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Abstract

I try to intuitively visualize some important concepts introduced in “Linear Algebra for Everyone”,1

which include Column-Row (CR), Gaussian Elimination (LU), Gram-Schmidt Orthogonalization (QR),
Eigenvalues and Diagonalization (QΛQT), and Singular Value Decomposition (UΣV T). This paper
aims at promoting the understanding of vector/matrix calculations and algorithms from the perspective
of matrix factorization. All the artworks including the article itself are maintained under the GitHub
repository https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra/.

Foreword

I am happy to see Kenji Hiranabe’s pictures of matrix operations in linear algebra ! The pictures are an
excellent way to show the algebra. We can think of matrix multiplications by row · column dot products,
but that is not all – it is “linear combinations” and “rank 1 matrices” that complete the algebra and the art.
I am very grateful to see the books in Japanese translation and the ideas in Kenji’s pictures.

– Gilbert Strang
Professor of Mathematics at MIT

Contents

1 Viewing a Matrix – 4 Ways 2

2 Vector times Vector – 2 Ways 2

3 Matrix times Vector – 2 Ways 3

4 Matrix times Matrix – 4 Ways 4

5 Practical Patterns 5

6 The Five Factorizations of a Matrix 8
6.1 A = CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 A = LU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.3 A = QR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4 S = QΛQT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.5 A = UΣV T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

∗twitter: @hiranabe, k-hiranabe@esm.co.jp, https://anagileway.com
†Massachusetts Institute of Technology, http://www-math.mit.edu/~gs/
1“Linear Algebra for Everyone”: http://math.mit.edu/everyone/ with Japanese translation from Kindai Kagaku.

1

https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra/
https://anagileway.com
http://www-math.mit.edu/~gs/
http://math.mit.edu/everyone/


1 Viewing a Matrix – 4 Ways

A matrix (m× n) can be viewed as 1 matrix, mn numbers, n columns and m rows.
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Figure 1: Viewing a Matrix in 4 Ways

A =

a11 a12
a21 a22
a31 a32

 =

 | |
a1 a2

| |

 =

−a∗
1−

−a∗
2−

−a∗
3−



Here, the column vectors are in bold as a1. Row vectors include ∗ as in a∗
1. Transposed vectors and

matrices are indicated by T as in aT and AT.

2 Vector times Vector – 2 Ways

Hereafter I point to specific sections of “Linear Algebra for Everyone” and present graphics which illustrate
the concepts with short names in gray circles.

• Sec. 1.1 (p.2) Linear combination and dot products

• Sec. 1.3 (p.25) Matrix of Rank One

• Sec. 1.4 (p.29) Row way and column way
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Figure 2: Vector times Vector - (v1), (v2)

(v1) is an elementary operation of two vectors, but (v2) multiplies the column to the row and produces
a rank 1 matrix. Knowing this outer product (v2) is the key to the following sections.
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3 Matrix times Vector – 2 Ways

A matrix times a vector creates a vector of three dot products (Mv1) as well as a linear combination (Mv2)
of the column vectors of A.

• Sec. 1.1 (p.3) Linear combinations

• Sec. 1.3 (p.21) Matrices and Column Spaces
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Figure 3: Matrix times Vector - (Mv1), (Mv2)

At first, you learn (Mv1). But when you get used to viewing it as (Mv2), you can understand Ax as
a linear combination of the columns of A. Those products fill the column space of A denoted as C(A).
The solution space of Ax = 0 is the nullspace of A denoted as N(A). To understand the nullspace, let the
right-hand side of (Mv1) be 0 and see all the dot products are zero.

Also, (vM1) and (vM2) show the same pattern for a row vector times a matrix.
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Figure 4: Vector times Matrix - (vM1), (vM2)

The products fill the row space of A denoted as C(AT). The solution space of yA = 0 is the left-nullspace
of A, denoted as N(AT).

The four subspaces consist of N(A) + C(AT) (which are perpendicular to each other) in Rn and N(AT)
+ C(A) in Rm (which are perpendicular to each other).

• Sec. 3.5 (p.124) Dimensions of the Four Subspaces
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Figure 5: The Four Subspaces

See A = CR (Sec 6.1) for the rank r.

4 Matrix times Matrix – 4 Ways

“Matrix times Vector” naturally extends to “Matrix times Matrix”.

• Sec. 1.4 (p.35) Four Ways to Multiply AB = C

• Also see the back cover of the book
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Figure 6: Matrix times Matrix - (MM1), (MM2), (MM3), (MM4)

5 Practical Patterns

Here, I show some practical patterns which allow you to capture the upcoming factorizations in a more
intuitive way.
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Figure 7: Pattern 1, 2 - (P1), (P1)

Pattern 1 is a combination of (MM2) and (Mv2). Pattern 2 is an extension of (MM3). Note that Pattern
1 is a column operation (multiplying a matrix from right), whereas Pattern 2 is a row operation (multiplying
a matrix from left).
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Figure 8: Pattern 1′, 2′ - (P1′), (P2′)

(P1′) multiplies the diagonal numbers to the columns of the matrix, whereas (P2′) multiplies the diagonal
numbers to the row of the matrix. Both are variants of (P1) and (P2).
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Figure 9: Pattern 3 - (P3)

This pattern emerges when you solve differential equations and recurrence equations:

• Sec. 6 (p.201) Eigenvalues and Eigenvectors

• Sec. 6.4 (p.243) Systems of Differential Equations

du(t)

dt
= Au(t), u(0) = u0

un+1 = Aun, u0 = u0

In both cases, the solutions are expressed with eigenvalues (λ1, λ2, λ3), eigenvectors X =
[
x1 x2 x3

]
of A, and the coefficients c =

[
c1 c2 c3

]T
which are the coordinates of the initial condition u(0) = u0 in

terms of the eigenvectors X.

u0 = c1x1 + c2x2 + c3x3

c =

c1c2
c3

 = X−1u0

and the general solution of the two equations are:

u(t) = eAtu0 = XeΛtX−1u0 = XeΛtc = c1e
λ1tx1 + c2e

λ2tx2 + c3e
λ3tx3

un = Anu0 = XΛnX−1u0 = XΛnc = c1λ
n
1x1 + c2λ

n
2x2 + c3λ

n
3x3

See Figure 9: Pattern 3 (P3) above again to get XDc.
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Figure 10: Pattern 4 - (P4)

This pattern (P4) works in both eigenvalue decomposition and singular value decomposition. Both de-
compositions are expressed as a product of three matrices with a diagonal matrix in the middle, and also a
sum of rank 1 matrices with the eigenvalue/singular value coefficients.

More details are discussed in the next section.
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6 The Five Factorizations of a Matrix

• Preface p.vii, The Plan for the Book.

A = CR,A = LU,A = QR,A = QΛQT, A = UΣV T are illustrated one by one.

A = CR
Independent columns in C
Row echelon form in R
Leads to column rank = row rank

A = LU
LU decomposition from
Gaussian elimination
(Lower triangular)(Upper triangular)

A = QR
QR decomposition as
Gram-Schmidt orthogonalization
Orthogonal Q and triangular R

S = QΛQT
Eigenvalue decomposition
of a symmetric matrix S
Eigenvectors in Q, eigenvalues in Λ

A = UΣV T
Singular value decomposition
of all matrices A
Singular values in Σ

Table 1: The Five Factorization

6.1 A = CR

• Sec.1.4 Matrix Multiplication and A = CR (p.29)

The row rank and the column rank of a general rectangular matrix A are equal. This factorization is the
most intuitive way to understand this theorem. C consists of independent columns of A, and R is the row
reduced echelon form of A. A = CR reduces to r independent columns in C times r independent rows in R.

A = CR[
1 2 3
2 3 5

]
=

[
1 2
2 3

] [
1 0 1
0 1 1

]
Procedure: Look at the columns of A from left to right. Keep independent ones, discard dependent ones

which can be created by the former columns. The column 1 and the column 2 survive, and the column 3
is discarded because it is expressed as a sum of the former two columns. To rebuild A by the independent
columns 1 and 2, you find a row echelon form R appearing on the right.
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Figure 11: Column Rank in CR

Now the column rank is two because there are only two independent columns in C and all the columns
of A are linear combinations of the two columns of C.
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Figure 12: Row Rank in CR

And the row rank is also two because there are only two independent rows in R and all the rows of A are
linear combinations of the two rows of R.

6.2 A = LU

Solving Ax = b via Gaussian elimination can be represented as an LU factorization. Usually, you apply
elementary row operation matrices (E) to A to make upper triangular U .

EA = U

A = E−1U

let L = E−1, A = LU

Now solve Ax = b in 2 steps: (1) forward Lc = b and (2) back Ux = c.

• Sec.2.3 (p.57) Matrix Computations and A = LU

Here, we directly calculate L and U from A.

A =

 |
l1
|

 [
−u∗

1−
]
+

0 0 0
0
0

A2

 =

 |
l1
|

 [
−u∗

1−
]
+

 |
l2
|

 [
−u∗

2−
]
+

0 0 0
0 0 0
0 0 A3

 = LU

!! " "

! "#

Figure 13: Recursive Rank 1 Matrix Peeling from A

To find L and U , peel off the rank 1 matrix made of the first row and the first column of A. This leaves
A2. Do this recursively and decompose A into the sum of rank 1 matrices.
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Figure 14: LU rebuilds A
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To rebuild A from L times U , use column-row multiplication.

6.3 A = QR

A = QR changes the columns of A into perpendicular columns of Q, keeping C(A) = C(Q).

• Sec.4.4 Orthogonal matrices and Gram-Schmidt (p.165)

In Gram-Schmidt, the normalized a1 is q1. Then a2 is adjusted to be perpendicular to q1 to create q2.
This procedure gives:

q1 = a1/||a1||
q2 = a2 − (qT

1 a2)q1, q2 = q2/||q2||
q3 = a3 − (qT

1 a3)q1 − (qT
2 a3)q2, q3 = q3/||q3||

In the reverse direction, let rij = qT
i aj and you will get:

a1 = r11q1

a2 = r12q1 + r22q2

a3 = r13q1 + r23q2 + r33q3

The original A becomes QR: orthogonal Q times upper triangular R.

A =

 | | |
q1 q2 q3
| | |

r11 r12 r13
r22 r23

r33

 = QR

QQT = QTQ = I

!!

! "# "#
"

# !
"

# !
" !"

!"#$%
! "# $! $" $#

Figure 15: A = QR

Each column vector of A can be rebuilt from Q and R.
See Pattern 1 (P1) again for the graphic interpretation.

6.4 S = QΛQT

All symmetric matrices S must have real eigenvalues and orthogonal eigenvectors. The eigenvalues are the
diagonal elements of Λ and the eigenvectors are in Q.

• Sec.6.3 (p.227) Symmetric Positive Definite Matrices
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S = QΛQT =

 | | |
q1 q2 q3
| | |

λ1

λ2

λ3

−qT
1 −

−qT
2 −

−qT
3 −



= λ1

 |
q1
|

 [
−qT

1 −
]
+ λ2

 |
q2
|

 [
−qT

2 −
]
+ λ3

 |
q3
|

 [
−qT

3 −
]

= λ1P1 + λ2P2 + λ3P3

P1 = q1q
T
1 , P2 = q2q

T
2 , P3 = q3q

T
3

! "#
! " "! #

!

"

#

#

!

!

"

" !"

$%&'(
! "# !! $"%#%"

! $$%%%$
!

$&%'%&
!

Figure 16: S = QΛQT

A symmetric matrix S is diagonalized into Λ by an orthogonal matrix Q and its transpose. And it is
broken down into a combination of rank 1 projection matrices P = qqT. This is the spectral theorem.

Note that Pattern 4 (P4) is working for the decomposition.

S = ST = λ1P1 + λ2P2 + λ3P3

QQT = P1 + P2 + P3 = I

P1P2 = P2P3 = P3P1 = O

P 2
1 = P1 = PT

1 , P 2
2 = P2 = PT

2 , P 2
3 = P3 = PT

3

6.5 A = UΣV T

• Sec.7.1 (p.259) Singular Values and Singular Vectors

Every matrix (including rectangular one) has a singular value decomposition (SVD). A = UΣV T has the
singular vectors of A in U and V . The following figure illustrates the ’reduced’ SVD.
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Figure 17: A = UΣV T

You can find V as an orthonormal basis of Rn (eigenvectors of ATA) and U as an orthonormal basis of
Rm (eigenvectors of AAT). Together they diagonalize A into Σ. This can be also expressed as a combination
of rank 1 matrices.

A = UΣV T =

 | | |
u1 u2 u3

| | |

σ1

σ2

[
−vT

1 −
−vT

2 −

]
= σ1

 |
u1

|

 [
−vT

1 −
]
+ σ2

 |
u2

|

 [
−vT

2 −
]

= σ1u1v
T
1 + σ2u2v

T
2
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Note that:

UUT = Im

V V T = In

See Pattern 4 (P4) for the graphic notation.

Conclusion and Acknowledgements

I have presented a systematic visualization of matrix/vector multiplication and its applications to the Five
Matrix Factorizations. I hope you enjoy them and find them useful in understanding Linear Algebra.

Ashley Fernandes helped me with typesetting, which makes this paper much more appealing and profes-
sional.

To conclude this paper, I’d like to thank Prof. Gilbert Strang for publishing “Linear Algebra for Ev-
eryone”. It presents a new pathway to these beautiful landscapes in Linear Algebra. Everyone can reach a
fundamental understanding of its underlying ideas in a practical manner that introduces us to contemporary
and also traditional data science and machine learning.
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Figure 19: Matrix World

5. Gilbert Strang, artwork by Kenji Hiranabe, The Four Subspaces and the solutions to Ax = b
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Figure 20: The Four Subspaces and the solutions to Ax = b
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