-------------------------------- START OF PROGRAM -------------------------------- // Dynamically allocate N contiguous unsigned long long sized chunks of memory to an array for storing N floating-point values. // Store the memory address of the first element of that array in T. T = new unsigned long long [N]; A := 0. // variable to store the Nth approximation of Euler's Number N := 50. // number of elements in the array of unsigned long long type values pointed to by T sizeof(unsigned long long) = 8. // number of bytes &T = 0x7ffdd6c0ea68. // memory address of unsigned long long type variable named T T = 0x6523bf6c5cc0. // memory address which is stored in T (*T) = 27149465285. // unsigned long long type value whose address is stored in T Displaying the memory address of each element of array T... &T[0] = 0x6523bf6c5cc0. // memory address of T[0] &T[1] = 0x6523bf6c5cc8. // memory address of T[1] &T[2] = 0x6523bf6c5cd0. // memory address of T[2] &T[3] = 0x6523bf6c5cd8. // memory address of T[3] &T[4] = 0x6523bf6c5ce0. // memory address of T[4] &T[5] = 0x6523bf6c5ce8. // memory address of T[5] &T[6] = 0x6523bf6c5cf0. // memory address of T[6] &T[7] = 0x6523bf6c5cf8. // memory address of T[7] &T[8] = 0x6523bf6c5d00. // memory address of T[8] &T[9] = 0x6523bf6c5d08. // memory address of T[9] &T[10] = 0x6523bf6c5d10. // memory address of T[10] &T[11] = 0x6523bf6c5d18. // memory address of T[11] &T[12] = 0x6523bf6c5d20. // memory address of T[12] &T[13] = 0x6523bf6c5d28. // memory address of T[13] &T[14] = 0x6523bf6c5d30. // memory address of T[14] &T[15] = 0x6523bf6c5d38. // memory address of T[15] &T[16] = 0x6523bf6c5d40. // memory address of T[16] &T[17] = 0x6523bf6c5d48. // memory address of T[17] &T[18] = 0x6523bf6c5d50. // memory address of T[18] &T[19] = 0x6523bf6c5d58. // memory address of T[19] &T[20] = 0x6523bf6c5d60. // memory address of T[20] &T[21] = 0x6523bf6c5d68. // memory address of T[21] &T[22] = 0x6523bf6c5d70. // memory address of T[22] &T[23] = 0x6523bf6c5d78. // memory address of T[23] &T[24] = 0x6523bf6c5d80. // memory address of T[24] &T[25] = 0x6523bf6c5d88. // memory address of T[25] &T[26] = 0x6523bf6c5d90. // memory address of T[26] &T[27] = 0x6523bf6c5d98. // memory address of T[27] &T[28] = 0x6523bf6c5da0. // memory address of T[28] &T[29] = 0x6523bf6c5da8. // memory address of T[29] &T[30] = 0x6523bf6c5db0. // memory address of T[30] &T[31] = 0x6523bf6c5db8. // memory address of T[31] &T[32] = 0x6523bf6c5dc0. // memory address of T[32] &T[33] = 0x6523bf6c5dc8. // memory address of T[33] &T[34] = 0x6523bf6c5dd0. // memory address of T[34] &T[35] = 0x6523bf6c5dd8. // memory address of T[35] &T[36] = 0x6523bf6c5de0. // memory address of T[36] &T[37] = 0x6523bf6c5de8. // memory address of T[37] &T[38] = 0x6523bf6c5df0. // memory address of T[38] &T[39] = 0x6523bf6c5df8. // memory address of T[39] &T[40] = 0x6523bf6c5e00. // memory address of T[40] &T[41] = 0x6523bf6c5e08. // memory address of T[41] &T[42] = 0x6523bf6c5e10. // memory address of T[42] &T[43] = 0x6523bf6c5e18. // memory address of T[43] &T[44] = 0x6523bf6c5e20. // memory address of T[44] &T[45] = 0x6523bf6c5e28. // memory address of T[45] &T[46] = 0x6523bf6c5e30. // memory address of T[46] &T[47] = 0x6523bf6c5e38. // memory address of T[47] &T[48] = 0x6523bf6c5e40. // memory address of T[48] &T[49] = 0x6523bf6c5e48. // memory address of T[49] Storing the factorial of each nonnegative integer which is smaller than N in array T... T[0] := factorial(0) = (0)! = 1. T[1] := factorial(1) = (1)! = 1. T[2] := factorial(2) = (2)! = 2. T[3] := factorial(3) = (3)! = 6. T[4] := factorial(4) = (4)! = 24. T[5] := factorial(5) = (5)! = 120. T[6] := factorial(6) = (6)! = 720. T[7] := factorial(7) = (7)! = 5040. T[8] := factorial(8) = (8)! = 40320. T[9] := factorial(9) = (9)! = 362880. T[10] := factorial(10) = (10)! = 3628800. T[11] := factorial(11) = (11)! = 39916800. T[12] := factorial(12) = (12)! = 479001600. T[13] := factorial(13) = (13)! = 6227020800. T[14] := factorial(14) = (14)! = 87178291200. T[15] := factorial(15) = (15)! = 1307674368000. T[16] := factorial(16) = (16)! = 20922789888000. T[17] := factorial(17) = (17)! = 355687428096000. T[18] := factorial(18) = (18)! = 6402373705728000. T[19] := factorial(19) = (19)! = 121645100408832000. T[20] := factorial(20) = (20)! = 2432902008176640000. T[21] := factorial(21) = (21)! = 14197454024290336768. T[22] := factorial(22) = (22)! = 17196083355034583040. T[23] := factorial(23) = (23)! = 8128291617894825984. T[24] := factorial(24) = (24)! = 10611558092380307456. T[25] := factorial(25) = (25)! = 7034535277573963776. T[26] := factorial(26) = (26)! = 16877220553537093632. T[27] := factorial(27) = (27)! = 12963097176472289280. T[28] := factorial(28) = (28)! = 12478583540742619136. T[29] := factorial(29) = (29)! = 11390785281054474240. T[30] := factorial(30) = (30)! = 9682165104862298112. T[31] := factorial(31) = (31)! = 4999213071378415616. T[32] := factorial(32) = (32)! = 12400865694432886784. T[33] := factorial(33) = (33)! = 3400198294675128320. T[34] := factorial(34) = (34)! = 4926277576697053184. T[35] := factorial(35) = (35)! = 6399018521010896896. T[36] := factorial(36) = (36)! = 9003737871877668864. T[37] := factorial(37) = (37)! = 1096907932701818880. T[38] := factorial(38) = (38)! = 4789013295250014208. T[39] := factorial(39) = (39)! = 2304077777655037952. T[40] := factorial(40) = (40)! = 18376134811363311616. T[41] := factorial(41) = (41)! = 15551764317513711616. T[42] := factorial(42) = (42)! = 7538058755741581312. T[43] := factorial(43) = (43)! = 10541877243825618944. T[44] := factorial(44) = (44)! = 2673996885588443136. T[45] := factorial(45) = (45)! = 9649395409222631424. T[46] := factorial(46) = (46)! = 1150331055211806720. T[47] := factorial(47) = (47)! = 17172071447535812608. T[48] := factorial(48) = (48)! = 12602690238498734080. T[49] := factorial(49) = (49)! = 8789267254022766592. Computing the appoximate value of Euler's Number by adding up the reciprocal of each value in array T... (1 / T[0]) = (1 / 1) = 1. (1 / T[1]) = (1 / 1) = 1. (1 / T[2]) = (1 / 2) = 0.5. (1 / T[3]) = (1 / 6) = 0.166666666666666666671184175718689601808364386670291423797607421875. (1 / T[4]) = (1 / 24) = 0.04166666666666666666779604392967240045209109666757285594940185546875. (1 / T[5]) = (1 / 120) = 0.0083333333333333333337286153753853401582318838336504995822906494140625. (1 / T[6]) = (1 / 720) = 0.0013888888888888888888488901108241024839884403263567946851253509521484375. (1 / T[7]) = (1 / 5040) = 0.0001984126984126984126983706828895211160546097062251647002995014190673828125. (1 / T[8]) = (1 / 40320) = 2.48015873015873015872963353611901395068262132781455875374376773834228515625e-05. (1 / T[9]) = (1 / 362880) = 2.7557319223985890651862166557528187500747396398992350441403687000274658203125e-06. (1 / T[10]) = (1 / 3628800) = 2.755731922398589065134517867468254520395276596644862365792505443096160888671875e-07. (1 / T[11]) = (1 / 39916800) = 2.505210838544171877468452021966260117517670547027108796100947074592113494873046875e-08. (1 / T[12]) = (1 / 479001600) = 2.0876756987868098978903766849718834312647254558559239967507892288267612457275390625e-09. (1 / T[13]) = (1 / 6227020800) = 1.60590438368216145992538343035032278473177931761572967417350810137577354907989501953125e-10. (1 / T[14]) = (1 / 87178291200) = 1.1470745597729724713978127618279737549630346144478865166860259705572389066219329833984375e-11. (1 / T[15]) = (1 / 1307674368000) = 7.6471637318198164760182876165707005249790527865393595374765567385111353360116481781005859375e-13. (1 / T[16]) = (1 / 20922789888000) = 4.7794773323873852975114297603566878281119079915870997109228479615694595850072801113128662109375e-14. (1 / T[17]) = (1 / 355687428096000) = 2.8114572543455207631627145083821066578811703150624439991912828507025778890238143503665924072265625e-15. (1 / T[18]) = (1 / 6402373705728000) = 1.561920696858622646281755141228416303811315922642396415600911374621517779814894311130046844482421875e-16. (1 / T[19]) = (1 / 121645100408832000) = 8.220635246624329716718057091551259700512195415301490541412415477551256515198474517092108726501464844e-18. (1 / T[20]) = (1 / 2432902008176640000) = 4.110317623312164858406048319808521350574847169139635097818954361046511758459587326797191053628921509e-19. (1 / T[21]) = (1 / 14197454024290336768) = 7.043516381804132984552581733844016154884793905449790136826614643386981762240850457601482048630714417e-20. (1 / T[22]) = (1 / 17196083355034583040) = 5.815277696401867087825620308901504154687317329562106344189912444453752216055875123856822028756141663e-20. (1 / T[23]) = (1 / 8128291617894825984) = 1.230270820744732847600809726906469170638222121705104977548044832558193917293465347029268741607666016e-19. (1 / T[24]) = (1 / 10611558092380307456) = 9.423686807294170693318948175954948019683466235544601296535251525304105468805460077419411391019821167e-20. (1 / T[25]) = (1 / 7034535277573963776) = 1.421558014198878427804392419215390985622496694920617818255280764058040565700480328814592212438583374e-19. (1 / T[26]) = (1 / 16877220553537093632) = 5.925146245662008780449842354395082473873705632309314560039469494409983263416563659120583906769752502e-20. (1 / T[27]) = (1 / 12963097176472289280) = 7.714205844379351220442307590283867888447153857127854916092693027609983325021403288701549172401428223e-20. (1 / T[28]) = (1 / 12478583540742619136) = 8.013730057862709208685990201180404102359911354745243625185241551512477231611342176620382815599441528e-20. (1 / T[29]) = (1 / 11390785281054474240) = 8.779025987464030508121718994662328990235623784252274002513994418002429842573519636061973869800567627e-20. (1 / T[30]) = (1 / 9682165104862298112) = 1.032826841072776997026950697730699208625361299463986189138260421926072962772735763792297802865505219e-19. (1 / T[31]) = (1 / 4999213071378415616) = 2.000314820996964391002384152827705545795997986125651431532452634775784416909516494342824444174766541e-19. (1 / T[32]) = (1 / 12400865694432886784) = 8.063953151665285768186808446574614784476978848083338270190630530992112467991717039694776758551597595e-20. (1 / T[33]) = (1 / 3400198294675128320) = 2.94100494540582352051641419389346837770780057644808278616539932081783148554166018584510311484336853e-19. (1 / T[34]) = (1 / 4926277576697053184) = 2.029930275813802546836213263140678056231305513535500619692556199856817156224053633195580914616584778e-19. (1 / T[35]) = (1 / 6399018521010896896) = 1.562739655646477380892696552554155496761738949953131410708552116381464536232215323252603411674499512e-19. (1 / T[36]) = (1 / 9003737871877668864) = 1.110649837023139300042549561205190561515953323270939067541196991093996326860349199705524370074272156e-19. (1 / T[37]) = (1 / 1096907932701818880) = 9.116535400896201500929943441933132123874700032396657688457333604606369625855677440995350480079650879e-19. (1 / T[38]) = (1 / 4789013295250014208) = 2.088112808105691869924731083569285259541630716029320990911684108098586576396371583541622385382652283e-19. (1 / T[39]) = (1 / 2304077777655037952) = 4.340131265090123433015478527485500881114515851366072819926298178606904887288919780985452234745025635e-19. (1 / T[40]) = (1 / 18376134811363311616) = 5.441840791141925413183004478172199152903907339519060119881344722830157634163583679764997214078903198e-20. (1 / T[41]) = (1 / 15551764317513711616) = 6.430138597675660950353326517785726873973361451550566389280682460562188484942680588574148714542388916e-20. (1 / T[42]) = (1 / 7538058755741581312) = 1.326601493041323093804705908412158628351599110254046220970487675360274804070570553449215367436408997e-19. (1 / T[43]) = (1 / 10541877243825618944) = 9.485976518894681088585945984202713644634515871086129452208364070146459634536029170703841373324394226e-20. (1 / T[44]) = (1 / 2673996885588443136) = 3.739720137257896377418136692574652015537340387383811719072360135220078891649109209538437426090240479e-19. (1 / T[45]) = (1 / 9649395409222631424) = 1.036334358362210981733926214460651797062864929183711526852237064981812619812728826218517497181892395e-19. (1 / T[46]) = (1 / 1150331055211806720) = 8.693149641308025443189145265311138141228065069562171980261825821392762669859166635433211922645568848e-19. (1 / T[47]) = (1 / 17172071447535812608) = 5.823409266932089994910827473586939922642565582829483048515030398258052191096112437662668526172637939e-20. (1 / T[48]) = (1 / 12602690238498734080) = 7.934813766549598658208990425096079332701638958718522115960120841835281901843757168535375967621803284e-20. (1 / T[49]) = (1 / 8789267254022766592) = 1.137751272203390128107638181047964849359748082386584368096104198870080481675870487379143014550209045e-19. A := A + (1 / (0)!) = 0 + (1 / 1) = 0 + 1 = 1. A := A + (1 / (1)!) = 1 + (1 / 1) = 1 + 1 = 2. A := A + (1 / (2)!) = 2 + (1 / 2) = 2 + 0.5 = 2.5. A := A + (1 / (3)!) = 2.5 + (1 / 6) = 2.5 + 0.166666666666666666671184175718689601808364386670291423797607421875 = 2.66666666666666666673894681149903362893383018672466278076171875. A := A + (1 / (4)!) = 2.66666666666666666673894681149903362893383018672466278076171875 + (1 / 24) = 2.66666666666666666673894681149903362893383018672466278076171875 + 0.04166666666666666666779604392967240045209109666757285594940185546875 = 2.7083333333333333334778936229980672578676603734493255615234375. A := A + (1 / (5)!) = 2.7083333333333333334778936229980672578676603734493255615234375 + (1 / 120) = 2.7083333333333333334778936229980672578676603734493255615234375 + 0.0083333333333333333337286153753853401582318838336504995822906494140625 = 2.71666666666666666691241915909671433837502263486385345458984375. A := A + (1 / (6)!) = 2.71666666666666666691241915909671433837502263486385345458984375 + (1 / 720) = 2.71666666666666666691241915909671433837502263486385345458984375 + 0.0013888888888888888888488901108241024839884403263567946851253509521484375 = 2.7180555555555555558543134875293389995931647717952728271484375. A := A + (1 / (7)!) = 2.7180555555555555558543134875293389995931647717952728271484375 + (1 / 5040) = 2.7180555555555555558543134875293389995931647717952728271484375 + 0.0001984126984126984126983706828895211160546097062251647002995014190673828125 = 2.71825396825396825421262969602054226925247348845005035400390625. A := A + (1 / (8)!) = 2.71825396825396825421262969602054226925247348845005035400390625 + (1 / 40320) = 2.71825396825396825421262969602054226925247348845005035400390625 + 2.48015873015873015872963353611901395068262132781455875374376773834228515625e-05 = 2.71827876984126984142610405914552984540932811796665191650390625. A := A + (1 / (9)!) = 2.71827876984126984142610405914552984540932811796665191650390625 + (1 / 362880) = 2.71827876984126984142610405914552984540932811796665191650390625 + 2.7557319223985890651862166557528187500747396398992350441403687000274658203125e-06 = 2.71828152557319224010175251482479552578297443687915802001953125. A := A + (1 / (10)!) = 2.71828152557319224010175251482479552578297443687915802001953125 + (1 / 3628800) = 2.71828152557319224010175251482479552578297443687915802001953125 + 2.755731922398589065134517867468254520395276596644862365792505443096160888671875e-07 = 2.71828180114638447996931736039272209382033906877040863037109375. A := A + (1 / (11)!) = 2.71828180114638447996931736039272209382033906877040863037109375 + (1 / 39916800) = 2.71828180114638447996931736039272209382033906877040863037109375 + 2.505210838544171877468452021966260117517670547027108796100947074592113494873046875e-08 = 2.718281826198492865352684955126960630877874791622161865234375. A := A + (1 / (12)!) = 2.718281826198492865352684955126960630877874791622161865234375 + (1 / 479001600) = 2.718281826198492865352684955126960630877874791622161865234375 + 2.0876756987868098978903766849718834312647254558559239967507892288267612457275390625e-09 = 2.71828182828616856411656221848005543506587855517864227294921875. A := A + (1 / (13)!) = 2.71828182828616856411656221848005543506587855517864227294921875 + (1 / 6227020800) = 2.71828182828616856411656221848005543506587855517864227294921875 + 1.60590438368216145992538343035032278473177931761572967417350810137577354907989501953125e-10 = 2.7182818284467590024162941819696470702183432877063751220703125. A := A + (1 / (14)!) = 2.7182818284467590024162941819696470702183432877063751220703125 + (1 / 87178291200) = 2.7182818284467590024162941819696470702183432877063751220703125 + 1.1470745597729724713978127618279737549630346144478865166860259705572389066219329833984375e-11 = 2.71828182845822974799364357689768212367198430001735687255859375. A := A + (1 / (15)!) = 2.71828182845822974799364357689768212367198430001735687255859375 + (1 / 1307674368000) = 2.71828182845822974799364357689768212367198430001735687255859375 + 7.6471637318198164760182876165707005249790527865393595374765567385111353360116481781005859375e-13 = 2.71828182845899446440883495679230463792919181287288665771484375. A := A + (1 / (16)!) = 2.71828182845899446440883495679230463792919181287288665771484375 + (1 / 20922789888000) = 2.71828182845899446440883495679230463792919181287288665771484375 + 4.7794773323873852975114297603566878281119079915870997109228479615694595850072801113128662109375e-14 = 2.71828182845904225907636420078716810166952200233936309814453125. A := A + (1 / (17)!) = 2.71828182845904225907636420078716810166952200233936309814453125 + (1 / 355687428096000) = 2.71828182845904225907636420078716810166952200233936309814453125 + 2.8114572543455207631627145083821066578811703150624439991912828507025778890238143503665924072265625e-15 = 2.71828182845904507062943789019726636979612521827220916748046875. A := A + (1 / (18)!) = 2.71828182845904507062943789019726636979612521827220916748046875 + (1 / 6402373705728000) = 2.71828182845904507062943789019726636979612521827220916748046875 + 1.561920696858622646281755141228416303811315922642396415600911374621517779814894311130046844482421875e-16 = 2.71828182845904522675455072810990486686932854354381561279296875. A := A + (1 / (19)!) = 2.71828182845904522675455072810990486686932854354381561279296875 + (1 / 121645100408832000) = 2.71828182845904522675455072810990486686932854354381561279296875 + 8.220635246624329716718057091551259700512195415301490541412415477551256515198474517092108726501464844e-18 = 2.71828182845904523499448723899973856532596983015537261962890625. A := A + (1 / (20)!) = 2.71828182845904523499448723899973856532596983015537261962890625 + (1 / 2432902008176640000) = 2.71828182845904523499448723899973856532596983015537261962890625 + 4.110317623312164858406048319808521350574847169139635097818954361046511758459587326797191053628921509e-19 = 2.71828182845904523542816810799394033892895095050334930419921875. A := A + (1 / (21)!) = 2.71828182845904523542816810799394033892895095050334930419921875 + (1 / 14197454024290336768) = 2.71828182845904523542816810799394033892895095050334930419921875 + 7.043516381804132984552581733844016154884793905449790136826614643386981762240850457601482048630714417e-20 = 2.71828182845904523542816810799394033892895095050334930419921875. A := A + (1 / (22)!) = 2.71828182845904523542816810799394033892895095050334930419921875 + (1 / 17196083355034583040) = 2.71828182845904523542816810799394033892895095050334930419921875 + 5.815277696401867087825620308901504154687317329562106344189912444453752216055875123856822028756141663e-20 = 2.71828182845904523542816810799394033892895095050334930419921875. A := A + (1 / (23)!) = 2.71828182845904523542816810799394033892895095050334930419921875 + (1 / 8128291617894825984) = 2.71828182845904523542816810799394033892895095050334930419921875 + 1.230270820744732847600809726906469170638222121705104977548044832558193917293465347029268741607666016e-19 = 2.718281828459045235645008542491041225730441510677337646484375. A := A + (1 / (24)!) = 2.718281828459045235645008542491041225730441510677337646484375 + (1 / 10611558092380307456) = 2.718281828459045235645008542491041225730441510677337646484375 + 9.423686807294170693318948175954948019683466235544601296535251525304105468805460077419411391019821167e-20 = 2.718281828459045235645008542491041225730441510677337646484375. A := A + (1 / (25)!) = 2.718281828459045235645008542491041225730441510677337646484375 + (1 / 7034535277573963776) = 2.718281828459045235645008542491041225730441510677337646484375 + 1.421558014198878427804392419215390985622496694920617818255280764058040565700480328814592212438583374e-19 = 2.71828182845904523586184897698814211253193207085132598876953125. A := A + (1 / (26)!) = 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 16877220553537093632) = 2.71828182845904523586184897698814211253193207085132598876953125 + 5.925146245662008780449842354395082473873705632309314560039469494409983263416563659120583906769752502e-20 = 2.71828182845904523586184897698814211253193207085132598876953125. A := A + (1 / (27)!) = 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 12963097176472289280) = 2.71828182845904523586184897698814211253193207085132598876953125 + 7.714205844379351220442307590283867888447153857127854916092693027609983325021403288701549172401428223e-20 = 2.71828182845904523586184897698814211253193207085132598876953125. A := A + (1 / (28)!) = 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 12478583540742619136) = 2.71828182845904523586184897698814211253193207085132598876953125 + 8.013730057862709208685990201180404102359911354745243625185241551512477231611342176620382815599441528e-20 = 2.71828182845904523586184897698814211253193207085132598876953125. A := A + (1 / (29)!) = 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 11390785281054474240) = 2.71828182845904523586184897698814211253193207085132598876953125 + 8.779025987464030508121718994662328990235623784252274002513994418002429842573519636061973869800567627e-20 = 2.71828182845904523586184897698814211253193207085132598876953125. A := A + (1 / (30)!) = 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 9682165104862298112) = 2.71828182845904523586184897698814211253193207085132598876953125 + 1.032826841072776997026950697730699208625361299463986189138260421926072962772735763792297802865505219e-19 = 2.71828182845904523586184897698814211253193207085132598876953125. A := A + (1 / (31)!) = 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 4999213071378415616) = 2.71828182845904523586184897698814211253193207085132598876953125 + 2.000314820996964391002384152827705545795997986125651431532452634775784416909516494342824444174766541e-19 = 2.7182818284590452360786894114852429993334226310253143310546875. A := A + (1 / (32)!) = 2.7182818284590452360786894114852429993334226310253143310546875 + (1 / 12400865694432886784) = 2.7182818284590452360786894114852429993334226310253143310546875 + 8.063953151665285768186808446574614784476978848083338270190630530992112467991717039694776758551597595e-20 = 2.7182818284590452360786894114852429993334226310253143310546875. A := A + (1 / (33)!) = 2.7182818284590452360786894114852429993334226310253143310546875 + (1 / 3400198294675128320) = 2.7182818284590452360786894114852429993334226310253143310546875 + 2.94100494540582352051641419389346837770780057644808278616539932081783148554166018584510311484336853e-19 = 2.71828182845904523629552984598234388613491319119930267333984375. A := A + (1 / (34)!) = 2.71828182845904523629552984598234388613491319119930267333984375 + (1 / 4926277576697053184) = 2.71828182845904523629552984598234388613491319119930267333984375 + 2.029930275813802546836213263140678056231305513535500619692556199856817156224053633195580914616584778e-19 = 2.718281828459045236512370280479444772936403751373291015625. A := A + (1 / (35)!) = 2.718281828459045236512370280479444772936403751373291015625 + (1 / 6399018521010896896) = 2.718281828459045236512370280479444772936403751373291015625 + 1.562739655646477380892696552554155496761738949953131410708552116381464536232215323252603411674499512e-19 = 2.71828182845904523672921071497654565973789431154727935791015625. A := A + (1 / (36)!) = 2.71828182845904523672921071497654565973789431154727935791015625 + (1 / 9003737871877668864) = 2.71828182845904523672921071497654565973789431154727935791015625 + 1.110649837023139300042549561205190561515953323270939067541196991093996326860349199705524370074272156e-19 = 2.7182818284590452369460511494736465465393848717212677001953125. A := A + (1 / (37)!) = 2.7182818284590452369460511494736465465393848717212677001953125 + (1 / 1096907932701818880) = 2.7182818284590452369460511494736465465393848717212677001953125 + 9.116535400896201500929943441933132123874700032396657688457333604606369625855677440995350480079650879e-19 = 2.7182818284590452378134128874620500937453471124172210693359375. A := A + (1 / (38)!) = 2.7182818284590452378134128874620500937453471124172210693359375 + (1 / 4789013295250014208) = 2.7182818284590452378134128874620500937453471124172210693359375 + 2.088112808105691869924731083569285259541630716029320990911684108098586576396371583541622385382652283e-19 = 2.71828182845904523803025332195915098054683767259120941162109375. A := A + (1 / (39)!) = 2.71828182845904523803025332195915098054683767259120941162109375 + (1 / 2304077777655037952) = 2.71828182845904523803025332195915098054683767259120941162109375 + 4.340131265090123433015478527485500881114515851366072819926298178606904887288919780985452234745025635e-19 = 2.71828182845904523846393419095335275414981879293918609619140625. A := A + (1 / (40)!) = 2.71828182845904523846393419095335275414981879293918609619140625 + (1 / 18376134811363311616) = 2.71828182845904523846393419095335275414981879293918609619140625 + 5.441840791141925413183004478172199152903907339519060119881344722830157634163583679764997214078903198e-20 = 2.71828182845904523846393419095335275414981879293918609619140625. A := A + (1 / (41)!) = 2.71828182845904523846393419095335275414981879293918609619140625 + (1 / 15551764317513711616) = 2.71828182845904523846393419095335275414981879293918609619140625 + 6.430138597675660950353326517785726873973361451550566389280682460562188484942680588574148714542388916e-20 = 2.71828182845904523846393419095335275414981879293918609619140625. A := A + (1 / (42)!) = 2.71828182845904523846393419095335275414981879293918609619140625 + (1 / 7538058755741581312) = 2.71828182845904523846393419095335275414981879293918609619140625 + 1.326601493041323093804705908412158628351599110254046220970487675360274804070570553449215367436408997e-19 = 2.7182818284590452386807746254504536409513093531131744384765625. A := A + (1 / (43)!) = 2.7182818284590452386807746254504536409513093531131744384765625 + (1 / 10541877243825618944) = 2.7182818284590452386807746254504536409513093531131744384765625 + 9.485976518894681088585945984202713644634515871086129452208364070146459634536029170703841373324394226e-20 = 2.7182818284590452386807746254504536409513093531131744384765625. A := A + (1 / (44)!) = 2.7182818284590452386807746254504536409513093531131744384765625 + (1 / 2673996885588443136) = 2.7182818284590452386807746254504536409513093531131744384765625 + 3.739720137257896377418136692574652015537340387383811719072360135220078891649109209538437426090240479e-19 = 2.718281828459045239114455494444655414554290473461151123046875. A := A + (1 / (45)!) = 2.718281828459045239114455494444655414554290473461151123046875 + (1 / 9649395409222631424) = 2.718281828459045239114455494444655414554290473461151123046875 + 1.036334358362210981733926214460651797062864929183711526852237064981812619812728826218517497181892395e-19 = 2.718281828459045239114455494444655414554290473461151123046875. A := A + (1 / (46)!) = 2.718281828459045239114455494444655414554290473461151123046875 + (1 / 1150331055211806720) = 2.718281828459045239114455494444655414554290473461151123046875 + 8.693149641308025443189145265311138141228065069562171980261825821392762669859166635433211922645568848e-19 = 2.7182818284590452399818172324330589617602527141571044921875. A := A + (1 / (47)!) = 2.7182818284590452399818172324330589617602527141571044921875 + (1 / 17172071447535812608) = 2.7182818284590452399818172324330589617602527141571044921875 + 5.823409266932089994910827473586939922642565582829483048515030398258052191096112437662668526172637939e-20 = 2.7182818284590452399818172324330589617602527141571044921875. A := A + (1 / (48)!) = 2.7182818284590452399818172324330589617602527141571044921875 + (1 / 12602690238498734080) = 2.7182818284590452399818172324330589617602527141571044921875 + 7.934813766549598658208990425096079332701638958718522115960120841835281901843757168535375967621803284e-20 = 2.7182818284590452399818172324330589617602527141571044921875. A := A + (1 / (49)!) = 2.7182818284590452399818172324330589617602527141571044921875 + (1 / 8789267254022766592) = 2.7182818284590452399818172324330589617602527141571044921875 + 1.137751272203390128107638181047964849359748082386584368096104198870080481675870487379143014550209045e-19 = 2.71828182845904524019865766693015984856174327433109283447265625. B = eulers_number_approximation(N) := 2.71828182845904524019865766693015984856174327433109283447265625. -------------------------------- END OF PROGRAM --------------------------------