{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# Ripe-Atlas log analisis scripts\n", "\n", "This notebook is intended to plot and analyze logs from ripe-atlas probes.\n", "\n", "The *log_url* varible is the url that appears in \"Download URL Preview\" in the \"Download logs\" section of the \"Built-Ins\" tab of the probe information page. In json format.\n", "\n", "![image.png]()\n" ], "metadata": { "id": "-HuvJmkTuNhJ" } }, { "cell_type": "markdown", "source": [ "## Ping logs\n" ], "metadata": { "id": "chjHbCl9uniJ" } }, { "cell_type": "code", "source": [ "# @title Load file - use the input on the right to place the url with PING logs and run this box.\n", "\n", "import requests\n", "import time\n", "from io import StringIO\n", "import pandas as pd\n", "\n", "dataframes = []\n", "\n", "log_url = \"https://atlas.ripe.net/api/v2/measurements/1001/results/?probe_ids=1008517&start=1725494400&stop=1725839999&format=json\" #@param {type:\"string\"}\n", "data = requests.get(log_url)\n", "ping_df = pd.read_json(StringIO(data.text))\n", "df_sorted = ping_df.sort_values('timestamp', ascending=True)\n", "dataframes.append(df_sorted)\n", "ping_df.head()\n", "\n", "\n", "log_url_1 = \"\" #@param {type:\"string\"}\n", "if log_url_1 != \"\":\n", " time.sleep(2)\n", " data = requests.get(log_url_1)\n", " ping_df = pd.read_json(StringIO(data.text))\n", " df_sorted = ping_df.sort_values('timestamp', ascending=True)\n", " dataframes.append(df_sorted)\n", "\n", "log_url_2 = \"\" #@param {type:\"string\"}\n", "if log_url_2 != \"\":\n", " time.sleep(5)\n", " data = requests.get(log_url_2)\n", " ping_df = pd.read_json(StringIO(data.text))\n", " df_sorted = ping_df.sort_values('timestamp', ascending=True)\n", " dataframes.append(df_sorted)\n", "\n", "# concatenate dataframes\n", "ping_df = pd.concat(dataframes)\n", "\n", "\n", "\n" ], "metadata": { "id": "B7GSvu-nx-md", "cellView": "form" }, "execution_count": 16, "outputs": [] }, { "cell_type": "code", "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 542 }, "id": "EQZ847IkuGQq", "outputId": "122830cc-bffc-4a48-ec9c-6636ff91febf", "cellView": "form" }, "outputs": [ { "output_type": "display_data", "data": { "text/html": [ "\n", "\n", "\n", "
\n", "
\n", "\n", "" ] }, "metadata": {} } ], "source": [ "# @title Graph time vs avg RTT\n", "from io import StringIO\n", "import pandas as pd\n", "import plotly.express as px\n", "\n", "\n", "# supress future warning triggerd by protly\n", "import warnings\n", "warnings.simplefilter(\"ignore\", category=FutureWarning)\n", "\n", "\"\"\"\n", "# sort daset by timestam\n", "df_sorted = ping_df.sort_values('timestamp', ascending=True)\n", "df_sorted_1 = ping_df_1.sort_values('timestamp', ascending=True)\n", "\n", "# Concatenate the two dataframes\n", "df_concat = pd.concat([df_sorted, df_sorted_1])\n", "\"\"\"\n", "\n", "# Assuming df_sorted is your dataframe with 'timestamp' and 'avg' columns\n", "title = \"Probe {} to: \".format(df_sorted['prb_id'][0])\n", "for n in ping_df['msm_id'].unique():\n", " dst_addr = ping_df[ping_df['msm_id']== n]['dst_addr'][0]\n", " title += \"<{}={}> \".format(n, dst_addr)\n", "\n", "fig = px.line(ping_df, x='timestamp', y='min', color='msm_id', title=title)\n", "\n", "# Customize hover data\n", "fig.update_traces(hovertemplate=\"Date: %{x}
Avg: %{y}\")\n", "\n", "fig.show()\n", "\n" ] }, { "cell_type": "markdown", "source": [ "## HTTP Logs\n", "\n", "These logs have connections made to http servers of the ripe infrastructure, the connections are made in ~1 hour intervals." ], "metadata": { "id": "b7AHoAnfAxev" } }, { "cell_type": "code", "source": [ "# @title Load file - use the input on the right to place the url with HTTP logs and run this box.\n", "\n", "import requests\n", "\n", "log_url = \"https://atlas.ripe.net/api/v2/measurements/12027/results/?probe_ids=1008517&start=1725494400&stop=1725839999&format=json\" #@param {type:\"string\"}\n", "data = requests.get(log_url)\n", "http_df = pd.read_json(StringIO(data.text))\n", "http_df.head()\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 380 }, "collapsed": true, "cellView": "form", "id": "NzIZ8sqfwtP3", "outputId": "6f9a1059-3dcd-4369-b1ce-72b09e89c9f7" }, "execution_count": 6, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " fw mver lts result \\\n", "0 5080 2.6.2 816873 [{'header': ['X-Client-IP: 186.118.170.139', '... \n", "1 5080 2.6.2 820474 [{'header': ['X-Client-IP: 186.118.170.139', '... \n", "2 5080 2.6.2 824073 [{'header': ['X-Client-IP: 186.118.170.139', '... \n", "3 5080 2.6.2 827672 [{'header': ['X-Client-IP: 186.118.170.139', '... \n", "4 5080 2.6.2 831271 [{'header': ['X-Client-IP: 186.118.170.139', '... \n", "\n", " uri msm_id prb_id timestamp msm_name \\\n", "0 http://193.0.6.141 12027 1008517 2024-09-05 00:29:17 HTTPGet \n", "1 http://193.0.6.141 12027 1008517 2024-09-05 01:29:19 HTTPGet \n", "2 http://193.0.6.141 12027 1008517 2024-09-05 02:29:17 HTTPGet \n", "3 http://193.0.6.141 12027 1008517 2024-09-05 03:29:17 HTTPGet \n", "4 http://193.0.6.141 12027 1008517 2024-09-05 04:29:16 HTTPGet \n", "\n", " from type stored_timestamp \n", "0 186.118.170.139 http 1725496234 \n", "1 186.118.170.139 http 1725499842 \n", "2 186.118.170.139 http 1725503448 \n", "3 186.118.170.139 http 1725507032 \n", "4 186.118.170.139 http 1725510630 " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fwmverltsresulturimsm_idprb_idtimestampmsm_namefromtypestored_timestamp
050802.6.2816873[{'header': ['X-Client-IP: 186.118.170.139', '...http://193.0.6.1411202710085172024-09-05 00:29:17HTTPGet186.118.170.139http1725496234
150802.6.2820474[{'header': ['X-Client-IP: 186.118.170.139', '...http://193.0.6.1411202710085172024-09-05 01:29:19HTTPGet186.118.170.139http1725499842
250802.6.2824073[{'header': ['X-Client-IP: 186.118.170.139', '...http://193.0.6.1411202710085172024-09-05 02:29:17HTTPGet186.118.170.139http1725503448
350802.6.2827672[{'header': ['X-Client-IP: 186.118.170.139', '...http://193.0.6.1411202710085172024-09-05 03:29:17HTTPGet186.118.170.139http1725507032
450802.6.2831271[{'header': ['X-Client-IP: 186.118.170.139', '...http://193.0.6.1411202710085172024-09-05 04:29:16HTTPGet186.118.170.139http1725510630
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "http_df", "summary": "{\n \"name\": \"http_df\",\n \"rows\": 94,\n \"fields\": [\n {\n \"column\": \"fw\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 5080,\n \"max\": 5080,\n \"num_unique_values\": 1,\n \"samples\": [\n 5080\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mver\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"2.6.2\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"lts\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 98206,\n \"min\": 816873,\n \"max\": 1151672,\n \"num_unique_values\": 94,\n \"samples\": [\n 960874\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"result\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"uri\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"http://193.0.6.141\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"msm_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 12027,\n \"max\": 12027,\n \"num_unique_values\": 1,\n \"samples\": [\n 12027\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"prb_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1008517,\n \"max\": 1008517,\n \"num_unique_values\": 1,\n \"samples\": [\n 1008517\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"timestamp\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2024-09-05 00:29:17\",\n \"max\": \"2024-09-08 21:29:17\",\n \"num_unique_values\": 94,\n \"samples\": [\n \"2024-09-06 16:29:18\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"msm_name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"HTTPGet\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"from\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"186.118.170.139\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"http\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stored_timestamp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 98203,\n \"min\": 1725496234,\n \"max\": 1725831047,\n \"num_unique_values\": 94,\n \"samples\": [\n 1725640232\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 6 } ] }, { "cell_type": "code", "source": [ "# @title Table: Disconected time intervals (shows time intervals where the time difference is more than 1.1 hours)\n", "from io import StringIO\n", "import pandas as pd\n", "\n", "# sort daset by timestam\n", "df_sorted = http_df.sort_values('timestamp', ascending=True)\n", "\n", "# Calculate time differences in hours\n", "time_diffs_in_hours = df_sorted['timestamp'].diff() / pd.Timedelta(hours=1)\n", "\n", "# Create a DataFrame with disconnection information\n", "disconnection_df = pd.DataFrame({\n", " 'Start Time': df_sorted['timestamp'].shift(1),\n", " 'End Time': df_sorted['timestamp'],\n", " 'Disconnection Time (hours)': time_diffs_in_hours\n", "}).dropna()\n", "\n", "# Filter for disconnections longer than an hour\n", "disconnection_df = disconnection_df[disconnection_df['Disconnection Time (hours)'] > 1.1]\n", "\n", "# Format the timestamps for better readability (optional)\n", "disconnection_df['Start Time'] = disconnection_df['Start Time'].dt.strftime('%Y-%m-%d %H:%M')\n", "disconnection_df['End Time'] = disconnection_df['End Time'].dt.strftime('%Y-%m-%d %H:%M')\n", "\n", "# Get the start and end time of the entire dataset\n", "dataset_start_time = df_sorted['timestamp'].min().strftime('%Y-%m-%d %H:%M')\n", "dataset_end_time = df_sorted['timestamp'].max().strftime('%Y-%m-%d %H:%M')\n", "\n", "# Get the probe id\n", "probe_id = df_sorted['prb_id'][0]\n", "\n", "# Get uri\n", "uri = df_sorted['uri'][0]\n", "\n", "# Print the dataset time range\n", "print(f\"Time Range for probe {probe_id}: {dataset_start_time} to {dataset_end_time} for {uri}\")\n", "\n", "# Display the table\n", "disconnection_df\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 107 }, "id": "MscEo-9nA7no", "outputId": "9a867e24-2bfa-4a6c-c976-666846de3a9f", "cellView": "form" }, "execution_count": 7, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Time Range for probe 1008517: 2024-09-05 00:29 to 2024-09-08 21:29 for http://193.0.6.141\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "Empty DataFrame\n", "Columns: [Start Time, End Time, Disconnection Time (hours)]\n", "Index: []" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Start TimeEnd TimeDisconnection Time (hours)
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", " \n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "disconnection_df", "repr_error": "Out of range float values are not JSON compliant: nan" } }, "metadata": {}, "execution_count": 7 } ] }, { "cell_type": "markdown", "source": [ "## Traceroute logs" ], "metadata": { "id": "2ejtv-WoX0z2" } }, { "cell_type": "code", "source": [ "# @title Load file - use the input on the right to place the url with TRACEROUTE logs and run this box.\n", "import pandas as pd\n", "from io import StringIO\n", "import requests\n", "\n", "log_url = \"https://atlas.ripe.net/api/v2/measurements/5001/results/?probe_ids=1008517&start=1725494400&stop=1725839999&format=json\" #@param {type:\"string\"}\n", "data = requests.get(log_url)\n", "tr_df = pd.read_json(StringIO(data.text))\n", "tr_df.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 400 }, "collapsed": true, "id": "_roHS3syX5P2", "outputId": "8e390b4e-35ab-4a9f-a3d1-e1d8e8903ef9" }, "execution_count": 8, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " fw mver lts endtime dst_name dst_addr src_addr \\\n", "0 5080 2.6.2 815268 1725494553 193.0.14.129 193.0.14.129 192.168.3.134 \n", "1 5080 2.6.2 817066 1725496351 193.0.14.129 193.0.14.129 192.168.3.134 \n", "2 5080 2.6.2 818863 1725498148 193.0.14.129 193.0.14.129 192.168.3.134 \n", "3 5080 2.6.2 820668 1725499953 193.0.14.129 193.0.14.129 192.168.3.134 \n", "4 5080 2.6.2 822465 1725501750 193.0.14.129 193.0.14.129 192.168.3.134 \n", "\n", " proto af size paris_id \\\n", "0 UDP 4 40 8 \n", "1 UDP 4 40 9 \n", "2 UDP 4 40 10 \n", "3 UDP 4 40 11 \n", "4 UDP 4 40 12 \n", "\n", " result \\\n", "0 [{'hop': 1, 'result': [{'from': '192.168.3.1',... \n", "1 [{'hop': 1, 'result': [{'from': '192.168.3.1',... \n", "2 [{'hop': 1, 'result': [{'from': '192.168.3.1',... \n", "3 [{'hop': 1, 'result': [{'from': '192.168.3.1',... \n", "4 [{'hop': 1, 'result': [{'from': '192.168.3.1',... \n", "\n", " destination_ip_responded msm_id prb_id timestamp msm_name \\\n", "0 True 5001 1008517 2024-09-05 00:02:20 Traceroute \n", "1 True 5001 1008517 2024-09-05 00:32:18 Traceroute \n", "2 True 5001 1008517 2024-09-05 01:02:17 Traceroute \n", "3 True 5001 1008517 2024-09-05 01:32:20 Traceroute \n", "4 True 5001 1008517 2024-09-05 02:02:18 Traceroute \n", "\n", " from type stored_timestamp \n", "0 186.118.170.139 traceroute 1725494612 \n", "1 186.118.170.139 traceroute 1725496423 \n", "2 186.118.170.139 traceroute 1725498212 \n", "3 186.118.170.139 traceroute 1725500029 \n", "4 186.118.170.139 traceroute 1725501816 " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fwmverltsendtimedst_namedst_addrsrc_addrprotoafsizeparis_idresultdestination_ip_respondedmsm_idprb_idtimestampmsm_namefromtypestored_timestamp
050802.6.28152681725494553193.0.14.129193.0.14.129192.168.3.134UDP4408[{'hop': 1, 'result': [{'from': '192.168.3.1',...True500110085172024-09-05 00:02:20Traceroute186.118.170.139traceroute1725494612
150802.6.28170661725496351193.0.14.129193.0.14.129192.168.3.134UDP4409[{'hop': 1, 'result': [{'from': '192.168.3.1',...True500110085172024-09-05 00:32:18Traceroute186.118.170.139traceroute1725496423
250802.6.28188631725498148193.0.14.129193.0.14.129192.168.3.134UDP44010[{'hop': 1, 'result': [{'from': '192.168.3.1',...True500110085172024-09-05 01:02:17Traceroute186.118.170.139traceroute1725498212
350802.6.28206681725499953193.0.14.129193.0.14.129192.168.3.134UDP44011[{'hop': 1, 'result': [{'from': '192.168.3.1',...True500110085172024-09-05 01:32:20Traceroute186.118.170.139traceroute1725500029
450802.6.28224651725501750193.0.14.129193.0.14.129192.168.3.134UDP44012[{'hop': 1, 'result': [{'from': '192.168.3.1',...True500110085172024-09-05 02:02:18Traceroute186.118.170.139traceroute1725501816
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "tr_df", "summary": "{\n \"name\": \"tr_df\",\n \"rows\": 189,\n \"fields\": [\n {\n \"column\": \"fw\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 5080,\n \"max\": 5080,\n \"num_unique_values\": 1,\n \"samples\": [\n 5080\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mver\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"2.6.2\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"lts\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 98466,\n \"min\": 815268,\n \"max\": 1153665,\n \"num_unique_values\": 189,\n \"samples\": [\n 1146465\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"endtime\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 98466,\n \"min\": 1725494553,\n \"max\": 1725832950,\n \"num_unique_values\": 189,\n \"samples\": [\n 1725825750\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"dst_name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"193.0.14.129\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"dst_addr\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"193.0.14.129\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"src_addr\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"192.168.3.134\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"proto\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"UDP\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"af\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 4,\n \"max\": 4,\n \"num_unique_values\": 1,\n \"samples\": [\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"size\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 40,\n \"max\": 40,\n \"num_unique_values\": 1,\n \"samples\": [\n 40\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"paris_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4,\n \"min\": 0,\n \"max\": 15,\n \"num_unique_values\": 16,\n \"samples\": [\n 8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"result\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"destination_ip_responded\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 2,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"msm_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 5001,\n \"max\": 5001,\n \"num_unique_values\": 1,\n \"samples\": [\n 5001\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"prb_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1008517,\n \"max\": 1008517,\n \"num_unique_values\": 1,\n \"samples\": [\n 1008517\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"timestamp\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2024-09-05 00:02:20\",\n \"max\": \"2024-09-08 22:02:18\",\n \"num_unique_values\": 189,\n \"samples\": [\n \"2024-09-08 20:02:17\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"msm_name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Traceroute\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"from\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"186.118.170.139\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"traceroute\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stored_timestamp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 98463,\n \"min\": 1725494612,\n \"max\": 1725833014,\n \"num_unique_values\": 189,\n \"samples\": [\n 1725825819\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 8 } ] }, { "source": [ "# @title Graph of number of hops for each measurement on a time line\n", "\n", "import plotly.graph_objects as go\n", "import pandas as pd\n", "\n", "# Calculate the hop count for each traceroute\n", "tr_df['hop_count'] = tr_df['result'].apply(len)\n", "\n", "# Sort the dataframe by timestamp\n", "tr_df = tr_df.sort_values('timestamp', ascending=True)\n", "tr_df = tr_df.reset_index(drop=True)\n", "\n", "# Calculate hop count\n", "tr_df['hop_count'] = tr_df['result'].apply(len)\n", "\n", "# Create hover text\n", "result_index = 0\n", "\n", "def hover_text(row):\n", " global result_index\n", " text = \"index: {}
\".format(result_index)\n", " text += \"{}

\".format(row['timestamp'])\n", " result = row['result']\n", " for n in result:\n", " text += \"{}: \".format(n['hop'])\n", " from_found = False\n", " if 'error' in n:\n", " text += \"Error: {}
\".format(n['error'])\n", " continue\n", " for m in n['result']:\n", " if 'from' in m:\n", " text += m['from'] + \"
\"\n", " from_found = True\n", " break\n", " if not from_found:\n", " text += \"*
\"\n", " result_index += 1\n", " return text\n", "\n", "tr_df['hover_text'] = tr_df.apply(hover_text, axis=1)\n", "\n", "# Create the plot\n", "fig = go.Figure(data=go.Scatter(x=tr_df['timestamp'],\n", " y=tr_df['hop_count'],\n", " mode='lines+markers',\n", " text=tr_df['hover_text'],\n", " hoverinfo='text'))\n", "\n", "# Customize the plot (optional)\n", "fig.update_layout(title='Traceroute Hop Count Over Time',\n", " xaxis_title='Time',\n", " yaxis_title='Hop Count')\n", "\n", "# Display the plot\n", "fig.show()" ], "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 542 }, "id": "A-v6hYwHa_KI", "outputId": "f90c53ae-4083-4e07-aa4e-b5a54af98db2", "cellView": "form" }, "execution_count": 9, "outputs": [ { "output_type": "display_data", "data": { "text/html": [ "\n", "\n", "\n", "
\n", "
\n", "\n", "" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# @title Table: Compare two traceroute measurements using the indexes shown on last graph\n", "\n", "index1 = \"57\" # @param {type:'string'}\n", "index2 = \"55\" # @param {type:'string'}\n", "\n", "# Select the first two rows and reset their indices\n", "df1 = tr_df.iloc[[index1]].reset_index(drop=True)\n", "df2 = tr_df.iloc[[index2]].reset_index(drop=True)\n", "\n", "# Reorder columns to place 'result' last\n", "new_column_order = [col for col in df1.columns if col != 'result'] + ['result']\n", "df1 = df1[new_column_order]\n", "df2 = df2[new_column_order]\n", "\n", "# Compare the DataFrames and format the output\n", "comparison = df1.compare(df2, align_axis='rows', keep_shape=True, keep_equal=True)\n", "\n", "# # Custom styling function to pretty-print 'result' column\n", "# def pretty_print_result(val):\n", "# s = \"\"\n", "# for n in val:\n", "# s += \"{}:   \".format(n['hop'])\n", "# for m in n['result']:\n", "# if 'from' in m:\n", "# s += \" {}\".format(m['from'])\n", "# else:\n", "# s += \" *\"\n", "# s += \"
\"\n", "# return s\n", "\n", "# # Pre-process the 'result' column to pretty-print JSON\n", "# comparison['result'] = comparison['result'].apply(pretty_print_result)\n", "\n", "# Transpose for better readability (optional)\n", "comparison_transposed = comparison.transpose()\n", "\n", "# Rename the columns for clarity\n", "comparison_transposed.columns = [\"index :{}\".format(index1), \"index :{}\".format(index2)]\n", "\n", "# Apply the styling, including custom formatting for 'result'\n", "styled_comparison = comparison_transposed.style.set_properties(**{'text-align': 'left'}) \\\n", " .set_table_styles([dict(selector='th', props=[('text-align', 'left')])])\n", "\n", "# Display the styled comparison\n", "display(styled_comparison)\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "cellView": "form", "id": "zP7NnqUhyG5K", "outputId": "4be30414-186e-43ef-d63c-e4027df057b9" }, "execution_count": 11, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 index :57index :55
fw50805080
mver2.6.22.6.2
lts917872914264
endtime17255971571725593549
dst_name193.0.14.129193.0.14.129
dst_addr193.0.14.129193.0.14.129
src_addr192.168.3.134192.168.3.134
protoUDPUDP
af44
size4040
paris_id115
destination_ip_respondedFalseTrue
msm_id50015001
prb_id10085171008517
timestamp2024-09-06 04:32:192024-09-06 03:32:17
msm_nameTracerouteTraceroute
from186.118.170.139186.118.170.139
typetraceroutetraceroute
stored_timestamp17255973391725593625
hop_count814
hover_textindex: 57
2024-09-06 04:32:19

1: 192.168.3.1
2: 186.118.170.137
3: *
4: *
5: *
6: *
7: *
255: *
index: 55
2024-09-06 03:32:17

1: 192.168.3.1
2: 186.118.170.137
3: 10.7.79.201
4: *
5: *
6: 94.142.118.231
7: 213.140.36.27
8: 213.140.36.28
9: 5.53.5.92
10: 84.16.6.43
11: *
12: 189.89.141.38
13: 187.44.146.78
14: 193.0.14.129
result[{'hop': 1, 'result': [{'from': '192.168.3.1', 'ttl': 64, 'size': 68, 'rtt': 0.323}, {'from': '192.168.3.1', 'ttl': 64, 'size': 68, 'rtt': 0.23800000000000002}, {'from': '192.168.3.1', 'ttl': 64, 'size': 68, 'rtt': 0.215}]}, {'hop': 2, 'result': [{'from': '186.118.170.137', 'ttl': 254, 'size': 28, 'rtt': 1.366}, {'from': '186.118.170.137', 'ttl': 254, 'size': 28, 'rtt': 1.161}, {'from': '186.118.170.137', 'ttl': 254, 'size': 28, 'rtt': 1.385}]}, {'hop': 3, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}, {'hop': 4, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}, {'hop': 5, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}, {'hop': 6, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}, {'hop': 7, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}, {'hop': 255, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}][{'hop': 1, 'result': [{'from': '192.168.3.1', 'ttl': 64, 'size': 68, 'rtt': 0.319}, {'from': '192.168.3.1', 'ttl': 64, 'size': 68, 'rtt': 0.20800000000000002}, {'from': '192.168.3.1', 'ttl': 64, 'size': 68, 'rtt': 0.223}]}, {'hop': 2, 'result': [{'from': '186.118.170.137', 'ttl': 254, 'size': 28, 'rtt': 1.3860000000000001}, {'from': '186.118.170.137', 'ttl': 254, 'size': 28, 'rtt': 1.089}, {'from': '186.118.170.137', 'ttl': 254, 'size': 28, 'rtt': 1.166}]}, {'hop': 3, 'result': [{'from': '10.7.79.201', 'ttl': 62, 'size': 68, 'rtt': 0.454}, {'from': '10.7.79.201', 'ttl': 62, 'size': 68, 'rtt': 0.435}, {'from': '10.7.79.201', 'ttl': 62, 'size': 68, 'rtt': 0.41500000000000004}]}, {'hop': 4, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}, {'hop': 5, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}, {'hop': 6, 'result': [{'from': '94.142.118.231', 'ttl': 248, 'size': 68, 'rtt': 22.238, 'itos': 128}, {'from': '94.142.118.231', 'ttl': 248, 'size': 68, 'rtt': 22.008, 'itos': 128}, {'from': '94.142.118.231', 'ttl': 248, 'size': 68, 'rtt': 22.057, 'itos': 128}]}, {'hop': 7, 'result': [{'from': '213.140.36.27', 'ttl': 245, 'size': 140, 'rtt': 152.803, 'itos': 128, 'icmpext': {'version': 0, 'rfc4884': 1, 'obj': [{'class': 0, 'type': 0}]}}, {'from': '213.140.36.27', 'ttl': 245, 'size': 140, 'rtt': 152.462, 'itos': 128, 'icmpext': {'version': 0, 'rfc4884': 1, 'obj': [{'class': 0, 'type': 0}]}}, {'from': '213.140.36.27', 'ttl': 245, 'size': 140, 'rtt': 152.462, 'itos': 128, 'icmpext': {'version': 0, 'rfc4884': 1, 'obj': [{'class': 0, 'type': 0}]}}]}, {'hop': 8, 'result': [{'from': '213.140.36.28', 'ttl': 246, 'size': 140, 'rtt': 152.165, 'ittl': 2, 'itos': 128, 'icmpext': {'version': 0, 'rfc4884': 1, 'obj': [{'class': 0, 'type': 0}]}}, {'from': '213.140.36.28', 'ttl': 246, 'size': 140, 'rtt': 152.415, 'ittl': 2, 'itos': 128, 'icmpext': {'version': 0, 'rfc4884': 1, 'obj': [{'class': 0, 'type': 0}]}}, {'from': '213.140.36.28', 'ttl': 246, 'size': 140, 'rtt': 152.3, 'ittl': 2, 'itos': 128, 'icmpext': {'version': 0, 'rfc4884': 1, 'obj': [{'class': 0, 'type': 0}]}}]}, {'hop': 9, 'result': [{'from': '5.53.5.92', 'ttl': 246, 'size': 28, 'rtt': 152.32, 'itos': 128}, {'from': '5.53.5.92', 'ttl': 246, 'size': 28, 'rtt': 152.649, 'itos': 128}, {'from': '5.53.5.92', 'ttl': 246, 'size': 28, 'rtt': 152.049, 'itos': 128}]}, {'hop': 10, 'result': [{'from': '84.16.6.43', 'ttl': 246, 'size': 28, 'rtt': 152.566}, {'from': '84.16.6.43', 'ttl': 246, 'size': 28, 'rtt': 156.21}, {'from': '84.16.6.43', 'ttl': 246, 'size': 28, 'rtt': 152.373}]}, {'hop': 11, 'result': [{'x': '*'}, {'x': '*'}, {'x': '*'}]}, {'hop': 12, 'result': [{'from': '189.89.141.38', 'ttl': 244, 'size': 28, 'rtt': 173.841}, {'from': '189.89.141.38', 'ttl': 244, 'size': 28, 'rtt': 166.825}, {'from': '189.89.141.38', 'ttl': 244, 'size': 28, 'rtt': 168.018}]}, {'hop': 13, 'result': [{'from': '187.44.146.78', 'ttl': 52, 'size': 68, 'rtt': 152.42}, {'from': '187.44.146.78', 'ttl': 52, 'size': 68, 'rtt': 152.296}, {'from': '187.44.146.78', 'ttl': 52, 'size': 68, 'rtt': 152.291}]}, {'hop': 14, 'result': [{'from': '193.0.14.129', 'ttl': 51, 'size': 68, 'rtt': 153.028}, {'from': '193.0.14.129', 'ttl': 51, 'size': 68, 'rtt': 152.999}, {'from': '193.0.14.129', 'ttl': 51, 'size': 68, 'rtt': 152.976}]}]
\n" ] }, "metadata": {} } ] } ] }