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Abstract—The surging amount of trajectories from sensors,
antennas, and radars calls for the development of modern
trajectory analysis techniques. In this context, we have introduced
2 ways to compare trajectories, which include a regularisation
for dynamic time warping (DTW) and a faster computation of
the Fréchet distance. As an example, we present TS-SCAN, an
extension of the DBSCAN algorithm, which computes trajectory
clusters and their average scheme in a database.

Index Terms—clustering, trajectory analysis, anomaly detec-
tion, time-series metrics

I. INTRODUCTION

Nowadays, sensors, radars, and antennas are everywhere and
track a large number of moving objects, each identified by their
trajectories. Worldwide traffic of airplanes and ships, for in-
stance, can be supervised via open data networks, using either
the ADS-B (Barsheshat, 2011) or the AIS (Balduzzi et al.,
2014) protocols. The exploitation of these massive datasets
opens the way for numerous applications, from trajectory
optimization, to automatic classification and identification, or
anomaly detection. For this reason, this topic is of interest to
both civil and defense activities.

The analysis of trajectories requires specific data mining
techniques adapted to process these composite objects, each
composed of a variable number of detections (Wang et al.,
2020). Specifically, metrics from time series, such as Dynamic
Time Warping (Müller, 2007) and Discrete Fréchet distance
(Eiter and Mannila, 1994), are particularly suitable for com-
paring trajectories. With adequate metrics, it is then possible
to use various classical machine learning algorithms to analyse
trajectories.

The idea behind this work is to propose a way to compare
trajectories efficiently, first using an improved version of the
well-known DTW metric, with a regularization term that
makes it length invariant (aDTW ). Alternatively, we propose
a faster computed discrete Fréchet distance (fastdfrechet) that
works with fewer assumptions than other found optimizations.
We show that these two metrics work well and are comple-
mentary for the comparison of multi-sensor trajectory data,
particularly when applied to aircraft trajectories.
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Then, using these two metrics, we propose a density-
based clustering algorithm for trajectories. The idea behind
the algorithm is to exploit the divergence matrix between
trajectories, computed with aDTW or fastdfrechet, and then
to compute the representation of trajectory clusters with an
approach based on Dynamic Based Averaging (DBA). As an
example, we applied this data-mining technique to an ADS-B
database to obtain the general scheme of trajectories.

This paper is organized as follows. In the first part, we
present related work on the subject. Then, we give the tech-
nical background on metrics, followed by an explanation of
our contributions regarding the two chosen metrics, and we
introduce, in the fifth part, an adapted density-based cluster-
ing algorithm for trajectory analysis. Afterwards, we present
an application of this algorithm on the ADS-B trajectories
database and test anomaly detection with the chosen metrics.
We conclude with the perspectives for antennas and radar
surveillance.

II. RELATED WORK

As previously stated, with the rise of open data touching
many domains (aircraft, ships, buses, taxis...), a plethora of
metrics, clustering algorithms, and anomaly detection frame-
works dedicated to trajectories have emerged.

A recent survey from Bian et al. (2018) compares a set of
metrics for trajectory analysis, including DTW or Discrete
Fréchet distance, and it exposes accurate clustering methods
such as DBSCAN. Another survey from Tao et al. (2021)
is dedicated to metrics for trajectory comparison. Again, in
the work of P. C. Besse et al. (2016), different metrics are
compared, and clustering algorithms are applied to a taxi
database.

About the two metrics used in our paper, the works of
Salvador and Chan (2007) and Etienne et al. (2017) also
proposed algorithmic optimization by constraining alignment
exploration, similar to our approach. The algorithm for Dis-
crete Fréchet Distance is based on the assumption that the two
trajectories are already well aligned. Our method fastdfrechet
allows us to relax this assumption.

Moreover, to validate our approach we used the application
of clustering with DTW in the work of Petitjean et al. (2011)
or with k-means algorithm in the work of Ma et al. (2023).



In air traffic trajectory analysis and clustering, we refer the
reader to the papers of Olive and Morio (2018) and Basora
et al. (2017), in which fully constructed frameworks using
HDBSCAN are presented. The majority of these papers find
that DBSCAN is well-suited for trajectory clustering.

III. TECHNICAL BACKGROUND FOR METRICS

Trajectories in this paper are seen as sequences of co-
ordinates and we chose to apply two metrics for sequence
comparison. These metrics only focus on movement and do
not detect time delay or velocity difference. They are well-
known metrics for time series analysis and seem to apply well
to multi-sensor trajectories, which are indeed specific types of
time series.

A. Dynamic Time Warping

Dynamic Time Warping, also known as DTW , is a metric
that searches the optimal alignment between all elements of
two trajectories and sums the distance between them. It is
defined as follow for two time series X = {x1, ..., xn} and
Y = {y1, ..., ym} and d() a distance function between two
points:

DTW (X,Y ) = min
π∈A(X,Y )

∑
(i,j)∈π

d(xi, yj)

with A(X,Y ) the set of all admissible paths, also called
warping paths, between X and Y . In the scope of this paper,
a warping path is a finite sequence of index pairs, denoted by
π = ((i0, j0), (i1, j1), . . . , (iK , jK)), satisfying the following
properties:

1) i0 = j0 = 1 and iK = n, jK = m
2) For all k ∈ {1, . . . ,K}, (ik, jk) = (ik−1 + 1, jk−1)

OR (ik, jk) = (ik−1, jk−1 + 1)
OR (ik, jk) = (ik−1 + 1, jk−1 + 1).

This metric is well suited to compare trajectories of similar
length, but otherwise, it becomes inadequate.

B. Discrete Fréchet distance

The Fréchet Distance is a metric commonly used for mea-
suring divergence between functions. The discrete variant of
this metric, as introduced in the work of Wien et al. (1994),
can be used to detect the punctual differences between two
sequences. It is defined as follows:

dFrechet(X,Y ) = min
π∈A(X,Y )

max
(i,j)∈π

d(xi, yi)

with A(X,Y ) defined in the same way as seen in the
definition of DTW . In contrast to DTW , dFrechet works
well despite variations in trajectory length in the database.
The limitation arises in our case study on trajectories due to
the requirement for numerous comparisons.

IV. CONTRIBUTIONS ON METRICS

In this section, we analyzed the effectiveness of the two
previously defined metrics for the comparison of trajectories
and proposed two main adaptations of these metrics to improve
their applicability on a database of heterogeneous trajectories.
In every data analysis context, it is interesting to have metrics
that represent the mean or maximum distance between ele-
ments. In this idea, we can easily imagine that DTW could be
enhanced to represent the mean and dFrechet the maximum
distance in this context.

A. Regularization for Dynamic Time Warping

Analyzing the formula of DTW , we notice that the value
of DTW depends on the length of π, and it follows that this
metric is dependent on the two compared trajectories’ lengths.
It means that the comparison between the two values of this
metric is limited. This dependency is a critical point in the
comparison of trajectories from multi-sensor types detections
or multi-object trajectories. To limit this impact we introduced
a regularization term in the formula of DTW , defined as
follows:

π∗(X,Y ) = argmin
π∈A(X,Y )

∑
(i,j)∈π

d(xi, yi)

aDTW (X,Y ) =
1

|π∗(X,Y )|
∑

(i,j)∈π∗(X,Y )

d(xi, yi)

where |π∗(X,Y )| denotes the length of the path π∗(X,Y ).
Fundamentally, aDTW represents the minimal distance be-
tween all alignments of the two compared trajectories, scaled
by the optimal alignment path size. From a computational
perspective, the search of the optimal path π∗(X,Y ) and of the
estimation of aDTW (X,Y ) can be performed simultaneously,
since many DTW implementations, like the FastDTW method
introduced by Salvador and Chan (2007), return both the value
and the alignment path.
Another argument to prefer aDTW in place of DTW is
that the value returned by aDTW is in the same order of
magnitude as the distance between points on a map.

B. Discrete Fréchet Distance Optimisation

As seen previously, having a metric that detects punctual
divergence between trajectories is important for anomaly de-
tection, but many implementations of Discrete Frechet Dis-
tance are computationally costly. Based on the work made on
FastDTW, we propose a version of FastdFrechet, presented in
Algorithm 1, which is of O(n) in time and space complexity as
FastDTW is, instead of O(n2). This method is not based on the
idea that the two compared trajectories are already well aligned
but hopes that the alignment is close to the one obtained on
a subscale of the two trajectories. It returns an approximation
of dFrechet, controlled by radius parameter r.

The idea behind that is to limit the number of alignments
evaluated. To do so, we compute dFrechet on the lower
resolution of the two compared trajectories and we search the
solution in a restricted environment depending on the radius



Algorithm 1 FastDFrechet

Input X, Y two-time series, r a distance to search for
from a warping path of a sub-resolution DFrechet

Output Dist, π∗
F the optimal warping path

MinTSize = radius+ 2
Window := {(xi, yj)|xi ∈ X, yj ∈ Y }
if len(X) ≥ MinTSize and len(Y ) ≥ MinTSize then
Xshrunked = downscale(X)
Yshrunked = downscale(Y )

, π∗
F = FastDFrechet(Xshrunked, Yshrunked, r)

Window := {(xi±k, yj±l)|(i, j) ∈ π∗
F , k, l ∈ [0, r]2}

end if
Dist, π∗

F = dFrechet(X,Y,Window)

parameter for a better resolution of these trajectories. With this
computation, we hope that the punctual divergence between
trajectories will be detected in their lower resolution.
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Fig. 1. Evolution of warping path for FastDfrechet for radius 1

For better visualization, Fig1 shows the evolution of the
exploration domain for alignment during the algorithm for an
arbitrary example.

V. DBSCAN FOR TRAJECTORIES

In this part, we introduce a density-based clustering for
trajectories analysis. Density-based clustering is a well-known
data clustering algorithm. We chose to use DBSCAN, in-
stead of for instance K-means, another well-known clustering
algorithm, because in the trajectories database, the number
of clusters is generally not known. On the other hand, the
two parameters required by the algorithm, namely the max-
imum distance between two neighbors’ trajectories, and the
minimum number of trajectories in a cluster, can be easily
determined. Applied to trajectories analysis the DBSCAN
algorithm detects recurring trajectories and represents their
general path or raises abnormal or punctual trajectories.

A. Divergence matrix computation

In the distance matrix computation, we have the choice
between the two previous metrics: Fréchet distance or aDTW .
aDTW focuses more on the general movement of trajectories
because it represents the average distance between trajectories,
while small variations will be hidden. On the contrary, Fréchet
distance focuses more on punctual divergence between trajec-
tories and will detect any little detour. We recommend the use
of aDTW in a general analysis of the database, for example,
a search of general movement between airports for our case
study, and Fréchet distance for anomaly detection.

B. Application of DBSCAN on trajectories
The idea of DBSCAN for trajectory analysis is to generate

groups of similar movements in the database. It detects two
types of elements: recurrent routes represented by clusters,
and specific routes traveled only a few times and detected as
noise.
To do so, it takes two information in input: the maximum
distance for two trajectories to be called close, and the number
of close trajectories to initiate a cluster. It follows these steps
for each trajectory X :

1) Detect the set Td(X) of trajectories at a distance d of
X .

2) If in Td(X) there is an element which is in a cluster Ci,
X is added to the cluster. If elements from more than
one cluster appear in Td(X), all the clusters are merged
together.

3) Else if there are k elements in Td and none of them
appear in a cluster, it creates a cluster Ci with all these
elements.

4) Else, X is put in the noisy trajectories group.
At the end, the noisy trajectories group represents the non-
recurrent trajectories defined by the criteria given and the
clusters represent each recurrent pathway on the database.

C. Clusters representation
Since every trajectory in a cluster may have a different

length, we cannot represent the cluster by its centroı̈d. Instead,
a common technique to represent clusters of complex objects
is to determine the medoı̈d of the cluster, which is the closest
element to all other elements in the cluster.

One of the newly used methods to average time series
clusters based on DTW is Dynamic Barycenter Averaging
(DBA) from the work of Petitjean et al. (2011). The idea is
to repeat a certain amount of these steps

1) Take a central element ci for the cluster Ci

2) Apply DTW between this element and trajectories from
the cluster Xk to obtain the alignment path π∗(ci, Xk)
defined in part 3.

3) For each coordinates of ci make the barycenter of each
coordinates of any Xk aligned with Ci with all this
elements.

Our approach is to initialize the cluster with the medoı̈d
of the cluster and make only one step of the algorithm. It
seems to give a pretty good cluster representation and to limit
the computation cost of the algorithm. The advantage of this
method is that the cluster representation is based on each
trajectory of the cluster instead of only one trajectory.

Figure 2 shows an example of the different cluster and their
representation in black after using TS-Scan on a database of
69 elements from TSlearn (Tavenard et al., 2020).

VI. APPLICATION TO AIRSPACE SURVEILLANCE

To demonstrate the usefulness of our approach for trajectory
analysis we applied these methods to an ADS-B database from
(Olive and Basora, 2019) of 3551 aircraft trajectories of 50
coordinates each from Paris Orly airport to Toulouse airport.



Fig. 2. Example on TSlearn database with d = 0.05 and minelements = 2

A. Applying TS-SCAN

Fig. 3. Example of TS-SCAN with d = 0.05 and minelements = 10 on a
sample of ADS-B Trajectories.

Our first objective is to analyze the different routes for the
commercial line and identify the different flight patterns for
each route.

To do so, we apply TS-Scan with the metrics aDTW . The
use of the chosen metrics is important for the interpretability of
the DBSCAN parameter defined by the maximum distance for
the direct association of trajectories. In our example, d = 0.05,
and the minimum number of trajectories in a cluster is 10.

We obtain for each route several clusters of flight trajectories
and we can get a representation of the clusters by computing
the average trajectory using the method presented in section
V-C. The width of each trajectory represents the number of
flights using this road. We found reference trajectories for
this commercial road. Moreover, the number of non-associated
trajectories is 221.

Each cluster represents a different flight pattern, depending
for instance on the runaway used and the runaway direction,

and on the waypoints that each flight is assigned to follow. In
this sense, the cluster representation is a way to identify the
flight plans followed by the aircraft in question.

In this manner, the maximum distance parameter of TS-Scan
strongly influences the patterns that may be observed. Using a
small distance we can identify small deviations due to take-off
and landing patterns, weather, or flight habits. Using a larger
distance we focus mainly on big trajectory variations which
allows for instance to identify flight routes above an area.

Fig. 4. TSscan on noise data with d = 0.05 and minelements = 2

To see the distance of the noise data from reference trajec-
tories we refer to Figure 4. Bigger width trajectories represent
reference tracks and smaller represent non-detected clusters
with the first use of TS-Scan from Figure 3.
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Fig. 5. Comparison of FastDfrechet and aDTW distances, between
reference and real trajectories.

B. Trajectory deviation detection

For trajectory deviation detection, we recommend using
FastDFrechet to detect little variation between a trajectory
and its reference. In our case study, we created an anomaly
detection algorithm for trajectories that leverages an alert if



the FastDFrechet between the aircraft trajectory and its
flight-plan value is over a limit s. We developed another
version that compares the aircraft trajectory with a pool of
averaged trajectories from the TS-SCAN algorithm with the
same conditions as the flight plan. The main advantage of
alerts raised by this algorithm is that they are fully explainable
whereas many anomaly detection algorithms are not.

In Figure 5 we represent the computed FastDFrechet and
aDTW distances between the 3 reference trajectories shown
in Figure 3 (columns) and 19 actual trajectories shown in
Figure 4 (lines). We can see that the Discrete Fréchet distances
between reference trajectories and noisy trajectories are gen-
erally higher than the aDTW distances, and, crucially, exhibit
a wider and more discriminative range of variation, which is
beneficial when setting thresholds for anomaly detection.

VII. CONCLUSION

Our proposed metrics seem promising in trajectory anomaly
detection, and they are particularly suited for air traffic anal-
ysis. It allows for instance to automatically detect part of
a trajectory that deviates from a flight plan or a reference
track. The results of those metrics have the advantage of being
explainable and easily understandable as their value is similar
to the distance between two points in each trajectory.

With the proposed DBSCAN implementation, we further
give a tool to analyze large trajectory databases. In airspace
surveillance, it can be used to identify generic patterns in air-
craft movements and detect outlier tracks on which operators
could focus their time and attention.

For future work, we note that recent and more sophisticated
variants of clustering algorithms, like the HDBSCAN, have not
been explored within this work. Yet, we think they could be
well suited to further optimize our cluster detection process.
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