Kernel Report

v5.19~6.4v

21=354(Austin Kim)
austindh.kim@gmail.com

Who am I?

= Profile (Linux kernel BSP engineer at LGE)
https://www.linkedin.com/in/austin-kim-&-5%1-638214147/
F5H: https://www.youtube.com/@schezokim
== 1. https://austindhkim.tistory.com/

= Author
"A|AE AT EQO] 7|-||=|E% I8t Arm O2 Bl X 2] &2} J2|” - (2023H)
"CIHAS Sl iR 2l5A HEo| &9 A2|" - (2021'H)

New architecture: LoongArch
(v5.19)

New architecture: LoongArch

=" Commits

LoongArch: Add build infrastructure
fa96b57c149061£71a70bd6582d995f6424fbbf4

LoongArch: Add CPU definition headers
£f2ac457a61389b7769%9aad8295027cbe0£91c5b80

LoongArch: Add atomic/locking headers
5pb0b14e550a006b4d093619e7517923872bcc218

LoongArch: Add memory management
09cfefb7fa70c3af011b0db0ab13£fd80b2£f18abc

LoongArch: Add process management
803b0£fc5c3£f2baat6eb54978cdb576407896£789b08

LoongArch: Add exception/interrupt handling
0603839p18f4fb3bffa82515efcfbb02084505ef

more features of RISC-V

more features of RISC-V

=" Commits

RISC-V: Support for kexec file on panic
8acead55fafaf2620b247de6c00774828b618a82

RISC-V: Add arch crash save vmcoreinfo support
649d6b1019a2f243bc3a98cb85902a8ebf74289%a

Proactive reclaim
In memory control groups

Background: page reclaim

= workflow of page reclaim

Allocating process
frees pages synchronously

Untial zone is bal

1 Reclaim clean unmapped caches kswapd sleeps
If failed, kswapd woken up

anced

» time

Rate of page consumption is slowed by kswapd

AN

GFP_ATOMIC (__GFP HIGH), RT tasks, IRQ,

Tasks with PF_MEMALLOC,

TIF MEMDIE

Background: Page reclaim (2nd chance algorithm)

" page cache
MRU LRU MRU LRU

new E)age (refault distance > nr_active) }

= Anonymous pages

MRU LRU MRU LRU

---I

_ ; _ 1
I

new [laage (refault distance > nr_active) }

Proactive reclaim in memory control groups

= Benefits of a user space reclaimer:

More flexible on who should be charged for the cpu of the memory reclaim. For
proactive reclaim, it makes more sense to be centralized.

More flexible on dedicating the resources (like cpu). The memory overcommit
controller can balance the cost between the cpu usage and the memory reclaimed.

Provides a way to the applications to keep their LRUs sorted, so, under memory
pressure better reclaim candidates are selected. This also gives more accurate and

uptodate notion of working set for an application.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?1d=94968384ddel15d48263bfc59d280cd71b1259d8¢c

Proactive reclaim in memory control groups

= Provide interface for memory control groups to trigger memory reclaim on a memory
cgroup

memory.reclaim
A write-only nested-keyed file which exists for all cgroups.

This is a simple interface to trigger memory reclaim in the
target cgroup.

This file accepts a single key, the number of bytes to reclaim.
No nested keys are currently supported.

Example::
echo "1G" > memory.reclaim
The interface can be later extended with nested keys to

configure the reclaim behavior. For example, specify the
type of memory to reclaim from (anon, file, ..).

+ + + + + + + o+ o+

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?1d=94968384ddel15d48263bfc59d280cd71b1259d8¢c

Proactive reclaim in memory control groups

= Patch snippet

+static ssize t memory reclaim(struct kernfs open file *of, char *buf,

+ size t nbytes, loff t off)
+

+

+ buf = strstrip(buf);

+ err = page counter memparse (buf, "", &nr to reclaim);
+ if (err)

+ return err;

+

+ while (nr reclaimed < nr to reclaim) ({

if (!nr retries)
lru add drain _all();

reclaimed = try to free mem cgroup pages (memcg,
nr to reclaim - nr reclaimed,

GFP_KERNEL, true);

if (!reclaimed && !nr retries--)
return -EAGAIN;

nr reclaimed += reclaimed;

+ + + + + + + + + + + S+

Runtime verification system
(v6.0)

Background: Runtime verification

= About Linux from 'functional safety' point of view
Linux kernel cannot meet specification of 1SO26262(functional safety)

= * ELISA (Enabling Linux in Safety Application) is announced.

= Runtime verification is introduced as a way to launch functional safety of
Linux kernel in automotive area.

https://elisa.tech/

Introduction to Runtime verification system

= What is Runtime Verification (RV)?

A lightweight (yet rigorous) method that complements classical exhaustive verification
techniques (such as *model checking® and *theorem proving*) with a more practical
approach for complex systems.

= Motivation of Runtime Verification (RV)?

Instead of relying on a fine-grained model of a system (e.g., a re-implementation a
instruction level), RV works by analyzing the trace of the system's actual execution,
comparing it against a formal specification ofthe system behavior.

=" The main advantage

RV can give precise information on the runtime behavior of the monitored system,
without the pitfalls of developing models that require a re-implementation of the

entire system in a modeling language. https://lwn.net/Articles/857862/

Big picture

= Diagram of RV

Linux +---- RV Monitor -----------=-—=———————————————————— + Formal
Realm | | Realm
- + o - + Fomm -

| Linux kernel | | Monitor | | Reference
| Tracing | =-> | Instance(s) | <= | Model
| (instrumentation) | | (verification) | | (specification)
omm e + e e T T + e ettt
|
\'4
e +

+----> panic ?
- > <user-specified>

How RV works? - 1

= 1) Model;
Define the feature of specific subsystem(e.g: preemption, task wakingup) using 'state
machine'
Model is described in *.dot which can be generated as C code.
The generated code can be dynamically loaded as module via 'dot2c’ utility.

How RV works? - 2

= 2) RV runtime;
When kernel module is initialized, it will register ftrace events which is being hooked.

https://elixir.bootlin.com/linux/v6.1-rc4/source/kernel/trace/rv/monitors/wip/wip.c
static int enable_wip(void)

{

mrv_attach_trace_probe("wip", preempt_enable, handle_preempt_enable);
rv_attach_trace_probe("wip", sched_waking, handle_sched_waking);
rv_attach_trace_probe("wip", preempt_disable, handle_preempt_disable);

2nd parameter: name of ftrace event
3rd parameter: The function to be hooked and executed

How RV works? - 3

= 3) Monitor

wip(wakeup preemptivie): Check weather wakeup event may be traced with
preemption disabled

wwnr(Per task wakeup while not running): Check weather wakeup event may be traced
if the state of process is not TASK_RUNNING

(False injection code)
set_current_state(TASK_UNINTERRUPTIBLE);
// Perform task wakeup after IRQ
schedule();

[Appendix] Runtime verification

= The runtime verification subsystem
https://lwn.net/Articles/857862/

= Formal Verification Made Easy (and fast!) - Daniel Bristot de Oliveira, Red Hat
https://www.youtube.com/watch?v=BfTuEHafNgg

AMD SEV-SNP
(v5.19)

Motivation to research AMD SEV-SNP

" Mainstream security activity over CPU architecture
Prevent Hypervisor based threats
Linux kernel is major guest OS embedded all hypervisors

Necessary to know what is discussed and upstreamed in x86,
AMD, Arm

Similar Security Enhancement in Arm Architecture

= Armv9 introduces the CCA for confidential computing environment

= AlF0] NEXS
Abe Abe
IVM2 |
: : Trusted
ELO APP (1] App | 1| ouzajA ol
EL1 I H IR N
EL2 sto|metolH | | SPM

EL3

Pull request for AMD Secure Nested Paging in v5.19

= https://lore.kernel.org/lkml/YotXilVhT2BZHZ5R@zn.tnic/

AMD SEV-SNP support

Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.

At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.

In addition, add support for the whole machinery needed to launch a SNP
guest, details of which is properly explained in each patch.

And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on.

AMD Secure Encrypted Virtualization: Feature Overview

= Secure Encrypted Virtualization (SEV)
Provides Encryption of Guest Memory

= Encrypted State (SEV-ES)

Encrypts the reqgister state of the VCPUs and make it inaccessible
to the hypervisor.

= Secure Nested Paging (SEV-SNP)

Introduces a page ownership model between Hypervisor and
Virtual Machine

Hypervisor cannot access or remap guest memory without the
guest noticing it.

Background for AMD-SEV (Secure Encrypted Virtualization)

= Threat model

AMD Hardware and Firmware

External PCl Devices
(e.g., NIC, HDD)

CPU BIOS

Device Drivers

Hypervisor

Cloud Management Software - = Trusted
I = Untrusted

Legacy

SNPVM

All other software components and PCI devices are treated as fully untrusted
Typical hypervisor is assumed to be malicious potentially conspiring

The hypervisor is not believed to be 100% secure

Designed to protect against additional threat

(unencrypted) Other SNP VMs
VMs |

Rust for Linux
(v6.1)

Kernel panic signature in Rust module

= Kernel log (Armv8)

[203.720509] ------------ [cut here J--—------—---
[203.720516] kernel BUG at rust/helpers.c:45!
[203.721348] irq event stamp: 1613175

[203.742154] CPU: 1 PID: 1800 Comm: rmmod Kdump: loaded Tainted: G OE 6.2.0+#12
[203.744616] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015

[203.745908] pstate: 61400005 (nZCv daif +PAN -UAQO -TCO +DIT -SSBS BTYPE=--)

[203.747202] pc : rust_helper_BUG+0x10/0x14

[203.748184] Ir : rust_begin_unwind+0x5c/0x60

[203.748875] sp : ffff80000bda7a60

[203.760944] Call trace:

[203.761414] rust_helper_BUG+0x10/0x14

[203.762014] _RNvNtCsfDBI8rBLEEc_4core9panicking9panic_fmt+0x38/0x3c

[203.762980] _RNvNtCsfDBI8rBLEEc_4core9panicking18panic_bounds_check+0x54/0x58

[203.763891]
_RNvXs_Csfbxo80WBr0O0_16rust_out_of_treeNtB4_13RustOutOfTreeNtNtNtCsfDBISrBLEEc_4core3ops4drop4Drop4drop+0x248/0

x27c [rust_out_of_tree 9aec53abe8750236e4958f6759285c63adae465f]

[203.766212] cleanup_module+0x2c/0x7c [rust_out_of_tree 9aec53abe8750236e4958f6759285c63adae465f]

[203.767274] __do_sys_delete_module+0x254/0x378

[203.767956] __arm64_sys_delete_module+0x30/0x44

[203.770934] el0Ot_64_sync_handler+0x88/0xf8
[203.771823] elOt_64_sync+0x1a8/0x1ac

Kernel panic signature in Rust module

= crash utility signature

crashe4> bt 1800

PID: 1866 TASK: ffff2046f3558040 CPU: 1 COMMAND: "rmmod"

#0 [ffff80006bda7ab@] rust _helper BUG at ffffcae567f1b95c

#1 [ffff80006bda7at@] _RNvNtCsfDB18rBLEEc_4core9panicking9panic_fmt at ffffcae568e40a40

#2 [ffff80000bda7b60] RNVNtCsfDB18rBLEEc_4core9panickingl8panic_bounds_check at ffffcae568e40b34
#3 [ffff80006bda7bb@] RNvXs Csfbxo80oWBr0o 1l6rust out of treeNtB4 13RustOutOfTreeNtNtNtCsfDBl8rBLEEc 4core3ops4dro
p4Drop4drop at ffffcae52ea8a7b8 [rust_out_of tree]

#4 [ffff8e0000bda7be@] cleanup_module at ffffcae52ea8a8d4 [rust_out_of_tree]

#5 [ffff80006bda7ce®] _ do_sys_delete module at ffffcae56758d98c

#6 [ffff80000bda7d20] _ armé64 _sys delete _module at ffffcae56758bbos8

#7 [ffff80006bda7dde] invoke syscall at ffffcae567354440

#8 [ffff80006bda7el0] eld®_svc_common at ffffcae567354204

#10
#11
#12

ffff80000bda7e70] el@_svc at ffffcae568e43ee8
ffff80000bda7ea@] elot 64 sync_handler at ffffcae568e43e24
ffff80e00bda7fed] elot 64 sync at ffffcae567321el4

[
[
[
[
#9 [ffff80000bda7e50] do_eld svc at ffffcae56735403c
[
[
[

Commit 'linux for Rust’

= major commit

2022-09-28 rust: export generated symbols Miguel Ojeda
2022-09-28 rust: add ‘bindings’ crate Miguel Ojeda
2022-09-28 rust: add ‘'macros’ crate Miguel Ojeda
2022-09-28 rust: add ‘compiler_builtins® crate Miguel Ojeda
2022-09-28 rust: adapt ‘alloc crate to the kernel Miguel Ojeda
2022-09-28 rust: import upstream ‘alloc” crate Miguel Ojeda
2022-09-28 rust: add C helpers Miguel Ojeda

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/log/?qt=author&qg=Miguel+Ojeda

Programming Language for Linux Kernel

* | inux kernel is written in C since from the scratch
= Around 1997, C++ was only considered

= “Why GIT is implemented in C?"
Torvalds said “C++ is a horrible language”
Conservative approaches for new language

Rust Language history

= 2006: Under development Mozilla Research

= 2020: Rust Foundation was announced
Mozilla, AWS, Huawei, Google, Microsoft

= 2022(October): Implementation for Rust for Linux was approved by
Torvalds
Linux 6.1 will have direct support for Rust code
The option of using Rust for new code is added

Background to understand Rust for Linux

= Rust Crate
= Kernel APIs
= Crate kernel

Implementation of Rust for Linux, Component View

@ Rust tree

library/

core
crate

~

-

--{

alloc
crate

|

A Linux tree

J

L
rust/ include/
i £ 3
| alloc kernel macros
- crate crate crate
\ l L)
pr— —
1t (]
buzi;;ns exports helpers ——W bindgen
L _ _
Klodia bindings

crate

#

= alloc crate
copy of Rust tree, because some modifications are required
Eventually it will be removed

= bindgen

Tool that generates interfaces for existing C code

Rust Crate

* The smallest unit of code that the Rust compiler considers
at a time

» Binary Crate vs Library Crate

Binary Crate : programs can be complied to an executable, e.q.
command line program or server

Library Crate : No main function, provides functionality intended
to be shared, generally referred as “crate”

= Core/Alloc Library Create

Core Crate

* |Intrinsic and primitive building blocks of all Rust code

= Dependency-free foundation and Minimal
It links to no upstream libs, no system libs, no libc
It is not aware heap, concurrency or |/O

= Modules in core crate
f32,164,i8,i16, 132,164, u8, u16, u32, ub4 : type and operations
char, str, slice : char and string manipulation

= Macros in core crate
assert, panic, unimplemented, unreachable

Alloc Crate

= Smart pointers and collections for managing heap-allocated
values

» Heap interfaces modules
alloc module defines the low-level interfaces to the default global
allocator

* Three types of pointer modules

Boxed : smart pointer type, there can only be own owner of a Box

Rc : reference-counted pointer, non-threadsafe, for sharing
memory

Arc : reference-counted pointer, threadsafe

The Kernel Crate

= Kernel APIs that have been ported/wrapped for usage by Rust code in
the kernel

i.e. all of the Rust code in the kernel depends on core, alloc and kernel crate
Modules in kernel crate

mm Memory management. 68 /// The type of process identifiers (PIDs).
net Networking core. 69 type Pid = bindings::pid_t;
of Devicetree and Open Firmware abstractions. 78
pages Kernel page allocation and management. 71 impl Task {
platform Platform devices and drivers. 72 /f Returns a task reference for the currently executing task/thread.
power Power management interfaces. 73 pub fn current<'as() -> TaskRef<'a> {
prelude The kernel prelude. 74 /! SAFETY: Just an FFI call
rint i 1 r ~11if1 - - 1 1 &
PrAnL Printing facilities. 75 let ptr = unsafe { bindings::get_current() };
random Random numbers. 76
rbtree Red-black trees. -
revocable Revocable objects. 5 2 o 2 ; for :
. i _']) 78 If the current thread is still running, the current task is valid. Given
security Linux Security Modules {(LSM). 3 L) . ~ i
) 2 . 79 is not Send , we know it cannot be transferred to another thread
str String representations. , : : y : ;
N . s e 80 (where it could potentially outlive the caller
sync Synchronisation primitives. i
. 81 task: unsafe { &*ptr.cast() },

sysctl CONFIG_S¥SCTL System control.

82 not_send: PhantomData
task Tasks (threads and processes). i SRRt S

i g 3 i ' 23 4

unsafe list Intrusive circular doubly-linked lists. E

84 T

user_ptr
workqueue

User pointers.
Work queues.

Rust for Linux, Arch support

= <Documents/Rust/Arch Support from 6.1.0-rc3>

Arch Support

Currently, the Rust compiler {rustc) uses LLVM for code generation, which lirmits the supported architectures

Linux with Clang/LLVM). This support is needed for bindgen which uses libclang.

Below is a general surnmary of architectures that currently work. Level of support corresponds to s values in

the MAINTAINERS file.

Architecture | Level of support Constraints

um Maintained x86_64 only.

%86 Maintained x86_64 only.

