1: Introduction to spectral methods & Dedalus

Keaton Burns CISM Udine 2023

PDEs across science & engineering

PDEs across science & engineering

Belousov–Zhabotinsky reaction

(Stephen Morris)

Solar convection

(NASA/SDO)

Scientific solvers: fast but narrowly focused

Design goals:

- Realistic parameters
- Maximum performance

Common limitations:

- Low-order methods
- Hard-coded models
- Difficult to modify •

Mathematical solvers: flexible but slow

Design goals:

- Newest methods
- High accuracy

Common limitations:

- Nonlinearly unstable
- Only scalar-valued fields
- Don't parallelize / scale

Challenge: high-order & flexible methods at scale

Scalability

Accuracy & Flexibility

Mathematical Frameworks

Dedalus Project

DEDALUS SOLVES DIFFERENTIAL EQUATIONS USING SPECTRAL METHODS. IT'S OPEN-SOURCE, WRITTEN IN PYTHON, AND MPI-PARALLELIZED.

We develop and use Dedalus to study fluid dynamics, but it's designed to solve initial-value, boundary-value, and eigenvalue problems involving nearly arbitrary equations sets. You build a spectrally-representable domain, symbolically specify equations and boundary conditions, select a numerical solver, and go.

Dedalus Project

problem.add_equation("div(u) = 0") problem.add_equation("dt(u) - v*Lap(u) + grad(p) + b*g = - u@grad(u)")problem.add_equation("dt(b) - K*Lap(b) = - u@grad(b)")

Rapid solver development

Spiral-defect chaos

Flexible equations NLS quantum graphs

High performance Turbulent wave excitation

Global Spectral Methods

Global spectral discretizations

Expand over "trial" functions

Project equations against "test" functions:

- Easy to adapt to different equations •
- Only possible in **simple geometries**
- •
- RHS terms require spectral transforms •

s:
$$u(x) = \sum_{n=0}^{N} u_n \phi_n(x)$$

 $\mathscr{L}u(x) = f(x)$ $\langle \psi_i | \mathscr{L} u \rangle = \langle \psi_i | f \rangle$ $\sum_{i} \langle \psi_i | \mathscr{L} \phi_j \rangle u_j = \langle \psi_i | f \rangle$

Exponential convergence for smooth functions Fast if discretized operators are sparse

Fourier spectral methods

Fourier series $\phi_n(x) = e^{inx}$

- Fast transforms for computing coefficients
- **Diagonal** derivative matrix:

• Exponential convergence for smooth periodic functions

 $\langle \phi_m | \partial_x \phi_n \rangle = in \delta_{m,n}$

World's largest turbulence simulations

Yeung & Ravikumar, Phys. Rev. Fluids (2021)

- Fourier pseudospectral method (not Dedalus)
- 18,432³ grid points
- 18,432 GPUs

1) edalus)

Chebyshev polynomials: cosines in disguise

Orthogonal polynomials for non-periodic intervals

Jacobi polynomials $P_n^{(\alpha,\beta)}(x) \in$

- Orthogonal under weight: w(
- Closed under differentiation:
- Exponential convergence for
 - 1) Legendre polynomials $(\alpha = \beta = 0)$ $P_n(x)$
 - Best L2 approximations w(x) = 1•
 - 2) Chebyshev polynomials $(\alpha = \beta = -1/2)$ $T_{\mu}(x)$
 - - **k**-th derivatives of Chebyshev polynomials

$$\Pi_{n}$$

$$(x) = (1 - x)^{\alpha} (1 + x)^{\beta}$$

$$\partial_{x}^{k} P_{n}^{(\alpha,\beta)} \propto P_{n-k}^{(\alpha+k,\beta+k)}$$
or smooth functions on [-1, 1]

• Fast transforms (DCT) for computing coefficients

3) Ultraspherical / Gegenbauer polynomials ($\alpha = \beta = k - 1/2$) $C_n^{(k)}(x)$

Classical Chebyshev Methods

Same trial & test functions:

E.g. Legendre-tau

$$u(x) = \sum_{n=0}^{N} u_n P_n(x)$$

E.g. Chebyshev-tau

$$u(x) = \sum_{n=0}^{N} u_n T_n(x)$$

 $u_n = \text{DCT}(u(x_i))$

Differentiation:

$$\mathcal{D}_{m,n} = \langle T_m | \partial_x T_n \rangle$$

- **Dense matrices** •
- Poor conditioning

Lanczos, Liu, Ortiz

Ultraspherical Method

Chebyshev trial functions:

$$u(x) = \sum_{n=0}^{N} u_n T_n(x)$$

Ultraspherical test functions:

$$\alpha = \beta = k - 1/2$$
$$C_n^{(k)}(x) \propto \partial_x^k T_{n+k}(x)$$

Clenshaw, Orszag, Greengard, Julien, Coutsias, Olver, Townsend

Differentiation:

$$\mathcal{D}_{m,n} = \langle C_m^{(1)} | \partial_x T_n \rangle$$

- Banded
- Well conditioned

Key points for efficient spectral solvers

1. Spectrally accurate bases

Rapidly convergent approximations

2. Sparse differential operators

- Fast operator evaluation
- Fast direct solvers for LHS

3. Fast spectral transforms

Fast evaluation of nonlinear RHS

 $\{\phi_i(x)\}$

 $\langle \psi_i | H \phi_j \rangle$

F(X)

Polar & spherical coordinate singularities

The "cubed sphere" avoids the poles

Ullrich (2014)

Rochi (1996)

Most codes also cut out the origin

MUltidimensional Stellar Implicit Code

Components of smooth tensors become singular

Regularity-aware curvilinear trial functions

$$Y_{l,m}^{s}(\boldsymbol{\phi},\boldsymbol{\theta})$$

Spectral accuracy for arbitrary tensor fields Sparse tensor calculus No fast transforms*

 $e^{im\phi}r^{m+s}P_n^{(k,m+s)}(r')$

 $e^{im\phi}r^{-k}T_n(r')$

 $T_n(r')$

 $Y_{l,m}^{s} Q_{l}^{s,a} r^{l+a} P_{n}^{(k,l+a+1/2)}(r')$

Dedalus Project

Dedalus Project

Community

- 350+ members on user mailing list
- 19 contributors on GitHub
- NASA High-value Open Source Tools project

Core developers

Daniel Lecoanet, Jeff Oishi, Geoff Vasil, Keaton Burns, Ben Brown

Publications (250+)

25%	Fluid Dynamics	
22%	Astrophysics	
13%	Numerical analysis	
10%	Plasma Physics	
9%	Oceanography	
6%	Atmospheric Science	
5%	Biology	
4%	Condensed Matter	
3%	Glaciology	
3%	Planetary Science	
		50

59

Initial value problems:

Nonlinear boundary value problems: $\mathcal{L} \cdot \mathcal{X} = \mathcal{F}(\mathcal{X})$

Eigenvalue problems:

Pseudospectra: (Eigentools package)

Supported problem types

 $\mathcal{M} \cdot \partial_t \mathcal{X} + \mathcal{L} \cdot \mathcal{X} = \mathcal{F}(\mathcal{X})$

 $\sigma \mathcal{M} \cdot \mathcal{X} + \mathcal{L} \cdot \mathcal{X} = 0$

 $\sigma \mathcal{M} \cdot \mathcal{X} + (\mathcal{L} + \mathcal{N}) \cdot \mathcal{X} = 0, \quad ||\mathcal{N}|| \le \epsilon$

Turbulent enhancement of glacier melting

Burns (2018)

High-p spherical spectral elements

- Stacked ball and spherical shell bases
- Resolves internal/material boundaries

w/ Evan Anders

Quantum graphs

Non-orientable & symplectic manifolds

Mobius strip

Goals:

- •

Klein bottle

Double-cover domains with exact symmetries Symplectic manifolds / phase-space simulations

