
FCMP++

Luke ”Kayaba” Parker

May 9, 2024

Abstract

FCMP++, shortened from FCMP+SA+L, short for Full-Chain Mem-
bership Proofs + Spend Authorization + Linkability, are an accomplish-
ment of full-set privacy over the existing RingCT protocol used within
Monero. This document serves as a specification and implementation ref-
erence.

1 Background

Monero is currently planning to deploy the Seraphis upgrade, most notable
for its definition as a composition which distinguishes membership from spend
authorization. With that, we are allowed much more efficient membership proofs
(enabling full-set privacy). RingCT, which fails to so distinguish, was considered
infeasible for full-set privacy for that reason and due to how its linking tags are
defined.

With Seraphis, outputs are defined as k0 · G0 + k1 · G1 + k2 · G2 with the
linking tag defined as (k2/k1) · J . This allows k0 to be re-randomized without
malleating the linking tag.

With a new, incompatible definition of linking tags, it forces creation of a new
anonymity set (with explicit migration) to prevent double-spending of already
spent outputs (which would now be given a new linking tag if ’imported’ by
simply adding a 1 ·G2 term).

With RingCT, outputs are defined as O = x ·G with the linking tag defined
as x ·HashToPoint(O). To re-randomize x would be to malleate the linking tag.

2 New Output Key Definition

Since we cannot re-define the linking tags in an amenable fashion, we re-define
the output key. We introduce a new generator, T , re-define output keys as
O = x ·G+ y ·T (where y = 0 for all existing outputs), and preserve the linking
tag definition of x·HashToPoint(O). This causes all existing outputs to maintain
their linking tags while giving us a term to re-randomize.

1



3 Proof Separation

Seraphis defines four distinct proofs.

1. Membership Proof.

The tuple of the commitment being spent by this input and the output key
associated with it is a member of the set of outputs within this blockchain.

2. ”Ownership and Unspentness” (Spend Authorization and Linkability).

The transaction created is authorized by the possessor of the private keys
for the output key. The commitment spent has not been prior spent.

3. Balance Proof.

This transaction does not create outputs worth more than the inputs
spent.

4. Range Proof.

The outputs do not overflow the order of the elliptic curve in order to
cheat the balance proof.

We appreciate and maintain these four definitions. We focus on the first
two, currently jointly satisfied by CLSAG. We claim the following relationship
currently satisfied.
{
G,H ∈ G, C̃, L ∈ G, S ∈ (G,G,G)n;
O, I, C ∈ G, x, cg, ch, rc ∈ Z |
(O, I, C) ∈ S,
O = x ·G, L = x · I,
C = cg ·G+ ch ·H, C̃ = (cg + rc) ·G+ ch ·H
}
This performs set membership, proves possession of the private keys (so if

the transcript is bound to the spend, performs spend authorization), and proves
the linking tag is of the expected form (providing linkability).

We split this into two independent statements, augmented as necessary for
composition into a statement functionally equivalent to the original.

2



3.1 New Membership Proof

OutputSet is defined as a set of (O, I, C) tuples (where O is the output key,
I = HashToPoint(O), and C the amount commitment).

For an output tuple (O, I, C), the prover samples scalars ro, ri, rj , rc. They
then prove knowledge of those scalars and:

Õ = O + ro · T
Ĩ = I + ri · U
R = ri · V + rj · T
C̃ = C + rc ·G
(O, I, C) ∈ OutputSet
while only publishing Õ, Ĩ, C̃, R (the ’input tuple’).
This does not require knowledge of x, y (nor the opening of the Pedersen

commitment C) and accordingly can be produced by any party trusted with
sender privacy. Exactly how this membership proof occurs is left as a black box
to the rest of these designs, yet further specified later.

The typed statement is as follows.
{
G,T, U, V ∈ G, Õ, Ĩ, R, C̃ ∈ G, OutputSet ∈ (G,G,G)n;
O, I, C ∈ G, ro, ri, rj , rc ∈ Z |
(O, I, C) ∈ OutputSet,
Õ = O + ro · T, Ĩ = I + ri · U, R = ri · V + rj · T, C̃ = C + rc ·G
}

3.2 New Spend Authorization and Linkability Proof

For an input tuple Õ, Ĩ, C̃, R, and linking tag L, prove knowledge of x, y′, ri
such that Õ = x · G + y′ · T,R = ri · V + rj · T, Ĩ = I + ri · U , and L = x · I
(while binding to the transaction hash). To be explicit, y′ = y + ro.

The typed statement is as follows.
{
G,T, U, V ∈ G, Õ, Ĩ, R, L,∈ G;
x, y′, ri, rj ∈ Z |
Õ = x ·G+ y′ · T, R = ri · V + rj · T, L = x · Ĩ − (x ∗ ri) · U
}

We instantiate this literally with a Bulletproof+ (https://eprint.iacr.org/2020/735)
composed with a Generalized Schnorr Protocol (https://eprint.iacr.org/2009/050).

We start by inlining the math for the Bulletproof+ Weighted-Inner Product
proof (in its single round form with its y = 1, as that’s all we need).

1. Prover samples rp, α, β, µ, δ and publishes:

� P = x ·G+ ri · V + (x ∗ ri) · U + rp · T
This is the P from the statement of Bulletproof+’s weighted-inner-
product proof for g = [G],h = [V ], g = U, h = T (in its own nota-
tion).

3



� A = α ·G+ β · V + ((α ∗ y) + (β ∗ x)) · U + δ · T
� B = (α ∗ β) · U + µ · T

2. Verifier sends challenges e.

3. Prover publishes:

� sα = α+ e · x
� sβ = β + e · ri
� sδ = µ+ δ ∗ e+ rp ∗ (e ∗ e)

4. Verifier checks:

� (e ∗ e) ·P + e ·A+B = (sα ∗ e) ·G+ (sβ ∗ e) ·V + (sα ∗ sβ) ·U + sδ ·T

We now have P = x · G + ri · V + (x ∗ ri) · U + rp · T for some x, ri, rp.

We set P ′ = P − Õ − R. For P, Õ, the only G term is for x. If the xs are
consistent, P ′ will not have a G term. For P,R, the only V term is for ri. If the
ris are consistent, P ′ will not have a V term. For an honest prover, this leaves
P ′ = (x ∗ ri) · U + (rp − y′ − rj) · T .

We now compose this with a Generalized Schnorr Protocol to:

� Open P ′ over U, T , proving x and ri were consistent.

� Prove the linking tag is well-formed.

1. Prover samples rx, ry, rz, rrp and publishes:

� RO = rx ·G+ ry · T
This is a commitment to the nonces we use when showing we know
an opening of Õ.

� RP = rz · U + rrp · T
This is a commitment to the nonces we use when showing we know
an opening of P ′.

� RL = rx · Ĩ + rz · −U
This is a commitment to the nonces we use when showing we know
a consistent opening of L.

2. Verifier sends challenges c.

3. Prover publishes:

� sx = rx + c · x
� sy = ry + c · y′

� sz = rz + c · (x ∗ ri)
This implicitly makes z, never explicitly defined, x ∗ ri.

4



� srp = rrp + c · (rp − y′ − rj)
rp − y′ − rj is the coefficient for the T term of P ′.

4. Verifier checks:

� RO + c · Õ == sx ·G+ sy · T
This verifies the opening of Õ.

� RP + c · P ′ == sz · U + srp · T
This verifies the opening of P ′ over U, T .

� RL + c · L == sx · Ĩ + sz · −U
This verifies the opening of L as x · Ĩ + (x ∗ ri) · −U . Since x · Ĩ is
x ·I+(x∗ri) ·U , this will remove the additional term (proved correct
and consistent with the Bulletproof+), leaving x · I (the intended
linking tag).

In the future, we should review specialized proofs. It would not be surprising
if sx can be replaced for just sα, along with a few other similar tweaks.

5



4 The Literal Membership Proof

With the proofs separated, and spend authorization satisfied, we still need mem-
bership. We prove membership over the entire output set using an arithmetic
circuit verifying a Merkle tree proof. Since Merkle tree proofs have O(log n)
time complexity, a proof with O(n) complexity still achieves a O(log n) solution
to the problem statement.

This makes the requirement a sufficiently performant, zero-knowledge proof
for the satisfaction of an arithmetic circuit, yet not explicitly a SNARK (which
would mandate sublinear time complexity).

4.1 Arithmetic Circuit Proof

Bulletproofs are a trustless proof already used within Monero, which can be
used to prove arithmetic circuit proofs are satisfied. We solely need a hash
function for the Merkle tree, the most efficient being a Pedersen hash.

A Pedersen hash is a collision-resistant hash where for each word hashed, an
additional term is added to a Pedersen Vector Commitment. Finding a collision
implies finding the discrete log relationship of the generators used.

Creating Pedersen hashes in-circuit would be too expensive. Bulletproofs
offer arithmetic over the scalar field of the curve, yet Pedersen hashes produce
an output over the field the curve is defined over. Accordingly, it’d require non-
native arithmetic. If we instead use an elliptic curve whose scalar field is the
field of the curve we’re performing the hash with (an ’embedded’ or ’towered’
curve), we’d have a cost of 256 in-circuit multiplications per word hashed (for
a 256-bit elliptic curve).

We instead use Generalized Bulletproofs, a modification to Bulletproofs re-
cently proven secure.

https://github.com/cypherstack/generalized-bulletproofs
Generalized Bulletproofs can be used to output Pedersen hashes at effectively

no additional cost, although it cannot operate over its hashes (and we do need
to operate over a series of hashes, due to discussing a Merkle tree). We solve
this by operating over output hashes with a new Generalized Bulletproof, this
one on a curve whose scalar field is the prior curve’s field. This continues for
each layer of the Merkle tree, and is most efficiently realizable with a curve cycle
(a curve whose scalar field is the field of a curve whose scalar field is the field
for the original curve). With a curve cycle, one can alternate between the two
curves (and two proofs) without needing additional curves/proofs per layer.

The ability to produce Pedersen hashes also enables forming challenges off
partial transcripts of the witness. By defining a Pedersen hash of the first n
variables within the circuit, we can hash that outside of the circuit with a tradi-
tional hash function to obtain a challenge usable for the rest of the circuit. This
allows interactive proofs within the circuit (due to the Fiat-Shamir transform),
and with it, more efficient gadgets.

For the concept of Generalized Bulletproofs, and opening a Merkle tree using
Pedersen hashes with a pair of Bulletproofs over a curve cycle in such an efficient

6



manner, please thank the authors of Curve Trees, https://eprint.iacr.org/2022/756.
This proposal applies their work to RingCT and performs further optimizations
via the usage of divisors, yet does not claim to be novel.

4.2 Towering Curve Cycle

Since we’re performing full-chain membership proofs over Monero’s RingCT,
and Monero’s RingCT uses Ed25519, we need a curve cycle involving Ed25519.
Unfortunately, a curve cycle with Ed25519 is impossible for non-trivial curves.
This is due to Ed25519 having a cofactor of 8. Instead of forming a curve cycle
with Ed25519, we find a prime-order curve whose scalar field is Ed25519’s field,
and then form a curve cycle with that. This is referred to as a towering curve
cycle, due to it being a curve cycle where one curve towers (stands over, not
forming a cycle with) Ed25519.

tevador proposed Helios and Selene for an efficient towering curve cycle, doc-
umenting the deterministic method used to find them and their security. Please
see https://gist.github.com/tevador/4524c2092178df08996487d4e272b096.

7



4.3 Gadgets

We define an arithmetic circuit with two parts to its statement.

� al ∗ ar = ao

For vectors al, ar, ao, ao is the Hadamard product of al, ar.

� Wl ∗ al +Wr ∗ ar +Wo ∗ ao +Wv ∗ V + c = 0

Wl,Wr,Wo,Wv, c have an equal amount of columns. An instance of this
formula, referred to as a constraint, exists per column. Within an instance,
we refer to Wl,Wr,Wo,Wv, c as the column relevant (and not the overall
structure).

Wl,Wr,Wo,WV has as many rows as al, ar, ao. Wv additionally has a
depth equivalent to the amount of Pedersen vector commitments. c is a
single value.

Wl,r,o ∗ al,r,o is
∑al.len()
i=0 Wl,r,oi ∗ al,r,oi (where l, r, o refers to one of the

relevant three).

Wv ∗ V is
∑V .len()
i=0

∑al.len()
j=0 Wvi,j ∗ Vi,j

Please note Wv, V is defined by Bulletproofs(+) to be the Pedersen com-
mitments accessible within the circuit and associated weights. We define
V as the Pedersen vector commitments, with the necessary sub-indexing
added. While Generalized Bulletproofs still supports Pedersen commit-
ments, we drop the functionality from consideration and don’t bother
notating it due to lack of use.

Please also note Bulletproofs(+) place the constants c on the right-hand
side, not the left. This means converting from our linear combinations to
one for Bulletproofs(+) require negating the constants c.

A gadget is a series of al, ar (and respective ao) rows and columns inWl,Wr,Wo,Wv, c.
They are intended to be reusable snippets we can independently formally verify
as correct/create security proofs for.

We define al.push, ar.push, Viø as functions pushing a linear combination
or value onto the respective vector, returning a constrainable reference. Once
al.push, ar.push have been called, the push to ao is implicit with a constrainable
reference retrievable with ao.last().

4.3.1 Equality

equality(a, b)→
1 a+−1 b = 0

By adding b to both sides, we get a = b.

8



4.3.2 Inverse

Inverse(a) : z →
Equality(al.push(a), a)
z = ar.push(a−1)
1ao.last() +−1 = 0
return z

For a ∗ z = 1, we can rewrite this as z = 1/a (which is the multiplicative
inverse of a).

This also serves to prove a 6= 0 since if it was 0, it would produce a product
of 0 (which is not 1).

4.3.3 Inequality

inequality(a, b)→
c = 1 a+−1 b
Equality(al.push(c), c)
ar.push(c−1)
1 ao.last() +−1 = 0

We constrain c to be a− b. Then we constrain c to having a multiplicative
inverse. If a = b, c will be 0, and ao.last() must be 0 (since any number multiplied
by 0 is 0).

4.3.4 Member of List

MemberOfList(L,m)→
c = 1L0 +−1m
∀ 1 <= i < L.length()− 1 :

Equality(al.push(c), c)
n = 1Li +−1m
Equality(ar.push(n), n)
c = 1ao.last()

c = 0
This defines a carried multiplication of Li −m, which will be 0 if and only

if Li = m. The multiplication of two values will be 0 if and only if one fac-
tor is 0 (since we’re operating over a prime field). Accordingly, the carried
multiplication will be 0 only if at least one Li = m.

9



4.3.5 On Curve

OnCurvea,b(x, y)→
Equality(al.push(x), x)
Equality(ar.push(x), x)
x2 = ao.last()
Equality(al.push(x2), x2)
Equality(ar.push(x), x)
x3 = ao.last()
Equality(al.push(y), y)
Equality(ar.push(y), y)
y2 = ao.last()
Equality(1 y2, 1 x3 + a x+ 1 b)

This evaluates the curve formula of the embedded curve (written in the form
y2 = x3 + a ∗ x+ b).

4.3.6 Incomplete Addition

IncompleteAddition(x0, y0, x1, y1, x2, y2)→
Inequality(x0, x1)
δ = (y1 − y0)/(x1 − x0)
δ = al.push(δ)
r = ar.push(x1 − x0)
1 x1 +−1 x0 +−1 r = 0
1 y1 +−1 y0 +−1 ao.last() = 0
δ1 = al.push(δ)
r = ar.push(x2 − x0)
Equality(δ, δ1)
1 x2 +−1 x0 +−1 r = 0
− 1 y2 +−1 y0 +−1 r = 0
Equality(al.push(δ), δ)
Equality(ar.push(δ), δ)
Equality(1 x0 + 1 x1 + 1 x2, ao.last())

10



4.4 Interactive Gadgets

The rest of the gadgets we define are interactive. This bounds all of their argu-
ments to being within Pedersen vector commitments, and has them called with
an additional, per-gadget series of challenges chl. chl is derived from hashing all
of the Pedersen vector commitments. Each gadget is presumed to be given an
independent series of challenges, subscripted chli as needed.

4.4.1 Tuple Member of List

TupleMemberOfList(L,m)→
∀ 0 <= i < L.length() :
∀ 0 <= j <:

Li =
∑L0.length()
j=0 chlj ∗ Li,j

m =
∑m.length()
j=0 chlj ∗mj

MemberOfList(L,m)
For this to have an attack in polylogarithmic time, it’d presumably need

to be converted to the birthday problem. Since changing the tuple claimed to
be a member (the left-hand side) changes the effective list (each member being
a potential right-hand side), the two sides aren’t independent and Wagner’s
algorithm isn’t usable to find an efficient solution.

11



4.4.2 Discrete Log Proof

We use elliptic curve divisors, as posited by Liam Eagen (https://eprint.iacr.org/2022/596),
to prove for the statement:

{q, x, y; s0..256 | (x, y) = ((

255∑
i=0

2i ∗ si) mod q) ·G}

We do this by proving for the functionally equivalent statement:

{q, x, y; s0..256 | (x, y) =

255∑
i=0

si · (2i ·G)}

where G is of prime order q.
The scalar represented by s, s′, is equal to

∑255
i=0 2i ∗ si mod q. Since we

do not constrain s to being a valid bitstring, each s′ has effectively infinite
representations which can be used for s. We solely require s′ not be malleable
(for a given s, the prover should not be able to prove for multiple s′).

DivisorChallengea,b(dy, dyx0..m
, dx1..n

, d0, δ, chl)→
p0n0

= (3 ∗ chl.x2 + a)/(2 ∗ chl.y)

p0n1
=

∑m
j=0(p0n0

∗ chl.xj+1) ∗ dyxj + (p0n0
∗ dy)

p0n2
= chl.y ∗ dyx0 +

∑m
j=1((j + 1) ∗ chl.y ∗ chl.xj) ∗ dyxj +

∑n
i=1((i + 1) ∗

chl.xi) ∗ dxi
+ 1

p0n = p0n1
+ p0n2

p0d = chl.y ∗ dy +
∑m
i=0(chl.y ∗ chl.x(i+1)) ∗ dxyi +

∑n
i=1 chl.x(i+1) ∗ dxi

+ 1 ∗
chl.x + 1 ∗ d0

p1n = 2 ∗ chl.y
p1d = (−δ · p1n) + 3 ∗ chl.x2 + a
pn = p0n ∗ p1n
pd = p0d ∗ p1d
Equality(al.push(pd), pd)
o = ar.push(pn ∗ p−1d )
Equality(ao.last(), pn)
return o

dy, dyx, dx, d0 are the coefficients for the divisor (zero-indexed, such that dx0

is the coefficient for x1). The divisor is enforced to be non-zero by using 1 for
the coefficient for x1. This is why the coefficients dx start from 1 (omitting dx0

).
While evaluating divisors (a polynomial), we consider the evaluation not as

a∗x2+b∗x+c (a generic polynomial used for this example), yet x2∗a+x∗b+c.
The latter lines up with the constraint system’s definition (since our x is public
yet our coefficients are not).

a, b are the a, b from the curve equation y2 = x3 + a ∗ x+ b.
Please note p1n , p1d are scalars, not linear combinations, despite our exten-

sive usage of linear combinations here.

12



DiscreteLogG(s0..256, x, y)→
OnCurvea,b(x, y)
dy, dyx0..m

, dx1..n
, d0 ← Prover (Vector Commitment)

chl0 = Hpoint(chl0)
chl1 = Hpoint(chl1)
chl2 = −(chl0 + chl1)
δ = (chl1.y − chl0.y) ∗ (chl1.x− chl0.x)−1

µ = chl0.y − (δ ∗ chl0.x)
f = Inverse(µ− (−y + (δ ∗ x)))

Equality(
∑2
i=0 DivisorChallengea,b(dy, dyx, dx, d0, δ, chli),

∑255
i=0(µ− (Gi.y + (δ ∗Gi.x)))−1 ∗ si + 1 f)

For a public generator G, both the prover and the verifier calculate G0 =
20 ·G, ..., G255 = 2255 ·G. The prover provides s, the presumed (yet not enforced)
256-bit decomposition of a scalar for the embedded elliptic curve, and the divisor
interpolating −(s · G) with the relevant powers of G within Pedersen vector
commitments.

We then perform a challenged evaluation of the divisor for the left-hand side
of both the original equation and our equality statement. For the right-hand
side, the powers of two of the generator are also so challenged, yet only included
as selected by the vector s. The vector s may trigger multiple inclusions of
one of the generators within our table. Since the individual term is written
1/(µ − (G.y + (δ ∗ G.x))), a si of two causes 2/(µ − (G.y + (δ ∗ G.x))) which is
equivalent to 1/(µ − (G.y + (δ ∗ G.x))) + 1/(µ − (G.y + (δ ∗ G.x))). Since this
is evaluated within a sum statement, this is equivalent to that specific G being
interpolated multiple times, which is safe according to Eagen’s preprint. Since
reuse of s will cause a distinct generator’s power of two with the same position
to be interpolated the same amount of times, this does yield a consistent s′

(with the assumption all generators share an order).

13



4.5 Circuit

We define two distinct layer gadgets, one for the first layer (which ensures the
integrity of the tuple output), and one for all additional layers.

4.5.1 First Layer

FirstLayer(Õ, Ĩ, C̃, R)→
ox, oy, ro0..255 , rox , roy ← Prover (Vector Commitment)
OnCurvea,b(ox, oy)
DiscreteLogT (ro, rox , roy )

IncompleteAddition(ox, oy, rox , roy , Õ.x, Õ.y)

ix, iy, ri0..255 , riux
, riuy

, rivx , rivy ← Prover (Vector Commitment)
OnCurvea,b(ix, iy)
DiscreteLogU (ri, riux

, riuy
)

IncompleteAddition(ix, iy, riux
, riuy

, Ĩ.x, Ĩ.y)

rj0..255 , rjx , rjy ← Prover (Vector Commitment)
DiscreteLogV (ri, rivx , rivy )
DiscreteLogT (rj , rjx , rjy )
IncompleteAddition(rivx , rivy , rjx , rjy , R.x, R.y)

cx, cy, rc0..255 , rcx , rcy ← Prover (Vector Commitment)
OnCurvea,b(cx, cy)
DiscreteLogG(rc, rcx , rcy )

IncompleteAddition(cx, cy, rcx , rcy , C̃.x, C̃.y)

L← Prover (Vector Commitment)
TupleMemberOfList(L, (ox, ix, cx))

4.5.2 Additional Layer

AdditionalLayer(H̃)→
hx, hy, r0..255, rx, ry ← Prover (Vector Commitment)
DiscreteLogH(r, rx, ry)
OnCurvea,b(hx, hy)

IncompleteAddition(hx, hy, rx, ry, H̃.x, H̃.y)

L← Prover (Vector Commitment)
MemberOfList(L, hx)

Please note H̃ is the prior layer’s blinded hash and H is the blinding gener-
ator (not the unblinded hash, which is hx, hy).

14



5 Functionality

With the system described, it is important to be clear on the functionality in
order to fairly evaluate it.

5.1 Full-Set Privacy

This is the reason for discussing this in the first place.

5.2 Hardware Wallets

Hardware wallets maintain their support due to not needing to perform the
membership proof, solely the Generalized Schnorr Protocol after the fact. The
Generalized Schnorr Protocol is smaller than the current CLSAG proofs, and is
accordingly assumed to be well within the allowed memory footprint.

5.3 Multisignature Protocols

Generalized Schnorr Protocols effectively are Schnorr signatures, as the name
implies. Accordingly, they benefit from all of the great work performed on
Schnorr multisignatures, and can be expected to offer low-complexity, small-
constant multisignature protocols.

5.4 Outgoing View Keys

Outgoing view keys, a new private key which enables calculating linking tags for
scanned outputs without possession of the private key, are inherently enabled
by this proposal. Since x, y are needed to spend, yet the linking tag is solely
derived from x, x becomes the shareable outgoing view key. This does require
y be unknown to whoever the outgoing view key is shared to, which is not the
case for historical outputs (where y = 0).

If wallets publish addresses whose public spend key is not s·G yet o·G+y ·T ,
where y is the effective private spend key (uniformly sampled), o, the outgoing
view key, can be shared. This solely requires wallet software update their key
handling internally, and can be done at any moment in time, by any subset of
wallets, with no impact to privacy (on- or off-chain) nor network performance.

5.5 Forward Secrecy

We define forward secrecy as an adversary with a discrete log oracle being able
to, for any output, find a consistent opening for the given input tuple (Õ, Ĩ, C̃, R)
and its Spend Authorization + Linkability proof.

Per the following Python script,
https://gist.github.com/kayabaNerve/e09ba62d4a6165ced006b037f1068d95
this is true. The script creates an output, decides all of the necessary nonces,

and publishes its solutions. The script proceeds to create a random output

15



(specifically, a random linking tag generator for an output), and from there
performs extraction of the various witness values/nonces which would have been
used. Since it is able to extract a solution for every variable, and rebuild identical
commitments, it is able to forge a indistinguishable proof that output was the
output spent. Since any output will have an indistinguishable forged proof, one
cannot distinguish a legitimate proof.

An adversary with a discrete log oracle also cannot distinguish between
an unspent non-forward-secret output and a forward-secret output. Such an
adversary can only calculate what the linking tag would be if the output isn’t
forward secret, and wait to see if that appears (making it a spent non-forward-
secret output).

5.6 Transaction Chaining

Since the membership proof does not require knowledge of x, y, the membership
proof can be produced after the transaction itself is signed. This would let Alice
and Bob form a 2-of-2 multisig, sign a transaction spending an output sent to it
(per some mutually known blinding factors), then let Alice or Bob create that
output, and once it’s past the 10-block lock, publish the transaction spending
it without the other party’s participation.

We do have to ensure the message the Generalized Schnorr Protocol signs
isn’t binding to the membership proof however.

16



6 Integration

With the concepts of the proof established, and the functionality iterated, it’s
time to discuss how integration will be handled.

6.1 Tree

With the circuit proving an output tuple exists within a Merkle tree, we need to
create the tree. The tree will be implemented in C++, with the hash function
FFI’d from Rust.

The tree is a l-layer tree where each layer is of alternative widths wa, wb.
The tree is theoretically considered to be a ∞-layer tree, where all members of
branches are zero by default. The tree root is the hash within the lowest branch
with only one hash.

For the hash functionHtree, parameterized by the layer alternation toHtreea ,Htreeb ,
and a list of leaves leaves, the tree is calculated as follows:

1. c = a. Hash leaves in wc chunks with Htreec to create dleaves.length()/wce
members of the next layer (denoted members). Any incomplete chunks
are padded with Z (defined later).

2. If c = a, c = b, else c = a. If members.length() == 1, the algo-
rithm terminates. Else, hash members in wc chunks with Htreec to cre-
ate leaves.length()/wc members of the next layer (which become the new
members), again padding incomplete chunks with Z.

3. Repeat the prior step.

We expose the following external API, minimizing the intricacies of the tree:

� Grow.

Grow incorporates a list of n leaves (themselves tuples (O, I, C)) into the
tree.

� Trim.

Trim removes a list of the n most-recently-added leaves from the tree.

With the tree calculation described, and the API defined, we now detail
performant implementations of both functions. We take extensive advantage of
how the hashes are additively homomorphic (Htreec([A, 0]) + Htreec([0, B]) =
Htreec([A,B])).

6.1.1 Grow

For outputs, a set of output tuples (O, I, C), we separate them as

outputs0 = outputs[.. wa − (tree.length() mod wa)]

17



outputs1 = outputs[(tree.length() mod wa) ..]

Add Htreec(([0, 0, 0] ∗ (tree.length() mod wa)) + outputs0.flatten()) to the
most recently appended branch hash for the leaves. The flatten operation trans-
forms

[(A,B,C), (D,E, F )]

to
[A.x,B.x, C.x,D.x,E.x, F.x]

(a series of tuples of points to a series of field elements).
Then, for each wa chunk of outputs1, padding the last chunk with Z if

incomplete, hash the flattened chunk, appending the resulting hash to the next
layer.

Please note this technically makes the width of the first layer 3 ∗ wa, due
to considering three field elements (each one word of the hash function) as
individual leaves.

For each branch hash modified from H to H ′, calculate H ′.x − H.x, the
delta. With the proper alignment and chunking, hash the deltas and add the
resulting hash to the proper branch hash on the next layer up. New branches
are considered modified from Z to H ′. Repeat until the only hash modified is
the new tree’s root.

6.1.2 Trim

1. For every complete branch of leaves encompassed, remove them.

2. For every branch of leaves partially modified, hash the removed leaves
minus Z (properly aligned within the hash function), subtracting the result
from the existing branch hash if the amount of removed leaves is less than
the amount of remaining leaves. If the amount of remaining leaves is
less, hash those with the expected padding of Z to re-calculate the hash
entirely.

3. For every hash whose children were modified, perform the above remove/delta-
hash procedure until the new tree’s root is updated.

6.1.3 Z

Z refers to the zero element present on every branch which is only partially
full. Ideally, Z is 0, yet Z must be an x-coordinate which does not lie on the
curve. For Helios and Selene, no point with 0 as its x-coordinate lies on the
curve. For Wei25519, a curve birational to Ed25519 we use within the tree,
0 is not within the prime-order curve. Since following paragraphs coerce non-
prime-order elements into prime-order elements, and since the circuit internally
only produces prime-order elements, non-prime-order elements are effectively
off curve. This lets us use 0 for Z for Wei25519 as well.

18



6.1.4 Initialization

When an instance of monerod boots with the tree code, it will immediately start
indexing every block since genesis. Cryptonote outputs will be accumulated as
the key, the linking tag generator, and a Pedersen commitment for the amount
(with a randomness of zero). RingCT outputs will be accumulated as the key,
the linking tag generator, and their Pedersen commitment.

In order to ensure a lack of torsion elements present, keys and commitments
will be multiplied by the inverse of eight (Ed25519’s cofactor) before being
multiplied by eight (clearing any small-order components).

6.1.5 Normal Operation

When a block achieves a depth of 10 (the constant 10 being from the 10-block
lock), all outputs within it are used to grow the tree. On a reorganization
exceeding 10 blocks, trim is called for the removed outputs. On a reorganization
less than 10 blocks which shortens the length of the chain, trim is called for the
outputs within blocks no-longer 10-deep.

6.1.6 Timelocks

If an output has a block-based timelock, it is set to be accumulated with the
outputs of that block. If an output has a time-based timelock prior to the
activation of the FCMP++ hard fork, it is converted to an estimated block-
based timelock and accumulated with the outputs of that block. After the
FCMP++ hard fork, time-based timelocks will be rejected entirely.

Preserving time-based timelocks would require defining a linked list where
upon block addition, we check if we should add the output at the head of the list
(and any further outputs) to the tree. Unfortunately, such an implementation
would be quite easy to perform denial-of-service attacks against. We could
also define a vector, enabling efficient insertion, yet then we must define and
maintain an unbounded global list which at best can be bucketed (though we’d
need to remove from the head of the list, shifting the bucket(s)). With block-
based timelocks, we still have the unbounded list commentary, yet have efficient
topics (the block number) and no partial list additions. Accordingly, one is not
worth the headache, and one has a tolerable headache.

6.2 New Linking Tag Definition

We only hash the x coordinates of O, I, C into the tree. Accordingly, a prover
may prove for O or −O, as they share an x coordinate. This enables proving for
linking tags L,−L, which also share an x coordinate. Accordingly, we re-define
linking tags from points to just their x coordinates (becoming indifferent to this
malleability).

While one ofO or I can be negated to produce a negated linking tag, negating
C allows proving for a negative amount commitment. Since the negative value

19



will be added to the inputs, this does not allow increasing the Monero spendable
(as a negative value added to the outputs would) and is accordingly fine.

Allowing negative branch hashes would allow trivially findable branch colli-
sions if the hash function is a Pedersen vector commitment (which it is). The
prover simply proves for the Pedersen vector commitment with negated values.
To solve this, we add a constant term with a coefficient of 1. If a prover attempts
to prove for the negated values, they won’t be able to negate the constant term
and will have a distinct x coordinate resulting. The ability to find a collision
now implies a solution to the discrete log problem. Credit for the idea for this
constant term’s inclusion goes to tevador.

This can be implemented without notable performance impact, outside of
the circuit. For an output blinded hash, the constant term is added before the
blinded hash is passed to the next layer. This assumes the Bulletproof uses
completely distinct generators.

Existing daemons may either perform a migration of all prior linking tags or
upon checking if a linking tag is used, additionally check if its additive inverse
was spent. Careful handling must be done for this to be safe, as checking if
a linking tag is used happens on multiple levels (in the database, in the same
potentially applicable block, in the same transaction...). All new linking tags are
encoded as points with an even y coordinate (without the sign bit set, equivalent
to the encoding of the x coordinate alone).

6.3 Input Modifications

To minimize modifications to inputs, FCMP++ inputs simply set the amount
of key offsets 0.

6.4 Output Modifications

New outputs’ keys are transmitted multiplied by the inverse of eight. When a
wallet is scanning an output, it first multiplies the key by eight. Before addition
to the tree, the key is multiplied by eight. This ensures a lack of torsion.

Output commitments are already passed to the Bulletproof+ verifier multi-
plied by the inverse of eight. We either have commitments broadcast as such in
the first place, or also pass this representation to the tree.

6.5 Modifications to RingCT Base

We define a new RingCT type, FCMPPlusPlus, and with it a new field, ReferenceBlock.
ReferenceBlock is the 32-byte hash of the Monero block which was most recently
accumulated into the tree (and therefore must be at least 10 blocks old).

6.6 Modifications to RingCT Prunable

We extend prunable with a byte-buffer which is of fixed-length with regards to
the amount of outputs. This byte buffer is entirely left to Rust to interpret.

20



This byte buffer contains p Generalized Schnorr Protocols (which don’t suf-
ficiently benefit from being merged into a single proof).

It also contains n Generalized Bulletproofs, which we can structure in two
ways.

� We can minimize bandwidth by sending one Generalized Bulletproof. This
would practically mean limiting the amount of transaction inputs to po-
tentially as low as four.

For context, we limit outputs to sixteen as a transaction with nine outputs
has the same amount of computational overhead as a transaction with
sixteen outputs. This means for a transaction with nine outputs, we waste
seven outputs of computation (7 ∗ 64, or 448, multiplications), For inputs
with one Generalized Bulletproof, we’d have the exact same effect, except
one input of computation is presumably 3072 multiplications. This means
a single input of wasted computation is as bad as executing Bulletproof
range proofs for sixteen outputs, three times over. for no reason at all.

With an input limit of four, the most waste which can occur is one input
of work by making a three-input transaction.

� We can have no computational overhead by including as many Generalized
Bulletproofs as powers of two summed to equal the amount of inputs. For
one input, one Generalized Bulletproof. For four inputs, one Generalized
Bulletproof. For seven (4 + 2 + 1) inputs, three Generalized Bulletproofs.
This doesn’t waste any performance regarding verification, and roughly
makes the expected bandwidth 2.5 kB per two inputs.

6.7 Modifications to Transaction Verification

ReferenceBlock is confirmed to be on the best chain and 10-blocks deep. The
tree root after applying that block is fetched. The Rust code is called with the
tree root, the linking tags, the pseudo-outputs, the byte buffer from RingCT
prunable, and the hash of the transaction as used for signing.

As of the most recent hard fork (Bulletproofs+), the only fields from prun-
able which are hashed when signing are the Bulletproofs. That is maintained.
RingCT base is modified to exclude ReferenceBlock when being serialized for
the hash for signing. While this would imply ReferenceBlock should be placed
within prunable, this field cannot be pruned (as it’s necessary to evaluate if the
transaction should be dropped upon deep reorganization). The lack of hashing
it, and malleability regarding the tree used, is explicitly allowed in order to
support transaction chaining.

6.8 Modifications to Addresses

Addresses do not need modifications. All existing addresses will continue to
work as-is. Wallets will work without modifying their keys at all.

21



6.8.1 Outgoing View Keys

In order to take advantage of the outgoing view key functionality, changes to the
wallet’s internals must be made. This is completely optional to the wallet and
can be done at any time without impacting privacy. If it required generating
a new address type, that would segment users (impacting privacy), hence the
explicit statement there is no impact to privacy.

Wallets would not only generate the new private key, y, they would also
design and develop a format for sharing x, the outgoing view key, and update
software to calculate linking tags when scanning outputs if they had the incom-
ing view key and x. They would also specify their address with the public spend
key x ·G+ y ·T , instead of x ·G. This change is indistinguishable to a recipient
of an address and indistinguishable to an adversary with a discrete log oracle.

6.8.2 Forward Secrecy

Forward secrecy requires a T term be present within output keys. Practically,
this can be achieved by doing the necessary modifications for outgoing view keys
(which add such a term and the surrounding address/wallet modifications). No
further modifications would be required.

6.9 Modifications to the RPC

The RPC is extended with a route to return the path for an output (by index)
within a specified tree. The existing decoy routes are maintained. A new distri-
bution is added comprehensive to both the Cryptonote outputs and the RingCT
outputs.

6.10 Modifications to Wallets

Wallets fetch the unified distribution, yet do not fetch the decoy information.
Instead, they fetch the path of each selected decoy (and the actual output).

Alternatively, wallets may locally build the tree while scanning the blockchain.
This removes the need to request paths for any outputs, as wallets may now
locally request the path for their output.

Instead of calling CLSAG’s prove with the decoy information, wallets would
call the FCMP++ prove with the path of the output being spent. No other
changes to wallets are required for full-chain membership proofs (solely for ad-
ditional, wallet-optional functionality, for which the changes can be done at any
time).

6.11 Multisignature Wallets

Existing Monero multisignature wallets are still usable. We maintain the DKG
process, which effectively creates a n-of-n multisig. We also do not touch wallet
scanning/state management, nor utilities (linking proofs).

22



Multi-party transaction construction isn’t modified. The actual signing code
is modified. The existing CLSAG code is removed, replaced with either a C++
implementation of multisig OR calls to Rust multisignature code. The lat-
ter would involve passing the multisignature wallet key data from C++, re-
formatting into a structure the Rust code can work with, and obtaining the
preprocesses/signature shares from Rust. The communication and incorpora-
tion of those into the signed transaction would occur as prior handled.

23



7 Future

Monero can deploy Seraphis, the codebase, in the future. The improvements
to transaction construction, and sender-receiver communication (regarding one-
time keys and shared secrets), are well-reasoned for Monero and desirable.

Monero can also still deploy Seraphis, the linking tag format, requiring a
migration and new addresses. That may offer a better choice of elliptic curves
(better choice throughout the project, not just regarding membership). Gen-
eralized Bulletproofs, the gadgets described, and the additional layer circuit
section would all be used for a deployment of FCMPs with Seraphis. We’d
solely have to simplify the first layer circuit section (achieving a roughly 10%
smaller layer, assuming a lack of aggregation of discrete log claims). The usage
of Generalized Schnorr Protocols has also been proposed with Seraphis, which
would make an implementation of them from this work potentially reusable.

JAMTIS can also still be deployed (over FCMP++s or over Seraphis with
FCMPs, as prior planned).

https://gist.github.com/tevador/d4656a217c0177c160b9b6219d9ebb96 details
JAMTIS as it would apply to this protocol.

24


