that the convergence rate of ADV-IS
is worse than SMC-based methods. We attribute this poor performance to the high
dimension of the problem, leading to catastrophic weight degeneracy, as mentioned above.
In this case, it seems that SMC methods are more reliable than the proposed adversarial
attack-based Importance Sampling. Thus, proposing a method that is both highly efficient
for moderately high-dimensional data and reliable even for very high-dimensional data
remains an important direction for future research in probabilistic robustness assessment.
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Figure 6.11 – Convergence of different estimators w.r.t. the number of calls to a ResNet-18
model pre-trained on ImageNet.

6.4 Conclusion

In conclusion, through extensive empirical analysis, we showed that the proposed
algorithm outperforms, in terms of speed and computational efficiency, state-of-the-art
methods for Neural Network reliability assessment, for moderately high dimensional
datasets such as MNIST and CIFAR10. However, as mentioned above, a crucial limitation
of our approach, in comparison with the sequential Monte Carlo approach, is the inability
to handle very high-dimensional data. Indeed, while the algorithm we introduced in the
previous chapter is slower, we showed that it still can efficiently estimate probabilities of
failure on the ImageNet dataset. This limitation of the proposed approach is directly linked
to the phenomenon of weight degeneracy, which becomes very difficult to handle when
the problem dimension, d, is of the order of hundreds of thousands or more. Developing a
hybrid approach between this method and splitting techniques, which has been done for
another type of reliability problem [175], is a promising avenue for future research.
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Final Conclusion and Perspectives

To sum up, after reviewing the necessary concepts and methods from the fields of
Statistical Reliability Engineering, Rare Event Simulation, and Deep Learning Robustness,
we have presented three original contributions dedicated to the estimation of the probability
of misclassification of a Deep Neural Network around a clean input. We next recall the
essential results of our work and the limitations that are inherent to the methodologies we
have proposed. Finally, we conclude this text with a short tour of promising avenues for
future research in the field of Deep Learning reliability and robustness.

Results and Limitations

The primary goal of our thesis was to explore the potential of rare event simulation
methodologies as applied to Deep Learning models. We have first shown how to use the
Last Particle algorithm to emulate DNN certification with a statistical hypothesis testing
approach. Even though our numerical experiments can be convincing, a more thorough
analysis is still necessary to obtain reliable bounds on the probability of false positives.
Indeed, the statistical guarantees we provided, while non-asymptotic with respect to the
number of samples, are only applicable as such to an idealized version of the algorithm, as
described in the work of [86] and more succinctly in chapter 4.

From another angle, the algorithm described in chapter 4 constitutes a ’black-box’
methodology, meaning that it uses direct outputs (typically the logits) of the neural
network. This can be advantageous as it can be applied to various classifiers, with the
caveat of requiring that their primary output be a continuous function of the inputs, as
opposed to a hard label (e.g. in binary classification it should output a score between 0,
and 1, instead of directly outputting a label prediction). Indeed, we presented applications
of this method to various classification algorithms, including Random Forests and Gradient
Boosting, in a work we presented orally at the Conference on Artificial Intelligence for
Defense [176], in 2021. However, in the specific case of Neural Networks, gradients of
the model are readily accessible thanks to back-propagation. Therefore, the work we
introduced in chapter 5 came as a natural extension of the work that began in the paper of
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Webb, Rainforth, Teh, et al. [146], where they used random walks kernels instead. Indeed,
we showed that this modified version of the Splitting algorithm was more efficient in most
cases, though it does require defining new target densities, similar to what is done in
Improved CE [72], in the context of Cross-Entropy based IS (see section 2.3.2). Again, a
crucial issue is the lack of non-asymptotic statistical guarantees, as in this case, we only
have asymptotic guarantees, valid when the number of samples, N , goes to +∞.

Finally, while these works improve on the state-of-the-art for DNNs reliability es-
timation, they ignored important methodologies from the field of statistical reliability
engineering. Our latest work, presented in chapter 6, remedies this shortcoming, and
introduces a new methodology using elements from both adversarial robustness and the
field of structural reliability. We also applied FORM, SORM, and CE-AIS to the DNN’s
reliability estimation problems, which had not been done yet in the deep learning literature.
The proposed method proved to be more efficient than splitting methods for moderately
high-dimensional data. However, we were not able to reproduce these results in very
high-dimension, as exemplified by ImageNet. We link this failure to the phenomenon of
weight degeneracy, as was studied in the paper of Li, Bengtsson, and Bickel [57]. Proposing
an improvement of this method for such high-dimensional data, perhaps by combining it
with an SMC-based method, is an important direction for future research.

Future Directions

Building on this foundation, future research can take multiple trajectories. We next
focus on three of those:

1. Broadening reliability assessment to include other models of Deep Learning. In
particular, Reinforcement Learning [177], as the framework is especially relevant for
critical systems, such as autonomous vehicles and it has an inherently non-stationary
structure. Time-related issues were inexistent in this thesis, as we only studied static
models. However, both reliability engineering and rare event simulation methods
introduced in this thesis have natural extensions to dynamic models.

2. Advancing rare event simulation: bridging the gap between IS and the importance
of Splitting methods, eventually by combining these approaches, e.g., as done for
dynamic models in the work of Jacquemart-Tomi, Morio, and Le Gland [175].

3. Applying these methodologies in real-world contexts, particularly in critical domains
like autonomous driving and medical diagnostics, to enhance safety and reliability.

158



Reliability Assessments in Reinforcement Learning

The exploration of reliability in the context of Reinforcement Learning (RL) represents
an exciting frontier for future research. RL systems, particularly those deployed in dynamic
and potentially hazardous environments, demand rigorous reliability assessments [178].
The challenge lies in the inherent variability and non-stationarity of RL environments,
which complicates the application of traditional reliability assessment methods. Future
work should focus on adapting and extending the methodologies developed for static models
to accommodate the temporal complexities of RL. This may involve the development of
novel simulation techniques or the application of sequential decision-making frameworks
to model the evolving state of RL systems accurately. Addressing these challenges will
be critical for ensuring the safety and dependability of RL applications in fields such as
autonomous navigation and interactive robotics.

Bridging the Gap between Importance Sampling and Splitting

The dichotomy between Importance Sampling (IS) and Splitting methods presents
another promising area for future exploration. While each approach has its strengths, a
hybrid methodology that leverages the advantages of both could significantly enhance the
efficiency and accuracy of rare event simulations. The integration of IS’s ability to focus
computational resources on high-probability failure regions with Splitting’s structured
exploration of the state space offers a compelling strategy for tackling complex reliability
problems. Future research should investigate algorithmic frameworks that combine these
methods, drawing inspiration from successful hybridizations in dynamic models [175]. Such
advancements could lead to breakthroughs in the simulation of rare events, with broad
applications across engineering and science.

Applications in the Real-World

The ultimate test of any theoretical advancement lies in its applicability to real-world
problems. The methodologies developed in this thesis hold considerable potential for
improving the safety and reliability of deep learning-based critical systems in domains
such as autonomous driving [179] and medical diagnostics [180]. Future research should
focus on implementing and validating these methods in practical settings, working closely
with industry partners to tailor the approaches to specific challenges. For instance, the
integration of reliability assessments into the design and testing phases of autonomous
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vehicle development could significantly reduce the risk of system failures. Similarly, in
medical diagnostics, enhancing the reliability of Deep Learning models could lead to more
accurate and trustworthy decision-making tools. By bridging the gap between theoretical
research and practical application, future efforts can contribute to the creation of safer,
more reliable technology that benefits society as a whole.

In conclusion, the research presented in this thesis lays the groundwork for a wide
range of future investigations into the reliability of Deep Learning models. As the field
continues to evolve, it will be imperative to explore these and other directions to ensure
the development of robust and trustworthy AI systems.
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APPENDIX A

Non-Uniform Random Variables Generation

This appendix provides methodologies for generating non-uniform random variables, a
fundamental task in simulation and probabilistic modeling. We first discuss three prevalent
methods: Inverse Transform Sampling, Rejection Sampling, and Monte Carlo Markov
Chains (MCMC), each catering to different scenarios and distribution characteristics.
Whereas Inverse Transform and Rejection Sampling are exact methods, MCMC is only
approximate although it can come with asymptotic convergence guarantees.

A.1 Inverse Transform Sampling

Inverse Transform Sampling is an effective technique for generating samples of a random
variable or vector, particularly when the components of the random vector are independent
and each of their individual cdfs are known.

Given a random vector Z = (Z1, Z2, . . . , Zd) taking values in Rd, assume that the
components Zi are independent with known cdfs FZi(zi). The aim is to simulate random
variables that follow the distribution of Z.

The Inverse Transform Sampling procedure can be broken down as follows:

1. Generate d independent uniform random samples V1, V2, . . . , Vd in the interval [0, 1].

2. For each component i ∈ [1 : d], compute the inverse of the corresponding cdf to
transform the uniform sample: Zi = F−1

Zi
(Vi).

3. Combine the transformed components to form the random vector Z = (Z1, Z2, . . . , Zd).

The resulting random vector z simulates the distribution of Z under the assumption
that the components of Z are independent. The independence assumption is critical for
the validity of this method; it allows the joint distribution of Z to be expressed as the
product of its marginal distributions.
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Inverse Transform Sampling is powerful due to its simplicity and precision in generating
samples from the target distribution through the cdf inversion. However, it requires that
the cdfs of the individual components are invertible and that the inverse can be computed
efficiently, which may not be feasible for complex distributions. For distributions with
dependencies among components or where the cdf is not easily invertible, alternative
methods such as Rejection Sampling or Monte Carlo Markov Chains (MCMC) might be
more appropriate.

A.2 Rejection Sampling

Rejection Sampling, also known as Accept-Reject Method, is a technique for generating
samples from a target distribution pZ when direct sampling is challenging. It is particularly
useful when the probability density function (pdf) pZ(z) of Z is known only up to a
normalization constant or is otherwise difficult to sample from directly.

The method involves using a proposal distribution q(z) from which it is easy to sample,
and a scaling constant k such that kq(z) dominates pZ(z) for all z. The steps for Rejection
Sampling are as follows:

1. Identify a proposal distribution q(z) and determine a scaling constant k such that
kq(z) ≥ pZ(z) for all z in the support of Z.

2. Generate a sample z′ from the proposal distribution q(z).

3. Generate a uniform random sample U from the interval [0, 1].

4. Compute the acceptance ratio r = pZ(z′)
kq(z′) . Accept the sample z′ if U ≤ r; otherwise,

reject z′.

5. Repeat the process until a sufficient number of samples are accepted.

The efficiency of Rejection Sampling depends heavily on how well the proposal distri-
bution q(z) approximates the target distribution pZ(z) and on the choice of the scaling
constant k. A poorly chosen proposal distribution or scaling constant can lead to a high
rejection rate, making the method inefficient. Therefore, it’s crucial to select q(z) and k
judiciously to ensure a high acceptance rate and efficient sampling.

While Rejection Sampling is versatile and applicable to a wide range of problems, it is
most efficient when the proposal distribution is close to the target distribution, and the
dimensionality of the problem is not excessively high. In cases where the dimensionality
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is high or the target distribution is complex, alternative methods such as Monte Carlo
Markov Chains (MCMC) may be more suitable.

A.3 Markov Chains Monte Carlo (MCMC)

Markov Chains Monte Carlo (MCMC) methods are robust techniques for sampling
from probability distributions, particularly when direct sampling is challenging. These
methods are crucial in scenarios involving high-dimensional spaces or distributions known
only up to a normalization constant.

A.3.1 General Principles of MCMC

MCMC algorithms are centered around the construction of a Markov chain that
converges to the target distribution as its stationary distribution. The steps typically
involved in an MCMC method include:

1. Initializing the chain with an arbitrary starting point.

2. Defining a proposal distribution that governs the transitions between states in the
Markov chain.

3. Employing an acceptance criterion to decide whether to move to the proposed state,
ensuring convergence to the target distribution.

4. Iterating the process for a sufficient number of steps to allow the chain to converge
and to collect a representative set of samples.

The convergence to the target distribution and the efficiency of the sampling process
depends on the choice of the proposal distribution and the acceptance criterion.

A.3.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a versatile and widely used MCMC method. It
provides a framework for sampling from complex distributions, accommodating a broad
range of proposal distributions.

1. Initialize the chain with a starting point x0.

2. Define a proposal distribution q(x|xcurrent).

3. Generate a candidate state x′ from q(x|xcurrent).
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4. Calculate the acceptance probability α = min
(
1, p(x′)q(xcurrent|x′)

p(xcurrent)q(x′|xcurrent)

)
.

5. Accept the candidate state with probability α, otherwise remain in the current state.

6. Repeat the process to generate a sequence of states.

The algorithm’s effectiveness hinges on the appropriate choice of the proposal distribu-
tion and the accuracy of the acceptance probability calculation.

A.3.3 Application of Metropolis-Hastings in the U-Space

The U-space, characterized by the standard normal distribution U ∼ N (0d, Id), simpli-
fies the application of MCMC methods, including the Metropolis-Hastings algorithm. In
this space, sampling from conditional distributions such as L(U|S(U) > γ) becomes more
straightforward.

Sampling from Conditional Distributions in the U-Space

Using the Metropolis-Hastings algorithm in the U-space to sample from a conditional
distribution involves:

1. Initializing the chain with a starting point u0 from the standard normal distribution
N (0d, Id).

2. Selecting a proposal distribution q(u|ucurrent) that is suitable for the standard normal
characteristics of the U-space.

3. Generating a candidate state u′ from q(u|ucurrent).

4. Calculating the acceptance probability α, ensuring it reflects the condition S(u) > γ

in the U-space.

5. Accepting the candidate state with probability α, otherwise remaining in the current
state.

6. Repeating the process to generate a sequence of states, focusing on the region where
S(u) > γ.

This application of the Metropolis-Hastings algorithm in the U-space is particularly
effective for exploring regions of interest defined by a continuous function S and a threshold
γ, enabling detailed analysis of system behavior under specified conditions.
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A.3.4 Hamiltonian Monte Carlo (HMC) and Gibbs Measures

Hamiltonian Monte Carlo (HMC) is an advanced MCMC method that draws inspiration
from Hamiltonian dynamics in classical mechanics, making it highly effective for sampling
from complex probability distributions. It is particularly well-suited for Gibbs measures,
characterized by πβ ∝ exp−βV (u) φd(u), where V (u) is the potential energy function, β is
the inverse temperature parameter, and φd(u) is the pdf of the standard normal distribution
in Rd.

Principles of Hamiltonian Monte Carlo

HMC augments the state space with auxiliary momentum variables and defines a
Hamiltonian function that combines the potential energy, associated with the Gibbs
measure, and the kinetic energy of the momentum variables. The evolution of the system
is governed by Hamilton’s equations and is discretized using numerical integration methods
such as the Verlet Integration scheme. This approach allows HMC to propose new states
that can efficiently explore the target distribution, especially in high-dimensional spaces.

Verlet Integration Scheme

The Verlet Integration scheme is crucial for simulating the Hamiltonian dynamics in
HMC. It ensures the stability and energy conservation of the simulated dynamics, which
are essential for maintaining the detailed balance and ergodicity of the Markov chain. The
Verlet Integration scheme for HMC with Gibbs measures involves the following steps:

Algorithm 12 Verlet Integration for HMC with Gibbs Measures
Require: Initial position q0, Initial momentum p0, Step size ε, Number of steps L,
Potential energy function V (q)

Ensure: New state (qL, pL)
Initialize q ← q0, p← p0
for i = 1 to L do

p← p− ε
2 · ∇V (q) . Half-step update for momentum

q ← q + ε · p . Full-step update for position
p← p− ε

2 · ∇V (q) . Half-step update for momentum
end for
Optionally negate p to make the proposal symmetric

The leapfrogging nature of the updates ensures the reversibility and symplectic nature
of the integration, both of which are crucial for the accuracy and efficiency of HMC.
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Application of HMC to Gibbs Measures in the U-Space

When applied to Gibbs measures in the U-space, HMC can efficiently explore complex
energy landscapes characterized by the potential energy function V . The use of the Verlet
Integration scheme allows for precise simulation of the Hamiltonian dynamics, ensuring
that the chain explores the critical regions of the target distribution, such as those defined
by high energy barriers or narrow passages.

In the U-space, the standard normal distribution φd(u) simplifies the computation
of the kinetic energy term in the Hamiltonian, making HMC particularly well-suited for
these settings. The algorithm facilitates sampling from conditional distributions, such as
L(U|S(U) > γ), enabling the study of rare events and system behavior under extreme
conditions.

In summary, HMC offers a powerful approach for sampling from complex distributions,
particularly Gibbs measures in high-dimensional spaces. Its foundation in Hamiltonian
dynamics and use of the Verlet Integration scheme enable efficient exploration of the state
space, making it an invaluable tool in advanced statistical reliability analysis and rare
event simulation.

In conclusion, MCMC methods, and specifically the Metropolis-Hastings algorithm, are
invaluable in the field of probabilistic modeling and simulation, offering robust solutions
for sampling from complex distributions, particularly in the context of high-dimensional
spaces and the U-space.

A.4 Normalizing Flows

Normalizing flows were introduced by Rezende and Mohamed [181] as a sophisticated
framework for constructing flexible and complex probabilistic models by transforming a
simpler base distribution through a series of invertible mappings. Unlike the traditional
isoprobabilistic transformations, normalizing flows allow for a more flexible and learnable
transformation, making them particularly suitable for applications in statistical reliability
engineering and deep learning robustness where the uncertainty distribution has to be
learned from data. In this section, we delve into the fundamental principles of T NF,
illustrating their role in modeling complex distributions and their potential applications in
enhancing and assessing deep learning models’ reliability.
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A.4.1 Defining Normalizing Flows

Normalizing flows provide a systematic way of transforming a simple, easy-to-sample
distribution πZ (typically the standard normal law), in the latent space Z into a complex
distribution in the data space X . More precisely, a normalizing flow is a learned transform
T NF

θ : Z → X enabling the modeling of a complex data distribution, νX , through a
sequence of invertible and differentiable mappings, so that T NF

θ #πZ = νX .
Let Z0 ∼ πZ denote a random vector in the latent space Z, following a simple base

distribution such as a multivariate normal distribution. We define a sequence of invertible
and differentiable mappings f1, f2, . . . , fK , where each mapping transforms the random
vector into a new space. The final transformation yields the random vector X = ZK in
the data space X , which aims to follow the complex data distribution νX of natural data.
Formally, this process is described as:

ZK = T NF(Z0) = fK ◦ fK−1 ◦ . . . ◦ f1(Z0) (A.1)

The probability density function of x, denoted as pX , can be derived using the change
of variables formula. This involves the determinant of the Jacobian of the inverse mappings,
ensuring that the probability volume is preserved during the transformations:

pX(x) = pZ0(f−1
1 ◦ . . . ◦ f−1

K (x))
∣∣∣∣∣det d(f−1

1 ◦ . . . ◦ f−1
K )

dx
(x)

∣∣∣∣∣ (A.2)

In this framework, the complex distribution of natural data νx is approximated by the
transformed distribution of x. The quality of this approximation depends on the choice of
the mappings f1, f2, . . . , fK and their ability to capture the intricate structure of the data
space X .

A.4.2 Learning the Normalizing Flow from Data

The strength of normalizing flows, denoted as T NF
θ , is encapsulated in their capacity to

model intricate distributions through data-driven learning. The mappings f1, f2, . . . , fK ,
parameterized by neural networks with parameters θ1,θ2, . . . ,θK , are learned via maximum
likelihood estimation. This process maximizes the likelihood of the observed data under
the transformed distribution. Specifically, the learning process involves optimizing the
parameters θ = {θ1,θ2, . . . ,θK} by minimizing a loss function L(θ), typically chosen as
the negative log-likelihood:
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L(θ) = −
N∑
i=1

log pT NF(xi; θ), (A.3)

where pT NF
θ

(x) denotes the density of the normalizing flow model parameterized by θ,
and {xi}Ni=1 represents the observed data.

The optimization is performed using gradient-based techniques, such as stochastic
gradient descent (SGD) or its variants like Adam. The update rule for a parameter θk at
iteration t is given by:

θ
(t+1)
k = θ

(t)
k − η · ∇θkL(θ(t)), (A.4)

where η is the learning rate, and ∇θkL(θ(t)) is the gradient of the loss function w.r.t.
the parameter θk at iteration t.

By leveraging backpropagation and adaptive learning techniques, the parameters θ

are iteratively adjusted to capture the underlying complex structures of high-dimensional
data, rendering normalizing flows a powerful tool for tasks in reliability engineering and
deep learning.

A.4.3 Applications in Reliability Analysis and Deep Learning

Normalizing flows serve as powerful tools for modeling intricate distributions, a critical
aspect in fields such as reliability engineering and deep learning. In reliability engineering,
it could facilitate the modeling of complex dependencies among system components. In
the realm of deep learning, they provide a structured approach to understanding data
distributions and generating new samples. This capability is invaluable for assessing model
robustness and enhancing performance. The adaptability and sophistication of normalizing
flows make them an essential asset in these advanced applications.
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APPENDIX B

Appendix to Chapter 4

B.1 Approximations for the computation of m

Providing a very low critical probability pc means that certification occurs when the
simulation ends after a large number of iterations m. Λ(Lm) follows a Gamma distribution
Γ(m,N) which can be then approximated by the Gaussian law N (m/N;m/N2) (application
of the Central Limit Theorem). We introduce `c the threshold associated to pc s.t.
pc = P(h(X) > `c), and mc = log(pc)/ log(1− 1/N).

Under this assumption:

P(Λ(Lm) < Λ(`c)) = α→ Λ(`c) = m

N
− zα

√
m

N
(B.1)

with zα = Φ−1(1−α) > 0 for α < 1/2 and Λ(`c) = − log(pc). We find a first approximation
of m by solving this second order polynomial in

√
m:

m ≈ m̃1 =
⌈

1
4

(
zα +

√
z2
α − 4N log(pc)

)2
⌉
. (B.2)

This clearly shows that the dependence on pc is approximately logarithmic. Table 4.1
shows that this approximation is excellent even for large pc.

Moreover, if N is large enough, then N log(pc) = Nmc log(1 − 1/N) ≈ mc and m

approximately satisfies
m− zα

√
m−mc = 0, (B.3)

producing

m ≈ m̃2 =
⌈

1
4

(
zα +

√
z2
α + 4mc

)2
⌉

=
mc

(√
1 + z2

α/4mc + zα
2√mc

)2
 . (B.4)
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This shows that m is a little larger than mc = log(pc)/log(1−1/N).

B.2 Experiments in the idealized case

This appendix details the experimental results of Sect. 4.4.1. This section assumes
that X = xo +σX̃ with X̃ ∼ N (0n; In) and that h(x) = x>g− τ with g ∈ Rn and ‖g‖ = 1
(w.l.o.g.). In this textbook case, the true probability p = π0(h(X) > 0) depends on τ by

p = 1− Φ
(
τ − x>o g

σ

)
. (B.5)

We now explain how to ‘directly’ sample a new particle as required by line 11, Alg. 9
for this particular case, without resorting to Alg. 10.

The projection of X̃ onto g is Gaussian distributed. By linearity of the score function,
conditioning on the event E := {h(X) > L} means that the c.d.f of Z := X̃>g equals:

FZ(z) = 1(z > L0).Φ(z)− Φ(L0)
1− Φ(L0) with L0 := (L−x>o g)/σ. (B.6)

On the other hand, the projection of X̃ onto any other direction orthogonal to g remains
normal distributed. This justifies the following construction:

Z = F−1
Z (U) = σΦ−1 ((1− Φ(L0/σ))U + Φ(L0/σ)) with U ∼ U[0,1] (B.7)

X = xo + σ
(
Zg + (In − gg>)N

)
with N ∼ N (0n; In), (B.8)

In a nutshell, (In − gg>) is the projection onto the (n− 1)-dimension subspace orthogonal
to g. This operator resets the projection of N onto g, which is then set to Z. Section 4.4.1
uses this toy example to illustrate our procedure in the idealized case.

B.3 Choice of N and T

Most experiences are run with N = 2 which is counter-intuitive. In this section we
elaborate on the choice of N and T using experiments in case of linear decision function
and X follows a Gaussian law. More precisely we take X ∼ N (0, Id) and the score function
s : Rd 3 x 7→ xTn with n ∈ Rd defining the normal vector of the decision hyperplane. For
simplicity, we take n = e1 i.e. the first vector of the canonical basis of Rd. With this toy
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model the probability of failure for a threshold level L is given by,

p = P(s(X) > L) = P(X1 > L) = 1− Φ(L) (B.9)

We now apply the last particle algorithm 9 to the statistical test with null hypothesis
H0 : p ≥ pc and alternative hypothesis H1 : p < pc. For numerical experiments below, we
take p = pc and α = 0.05. We let vary the number of particles N in the range {2, 20, 100}
and the parameter T in the range {25, 50, 100, 150, 200}. For each couple of parameters
(N, T ) we make 1000 runs and count the number of false positive (i.e. the number of times
the algorithm wrongfully asserted that p < pc). The results are presented in the table B.1
below.

Table B.1 – Estimation of false positive rates and number of calls in function of T and N
for a toy model

N T Estimated false positive rate Avg. number of calls
2 25 0.038 1.05e+03
2 50 0.041 2.08e+03
2 100 0.033 4.14e+03
2 150 0.026 6.19e+03
2 200 0.040 8.28e+03
20 25 0.034 1.04e+04
20 50 0.050 2.07e+04
20 100 0.048 4.15e+04
20 150 0.043 6.20e+04
20 200 0.043 8.29e+04
100 25 0.036 5.19e+04
100 50 0.052 1.04e+05
100 100 0.049 2.07e+05
100 150 0.033 3.11e+05
100 200 0.050 4.15e+05
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Algorithm 13 Adaptive Sampling for one particle AdaptGen(L, 1)
Require: threshold L, finite set X of particles whose score is larger than L, input strength

parameter sin, scaling parameter γ < 1, acceptance ratio threshold a∗, gain threshold
g∗

Ensure: new particle X, new strength parameter sout
1: Initialize Count← 0, sout ← sin, X← U(X ) . Draw uniformly a particle in X
2: for k = 1 : t do
3: Z← K(X, sin) . π0 reversible proposal. See Sect. 4.3.1
4: if h(Z) > L then . Rejection
5: X← Z
6: Count← Count + 1
7: end if
8: end for
9: if Count < t× a∗ then

10: sout ← γ × sin . Decrease s if acceptation rate is too low
11: else
12: L∗ ← min(h(X),minx∈X h(x))
13: Gain← L∗−L

|L|
14: if Gain < g∗ then
15: sout ← sin

γ
. Increase s if the progress is too low

16: end if
17: end if
18: return X, sout

B.4 Automatic control of kernel strength

In practice the strength parameter s of the kernel is adapted at each iteration using
an heuristic. More precisely we choose a acceptance ratio threshold a∗ ∈ [0, 1] and at
iteration k, after the line 11 of Algorithm 1, decrease the s by a decay rate 0 < γ < 1.
Conversely if the acceptance ratio is high but progress, as measured by the relative gain
between the old and the new level, is too slow we increase s by the same parameter γ. This
tuning mechanism is further outlined in algorithm 13. Experimentally we find that, with
well chosen parameters (a∗,g∗, γ) this adaptive tuning speeds up the algorithm drastically
keeping both acceptance ratio and level-wise progress under control.
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B.5 Proof of proposition 4

π0 denotes the reference probability distribution. The proof applies to the last particle
algorithm describes in Alg.9 in the case where the refreshed particle state Gen(l, 1) is given
for each l ∈ R by Alg.10. We recall that in Alg.10, Gen(l, 1) is obtained by t iterations
of a proposal K with score-based accept /reject; starting from a uniformly chosen other
(surviving) particle with score strictly greater than l.

The proof is based on a (instructive and explicit) probabilistic coupling between this
last particle algorithm and the ’idealized algorithm’ counterpart. The latter is obtained by
taking for Gen(l, 1) the exact conditional distribution π0(dx|h(x) > l). The underlying
idea (see [86]) is that the Markov chain generated by Gen(l, 1) in Alg.10 leaves invariant
the distribution π0(dx|h(x) > l), so that the idealized algorithm is formally the limit of
the simulated algorithm when t→ +∞.

Step 0: Checking the lower bound assumption
The lower bound assumption can be rewritten as follows:

∃ p∗ > 0, s0 > 0, ∀x, s ≥ s0, Law(K(x, s)) ≥ p∗π0 (Doeblin)

where inequality between two measures simply means that their difference is a non-negative
measure. (Doeblin) is a well-known irreducibility condition coined ’Doeblin condition’ in
the probabilistic literature on Markov chain.

Let us check that the lower bound condition is compliant with some very minor variants
of the transformation method detailed in Sect. 4.3.2.

Consider for instance the transformation: X ∼ U(B2,ε(xo)), T (U,xo) = xo + εU(1 : n)
where U is n+ 2-dimensional with uniform distribution on the unit sphere of Rn+2.

On the other hand, consider the proposal on the unit sphere of Rn+2 obtained by
composing the Gaussian proposal (4.13) in Rn+2 with an additional orthogonal projection.
This proposal on the sphere has the following two properties: i) it is reversible with
respect to the uniform distribution on the sphere (by a symmetry argument), ii) its density
satisfies (Doeblin) (by lower bounding (4.13) with initial condition on the unit sphere by
a centered Gaussian distribution).

Combining the latter proposal with T we obtain again a proposal reversible w.r.t.
U(B2,ε(xo)) and satisfying (Doeblin). See below for possible (slight but technical) general-
izations to proposals satisfying weaker versions of (Doeblin).

Step 1: Uniform rejection rate
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The acceptance rate of a proposal satisfying (Doeblin) with accept rule given by score
h(x) > l is bounded from below by:

p∗P(h(X) > l),

which is, in turn, uniformly bounded from below if l ≤ l0 with P(h(X) > l0) > 0.
Note that the proof is thus compliant with the tuning of the proposal strength s

w.r.t. a constant rejection rate (App. B.4), since that latter can be carried out while
ensuring (Doeblin).

Step 2: Coupling of proposals
Let us define the ‘local’ coupling between proposals that will enable the coupling

between algorithms. Let x,x′ be given, as well as a proposal satisfying (Doeblin). A
coupled proposal K((x, s), K(x, s)) is generated as follows: i) with probability p∗, generate
a successful coupling K(x, s) = K ′(x′, s) with distribution π0; ii) else, generate independent
proposals K(x, s) and K ′(x′, s) with respective distributions Law(K(x, s)) − p∗π0 and
Law(K(x′, s))− p∗π0.

Clearly, the associated two marginal distributions of K(x, s) and K ′(x′, s) are respec-
tively Law(K(x, s)) and Law(K(x′, s)).

Step 3: Coupling of the two algorithms
Let us denote by Lk and L′k the two levels of the last particle at iteration k in Alg. 9

for the real and idealized algorithms, respectively. If Lk = L′k, we sample independently X′k,
the new, refreshed particle of the idealized algorithm, according to the exact conditional
distribution π0(dx|h(x) > Lk) (this replaces line 1 in Alg. 10). X′k is then modified in
parallel with the new particle of the real algorithm according to Alg. 10 by iterating t
times the coupled proposal transition of Step 2; K being used for the real and idealized
algorithms, respectively.

After t iterations one has thus obtained a successful coupling with probability (condi-
tional on Lk) 1− (1− p∗P(h(X) > Lk))t −−−−→

t→+∞
1.

Moreover, since Alg. 10 leaves invariant the conditional distribution π0(dx|h(x) > Lk),
it does not modify the distribution of the refreshed particle in the idealized algorithm.

Step 4: Conclusion by induction
Let l0 be any critical level such that π0(h(X) > l0) > 0. We consider the following

induction hypothesis at iteration k:

Hk On the event, Lk ≤ l0, The probability that the two particle systems are equal tends
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exponentially fast to 1 when t→ +∞.

Assume Hk is true. The probability that the two particle systems are equal at iteration
k + 1 is the probability conditioned by equality at iteration k multiplied by probability of
equality at iteration k. If the score level is below l0, the former conditioned probability is
bounded below by 1− (1− p∗P(h(X) > l0))t by Step 3 so that using Hk the induction on
Hk+1 is complete.

We deduce that P(Lm ≤ l0) converges exponentially fast with t large towards P(L′m ≤ l0)
for each l0. Using in addition Theorem 3 on the idealized algorithm, we conclude the
proof.

Possible Generalizations: It is possible to relax the irreducibility condition (Doeblin) so
that it is verified by most practical proposals, see Sec. 4.3.2. This requires using so-called
Lyapounov functions, as well as an extra (but mild) assumption on the shape of h ’at
infinity’.

For instance, consider the Gaussian proposal (4.13) in Rn+2. It satisfies the Doeblin
condition (Doeblin), but only locally, for all x in a ball, p∗ depending now of the size of
the ball.

The extra assumption on the shape of the score function h at infinity is then necessary
to check that the rejection rate is again uniformly bounded from below.

Finally, one can remark that the following so-called Lyapounov condition E[|K(x, s)|2] ≤
ρ|x|2 + c holds true (with ρ = 1

1+s2 < 1 and c = s2

1+s2 < +∞). It ensures that the proposal
cannot be stuck at infinity, in areas where the ’local’ Doeblin condition is poor.

One can then couple proposals using (Doeblin) as above, but only when the coupled
initial states are in a given ball, and use the Lyapounov condition (see [182]) to nonetheless
obtain a successful coupling with a lower bounded success rate.

The proof then works as above.
Final remarks: Note that the exponential convergence rate obtained in the proof of

Proposition 4 is too sub-optimal to be suitable for practical purpose. Practical estimation
of this rate is left for future work although estimating the mixing rate of such Markov
chain is known to be difficult and widely dependent on the geometry of h.

B.6 Implementation details of the experiments

This section gives further details on the implementation available at
https://github.com/karimtito/efficient-statistical
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The source code provided can be used to re-run experiments or run different experiments
(see README file for more information).

B.7 ACAS Xu

In the experiments on the ACAS Xu DNN compression case study we used the 45
neural networks from the VNNLIB website (in ONNX format), which do not require
normalizing the inputs. We only tested the 5 first properties since they apply to all
networks. We use an adaptive procedure to tune the strength parameter s as explained
in B.4. Experiments main parameters are set to: N = 2, pc = 10−50, T = 40, α = 10−3.
We initialize the strength s at 1.5 and use the adaptive sampling procedure of section
B.4 with γ = 0.99, a∗ = 0.90, g∗ = 0.01. In addition we ran experiments with the ERAN
complete certification method using DeepPoly and Mixed Integer programming on the
same benchmark.

B.8 MNIST

We selected 4 neural networks from the ERAN benchmark: 3 architectures of varying
complexity trained with pytorch named ’convMedGRELU__PGDK_w_0.1’,
’ffnnRELU__Point_6_500’ and ’ffnnRELU__PGDK_w_0.1_6_500’ as well as a simpler model
trained with tensorflow ’mnist_relu_9_200’. We use the batched version of the Last
Particle algorithm where we test the local robustnes aroung 100 images in parallel. For
each image we create a system of N(= 2) particles and we call the score at each iteration
(line 6 in Algorithm 1) with a batch consisting of all lower-scored particles. This trick
accelerates the computations by taking advantage of the GPU. We also used the adaptive
tuning of the strength, initializing s at 1.5 and with γ = 0.999, a∗ = 0.90, g∗ = 0.01.

B.9 ImageNet

Similarly to MNIST we used a batched version of the Last Particle algorithm presented
in section 4.2. Again we also used a automatic control mechanism (see section B.4,
initializing s at 1 and taking γ = 0.999, a∗ = 0.90, g∗ = 0.01. For ImageNet we could not
run the ERAN certification methods unfortunately since these methods barely scale to
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such high input dimension and management of ImageNet is not implemented for now on
the ERAN GitHub repository.
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APPENDIX C

Appendix to Chapter 5

C.1 Neural Architecture for MNIST experiments

The architecture used is a fully connected neural network with 2 hidden layers, each
containing 200 units. It is illustrated below. Each hidden unit outputs a linear combination
of its inputs, composed with the ReLU activation, defined by: ReLU(x) = x1x≥0.
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... ... ...
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C.2 Proof of Proposition 1

First, we show that the selection step is indeed sufficient to obtain an unbiased
estimation. Let πNβk = 1

N

∑N
n=1 δX(n)

k

denote the empirical distribution of particles at
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iteration k, and denote by B(n)
k+1 the number of offsprings of the particle X(n)

k after the
selection step. By construction of the selection step, in which surviving particles are
duplicated uniformly, one has

E
[
B

(n)
k+1 | (X

(1)
k , . . . , X

(N)
k )

]
= P [(n) is killed]× C̃−1

k ,

= e−(βk+1−βk)V (X(n)
k

)C−1
k

where Ck and C̃k are constants independent of n, and the expectation is taken conditional
on the particles (X(1)

k , . . . , X
(N)
k ). The latter constants can be simplified by remarking

that since the number of particles is kept equal to N , then ∑nB
(n)
k+1 = N , which implies

Ck = 1
N

N∑
n=1

e−(βk+1−βk)V (X(n)
k

) = Ẑk+1

Ẑk
.

As a consequence, since just after the selection step one has

1
N

N∑
n=1

δ
X

(n)
k+1

= 1
N

N∑
n=1

B
(n)
k+1δX(n)

k

,

the following key unbiasedness (consistency) is obtained – the expectation being again
conditional on the particles (X(1)

k , . . . , X
(N)
k ) at iteration k: For any test function t,

Ẑk+1E
[
EπN

βk+1
[t(X)] | (X(1)

k , . . . , X
(N)
k )

]
= ẐkEπN

βk

[
e−(βk+1−βk)V (X)t(X)

]
. (C.1)

Second, by induction on k with initialization for k = 0 given by Z0E[EπN0 [t(X)]] =
Eπ0(t(X)), we obtain that (C.1) is unbiased in the sense that its full expectation is indeed
given by Zk+1Eπβk+1

(t(X)).
Third, the mutation step (which is crucial to enforce independence between particles)

does not modify the above argument by induction on unbiasedness. Indeed, at each
iteration k, the kernel is applied to each particle before the selection step of iteration k+ 1.
It is chosen to leave invariant the distribution πβk (see Sect. 5.1). As a consequence, the
full expectation of the right-hand side of (C.1) – which consists of mutated particles – is
unchanged.

In the end the quantity Ẑk is indeed an unbiased estimator of Zk for each k. Induction
on k can also be applied to the weak law of large numbers to obtain consistency at each
iteration. This concludes the proof of Proposition 1.
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APPENDIX D

Appendix to Chapter 6

D.1 Additional Results for FORM and SORM

We report below additional results for the FORM and SORM methods.

Table D.1 – FORM/SORM estimations of PF ≈ 1.69 · 10−8 for the model M2 and input
x0,2, with uniform noise (ε = 0.18).

Attack PFORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 1.74 · 10−5 6.88 · 10−9 −0.95

FMNA 3.17 · 10−5 6.12 · 10−9 −0.996
HLRF 1.89 · 10−5 7.56 · 10−9 −0.97

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 4.14 −2.1 · 10−5 1.05

FMNA 4.0 −1.9 · 10−5 0.25
HLRF 4.12 −2.3 · 10−2 0.01

Table D.2 – FORM/SORM estimations of PF ≈ 8.1 · 10−3 for the model M2 and input
x0,3, with uniform noise (ε = 0.18)

Attack PFORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 3.22 · 10−2 5.23 · 10−3 −0.95

FMNA 3.84 · 10−2 5.37 · 10−3 −0.988
HLRF 3.29 · 10−2 5.35 · 10−3 −0.957

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 1.85 −1.0 · 10−5 0.9

FMNA 1.77 −1.1 · 10−5 0.16
HLRF 1.84 −1.8 · 10−2 0.01
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Table D.3 – FORM/SORM estimations of PF ≈ 9.92 · 10−6 for the model M2 and input
x0,1, with uniform noise (ε = 0.18).

Attack PFORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 6.64 · 10−4 4.66 · 10−6 −0.96

FMNA 8.45 · 10−4 3.83 · 10−6 −0.993
HLRF 7.36 · 10−4 6.53 · 10−6 −0.96

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 3.21 −1.9 · 10−5 1.07

FMNA 3.14 −2.5 · 10−5 0.30
HLRF 3.18 −2.1 · 10−2 0.05

Table D.4 – FORM/SORM estimations of PF ≈ 5.7 · 10−6 for the custom CNN model
and gaussian noise (σ = 0.02).

Attack PFORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 3.91 · 10−5 NA −0.96

FMNA 5.22 · 10−5 NA −0.985
HLRF 2.16 · 10−5 NA −0.973

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 3.95 −3.7 · 10−5 1.49

FMNA 3.88 −8.0 · 10−4 0.23
HLRF 4.09 −1.9 · 10−2 0.03
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Résumé : Cette thèse étudie la fiabilité des
réseaux de neurones profonds en utilisant
des algorithmes de simulation d’événements
rares dans le cadre de l’ingénierie de la fia-
bilité statistique. L’objectif est d’évaluer la ro-
bustesse de ces réseaux dans des situa-
tions peu communes mais cruciales. La re-
cherche se concentre sur le développement
de nouvelles méthodes statistiques spécifique-
ment pour les réseaux de neurones profonds.
Ces méthodes sont conçues pour mieux com-
prendre comment ces réseaux se comportent
face à des données inhabituelles ou corrom-
pues. Une réalisation clé est la création de

nouveaux algorithmes qui améliore l’applica-
bilité des techniques de simulations d’événe-
ments rares aux classificateurs différentiables,
une caractéristique commune dans les modè-
lesmodernes d’apprentissage profond. L’étude
met en évidence les difficultés d’application
des méthodes traditionnelles de fiabilité sta tis-
tique aux données complexes et de grande
dimension typiques en apprentissage profond.
Malgré ces défis, les résultats offrent des ou-
tils et des approches qui peuvent être appli-
qués à divers modèles d’apprentissage pro-
fond.

Title: Reliability of Deep Learning with Rare Event Simulation: Theory and Practice.

Keywords: Deep Neural Networks; Rare Event Simulation; Sequential Monte Carlo; Statistical

Reliability Engineering

Abstract: This thesis studies the reliability of
deep neural networks using rare-event simu-
lation algorithms in the context of statistical
reliability engineering. The aim is to assess
the robustness of these networks in uncom-
mon but crucial situations. The research fo-
cuses on the development of new statistical
methods specifically for deep neural networks.
These methods are designed to better under-
stand how these networks behave in the face
of unusual or corrupted data. A key achieve-

ment is the creation of new algorithms that
improve the applicability of rare event simu-
lation techniques to differentiable classifiers,
a common feature in modern deep learning
models. The study highlights the difficulties of
applying traditional static reliability methods to
the complex, high-dimensional data typical of
deep learning. Despite these challenges, the
results offer tools and approaches that can be
applied to a variety of deep learning models.
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