
unless otherwise stated

Neural Conversational AI

Ondřej Dušek, Petr Schwarz, Ondřej Plátek, Santosh Kesiraju

JSALT Summer School

20 June 2022

Ondrej Platek is supported by
Charles University project GAUK 40222
& EU H2020 project no. 952026, HumanE-AI-Net

Topics

1. Intro: “Conversational AI” = “Dialogue Systems”

2. Neural network-based language models, Transformer,
Pretrained Models

3. Neural models for dialogue system components
• language understanding

• state tracking

• dialogue policy

4. End-to-end neural models

2Neural Conv AI

Neural Conv AI

1. Introduction

3

What’s Conversational AI = Dialogue System?

• Definition: A (spoken) dialogue system is a computer system
designed to interact with users in (spoken) natural language
• Wide – covers lots of different cases

• “smart speakers” / phone OS assistants

• phone hotline systems (even tone-dial ones)

• in-car systems

• assistive technologies: therapy, elderly care, companions

• entertainment: video game NPCs, chatbots

• Dialog systems are cool:
• ultimate natural interface: say what you want

• lots of active research – far from solved

• already used commercially

4Neural Conv AI https://www.digitaltrends.com/mobile/5-things-you-need-to-know-about-microsofts-chinese-girlfriend-chatbot-xiaoice/

https://www.digitaltrends.com/mobile/5-things-you-need-to-know-about-microsofts-chinese-girlfriend-chatbot-xiaoice/

5Neural Conv AI

https://homealarmreport.com/smart-home/amazon-echo-vs-google-home/

https://www.lifehacker.com.au/2018/02/
specs-showdown-google-home-vs-
amazon-echo-vs-apple-homepod/

Real-life dialogue systems: virtual assistants

• Google, Amazon, Apple & others, Mycroft, Rhasspy: open-source

• The devices are really good microphones (microphone arrays)
• and not much else – listen for wake word, processing happens online

• Huge knowledge bases
• combined with web search

• Lots of domains programmed in, but all by hand
• integration with a lot of services

(calendar, music, shopping, weather, news…)

• you can add your own (with limitations)

• Can keep some context

• Conversational capabilities limited

https://homealarmreport.com/smart-home/amazon-echo-vs-google-home/
https://www.lifehacker.com.au/2018/02/specs-showdown-google-home-vs-amazon-echo-vs-apple-homepod/
https://www.lifehacker.com.au/2018/02/specs-showdown-google-home-vs-amazon-echo-vs-apple-homepod/
https://www.lifehacker.com.au/2018/02/specs-showdown-google-home-vs-amazon-echo-vs-apple-homepod/

6Neural Conv AI

Dialogue System Types

Task-oriented
• focused on completing a certain task/tasks

• booking restaurants/flights, finding bus schedules, smart home…

• most actual dialog systems in the wild
• also our main focus

• (typically) single/multi domain
• talk about 1/more topics

Non-task-oriented
• chitchat – social conversation, entertainment

• persona, gaming the Turing test

• typically open-domain – talk about anything

Modalities: voice / text / multimodal (face, graphics…)

• traditional dialog system pipeline:
• ASR: voice → text

• NLU:text → meaning

• DM: meaning → reaction

• NLG: reaction → text

• TTS: text → voice

• backend
• needed for anything better

than basic chit-chat

• text-based systems (here):
NLU→DM→NLG

7Neural Conv AI

Dialogue Systems Architecture

language understanding

state tracking

policy

language generation

🗣
database
backend

I’m looking for a cheap Chinese place

inform(food=Chinese)

food: Chinese
price: cheap
area: ?

request(area)

What area would you prefer?

many results

speech recognition

speech synthesis

dialogue management

Voice dialog system (project with emergency lines)

8Neural Conv AI

Task-oriented Dialogue Example

• MultiWOZ: benchmark for task-oriented dialogue in multiple domains
• hotels, restaurants, attractions, trains, taxi, police, hospital

• domains are connected (e.g. taxi from hotel to attraction)

• 10k dialogues, extensive annotation (but noisy!)

9

user: I am looking for a train from Cambridge to London Kinks Cross.
state: {train {departure = cambridge, destination = london kings cross}}
DB: {train (70) {…}}
 [count] [departure] [destination]

system: There are 70 trains departing from Cambridge to London Kings Cross. What day would you like to travel?

user: I would like to leave on Saturday after 18:45.
state: {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
DB: {train (3) {arrive by = 19:51,21:51,23:51; id = TR0427,TR0925,TR4898; leave at = 19:00,21:00,23:00; … }}
 [id] [leave_at] [arrive_by]

system: TR0427 leaves at 19:00 and arrives by 19:51 . Would you like to book this train?

user: Yes, I would like to book it for eight people.
 [reference]

system: I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with?

user: I am also looking for an expensive restaurant in the centre.
belief: {restaurant {area = centre, price range = expensive} train {...}}
DB: {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...}
 [count] [price_range] [area]

system: There are 33 expensive restaurants in the centre. Is there a particular type of food you would like?

1.

2.

3.

4.

Neural Conv AI

(Budzianowski et al., 2018)
https://aclanthology.org/D18-1547/

https://aclanthology.org/D18-1547/

Neural Conv AI

2. Neural network-based
language models, Transformer,
Pretrained Models

10

Neural network embedding

11Neural Conv AI

Input

features
Classes – speakers, faces, words

Input

features

Representation

describing an object

(person, word ...)

Embedding can be seen as dot in vector space

12Neural Conv AI

Input

flags

Representation

describing an

object (speaker,

word...)

𝒙 =

1.8364
2.5534
−0.5327…
1.1397

x 1

x 2

o
o

o

Neural network-based language models

13Neural Conv AI

• A neural network can be trained to predict the next word in a sentence (Tomáš
Mikolov BUT/CIIRC)

• Input can be 1-hot encoding (1 at the index of word, else 0)

I go by Skoda

I go by Tesla

I go by bus

I go by car

I go to a service by Tesla

Neural
network

... go by

P(Skoda|… go by) = 0.1
P(Tesla|… go by) = 0.1
P(bus|… go by) = 0.2
P(car|… go by) = 0.3
…

... go by embedding

Skoda
Tesla

bus

car

o
o

o

o

Representing Language: Embeddings

• the network learns which
words are used similarly – for
the given task
• they end up having close

embedding values

• different embeddings for
different tasks

• embedding size: ~100s-1000

• vocab size: ~50-100k

14

http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/

Neural Conv AI

http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/

Subword units

• vocabulary is unlimited, our word list (and one-hot encoding vector dimension) is not

• + the bigger the dimension is, the sparser and the slower the model is

• Special out-of-vocabulary token <unk>

• loses information, we don’t want it on the output

• Subwords: groups of characters that

• make shorter sequences than using individual characters

• cover everything

• 20-50k subwords for 1 language, ~250k subwords multilingual

• Byte-pair Encoding (=one way to get subwords)

• start from individual characters

• iteratively merge most frequent bigram,
until you get desired # of subwords

• Another possibilities: Word-pieces, Characters

15
(Sennrich et al., 2016)
https://www.aclweb.org/anthology/P16-1162/

f a s t _
f a s t e r _
t a l l _
t a l l e r _

fast er _
tall er _
s l o w er _
tall e s t _

(Kudo, 2018)
https://aclanthology.org/P18-1007Neural Conv AI

https://www.aclweb.org/anthology/P16-1162/
https://aclanthology.org/P18-1007

Neural networks and word context

• Recurrent Neural Network (RNN)
• We would like to model arbitrary long word history

• Problem with Gradient Vanishing during training

16Neural Conv AI

t=0history

How is the context information seen?

Neural networks and word context

• Long short term memory (LSTM)
• Can work better with longer histories

• The stored information is controlled by gates

• B-LSTM – adds also a run in the opposite direction (from future to past)

ASR lecture17

Neural networks and word context

18Neural Conv AI

• Can be seen as an evolution of LSTMs

• Attention is a mechanism that enables us to focus on arbitrary place in the
time (can be input sequence of features, output sequence, or both)

NN

NN Dot
product

SoftMax
state vector

si

Weights α

Weighted
sum

sequence of feature
vectors

averaged feature vector ci

with emphasized
important info

RNN RNN RNN RNN RNN RNN RNN

ℎ1 ℎ2 ℎ3 ℎ4 = 𝑠0

𝑦1

𝑠1

𝑦2

𝑠2

𝑦3

Encoder-Decoder Networks (Sequence-to-sequence)

• Default RNN paradigm for sequences/structure prediction
• encoder RNN: encodes the input token-by-token into hidden states ℎ𝑡

• next step: last hidden state + next token as input

• decoder RNN: constructs the output token-by-token autoregressively
• initialized by last encoder hidden state

• output: hidden state & softmax over output vocabulary + argmax

• next step: last hidden state + last generated token as input

• LSTM/GRU cells=layers over vectors of ~ embedding size

• used for many NLP tasks

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

𝒔0 = 𝒉𝑇

𝑝(𝑦𝑡 𝑦1, … 𝑦𝑡−1, 𝐱 = softmax 𝒔𝑡
𝒔𝑡 = cell(𝒚𝑡−1, 𝒔𝑡−1)

𝒉0 = 𝟎
𝒉𝑡 = cell(𝒙𝑡, 𝒉𝑡−1)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

Seq2seq RNNs with Attention

20

target word embeddingssource “word” embeddings

token representation: embeddings
= vectors of ~100-1000 numbers

encoder outputs
– “hidden states”
(=again, vectors of numbers)

vocabulary is numbered

attention = weighted combination
(weights different for each step)

encoder decoder

probability distribution
over the whole vocabulary

cells: identical (compound) neural layers
input: prev. output + token embedding

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473 Neural Conv AI

http://arxiv.org/abs/1409.0473

Transformer

• getting rid of recurrences
• faster to train, allows bigger nets

• replace everything with attention
+ feed-forward networks

⇒ needs more layers

⇒ uses positional encoding

• positional encoding
• adding position-dependent

patterns to the input

• attention
• Implemented through dot product

• more heads (attentions in parallel)

– focus on multiple inputs

21

one of these

for each word

(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762

http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmlNeural Conv AI

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Pretrained Language Models

• Transformer Architecture

• Encoder-only (= good for classification/token tagging)

• Decoder-only (= good for generation)

• Encoder-Decoder (= seq2seq translation)

• Self-supervised pretraining

• standard supervised training, but without annotation

• naturally occurring labels are used (text, waveform samples)

• the task can be to fix artificially corrupted data, predict masked labels

• used with huge amounts of data – many GBs of text (e.g. CommonCrawl)

• models not useful for much themselves, but can be finetuned for the target task

- trained further with the use of target task data

22Neural Conv AI

Pretrained Language Models

• Pretraining Tasks
• Masked word prediction

• Next-word prediction

• Fixing corrupt sentences

• Sentence order prediction

• Models
• BERT encoder only, variants: multilingual, RoBERTa (optimized)

• GPT(-2/-3/-j/-neo): decoder only, next-word prediction

• (m)BART, (m)T5: encoder-decoder

• ByT5: enc-dec, byte-level (instead of subwords)

• a lot of pretrained models released plug-and-play
• you only need to finetune (and sometimes, not even that)

23Neural Conv AI
https://github.com/huggingface/transformers

(Liu et al., 2019) http://arxiv.org/abs/1907.11692

(Devlin et al., 2019)
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert

(Rogers et al., 2020) http://arxiv.org/abs/2002.12327

(Raffel et al., 2019) http://arxiv.org/abs/1910.10683

(Lewis et al., 2020) http://arxiv.org/abs/1910.13461

(Radford et al., 2019) https://openai.com/blog/better-language-models/

(Brown et al., 2020) http://arxiv.org/abs/2005.14165

(Xue et al., 2022) https://doi.org/10.1162/tacl_a_00461

https://github.com/huggingface/transformers
http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.13461
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165
https://doi.org/10.1162/tacl_a_00461

Neural Conv AI

3. Component Models

24

• Words → meaning: Extracting the meaning from user utterance

• dialogue acts (or other structured semantic representation):
• act type/intent (inform, request, confirm)

• slot/attribute (price, time…)

• value (11:34, cheap, city center…)

• typically intent classification + slot-value tagging

• Specific steps:
• named entity resolution (NER)

• identifying task-relevant names (London, Saturday)

• coreference resolution
• (“it” –> “the restaurant”)

25

inform(food=Chinese, price=cheap)
request(address)

Natural/Spoken Language understanding (NLU/SLU)

Neural Conv AI

NLU Challenges

• non-grammaticality

• Disfluencies
• hesitations – pauses, fillers, repetitions

• fragments

• self-repairs (~6%!)

• ASR errors

• synonymy

• out-of-domain utterances

26Neural Conv AI

uhm I want something in the west the west part of town

uhm find something uhm something cheap no I mean moderate

I’m looking for a for a chip Chinese rest or rant

oh yeah I’ve heard about that place my son was there last month

find something cheap for kids should be allowed

uhm I’m looking for a cheap

Chinese city centre
I’ve been wondering if you could find me a restaurant that has Chinese food close to the city centre please

NLU Basics

• You can get far with keywords/regexes (for a limited domain)

• Intent classification
• Sentence embedding from NN-based language model + simple classifier (Logistic

regression)

• Slot value detection
• binary classification (“is slot value X present?”)

• slot tagging – classify every token
BIO/IOB scheme: slot beginning – inside slot – outside

• Delexicalization: replacing slot values by placeholders
• named entity recognition

• tagging, typically done by dictionaries

27Neural Conv AI

I’m looking for a Japanese restaurant in Notting Hill.
I’m looking for a <food> restaurant in <area>.

I need to leave after 12:00.
I need to leave after <time>.
(= not necessarily 1:1 with slots)

I need a flight from Boston to New York tomorrow
O O O O O B-dept O B-arr I-arr B-date

BERT-based NLU

• combined intent-slot

• slot tagging on top of pretrained BERT
• standard IOB approach

• feed last BERT layers to softmax over tags
• classify only at 1st subword in case of split words

(don’t want tag changes mid-word)

• special start token tagged with intent
• again, softmax on top of last BERT layer

• finetune both tasks at once
• essentially same task,

just having different labels on the 1st token ☺

28Neural Conv AI

subwords

slot tagsintent tag

start token

only 1 tag for
whole word

(Chen et al., 2019)
http://arxiv.org/abs/1902.10909

http://arxiv.org/abs/1902.10909

Dialogue Pretrained Models

• Pretraining on dialogue tasks can do better (& smaller) than BERT
• ConveRT: Transformer-based dual encoder

• 2 Transformer encoders: context + response

• feed forward + cosine similarity on top

• training objective: response selection
• response that actually happened = 1

• random response from another dialogue = 0

• trained on a large dialogue dataset (Reddit)

• can be used as a base to train models for:
• slot tagging

• intent classification

• Transformer layers are fixed, not fine-tuned

• works well for little training data (few-shot)

29Neural Conv AI

for intent
classification

for slot
tagging

(Henderson et al., 2020)
http://arxiv.org/abs/1911.03688

(Casanueva et al., 2020)
https://www.aclweb.org/anthology/2020.nlp4convai-1.5

(Coope et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.11

http://arxiv.org/abs/1911.03688
https://www.aclweb.org/anthology/2020.nlp4convai-1.5
https://www.aclweb.org/anthology/2020.acl-main.11

TOD-BERT

• pre-finetuning BERT on vast task-oriented dialogue data
• basically combination of 2 previous approaches

• BERT + user/sys tokens + train for:
• masked language modelling

• response selection (dual encoder style)
• over [CLS] tokens from whole batch

• other examples in batch = negative

• result: “better dialogue BERT”
• can be finetuned for various dialogue tasks

• intent classification

• slot tagging

• good performance even few-shot
• just 1 or 10 examples per class

30Neural Conv AI

(Wu et al., 2020)
https://www.aclanthology.org/2020.emnlp-main.66

https://www.aclanthology.org/2020.emnlp-main.66

Dialogue Manager (DM)

• Given NLU input & dialogue so far,
responsible for deciding on next action
• keeps track of what has been said in the dialogue

• keeps track of user profile

• interacts with backend (database, internet services)

• Dialogue so far = dialogue history, modelled by dialogue state
• managed by dialogue state tracker

• System actions decided by dialogue policy

31Neural Conv AI

Dialogue state / State tracking

• Stores (a summary of) dialogue history
• User requests + information they provided so far

• Information requested & provided by the system

• User preferences

• Implementation
• handcrafted – e.g. replace value for slot with last-mentioned

• good enough in some circumstances

• probabilistic (belief state)
– keep an estimate of per-slot preferences based on NLU
• more robust, more complex

• accumulates probability over time & n-best lists

• → handles NLU/ASR errors
– e.g. 3x same low-confidence input = prob. high enough to react

32Neural Conv AI

price: cheap
food: Chinese
area: riverside

price: 0.8 cheap
0.1 moderate
0.1 <null>

food: 0.7 Chinese
0.3 Vietnamese

area: 0.5 riverside
0.3 <null>
0.2 city center

Basic State/Belief Trackers

a) Conditioned on previous state
• We always trust the NLU

• Often rule-based (but good if NLU is good)

b) “NLU” over whole dialogue
• typically classification (“is slot value 𝑣 present?”)

• option: limit to some candidates (from NLU/delexicalization), rank them

• may be better, but slower

33Neural Conv AI
(Žilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070

http://www.aclweb.org/anthology/W13-4070

Action Selection / Policy

• Deciding what to do next
• action based on the current belief state

• following a policy (strategy)
towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic (backend access)

• actions represented by system dialogue acts

• Dialog manager policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal

34Neural Conv AI

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)

confirm(food=Chinese)

inform(name=Golden Dragon,
food=Chinese, price=cheap)

Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based/flowcharts (e.g. VoiceXML)
• slot-filling + providing information – basic agenda

• rule-based in essence

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically trained with reinforcement learning

35Neural Conv AI

Why Reinforcement Learning

• Action selection ~ classification → use supervised learning?
• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• Supervised ((sequence) classification) training is efficient with multiple good

responses - RL can be

• Supervised training cannot train with negative feedback - Noise contrastive
estimation is not good enough.

• RL is able to handle delayed feedback

• supervised classification doesn’t plan ahead - RL optimizes for the whole dialogue,
not just the immediate action

• Interesting topic in general is how to work with API/DB calls (we can not take the
derivative)

• The API calls could be used for dialogue state annotation
36

Reinforcement learning: Definition

• Agent in an environment, state-action-reward

• RL = finding a policy that maximizes long-term reward
• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return

37Neural Conv AI

𝑅𝑡 =

𝑡=0

𝑇

𝛾𝑡𝑟𝑡+1
return =

accumulated
long-term reward

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

𝑟𝑡𝑠𝑡
𝑟𝑡+1

𝑠𝑡+1

𝑎𝑡

Rewards in RL

• Typical setup – handcrafted rewards:
• every turn: -1 (encourage fast dialogues)

• successful dialogue: + 20

• unsuccessful: - 10 (~center around 0)

• Problems:
• domain knowledge needed

• need simulated and/or paid users (known goal)
• simulated = essentially another dialogue system

• paid users = costly + often fail to follow pre-set goals

• needs a lot of dialogues to train (1000s) → simulated users, supervised pretraining

• Solutions:
• trained rewards

• provided by a network, can be turn-level

38

Natural Language Generation (NLG) / Response Generation

• Representing system dialogue act in natural language (text)
• reverse NLU

• How to express things might depend on context
• Goals: fluency, naturalness, avoid repetition (…)

• Traditional approach: templates
• Fill in (=lexicalize) values into predefined templates (sentence skeletons)

• Works well for limited domains

• Statistical approach: seq2seq/pretrained language models
• input: system dialogue act, output: sentence (operation similar to →)

39

inform(name=Golden Dragon, food=Chinese, price=cheap)

<name> is a <price>-ly priced restaurant serving <food> food

Golden Dragon is a cheaply priced restaurant serving Chinese food.

+

=

Neural Conv AI

4. End-to-end models

40

41Neural Conv AI

CNN
belief tracker
(slots)

LSTM
intent
detection

weighted sum + tanh
LSTM
generator

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042/

End-to-End Systems

• experimental, research state-of-the-art

• the whole system (NLU/DM/NLG)
is a single neural network
• joint training (“end-to-end”)

• more elegant

• potentially easily retrainable

• typically still needs annotation
• same as individual modules

• can be less predictable

• connecting the database is a problem
• this step is done separately

https://www.aclweb.org/anthology/E17-1042/

End-to-end vs. separate components

• Traditional architecture – separate components:
• more flexible (replace one, keep the rest)

• error accumulation

• improved components don’t mean improved system

• possibly joint optimization by RL

• more explainable

• End-to-end:
• joint supervised optimization, RL still works

• still needs dialog action level annotation

• typically needs a lot of data

• less control of outputs: hallucination, dull/repetitive

42Neural Conv AI

NLU

tracking

policy

NLG

🗣 DB

I’m looking for
a cheap Chinese place

inform(food=Chinese)

food: Chinese
price: cheap
area: ?

request(area)
What area
would you prefer?

many results

End-to-end Dialogue with GPT-2

• Multiple recent dialog systems are based on GPT-2 (SOLOIST, UBAR, SimpleTOD,
NeuralPipeline)

• decoder-only pretrained language model from OpenAI

• Similar to Sequicity, everything recast as sequence generation
• dialogue context, belief state, database outputs represented as sequences

• GPT-2 prompting: force-decode some input (ignore softmaxes, feed your tokens)

• Multi-step operation:
1) prompt with context

& decode belief state

2) query DB (external)

3) prompt with DB output
& decode response

43

SOLOIST
(Peng et al., 2021)

Neural Conv AI

(Peng et al., 2021) http://arxiv.org/abs/2005.05298
(Hosseini-Asl et al., 2020) http://arxiv.org/abs/2005.00796
(Ham et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.54
(Yang et al., 2021) http://arxiv.org/abs/2012.03539

http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.00796
https://www.aclweb.org/anthology/2020.acl-main.54
http://arxiv.org/abs/2012.03539

AuGPT: Charles University approach

• Same idea as before, multiple improvements

• Operation:
1) context → belief state

• prompt w. context & user utterance

• greedy decoding of state

• text-like belief state representation

2) belief state → DB
• text-like DB results

3) DB → response
• top-p sampling (diversity)

• delexicalized (slot placeholders)

• Training:
• belief/response prediction + consistency (Y/N)

44Neural Conv AI

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126

http://arxiv.org/abs/2102.05126

Consistency task

• Additional training task – generating & classifying at the same time
• additional classification layer on top of last decoder step logits

• incurs additional loss, added to generation loss

• Aim: robustness – detecting problems
• ½ data artificially corrupted – state or target response don’t fit context

• prev. work: corrupted state sampled randomly

• AuGPT: corrupted state sampled from the same domain – harder!

45

✅

consistent?
i want a cheap italian restaurant { price range = cheap , food = Italian } ok which area ?

context state response

new in AuGPT

❎ bad responsei want a cheap Italian restaurant { price range = cheap , food = Italian } thanks, goodbye !
❎ bad statei want a cheap italian restaurant { destination = Cambridge , leave at = 19:00 } ok which area ?
❎ bad state (same domain)i want a cheap italian restaurant { area = north , food = Chinese } ok which area ?

Neural Conv AI

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126

http://arxiv.org/abs/2102.05126

Improvements

• Data augmentation via backtranslation (en → xx → en)

• MT between English and 40 languages from the ELITR project (https://elitr.eu/)

• we chose 10 best languages

• user inputs chosen at random from original & 10 backtranslated texts

• Data cleaning
• checking consistency of user goal with database

• ~30% MultiWOZ data discarded

• Unlikelihood loss for output diversity
• repeated tokens are penalized

• Sampling for output diversity

46Neural Conv AI

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126

https://elitr.eu/
http://arxiv.org/abs/2102.05126

Questions?

 If you have any question, come or reach us on Discord

47

	Preamble
	Slide 1: Neural Conversational AI
	Slide 2: Topics

	Introduction
	Slide 3: 1. Introduction
	Slide 4: What’s Conversational AI = Dialogue System?
	Slide 5: Real-life dialogue systems: virtual assistants
	Slide 6: Dialogue System Types
	Slide 7: Dialogue Systems Architecture
	Slide 8: Voice dialog system (project with emergency lines)
	Slide 9: Task-oriented Dialogue Example

	Transfomers & PLMs
	Slide 10: 2. Neural network-based language models, Transformer, Pretrained Models
	Slide 11: Neural network embedding
	Slide 12: Embedding can be seen as dot in vector space
	Slide 13: Neural network-based language models
	Slide 14: Representing Language: Embeddings
	Slide 15: Subword units
	Slide 16: Neural networks and word context
	Slide 17: Neural networks and word context
	Slide 18: Neural networks and word context
	Slide 19: Encoder-Decoder Networks (Sequence-to-sequence)
	Slide 20: Seq2seq RNNs with Attention
	Slide 21: Transformer
	Slide 22: Pretrained Language Models
	Slide 23: Pretrained Language Models

	Components
	Slide 24: 3. Component Models
	Slide 25: Natural/Spoken Language understanding (NLU/SLU)
	Slide 26: NLU Challenges
	Slide 27: NLU Basics
	Slide 28: BERT-based NLU
	Slide 29: Dialogue Pretrained Models
	Slide 30: TOD-BERT
	Slide 31: Dialogue Manager (DM)
	Slide 32: Dialogue state / State tracking
	Slide 33: Basic State/Belief Trackers
	Slide 34: Action Selection / Policy
	Slide 35: Action Selection Approaches
	Slide 36: Why Reinforcement Learning
	Slide 37: Reinforcement learning: Definition
	Slide 38: Rewards in RL
	Slide 39: Natural Language Generation (NLG) / Response Generation

	End-to-end models
	Slide 40: 4. End-to-end models
	Slide 41: End-to-End Systems
	Slide 42: End-to-end vs. separate components
	Slide 43: End-to-end Dialogue with GPT-2
	Slide 44: AuGPT: Charles University approach
	Slide 45: Consistency task
	Slide 46: Improvements
	Slide 47: Questions?

