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Topics

1. Intro: “Conversational AI” = “Dialogue Systems”

2. Neural network-based language models, Transformer, 
Pretrained Models

3. Neural models for dialogue system components
• language understanding

• state tracking

• dialogue policy

4. End-to-end neural models
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Neural Conv AI

1. Introduction
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What’s Conversational AI = Dialogue System?

• Definition: A (spoken) dialogue system is a computer system 
designed to interact with users in (spoken) natural language
• Wide – covers lots of different cases

• “smart speakers” / phone OS assistants

• phone hotline systems (even tone-dial ones)

• in-car systems

• assistive technologies: therapy, elderly care, companions

• entertainment: video game NPCs, chatbots

• Dialog systems are cool: 
• ultimate natural interface: say what you want

• lots of active research – far from solved

• already used commercially

4Neural Conv AI https://www.digitaltrends.com/mobile/5-things-you-need-to-know-about-microsofts-chinese-girlfriend-chatbot-xiaoice/

https://www.digitaltrends.com/mobile/5-things-you-need-to-know-about-microsofts-chinese-girlfriend-chatbot-xiaoice/
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https://homealarmreport.com/smart-home/amazon-echo-vs-google-home/

https://www.lifehacker.com.au/2018/02/
specs-showdown-google-home-vs-
amazon-echo-vs-apple-homepod/

Real-life dialogue systems: virtual assistants

• Google, Amazon, Apple & others, Mycroft, Rhasspy: open-source

• The devices are really good microphones (microphone arrays)
• and not much else – listen for wake word, processing happens online

• Huge knowledge bases
• combined with web search

• Lots of domains programmed in, but all by hand
• integration with a lot of services 

(calendar, music, shopping, weather, news…)

• you can add your own (with limitations)

• Can keep some context

• Conversational capabilities limited

https://homealarmreport.com/smart-home/amazon-echo-vs-google-home/
https://www.lifehacker.com.au/2018/02/specs-showdown-google-home-vs-amazon-echo-vs-apple-homepod/
https://www.lifehacker.com.au/2018/02/specs-showdown-google-home-vs-amazon-echo-vs-apple-homepod/
https://www.lifehacker.com.au/2018/02/specs-showdown-google-home-vs-amazon-echo-vs-apple-homepod/


6Neural Conv AI

Dialogue System Types

Task-oriented
• focused on completing a certain task/tasks 

• booking restaurants/flights, finding bus schedules, smart home…

• most actual dialog systems in the wild
• also our main focus

• (typically) single/multi domain
• talk about 1/more topics

Non-task-oriented
• chitchat – social conversation, entertainment

• persona, gaming the Turing test

• typically open-domain – talk about anything

Modalities: voice / text / multimodal (face, graphics…)



• traditional dialog system pipeline:
• ASR: voice → text

• NLU:text → meaning

• DM: meaning → reaction

• NLG: reaction → text

• TTS: text → voice

• backend
• needed for anything better

than basic chit-chat 

• text-based systems (here): 
NLU→DM→NLG
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Dialogue Systems Architecture

language understanding

state tracking

policy

language generation

🗣
database
backend

I’m looking for a cheap Chinese place

inform(food=Chinese)

food: Chinese
price: cheap
area: ?

request(area)

What area would you prefer?

many results

speech recognition

speech synthesis

dialogue management



Voice dialog system (project with emergency lines)
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Task-oriented Dialogue Example

• MultiWOZ: benchmark for task-oriented dialogue in multiple domains
• hotels, restaurants, attractions, trains, taxi, police, hospital

• domains are connected (e.g. taxi from hotel to attraction)

• 10k dialogues, extensive annotation (but noisy!) 
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user: I am looking for a train from Cambridge to London Kinks Cross.
state: {train {departure = cambridge, destination = london kings cross}}
DB: {train (70) {…}} 
                           [count]                                                                  [departure]                 [destination]

system: There are   70    trains departing from Cambridge to London Kings Cross. What day would you like to travel?

user: I would like to leave on Saturday after 18:45.
state: {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
DB: {train (3) {arrive by = 19:51,21:51,23:51; id = TR0427,TR0925,TR4898; leave at = 19:00,21:00,23:00; … }}
        [id]                                  [leave_at]                                        [arrive_by]

system: TR0427 leaves at   19:00   and arrives by    19:51    . Would you like to book this train?

user: Yes, I would like to book it for eight people.
                                                                                                                              [reference]

system: I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with?

user: I am also looking for an expensive restaurant in the centre.
belief: {restaurant {area = centre, price range = expensive} train {...}}
DB: {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...}
                            [count] [price_range]                                                          [area]

system: There are   33     expensive restaurants in the centre. Is there a particular type of food you would like?

1.

2.

3.

4.

Neural Conv AI

(Budzianowski et al., 2018)
https://aclanthology.org/D18-1547/ 

https://aclanthology.org/D18-1547/


Neural Conv AI

2. Neural network-based 
language models, Transformer, 
Pretrained Models
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Neural network embedding
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Input 

features
Classes – speakers, faces, words

Input 

features

Representation 

describing an object 

(person, word ...)



Embedding can be seen as dot in vector space 
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Input 

flags

Representation 

describing an 

object (speaker, 

word...)

𝒙 =

1.8364
2.5534
−0.5327…
1.1397

x 1

x 2

o
o

o



Neural network-based language models
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• A neural network can be trained to predict the next word in a sentence (Tomáš 
Mikolov BUT/CIIRC)

• Input can be 1-hot encoding (1 at the index of word, else 0)

I go by Skoda

I go by Tesla

I go by bus

I go by car

I go to a service by Tesla

Neural 
network

... go by

P(Skoda|… go by) = 0.1
P(Tesla|… go by) = 0.1
P(bus|… go by) = 0.2
P(car|… go by) = 0.3
…

... go by embedding

Skoda
Tesla

bus

car

o
o

o

o



Representing Language: Embeddings

• the network learns which 
words are used similarly – for 
the given task
• they end up having close 

embedding values

• different embeddings for 
different tasks

• embedding size: ~100s-1000

• vocab size: ~50-100k
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http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/
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http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/


Subword units

• vocabulary is unlimited, our word list (and one-hot encoding vector dimension) is not

• + the bigger the dimension is, the sparser and the slower the model is

• Special out-of-vocabulary token <unk>

• loses information, we don’t want it on the output

• Subwords: groups of characters that

• make shorter sequences than using individual characters

• cover everything

• 20-50k subwords for 1 language, ~250k subwords multilingual

• Byte-pair Encoding (=one way to get subwords)

• start from individual characters

• iteratively merge most frequent bigram, 
until you get desired # of subwords

• Another possibilities: Word-pieces, Characters

15
(Sennrich et al., 2016)
https://www.aclweb.org/anthology/P16-1162/

f a s t _
f a s t e r _
t a l l _
t a l l e r _

fast er _
tall er _
s l o w er _
tall e s t _

(Kudo, 2018)
https://aclanthology.org/P18-1007Neural Conv AI

https://www.aclweb.org/anthology/P16-1162/
https://aclanthology.org/P18-1007


Neural networks and word context

• Recurrent Neural Network (RNN)
• We would like to model arbitrary long word history

• Problem with Gradient Vanishing during training

16Neural Conv AI

t=0history

How is the context information seen? 



Neural networks and word context

• Long short term memory (LSTM)
• Can work better with longer histories

• The stored information is controlled by gates

• B-LSTM – adds also a run in the opposite direction (from future to past)

ASR lecture17



Neural networks and word context
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• Can be seen as an evolution of LSTMs

• Attention is a mechanism that enables us to focus on arbitrary place in the 
time (can be input sequence of features, output sequence, or both)

NN

NN Dot 
product

SoftMax
state vector

si

Weights α

Weighted 
sum

sequence of feature
vectors

averaged feature vector ci

with emphasized 
important info



RNN RNN RNN RNN RNN RNN RNN

ℎ1 ℎ2 ℎ3 ℎ4 = 𝑠0

𝑦1

𝑠1

𝑦2

𝑠2

𝑦3

Encoder-Decoder Networks (Sequence-to-sequence)

• Default RNN paradigm for sequences/structure prediction
• encoder RNN: encodes the input token-by-token into hidden states ℎ𝑡

• next step: last hidden state + next token as input

• decoder RNN: constructs the output token-by-token autoregressively
• initialized by last encoder hidden state

• output: hidden state & softmax over output vocabulary + argmax

• next step: last hidden state + last generated token as input

• LSTM/GRU cells=layers over vectors of ~ embedding size

• used for many NLP tasks

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

𝒔0 = 𝒉𝑇

𝑝(𝑦𝑡 𝑦1, … 𝑦𝑡−1, 𝐱 = softmax 𝒔𝑡
𝒔𝑡 = cell(𝒚𝑡−1, 𝒔𝑡−1)

𝒉0 = 𝟎
𝒉𝑡 = cell(𝒙𝑡, 𝒉𝑡−1)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129


Seq2seq RNNs with Attention
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target word embeddingssource “word” embeddings

token representation: embeddings
= vectors of ~100-1000 numbers

encoder outputs
– “hidden states”
(=again, vectors of numbers)

vocabulary is numbered

attention = weighted combination
(weights different for each step)

encoder decoder

probability distribution
over the whole vocabulary

cells: identical (compound) neural layers
input: prev. output + token embedding

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473 Neural Conv AI

http://arxiv.org/abs/1409.0473


Transformer

• getting rid of recurrences
• faster to train, allows bigger nets

• replace everything with attention
+ feed-forward networks

⇒ needs more layers

⇒ uses positional encoding

• positional encoding
• adding position-dependent 

patterns to the input

• attention
• Implemented through dot product

• more heads (attentions in parallel)

– focus on multiple inputs

21

one of these 

for each word

(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762

http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmlNeural Conv AI

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Pretrained Language Models

• Transformer Architecture

• Encoder-only (= good for classification/token tagging)

• Decoder-only (= good for generation)

• Encoder-Decoder (= seq2seq translation)

• Self-supervised pretraining

• standard supervised training, but without annotation

• naturally occurring labels are used (text, waveform samples)

• the task can be to fix artificially corrupted data, predict masked labels

• used with huge amounts of data – many GBs of text (e.g. CommonCrawl)

• models not useful for much themselves, but can be finetuned for the target task 

- trained further with the use of target task data

22Neural Conv AI



Pretrained Language Models

• Pretraining Tasks
• Masked word prediction

• Next-word prediction

• Fixing corrupt sentences

• Sentence order prediction

• Models
• BERT encoder only, variants: multilingual, RoBERTa (optimized)

• GPT(-2/-3/-j/-neo): decoder only, next-word prediction

• (m)BART, (m)T5: encoder-decoder

• ByT5: enc-dec, byte-level (instead of subwords)

• a lot of pretrained models released plug-and-play
• you only need to finetune (and sometimes, not even that)

23Neural Conv AI
https://github.com/huggingface/transformers

(Liu et al., 2019) http://arxiv.org/abs/1907.11692

(Devlin et al., 2019)
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert

(Rogers et al., 2020) http://arxiv.org/abs/2002.12327

(Raffel et al., 2019) http://arxiv.org/abs/1910.10683

(Lewis et al., 2020) http://arxiv.org/abs/1910.13461

(Radford et al., 2019) https://openai.com/blog/better-language-models/

(Brown et al., 2020) http://arxiv.org/abs/2005.14165

(Xue et al., 2022) https://doi.org/10.1162/tacl_a_00461 

https://github.com/huggingface/transformers
http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.13461
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165
https://doi.org/10.1162/tacl_a_00461


Neural Conv AI

3. Component Models
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• Words → meaning:  Extracting the meaning from user utterance

• dialogue acts (or other structured semantic representation): 
• act type/intent (inform, request, confirm)

• slot/attribute (price, time…)

• value (11:34, cheap, city center…)

• typically intent classification + slot-value tagging

• Specific steps:
• named entity resolution (NER) 

• identifying task-relevant names (London, Saturday)

• coreference resolution 
• (“it” –> “the restaurant”)

25

inform(food=Chinese, price=cheap)
request(address)

Natural/Spoken Language understanding (NLU/SLU)

Neural Conv AI



NLU Challenges

• non-grammaticality

• Disfluencies
• hesitations – pauses, fillers, repetitions

• fragments

• self-repairs (~6%!) 

• ASR errors

• synonymy

• out-of-domain utterances

26Neural Conv AI

uhm I want something in the west the west part of town

uhm find something uhm something cheap no I mean moderate

I’m looking for a for a chip Chinese rest or rant

oh yeah I’ve heard about that place my son was there last month

find something cheap for kids should be allowed

uhm I’m looking for a cheap

Chinese city centre
I’ve been wondering if you could find me a restaurant that has Chinese food close to the city centre please



NLU Basics

• You can get far with keywords/regexes (for a limited domain)

• Intent classification
• Sentence embedding from NN-based language model + simple classifier (Logistic 

regression)

• Slot value detection
• binary classification ( “is slot value X present?”)

• slot tagging – classify every token
BIO/IOB scheme: slot beginning – inside slot – outside  

• Delexicalization: replacing slot values by placeholders
• named entity recognition

• tagging, typically done by dictionaries

27Neural Conv AI

I’m looking for a Japanese restaurant in Notting Hill.
I’m looking for a <food> restaurant in <area>.

I need to leave after 12:00.
I need to leave after <time>.
(= not necessarily 1:1 with slots)

I   need a flight from Boston   to New   York  tomorrow
O O O O O B-dept  O  B-arr I-arr B-date



BERT-based NLU

• combined intent-slot

• slot tagging on top of pretrained BERT 
• standard IOB approach

• feed last BERT layers to softmax over tags
• classify only at 1st subword in case of split words

(don’t want tag changes mid-word)

• special start token tagged with intent
• again, softmax on top of last BERT layer

• finetune both tasks at once
• essentially same task, 

just having different labels on the 1st token ☺

28Neural Conv AI

subwords

slot tagsintent tag

start token

only 1 tag for 
whole word

(Chen et al., 2019)
http://arxiv.org/abs/1902.10909

http://arxiv.org/abs/1902.10909


Dialogue Pretrained Models

• Pretraining on dialogue tasks can do better (& smaller) than BERT
• ConveRT: Transformer-based dual encoder

• 2 Transformer encoders: context + response

• feed forward + cosine similarity on top

• training objective: response selection
• response that actually happened = 1

• random response from another dialogue = 0

• trained on a large dialogue dataset (Reddit)

• can be used as a base to train models for:
• slot tagging 

• intent classification 

• Transformer layers are fixed, not fine-tuned

• works well for little training data (few-shot)

29Neural Conv AI

for intent 
classification

for slot
tagging

(Henderson et al., 2020)
http://arxiv.org/abs/1911.03688

(Casanueva et al., 2020)
https://www.aclweb.org/anthology/2020.nlp4convai-1.5

(Coope et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.11

http://arxiv.org/abs/1911.03688
https://www.aclweb.org/anthology/2020.nlp4convai-1.5
https://www.aclweb.org/anthology/2020.acl-main.11


TOD-BERT

• pre-finetuning BERT on vast task-oriented dialogue data
• basically combination of 2 previous approaches

• BERT + user/sys tokens + train for:
• masked language modelling

• response selection (dual encoder style)
• over [CLS] tokens from whole batch

• other examples in batch = negative

• result: “better dialogue BERT”
• can be finetuned for various dialogue tasks

• intent classification

• slot tagging

• good performance even few-shot
• just 1 or 10 examples per class

30Neural Conv AI

(Wu et al., 2020)
https://www.aclanthology.org/2020.emnlp-main.66 

https://www.aclanthology.org/2020.emnlp-main.66


Dialogue Manager (DM)

• Given NLU input & dialogue so far, 
responsible for deciding on next action
• keeps track of what has been said in the dialogue

• keeps track of user profile

• interacts with backend (database, internet services)

• Dialogue so far = dialogue history, modelled by dialogue state
• managed by dialogue state tracker

• System actions decided by dialogue policy

31Neural Conv AI



Dialogue state / State tracking

• Stores (a summary of) dialogue history
• User requests + information they provided so far

• Information requested & provided by the system

• User preferences

• Implementation
• handcrafted – e.g. replace value for slot with last-mentioned

• good enough in some circumstances

• probabilistic (belief state) 
– keep an estimate of per-slot preferences based on NLU
• more robust, more complex

• accumulates probability over time & n-best lists

• → handles NLU/ASR errors 
– e.g. 3x same low-confidence input = prob. high enough to react

32Neural Conv AI

price: cheap
food: Chinese
area: riverside

price: 0.8 cheap
0.1 moderate
0.1 <null>

food: 0.7 Chinese
0.3 Vietnamese

area: 0.5 riverside
0.3 <null>
0.2 city center



Basic State/Belief Trackers

a) Conditioned on previous state
• We always trust the NLU

• Often rule-based (but good if NLU is good)

b) “NLU” over whole dialogue
• typically classification (“is slot value 𝑣 present?”)

• option: limit to some candidates (from NLU/delexicalization), rank them

• may be better, but slower

33Neural Conv AI
(Žilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070

http://www.aclweb.org/anthology/W13-4070


Action Selection / Policy

• Deciding what to do next
• action based on the current belief state 

• following a policy (strategy) 
towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic (backend access)

• actions represented by system dialogue acts

• Dialog manager policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal
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Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)

confirm(food=Chinese)

inform(name=Golden Dragon,
food=Chinese, price=cheap)



Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based/flowcharts (e.g. VoiceXML)
• slot-filling + providing information – basic agenda

• rule-based in essence

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically trained with reinforcement learning

35Neural Conv AI



Why Reinforcement Learning

• Action selection ~ classification → use supervised learning?
• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• Supervised ((sequence) classification) training is efficient with multiple good 

responses - RL can be

• Supervised training cannot train with negative feedback - Noise contrastive 
estimation is not good enough.

• RL is able to handle delayed feedback

• supervised classification doesn’t plan ahead - RL optimizes for the whole dialogue, 
not just the immediate action

• Interesting topic in general is how to work with API/DB calls (we can not take the 
derivative)

• The API calls could be used for dialogue state annotation
36



Reinforcement learning: Definition

• Agent in an environment, state-action-reward

• RL = finding a policy that maximizes long-term reward
• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return 

37Neural Conv AI

𝑅𝑡 = 

𝑡=0

𝑇

𝛾𝑡𝑟𝑡+1
return = 

accumulated 
long-term reward

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

𝑟𝑡𝑠𝑡
𝑟𝑡+1

𝑠𝑡+1

𝑎𝑡



Rewards in RL

• Typical setup – handcrafted rewards:
• every turn: -1 (encourage fast dialogues)

• successful dialogue: + 20

• unsuccessful: - 10 (~center around 0)

• Problems:
• domain knowledge needed

• need simulated and/or paid users (known goal)
• simulated = essentially another dialogue system

• paid users = costly + often fail to follow pre-set goals

• needs a lot of dialogues to train (1000s) → simulated users, supervised pretraining

• Solutions:
• trained rewards 

• provided by a network, can be turn-level

38



Natural Language Generation (NLG) / Response Generation

• Representing system dialogue act in natural language (text)
• reverse NLU

• How to express things might depend on context
• Goals: fluency, naturalness, avoid repetition (…)

• Traditional approach: templates
• Fill in (=lexicalize) values into predefined templates (sentence skeletons)

• Works well for limited domains

• Statistical approach: seq2seq/pretrained language models
• input: system dialogue act, output: sentence (operation similar to →)

39

inform(name=Golden Dragon, food=Chinese, price=cheap)

<name> is a <price>-ly priced restaurant serving <food> food

Golden Dragon is a cheaply priced restaurant serving Chinese food.

+

=



Neural Conv AI

4. End-to-end models

40
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CNN 
belief tracker
(slots)

LSTM
intent
detection

weighted sum + tanh
LSTM
generator

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042/

End-to-End Systems

• experimental, research state-of-the-art

• the whole system (NLU/DM/NLG)
is a single neural network
• joint training (“end-to-end”)

• more elegant

• potentially easily retrainable

• typically still needs annotation
• same as individual modules

• can be less predictable

• connecting the database is a problem
• this step is done separately

https://www.aclweb.org/anthology/E17-1042/


End-to-end vs. separate components

• Traditional architecture – separate components:
• more flexible (replace one, keep the rest)

• error accumulation

• improved components don’t mean improved system

• possibly joint optimization by RL

• more explainable

• End-to-end:
• joint supervised optimization, RL still works

• still needs dialog action level annotation

• typically needs a lot of data

• less control of outputs: hallucination, dull/repetitive

42Neural Conv AI

NLU

tracking

policy

NLG

🗣 DB

I’m looking for 
a cheap Chinese place

inform(food=Chinese)

food: Chinese
price: cheap
area: ?

request(area)
What area 
would you prefer?

many results



End-to-end Dialogue with GPT-2

• Multiple recent dialog systems are based on GPT-2 (SOLOIST, UBAR, SimpleTOD, 
NeuralPipeline)

• decoder-only pretrained language model from OpenAI

• Similar to Sequicity, everything recast as sequence generation
• dialogue context, belief state, database outputs represented as sequences

• GPT-2 prompting: force-decode some input (ignore softmaxes, feed your tokens) 

• Multi-step operation:
1) prompt with context

& decode belief state

2) query DB (external)

3) prompt with DB output
& decode response

43

SOLOIST
(Peng et al., 2021)
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(Peng et al., 2021) http://arxiv.org/abs/2005.05298 
(Hosseini-Asl et al., 2020) http://arxiv.org/abs/2005.00796 
(Ham et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.54 
(Yang et al., 2021) http://arxiv.org/abs/2012.03539 

http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.00796
https://www.aclweb.org/anthology/2020.acl-main.54
http://arxiv.org/abs/2012.03539


AuGPT: Charles University approach

• Same idea as before, multiple improvements

• Operation:
1) context → belief state

• prompt w. context & user utterance

• greedy decoding of state

• text-like belief state representation

2) belief state → DB
• text-like DB results

3) DB → response
• top-p sampling (diversity)

• delexicalized (slot placeholders)

• Training:
• belief/response prediction + consistency (Y/N)
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(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126 

http://arxiv.org/abs/2102.05126


Consistency task

• Additional training task – generating & classifying at the same time
• additional classification layer on top of last decoder step logits

• incurs additional loss, added to generation loss

• Aim: robustness – detecting problems
• ½ data artificially corrupted – state or target response don’t fit context

• prev. work: corrupted state sampled randomly

• AuGPT: corrupted state sampled from the same domain – harder!

45

✅

consistent?
i want a cheap italian restaurant { price range = cheap , food = Italian } ok which area ?

context state response

new in AuGPT

❎ bad responsei want a cheap Italian restaurant { price range = cheap , food = Italian } thanks, goodbye !
❎ bad statei want a cheap italian restaurant { destination = Cambridge , leave at = 19:00 } ok which area ?
❎ bad state (same domain)i want a cheap italian restaurant { area = north , food = Chinese } ok which area ?

Neural Conv AI

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126 

http://arxiv.org/abs/2102.05126


Improvements

• Data augmentation via backtranslation (en  → xx → en)

• MT between English and 40 languages from the ELITR project (https://elitr.eu/)

• we chose 10 best languages

• user inputs chosen at random from original & 10 backtranslated texts

• Data cleaning
• checking consistency of user goal with database

• ~30% MultiWOZ data discarded

• Unlikelihood loss for output diversity
• repeated tokens are penalized

• Sampling for output diversity
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(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126 

https://elitr.eu/
http://arxiv.org/abs/2102.05126


Questions?

  If you have any question, come or reach us on Discord 
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