
Kernel Report

김동현(Austin Kim)
austindh.kim@gmail.com

v5.19~6.4v

Who am I?

New architecture: LoongArch
(v5.19)

 Commits

New architecture: LoongArch

LoongArch: Add build infrastructure
fa96b57c149061f71a70bd6582d995f6424fbbf4

LoongArch: Add CPU definition headers
f2ac457a61389b7769aad8295027cbe0f91c5b80

LoongArch: Add atomic/locking headers
5b0b14e550a006b4d093619e7517923872bcc218

LoongArch: Add memory management
09cfefb7fa70c3af011b0db0a513fd80b2f18abc

LoongArch: Add process management
803b0fc5c3f2baa6e54978cd576407896f789b08

LoongArch: Add exception/interrupt handling
0603839b18f4fb3bffa82515efcf5b02084505ef

more features of RISC-V

 Commits

more features of RISC-V

RISC-V: Support for kexec_file on panic
8acea455fafaf2620b247de6c00774828b618a82

RISC-V: Add arch_crash_save_vmcoreinfo support
649d6b1019a2f243bc3a98cb85902a8ebf74289a

Proactive reclaim
in memory control groups

Background: page reclaim

Reclaim clean unmapped caches
If failed, kswapd woken up

Allocating process
frees pages synchronously

Untial zone is balanced
kswapd sleeps

Rate of page consumption is slowed by kswapd GFP_ATOMIC (__GFP_HIGH), RT tasks, IRQ,
Tasks with PF_MEMALLOC, TIF_MEMDIE

WMARK_HIGH

time

WMARK_LOW

WMARK_MIN

 page cache

 Anonymous pages

Background: Page reclaim (2nd chance algorithm)

(refault distance > nr_active)

(refault distance > nr_active)

 Benefits of a user space reclaimer:
 More flexible on who should be charged for the cpu of the memory reclaim. For

proactive reclaim, it makes more sense to be centralized.
 More flexible on dedicating the resources (like cpu). The memory overcommit

controller can balance the cost between the cpu usage and the memory reclaimed.
 Provides a way to the applications to keep their LRUs sorted, so, under memory

pressure better reclaim candidates are selected. This also gives more accurate and
uptodate notion of working set for an application.

Proactive reclaim in memory control groups

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=94968384dde15d48263bfc59d280cd71b1259d8c

 Provide interface for memory control groups to trigger memory reclaim on a memory
cgroup

Proactive reclaim in memory control groups

+ memory.reclaim
+ A write-only nested-keyed file which exists for all cgroups.
+
+ This is a simple interface to trigger memory reclaim in the
+ target cgroup.
+
+ This file accepts a single key, the number of bytes to reclaim.
+ No nested keys are currently supported.
+
+ Example::
+
+ echo "1G" > memory.reclaim
+
+ The interface can be later extended with nested keys to
+ configure the reclaim behavior. For example, specify the
+ type of memory to reclaim from (anon, file, ..).

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=94968384dde15d48263bfc59d280cd71b1259d8c

 Patch snippet

Proactive reclaim in memory control groups

+static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
+{
...
+
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "", &nr_to_reclaim);
+ if (err)
+ return err;
+
+ while (nr_reclaimed < nr_to_reclaim) {
...
+ if (!nr_retries)
+ lru_add_drain_all();
+
+ reclaimed = try_to_free_mem_cgroup_pages(memcg,
+ nr_to_reclaim - nr_reclaimed,
+ GFP_KERNEL, true);
+
+ if (!reclaimed && !nr_retries--)
+ return -EAGAIN;
+
+ nr_reclaimed += reclaimed;
+ }

Runtime verification system
(v6.0)

 About Linux from 'functional safety' point of view
 Linux kernel cannot meet specification of ISO26262(functional safety)

 * ELISA (Enabling Linux in Safety Application) is announced.
 Runtime verification is introduced as a way to launch functional safety of

Linux kernel in automotive area.

Background: Runtime verification

https://elisa.tech/

 What is Runtime Verification (RV)?
 A lightweight (yet rigorous) method that complements classical exhaustive verification

techniques (such as *model checking* and *theorem proving*) with a more practical
approach for complex systems.

 Motivation of Runtime Verification (RV)?
 Instead of relying on a fine-grained model of a system (e.g., a re-implementation a

instruction level), RV works by analyzing the trace of the system's actual execution,
comparing it against a formal specification ofthe system behavior.

 The main advantage
 RV can give precise information on the runtime behavior of the monitored system,

without the pitfalls of developing models that require a re-implementation of the
entire system in a modeling language.

Introduction to Runtime verification system

https://lwn.net/Articles/857862/

 Diagram of RV

Big picture

Linux +---- RV Monitor ----------------------------------+ Formal
Realm | | Realm
+-------------------+ +----------------+ +-----------------+
Linux kernel		Monitor		Reference
Tracing	->	Instance(s)	<-	Model
(instrumentation)		(verification)		(specification)
+-------------------+ +----------------+ +-----------------+

| | |
| V |
| +----------+ |
| | Reaction | |
| +--+--+--+-+ |
| | | | |
| | | +-> trace output ? |
+------------------------|--|----------------------+

| +----> panic ?
+-------> <user-specified>

 1) Model;
 Define the feature of specific subsystem(e.g: preemption, task wakingup) using 'state

machine'
 Model is described in *.dot which can be generated as C code.
 The generated code can be dynamically loaded as module via 'dot2c' utility.

How RV works? - 1

 2) RV runtime;
 When kernel module is initialized, it will register ftrace events which is being hooked.

 2nd parameter: name of ftrace event
 3rd parameter: The function to be hooked and executed

How RV works? - 2

 3) Monitor
 wip(wakeup preemptivie): Check weather wakeup event may be traced with

preemption disabled
 wwnr(Per task wakeup while not running): Check weather wakeup event may be traced

if the state of process is not TASK_RUNNING

How RV works? - 3

 The runtime verification subsystem
 https://lwn.net/Articles/857862/

 Formal Verification Made Easy (and fast!) - Daniel Bristot de Oliveira, Red Hat
 https://www.youtube.com/watch?v=BfTuEHafNgg

[Appendix] Runtime verification

AMD SEV-SNP
(v5.19)

 Mainstream security activity over CPU architecture
Prevent Hypervisor based threats
Linux kernel is major guest OS embedded all hypervisors
Necessary to know what is discussed and upstreamed in x86,

AMD, Arm

Motivation to research AMD SEV-SNP

Armv9 introduces the CCA for confidential computing environment

Similar Security Enhancement in Arm Architecture

AppEL0

EL1 커널

하이퍼바이저

모니터

Trusted
애플리케이션

Trusted
커널

EL2

EL3

논 시큐어
상태

시큐어
상태

App

SPM

App

커널

RMM

Realm

App

Root

커널

VM1 VM2

https://lore.kernel.org/lkml/YotXilVhT2BZHZ5R@zn.tnic/

Pull request for AMD Secure Nested Paging in v5.19

AMD SEV-SNP support

Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.

At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.

In addition, add support for the whole machinery needed to launch a SNP
guest, details of which is properly explained in each patch.

And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on.

AMD Secure Encrypted Virtualization: Feature Overview

Background for AMD-SEV (Secure Encrypted Virtualization)

Rust for Linux
(v6.1)

Kernel panic signature in Rust module

Kernel panic signature in Rust module

Commit ‘linux for Rust’

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/log/?qt=author&q=Miguel+Ojeda

Programming Language for Linux Kernel

Rust Language history

Background to understand Rust for Linux

Implementation of Rust for Linux, Component View

Rust Crate

Core Crate

Alloc Crate

The Kernel Crate

Rust for Linux, Arch support

