MAternity

Open source blockchain for scalable and secure smart contracts

v0.9.1-DRAFT

aternity dev team Thomas Arts Yanislav Malahov
Sascha Hanse

May 20, 2020

Abstract

The seternity blockchain is an open source development platform for
advanced blockchain applications that can be used by millions of users. It
offers native support for many commonly used blockchain features: state
channels, naming system, oracles, as well as a secure, functional and highly
efficient smart contract language (Sophia) and virtual machine (FATE).

In this white paper we explain the above mentioned concepts of the
sternity blockchain and highlight the design decisions. The paper pro-
vides a high-level overview of the current state of the technology, im-
plemented in Erlang. Further, an outlook into the future is provided and
differences to the 2017 aeternity blockchain are pointed out. For more spe-
cific implementation details we refer to the seternity protocol description
and the open source code fully available on GitHub.

Contents

[1I__Introductionl

|2 Transactions and Blockchain primitives|

BT _AE coingl. .« - o o oo e e
2.1.1 Feestorusagel.
[2.2_Accounts and Siénatures|
P21 Standard accounts

2.2.2 Generalized accountsl.

2.3 AENS and .chain name space|.
2.4 Oracles for data from outsidel
2.4.1 Dataasaservicel,

4 -

w

© 00 00 ~J O T i i i

3__Consensus and Governance|

8.1 Mining the blockchain| 00
8.1.1 Cuckoo Cycle PoW|.
B.1.2 Difficulty] oo

3.2.1 Key- and micro-blocks|

8.2.3 Divide and conquer|.o
3.3 Weighted delegated coin-voting|

Scaling with state channels|

4.1 Off-chainl

]

Sophia smart contracts|

[5.1 The Sophia languagel
EI1 Dutch auction contract]

6.3 Computational integrity|
6.4 Further scaling| o o
6.5 Difterences to v0.1 seternity blockchain whitepaper|

10
10
10
11
11
11
12
12
13

14
14
15

15
16
16
18
21
21
22
22

1 Introduction

Eternity [2, 3] is an open source blockchain platform for advanced smart con-
tract applications that can be used by millions of users. Several key technolo-
gies are put in place to achieve these scaling requirements: state channels, the
next generation of Nakamoto consensus algorithm (Bitcoin-NG) and the efficient
FATE virtual machine for smart contract execution.

Increases in transaction throughput, possibly millions of transactions per
second, can be achieved via state channels (Sect. , an off-chain encrypted
peer-to-peer communication protocol for trustless execution of smart contracts.
After agreeing on-chain to collaborate in a state channel, parties communicate
mutually authenticated transactions to each other. These transactions don’t
have to be recorded on chain and thus can be exchanged at much higher speed.
Closing the channel, with or without dispute resolution, is performed on-chain
again.

Further increase of throughput is achieved by using a novel consensus algo-
rithm. The platform runs as a decentralized trustless distributed ledger using
Proof-of-Work (PoW) [15] [7} [30] for leader election. In Sect. we explain how
we improve the scalability of original Nakamoto consensus [24] by leveraging
Bitcoin-NG [16]. The result of this change is a throughput of about 117 on-
chain transactions per second [?] with a (micro)blocktime of three seconds and
with low latency as opposed to the seven transactions per second of Bitcoin at
ten minutes block confirmation time.

Additionally to the PoW, a weighted delegated governance system has been
implemented. This way the users of seternity blockchain can express their (hard-
fork)choice in a tamperproof-way, signalling to the miners which fork would be
more attractive in the future.

The aeternity blockchain offers a variety of transaction types based on com-
mon applications on other blockchain implementations. For example, many
blockchain users want to assign human readable, persistent names to objects
on chain. The aternity blockchain provides a set of transactions that make
this easy for developers, without the need to implement a smart contract for
it (2.3). Another example is a set of transactions to register and query oracles
which provide data from outside the blockchain. These transactions are
explained in more detail in Sect.

Many features yet to be invented can already be implemented by users if they
use the @eternity smart contract language Sophia. Sophia is a Turing-complete
functional language designed with security in mind. Many mistakes that one
can make in other contract languages are impossible to make or are easier to
detect when using Sophia. In Sect. 5| we present key ideas of the language.

Contracts are compiled to bytecode, which is executed on the highly effi-
cient virtual machine FATE. Similar to other smart contract languages every
operation has a “gas cost” associated to it. This cost reflects the amount of
work needed to execute a contract. The FATE virtual machine is specifically
designed for seternity to meet high security and efficiency demands, which we
explain in more detail in Sect.

The reference implementation of the seternity protocol is written using the
functional language Erlang [4]. This language originates from the telecommuni-
cation industry and is used in large distributed and highly concurrent systems
(e.g. WhatsApp). However, the choice of implementation language has no fur-
ther implications for the techniques used and described in this paper.

2 Transactions and Blockchain primitives

Transactions, more appropriately operations, specify state transitions to be ap-
plied to the state of the blockchain. As opposed to for example Ethereum, where
only one type of transaction exists and all additional logic is enforced via smart
contracts, seternity has many different kinds of transactions. These are provided
as convenient built-in functionality for frequently used features, while all other
functionality can still be realized via smart contracts.

2.1 AE coins

The AE coin (formerly also AE token or aeon) is the native currency of the
aternity blockchain. The most basic transaction is the spend transaction used
to transfer AE coins from sender to receiver. The receiver can either be an
account, oracle or smart contract. In addition to coin transfers and smart
contract calls, a sender can also attach an arbitrary binary payload, which can
for example be used for proof of existence, registering a hash or file on the
blockchain.

2.1.1 Fees for usage

AFE coins are required for any operation on the @ternity blockchain as a trans-
action or “gas fee”. For smart contract calls, every state transition caused by
such a transaction has a computational complexity, both in terms of storage size
and execution, and given that we are building an open, permissionless network,
we need to measure and possibly regulate the amount of computation used. We
refer to this measure as “gas” and each block has a maximum amount of gas it
can contain. This gas must be bought via the AE coin and therefore only ac-
counts with enough coins can submit valid transactions, although it is possible
to author transactions on behalf of others. All gas, or simply fees, is paid to
miners.

2.2 Accounts and Signatures
2.2.1 Standard accounts

To prevent anyone from spending currency that is not theirs transactions are
authenticated either via digital signatures using Ed25519 [10, @] or by user
specified logic in generalized accounts . Replay protection is achieved via
a strictly increasing nonce [28].

2.2.2 Generalized accounts

”Generalized accounts” are a way to provide more flexibility to authenticating
transactions. This can, for example, be useful when one would allow users to
sign transactions with other cryptographic primitives than the defaultﬂ EdDSA
as mentioned in Sect. 2

If a user wants to have a generalized account, then they must provide a smart
contract in a attach transaction. This contract is thereafter attached to the
given account. The contract must have an authentication function that returns
a boolean whether or not authentication is successful. The attach transaction
itself is just like all previously mentioned transactions signed in the default way.
It turns a normal account into a generalized account, and there is no way back.

When an account is a generalized account, any transaction can be wrapped in
a so called meta transaction. That is, one prepares an ordinary transaction in
the usual way, but with a nonce set to zero. After that, one adds additional fee,
gas and authentication data to run the smart contract. When this transaction
is processed, the authentication function in the smart contract associated with
the account is called with the provided authentication data as input. If the
authentication fails the transaction is discarded, otherwise its inner transaction
is processed.

The following smart contract is an example that allows signing with the
ECDSA algorithm [20] and the popular elliptic curve Secp256k1, used for ex-
ample by Bitcoin and Ethereum [12] 22].

contract ECDSAAuth =
record state = { nonce : int, owner : bytes(20) }

entrypoint init(owner’ : bytes(20)) = { nonce = 1, owner = owner’ }

stateful entrypoint authorize(n : int, s : bytes(65)) : bool =

require(n >= state.nonce, "Nonce too low")
require(n =< state.nonce, "Nonce too high")
put(state{ nonce =n + 1 })
switch(Auth.tx_hash)

None => abort("Not in Auth context")

Some (tx_hash) =>

Crypto.ecverify_secp256kl(to_sign(tx_hash, n), state.owner, s)

function to_sign(h : hash, n : int) : hash =

Crypto.blake2b((h, n))

The contract is initialized by providing the public key used for signing and
the nonce (in the contract state) is set to 1. The authentication function takes

1Some hardware devices may be restricted to other cryptographic signing algorithms than
the default on the seternity blockchain.

two parameters, the nonce and the signature. The authorization function checks
that the nonce is correct, and then proceeds to fetch the TX hash from the
contract environment using Auth.tx_hash. In this example the signature is for
the Blake2b hash of the tuple of the transaction hash and the nonce). The
authorization finally checks that the private key used for signing the hash was
from the owner.

By attaching this contract to an aeternity account, users can sign aeternity
transactions with their bitcoin private key. They need to keep track, of course,
what nonces they have used for this contract, to provide the right next nonce.

Security considerations Before the authentication is performed, there is
no account that one can charge for the computational effort of running the
authentication function. After all, anyone could wrap a transaction in a meta
transaction and submit it. It would be an easy attack to empty a generalized
account if the account had to pay for failed authorization attempts. So, the gas
for authentication is only charged when successful. This opens up for another
unpleasant attack.

Since there is no cost involved for the user to run an authentication function,
but the miner needs to spend execution cycles, one could potentially write a
complex function as authentication function and extract resources from a miner
by calling one’s own authentication function with failing input data. This is
mitigated by not allowing expensive chain operations in an authentication call.
Moreover, miners are free to implement any sophisticated rules for accepting
transactions in their mining pool, such that they can reject this behaviour when
observed.

Using different signature algorithms is only one of many possible uses of
generalized accounts. Other uses cases can be multi-sig, spending limits (per
week /month), limiting the transaction types, and more. For these applications
smart contracts have to be written. Utmost care needs to be taken when imple-
menting the authorization function in these smart contracts. If the contract does
not enforce integrity checking or replay protection, then it will be vulnerable to
abuse.

2.3 /NS and .chain name space

By default all objects addressable within the blockchain are identified by 256
bit numbers. Just like users of the web prefer remembering DNS names over
IP addresses, users of asternity have the option to using names. Currently all
names have the extension .chain, e.g. superhero.chain.

Major challenges for a naming system are to offer a reasonably fair system to
distribute names and discourage name squatting. To achieve those two goals we
settled on using a first price auction for short names, which are assumed to be
more coveted. Names longer than twelve characters can be registered instantly.

The auction has two parameters, the initial starting bid and closing timeout
after the last bit, which are adjusted based on the name being auctioned. For
example, the 4 character name hero, starts with an initial bid of 134.6269 coins

and the auction would be open 29760 blocks (approx 62 days) after the last
valid bid. Each bid must be at least 5% higher than the previous one in order
to be valid. Every successful bid will lock up the given number of coins and free
up the coins of the previously highest bid.

The actual process of claiming a name requires a bit of setup to prevent
front running, where an observer snatches up a name before someone else by
observing unconfirmed transactions in the network and submitting a competing
registration attempt.

To prevent against front running, the first step in reserving a name is the
preclaim transaction. The pre-claim contains the hash of a combination of
the desired name and a random number (called salt). An observer is unable to
guess the combination of name and random number, which prevents the front
running.

After the preclaim is accepted, the claimant reveals the name and salt in the
claim transaction. If name and salt produce the hash in the preclaim, then
they can either claim the name directly or an auction is started.

There is however still a potential for front running by putting a preclaim
and claim transaction into a block upon seeing an unconfirmed claim. This is
mitigated by requiring the preclaim and the claim for a given name to be in
different generations and therefore different blocks.

If the claim triggered an auction, bids can be submitted by sending claims
with the desired name, salt set to zero and a greater amount of coins than any
previous bids.

Once the name has been registered, an update transaction is needed to
point the name to something, for example an account. Additionally, there is a
transfer transaction to change the owner of a name and a revoke transac-
tion to free the name. And even without active revocation, names expire after
a while, unless renewed in time with an update transaction.

When a name has been assigned to an owner and an update transaction has
pointed this name to an account, then one can use the name hash of the name
instead of an account in, for example, a spend transaction.

It is important to realize that the names are part of the blockchain logic. A
user should not trust any third party to perform a name lookup on chain and
then substitute the name by an account. If a user want to transfer tokens to
Emin, the user should put the name hash of emin.chain in the transaction and
sign this transaction.

2.4 Oracles for data from outside

Oracles are a mechanism to bring arbitrary external data onto the blockchain,
which can then be used in smart contracts. This can be sensor data, news events,
stock prices, results of a match, supply chain data, etc. Assessing authenticity
of external data [32, [I8 [1] is still a somewhat open problem but can be solved
if the availability of public key crypto systems are available to all parties. But
in general oracles provide data without robust security guarantees.

Oracles are announced to the chain by a register oracle transaction. This
specifies in what format the oracle expects its queries and in what format it is
going to respond. The register oracle transaction also includes the fee of the
queries to this oracle. Each query must supply that fee in order to be answered.

After an oracle has been registered on chain, any user can post a query
oracle transaction with a properly formatted query. Oracle operators monitor
the blockchain for queries and ideally post oracle response transactions
with answers in the predefined format. This makes the answer available on the
blockchain and thus also available to any smart contract. It is worth noting,
that any oracle answers are by default publicly available and thus special care
would need to be taken in order to make it private.

2.4.1 Data as a service

External data may come from a large database, possibly also accessible in dif-
ferent ways, but via the oracle made accessible on the blockchain. Typically
one could think of supply chain data. If supply chain data is accessible via a
trusted oracle, one could post an oracle query for last transaction on a specific
item one ordered. Although the answer on such a query may be interesting
and valuable in itself, the main purpose of asking for it would be to use it in a
contract to transfer some tokens (goods have arrived in harbour, 20% of tokens
are transferred).

The above supply chain data may be anonymous enough to appear on a
blockchain. There is, however a privacy issue, external data that is put on
chain is made public. So, even if there might be an interesting use case, one
must be careful with for example personal data. If one would have an airline
oracle that given a last name and booking reference returns flight data “date”,
“from” and “destination” airport, then this becomes public data. Having a
contract pay the travel agent when the oracle returns that the correct date and
flight has been booked, is therefore a bad idea. Even encrypting or decrypting
the data in the contract would be a bad idea, since contract state and operations
are visible.

Moreover, one cannot get paid for the same data twice, because the first
time it is posted, it becomes public. Therefore, typical data normally is rather
anonymous or invaluable to others than involved parties, or is already/will be-
come public, such as the weather or the outcome of a match. Point is that one
can use data that becomes available in the future to base contractual decisions
upon.

2.4.2 Timing

Users that post a query would normally want a response rather quickly. There-
fore, they can specify query TTL, either absolute or relative key-block heights.
A relative query TTL of 2 assures that if the oracle does not answer within 2
key-blocks after the query is accepted onchain, the query fee is not paid. In

fact, an answer that is too late, will not make it on chain and no contract can
use it in a decision.

Oracles have a specific lifetime, supplied in block height when registering the
oracle. After that block height, queries to the oracle are no longer resulting in
a response. The lifetime of an oracle can be extended using an extend oracle
transaction.

2.5 Paying-for-others transaction wrapper

In order to make users enthusiastic about a blockchain application, one may
want them to try it for free. However, there are always costs involved for
transaction and gas. This means that a new user has to buy tokens at some
exchange to pay for the fees. This can be considered a hurdle for adoption. Of
course, one can ask a user for an account and put some tokens on it, but then
those tokens can be used for anything. The sternity solution is more powerful
and can be used to pay for just specific transactions. It can be used to pay for
both transaction fee and “gas cost” of a contract call.

Assume a game played via a contract on the blockchain. One interacts with
the game, by calling the contract. In order to get more users for the game, the
game provider could make an App that visualizes the game and asks for a next
move. This App could automatically create an seternity account, even without
the user being aware of it. This account can be used to sign transactions on the
blockchain, but there are no tokens in the account. This move is then encoded
in a transaction signed by the players account in the app. The transaction is
submitted to the game provider, who inspects it to see that this is indeed a
move in the game and wraps it in a payingfor transaction signed by the
game provider. The gas and fee are now paid by the game provider’s account.
Clearly this is also a way to have some trustful cross-chain activity. The App
user could provide the game provider with funds on a different blockchain.

One can pay for any transaction apart from the payingfor transaction itself.
So even a generalized accounts meta transaction can be paid for, as long as it
recursively does not contain any other payingfor transaction.

3 Consensus and Governance

3.1 Mining the blockchain

Traditionally blocks in a blockchain contain an ordered list of transactions com-
bined with a cryptographic hash —Blake2b [6] in our case— of the previous
block [8, [25] and mining is the act of creating such blocks. Transactions are
only added with the creation of a new block which. In [16] Ittay et al. propose
to decouple the leader election from inclusion of transactions in blocks for scal-
ability purposes. Their scheme dubbed “Bitcoin-NG” is what we adopted using
Cuckoo Cycle for proof-of-work.

3.1.1 Cuckoo Cycle PoW

Cuckoo Cycle [30], a graph-theoretic problem of finding cycles in a graph, is used
for proof-of-work puzzles. Finding solutions to this problem is memory bound,
meaning that runtime is constrained by memory latency of accessing nodes of
the graph. Cuckoo cycle was chosen because memory latency is believed to
not allow as big performance gains from specialised integrated circuits (ASICs)
versus general purpose hardware. Verifying the validity of a solution is also
trivial, meaning that validating a block has less overhead.

Solving a cuckoo cycle instance requires finding a fixed length cycle in a
bipartite graph of 2V edges and 2* nodes. The ratio of %, % by default, is one
of the parameters to control the hardness of the problem. Edges are represented
as N bit strings. As of December 2019, seternity requires cycles of length 42
and 30 bit edges.

3.1.2 Difficulty

Adaptable difficulty allows us to control the expected time it takes to find a
solution and thus a new valid block. To allow more fine-grained control over
the difficulty of the proof-of-work, the final step after a solution to the graph
problem has been found is to hash it. The hash is then compared to a difficulty
target, which is adjusted with each new block. If output of the hash function
and the difficulty target are interpreted as numbers, then in order to have a valid
proof-of-work solution, the hash needs to be smaller than the target difficulty.

The difficulty for each block is deterministically computed based on times-
tamps of the last 17 blocks. This timestamp is unreliable, since the nodes have
no synchronized clocks. However, the timestamp may not precede the times-
tamp of a previous block. A block submitted with difficulty not meeting the
target specified in the previous block will be ignored by honest nodes. Likewise,
if a miner presents the wrong target difficulty for the next block, this block will
be discarded.

3.1.3 Forks

Whenever there are two or more blocks produced with the same parent block,
we speak of a fork. This can happen for a variety of reasons, accidental or
intended. Forks can last for multiple blocks with miners working on separate
branches. A defining feature of every blockchain is the fork choice rule. It tells
honest nodes which branch to choose in case of a fork. For seternitynodes, the
rule is to prefer the longest branch use work committed to it, as measured via
the difficulty, as tiebreaker.

A different kind of fork can be caused whenever nodes run different software
and disagree about the rules of what constitutes a valid block. In this case
manual intervention by node operators might be required.

10

3.2 Next Generation Nakamoto Consensus

Where in Bitcoin or Ethereum each block filled with transactions requires a
proof-of-work solution, a miner in seternity has to find one proof-of-work solution
and can then create multiple blocks with transactions until the next miner finds
an admissible proof-of-work solution. This scheme was proposed by Ittay et al.
[16] under the name “Bitcoin-NG”.

3.2.1 Key- and micro-blocks

Bitcoin-NG requires two different kinds of blocks. One kind, called key-block,
to elect the miner, or leader, who is allowed to include transactions on chain,
and micro-blocks containing transactions. Every new key-block starts a new
epoch—or generation in the seternity context.

The key-blocks contain the hash of a previous micro-block as well as the hash
of the previous key-block. Micro-blocks are created in rapid succession making
it likely that any given new key-block does not include the hash of the latest
micro-block produced by the previous round leader. This is called a micro-fork.
(cf. red micro-block in Fig. . The transactions of the discarded micro-blocks
are put back in the transaction pool and taken care of by the next leader. Since
they have been seen in a micro-block before, they will very likely be valid in
future micro-block as well.

In practice, miners are allowed to publish a micro-block every three seconds
and the computational complexity—associated with every transaction and mea-
sured in gas—is limited per block. These limits are put in place to avoid miners
flooding the network.

To give miners an incentive to work on top of the newest micro-block, trans-
action fees are divided by giving 40% to the leader producing a micro-block and
60% to the miner of next key-block after that micro-blockﬂ

3.2.2 Fraudulent leaders

There is only one leader per generation creating micro-blocks. Each key-block
includes the public key of the new leader and consecutive micro-blocks are only
valid if signed with the associated private key. This protects against third parties
trying to post micro-blocks.

A malicious leader, however, could construct forks either by forking directly
from the key-block, or by forking on a micro-block. This could be done to
disrupt the network or to perform double spend attacks. A malicious miner
could also try to produce more micro-blocks than entitled to by fiddling with
the micro-block creation timestamp.

In order to mitigate the risk of a leader forking its own sequence, there
is a mechanism in place to detect and report this by submitting a Proof-of-
Fraud. This is submitted in the next generation. The leader is punished by not

2Note that if miners were to only mine key-blocks, there would be no transactions on the
chain at all.

11

hash

Key | qeh Key
Block ‘ { . . Block
Sipeitare b Ly L
Sipeitine |8 ke
Tx Tx
L
Tx e
? hash
Micro block
3 seconds

Figure 1: Next generation consensus

receiving a block reward and in order to make that possible, block rewards are
not immediately paid out but kept for the duration of 180 blocks.

3.2.3 Divide and conquer

Each transaction is a binary of a certain size. Internally both size and compu-
tation are expressed in gas and there is a maximum amount of gas per micro-
block that allows for maximally 300 KB per micro-block. Thus, an additional
advantage of the introduction of micro-blocks is that instead of a huge block
with 180,000 transactions in 3 minutes, we can create 60 reasonably sized micro-
blocks of maximally 300 KB in the same 3 minutes. This has several advantages
for network latency and smaller blocks are easier and faster to gossip through
the network. Moreover, if it takes longer to compute the next key-block we are
not bound to a maximum block size, because we generate new micro-blocks as
long as no key-block has been found.

3.3 Weighted delegated coin-voting

A major problem in all decentralized systems is that of coordination between
the different participants, especially because they might not share common goals
with regards to the utility and development of the system.

Giving all these different participants a way to signal their preferences is
important to make decision processes legitimate and also collect as much infor-
mation as possible.

The previous section outlined the coordination game played by miners, where
they vote with they computational power to signal which fork they support and

12

thus decide the “main chain”. Coordination here is facilitated by the fork choice
rule described above but miners do not have to follow it.

Another group to consider are owners of the native seternity coin—although
by no means can we assume that that group is homogeneous in their objectives.
The signalling mechanism used for them is based on delegative or liquid democ-
racy [17] and shareholder voting. This means in practice that any owner of coins
can delegate their voting power to any other blockchain account. The voting
power is based on the amount of coins owned. This means that opposed to “one
person one vote”, it is “one coin one vote.” These two voting schemes were
chosen because allowing the delegation of voting power allows people without
enough expertise but a lot of stake to delegate their voting power to someone
with the expertise but maybe lacking voting power. In theory this should lead
to better decisions to be made. Making the voting power proportional to coins
owned follows the logic that a bigger share of the value of the network implies
more “skin in the game”.

This scheme could then be used to prioritze future development efforts or
in the case of a contentious fork signal which side might get support from most
coin owners, which could then inform the behaviour of miners when choosing a
fork to mine on.

Inflation and Total coin (120 years)
6e+08

T
Coin
Inflation

U i i

5e+08

Existing coin

4e+08

3e+08

02

- 015

01

0.05

inflation

Figure 2: Inflation and total coins (source: aeknow.org)

3.4 Economics

During the initial token sale in April to June 2017 82% of the initial AE tokens
got sold via a public token sale (contribution campaign). The rest was reserved
for the founding team, the founding company and for the foundation to do future
airdrops. 99% of the initial tokens were created as an ERC20 smart contract

13

50 60 70 80 90 100 110 120

on Ethereum with a total supply of 273,685,830.1643299 AE. After the mainnet
launch, the ERC20 token contract became obsolete and after its expiry all AE
have been migrated to aeternity blockchain.

Further, mining started with the mainnet launch. Through the process of
mining new coins get created with every new key-block as a block-reward. Sim-
ilarly to Bitcoin, aeternity is programmed to have a finite supply, reaching its
maximum in about one hundred years. aternitys new coin supply curve is hereby
similarly decreasing like Bitcoins or Ethereums, although Ethereum has infinite
supply programmed into its code base. Figure [2] shows the yearly ”inflation”
rate and the total coins in existence.

4 Scaling with state channels

Conceptually one can regard a state channel as an agreement between two par-
ties, further called participants, to build a chain of state changes just between
themselves. Communication happens peer to peer with the blockchain acting
as the ultimate source of truth. The lifecycle of a state channel is defined by
two different state-machines tracking the off- and on-chain state.

Opening a channel involves two participants agreeing on and then posting a
mutually authenticated channel create transaction on-chain. This transaction
specifies the involved parties’ on-chain accounts, amount of coins they want to
lock in the channel and hash of the initial state.

In case neither party want to dispute any operations executed in the channel,
all that ends up on chain are exactly just amounts, accounts and a state hash.
This makes state channels not just a possible throughput but also a privacy
improvement.

4.1 Off-chain

Anything happening off-chain is not part of consensus and thus, at least in
theory, it is completely irrelevant what the participants do off-chain as long as
they can agree on the on-chain transactions.

In practice, the current implementation is a fairly complex finite state ma-
chine that needs to deal with constant disconnects and all the other problems
of distributed computation. To be able to re-use as much logic as possible,
the off-chain logic closely resembles what would happen on-chain. Participants
exchange transactions modifying the available state trees, for example smart
contract interactions. The actual consensus between the participants is es-
tablished via a simple two-phase commit protocol instead of Bitcoin-NG. By
default, there are no transaction or gas costs involvedﬁ and most notably trans-
actions are confirmed as quickly as both parties can sign them. Confirmation
time can therefore be reduced to milliseconds, significantly increasing through-
put compared to on-chain.

3In a state channel participants can agree to have a kind of transaction cost, but it is not
the default setup

14

4.2 On-chain

A state channel requires both parties to sign each state to make sure the state is
agreed upon. Typically a state channel can be closed under mutual agreement
and then a closing transaction is used to re-distribute and return the reserved
balances to the on-chain accounts. Another way to extract reserved funds from
a state channel is to mutually agree upon a withdrawal from the channel to an
account of one of the parties.

But there might be disputes. For example, a customer could decide not to
cancel a subscription, but keep an empty account in the state channel forever.
This is disadvantageous for the shop, because it cannot extract the funds from
the already paid coffee in mutual agreement. For this reason, there is a solo
close transaction, a way for one party to close the channel on-chain and use the
last signed and agreed state as a proof on how the funds should be divided.

Dealing with disputes is a considerable part of the logic and implementation
of state channels. This becomes even more evident in the context of using
contracts in a channel. A contract may be build in such a way that it re-
distributes balances after a certain state has been reached. Imagine s tic-tac-toe
game contract, where the funds are re-distributed only after one party has won.
It could then be beneficial for a party to quit the game when loosing and solo
close, or to simply refuse to sign the last transaction.

Clearly, there are a plethora of scenarios in which one can try to cheat. One
could buy a coffee off-chain and at the same time solo close the channel on-chain.
That would mean a free coffee. Therefore, funds are not immediately returned
after a solo close, but kept for a certain period, called a lock period. During this
period the other party can post a transaction to refute this claim and show a
later state obtained by a mutually signed transaction (the one after buying the
additional coffee). Which then again could possibly be refuted, etc.

Quitting when one expects to lose harms the other party, because there is
no next state that is more beneficial than the initial state. For this purpose
the other party can then force progress the contract and move to the winning
state. That is, the party can perform a contract call on-chain and show that it
ends up in state that can be claimed the actual final state for which the channel
should be closed. This force progress requires more than just the state hash.
Here enough of the state has to be revealed such that a miner can execute the
next step in the contract.

Finally, it is important to keep in mind that just like when interacting with
smart contracts there is always the possibility of losing all deposited coins to a
maliciously crafted contract inside a channel.

5 Sophia smart contracts
Smart contracts [29] T3] are programs on the blockchain that can perform tasks

with the data on that blockchain. Typically contracts have state (data), which
is recorded on the chain. A call to a function in the contract results in a return

15

value and updated state, both put back on the chain as a result of the call.

Smart contracts are an active research field [3] and a substantial amount
of effort goes in to studying the verification and validation of smart contracts
[21, [11].

There are two major technical challenges for smart contract implementa-
tions. The first challenge is to make the contracts execute fast without requiring
too many resources. In a blockchain implementation, contract execution is per-
formed in a virtual machine. This is an execution engine with formally defined
semantics, such that all implementations perform exactly the same computation
steps, with exactly the same result and charging exactly the same amount of gas.
The seternity blockchain defines two virtual machines, the AEVM, inspired by
the Ethereum blockchain, and the more safe and efficient FATE virtual machine.

The second challenge is to design a language to express contracts in such a
way that one can understand and reason about the contract both as a human,
but also mechanically by computer programs. The language should by design
protect contract designers against vulnerabilities that can be exploited. Sophia
is a functional language to accommodate for these properties. It is designed
as a contract language with security and user comfort in mind. In particular,
vulnerabilities in contracts in other languages [5], 23] [14] have been studied with
the goal to avoid the possibility to make such mistakes in Sophia.

5.1 The Sophia language

Sophia is a functional programming language [19]. The main unit of code in
Sophia is the contract. A contract implementation, or simply a contract, is the
code for a smart contract and consists of a list of types, entrypoints and local
functions. Only the entrypoints can be called from outside the contract. A
contract instance is an entity living on the blockchain (or in a state channel).
Each instance has an address that can be used to call its entrypoints, either
from another contract or in a call transaction. A contract may define a type
state encapsulating its local state. When creating a new contract the init
entrypoint is executed and the state is initialized to its return value.

5.1.1 Dutch auction contract

As an example, let us consider an auction contract. In such an auction contract,
a user could auction an object in the real world by creating and posting a
contract to the blockchain, using a contract create transaction. Let us
assume that this is a Dutch auction, then the initial price would be set high and
for each new key-block that is mined (representing time) the price is decreased.
Someone buys the object by calling a bid function. When this bidding contract
call transaction executes, the contract computes the price given the current
block number; if the caller has supplied enough coins in that call, the seller
is paid, the bidder is charged (possibly refunded the extras) and the contract
enters a non sellable state for the object. The next bidder will fail the call and
only pays for transaction costs, not for the object.

16

The complete Sophia code for a Dutch auction is presented here:

contract DutchAuction =

record state = { amount : int,
height : int,
dec : int,
sold : bool }

entrypoint init(price, decrease) : state =
{ amount = price,
height = Chain.block_height,
dec decrease,
sold false }

stateful payable entrypoint bid() =
require(!state.sold, "sold")
let price = demanded_price()
require(Contract.balance >= price, "not enough tokens")
Chain.spend(Contract.creator, price)
Chain.spend(Call.origin, Contract.balance)
put (state{sold = truel})

function demanded_price() : int =
state.amount - (Chain.block_height - state.height) * state.dec

The contract languages and hence the evaluation in the virtual machine,
must have access to blockchain primitives like the height of the chain and caller
accounts. Typically, all blockchain primitives are available from within a con-
tract.

Note that the contract create transaction includes the contract byte code,
not the source code, together with information on which version of the compiler
is used. Compiled for FATE this contract results in 254 bytes, whereas compiled
for the AEVM 2092 bytes are needed. The gas needed to compute the initial
state is 240 for FATE compared to 741 for the AEVM.

The init function is called when the contract is created to compute the
initial state of the contract. The init function is not part of the byte code,
such that it cannot accidentally be called again. If one wants to reset the
state, this has to be explicitly programmed to avoid expensive exploits [27].
The contract designer also has to explicitly mention whether the state of the
contract is changed in a call (using the stateful keyword). Entrypoints can
be called from outside the contract, whereas functions are only accessible from
within the contract.

The keyword payable is added to explicitly state which function calls expect
to come with additional tokens in the contract call transaction. These tokens

17

are added to the contract balance before the call is made. If, however, the call is
reverted by a failing required condition, then the provided tokens are returned.

The transparency of the blockchain guarantees that it is verifiable that the
first valid bid on chairﬁ is correctly paying the right price. Moreover, it is
verifiable that the bidding call transactions accepted later are only charged a
transaction fee and the cost of execution. The sale conditions are transparent,
but whether the actual object ever arrives is outside the scope of the blockchain

5.1.2 State Channel example

Contracts can be deployed on-chain or in a state channel. State channels provide
means for two parties for executing transactions off-chain. Once the channel is
opened on-chain all the communication is moved off-chain and it is just between
the two participants. It is not limited by blockchain throughputh, fees or gas
costs. This provides a new environment to run contracts in. In order to make
most out of it, off-chain contracts can use on-chain data.

An example of the use of off-chain contract and an on-chain oracle can be
illustrated with a simple insurance contract. Note that all computation on a
blockchain must be deterministic in order to be able to validate the results. If
not exactly the same, the corresponding state hashes will differ. This is true
especially with state channels as contracts are executed by both participants in
their own context. This requires both to share the same view of the chairﬂ

Running a simple insurance contract in which one user provides the service
while the other insures their property for a certain timeframe from hailstorm
requires some input from real life data. This is where oracle input comes: for
the example we have an on-chain Oracle to produce data on whether there has
been a hailstorm in a certain city. It publishes data pinned in time with a
corresponding block height when it occurred. Later on the insured participant
can use this response in order to claim their compensation. This can be done
off-chain and it wouldn’t consume any gas. If the insurer refuses to follow the
contract, the insured party can use the blockchain as an arbiter and execute the
contract on-chain.

So assume there is such an oracle, monitoring the weather and registered
with a reasonable query fee covering for its cost of operation. The oracle has an
identifier, for the example say

7ok_shEHMV8Q2F1HRS86pcyF 7D YpudgS8hnvJwJuVESber WpbktnL2R”.

We can now write a Sophia contract that takes this oracle identifier as input of
its initialization and uses it for claiming the insurance.

contract Channellnsurance =

type city_t = string

4The zeternity blockchain does not guarantee that the first one posting a valid bid becomes
the first one on chain.
5We achieve this by specifying the on-chain environment as part of the off-chain update.

18

type gen_height_t = int

type query_t = city_t * gen_height_t

type answer_t = bool

type oracle_id = oracle(query_t, answer_t)

type query_id = oracle_query(query_t, answer_t)

record state = { oracle : oracle_id,
city : city_t,
active_from : gen_height_t,
active_to : gen_height_t,
price_per_gen : int,
compensation : int
X

entrypoint init(oracle : oracle_id, city: city_t,
price_per_gen: int, compensation: int) : state =

{ oracle = oracle,
city = city,
price_per_gen = price_per_gen,
compensation = compensation,
active_from =0,
active_to =0
I

stateful payable entrypoint insure() =
require(Call.caller != Contract.creator, "service_provider")
require(Contract.balance + Call.value >= state.compensation,
"not_enough_compensation")
let period : int = Call.value / state.price_per_gen
if (Chain.block_height >= state.active_to) // expired, renew
put (state{ active_from = Chain.block_height,
active_to = Chain.block_height + period})
else // not expired, extend
put (state{ active_to = state.active_to + period })

stateful entrypoint withdraw(amount: int) =
require(Call.caller == Contract.creator, "not_service_provider")
if (Chain.block_height =< state.active_to) // insured
require(Contract.balance - amount >= state.compensation,
"not_enough_compensation")
Chain.spend(Contract.creator, amount)

payable entrypoint deposit() =
require(Call.caller == Contract.creator, "not_service_provider")

entrypoint get_insurance_range() =

19

(state.active_from, state.active_to)

stateful entrypoint claim_insurance(q: query_id) =

require(Call.caller != Contract.creator, "service_provider")
switch(Oracle.get_answer(state.oracle, q))
None =>

abort("no_response")

Some (was_there_hailstorm) =>
let (city, generation) = Oracle.get_question(state.oracle, q)
require(city == state.city, "different_city")
let is_in_range = generation >= state.active_from

&& generation =< state.active_to
require(is_in_range, "not_in_insurance_range")
require(was_there_hailstorm, "different_response")
Chain.spend(Call.caller, state.compensation)
put(state{ active_from = O,
active_to = 0})

The contract is deployed by the insurance service provider in a state channel.
It stores the reference to the trusted oracle in its state, the price it expects for
insurance for a single generation and in which city the insured city belongs to.
It also contains the insured interval in block heights, which initially is set to 0.

The creator of this contract may now deposit initial amount for compensa-
tion.

payable entrypoint deposit() =
require(Call.caller == Contract.creator, "not_service_provider")

Note that there is a check there: only the owner of the contract - being the
service provider - can execute that function. Since the insured participant is not
expected to call that function - any attempt of doing so will result in aborting
the call. This is true both off-chain and on-chain in a forced progress scenario.

The keyword payable expresses that we expect the caller to add a token
amount to the contract call transaction, which could be checked by comparing
Call.value. There is no restriction for the amount being deposited in the
contract and this could be done in a couple of different steps if needed.

Once the compensation is present in the contract, the other party can call
the insure function.

stateful payable entrypoint insure() =
require(Call.caller != Contract.creator, "service_provider")
require(Contract.balance + Call.value >= state.compensation,
"not_enough_compensation")
let period : int = Call.value / state.price_per_gen
if (Chain.block_height >= state.active_to) // expired, renew
put(state{ active_from = Chain.block_height,

20

active_to = Chain.block_height + period})
else // not expired, extend
put (state{ active_to = state.active_to + period })

There are some checks that it is not the insurance provider that is calling
the contract and that the contract has enough tokens to cover the compensation
in case of a hailstorm. If those pass the corresponding insurance period is
calculated according to the tokens dedicated in the contract and the state is
updated accordingly. Note that if there is an active insurance at the moment,
the existing time frame is just extended. This allows for continuous insurances.

Once an insurance event takes place, the insured party simply claims their
due, providing the Oracle’s response.

stateful entrypoint claim_insurance(q: query_id) =

require(Call.caller != Contract.creator, "service_provider")
switch(Oracle.get_answer(state.oracle, q))
None =>

abort ("no_response")

Some (was_there_hailstorm) =>
let (city, generation) = Oracle.get_question(state.oracle, q)
require(city == state.city, "different_city")
let is_in_range = generation >= state.active_from

&& generation =< state.active_to
require(is_in_range, "not_in_insurance_range")
require(was_there_hailstorm, "different_response")
Chain.spend(Call.caller, state.compensation)
put(state{ active_from = O,
active_to = 0})

Note that if any of the checks fail, the whole execution of the contract
fails. This makes the state channel contract safe and trustless in both off-
chain environment and in forced progress context. It is worth mentioning that
in both scenarios it is only the two participants that can execute the contract.
This is a big difference with on-chain deployed contracts.

If all checks pass, the caller of the contract - the insured party - claims the
compensation and the insurance is considered to closed.

This contract is far from fully secure, but illustrates an example of how
contracts in state channels can use on-chain data.

5.2 Readable Smart Contracts in Lexon

Human readable smart contracts compiling to Sophia. ...

5.3 The FATE virtual machine

The Fast Aeternity Transaction Engine (FATE) VM uses transactions as its
basic operations and operates directly on the state tree of the sternity chain.

21

This enables native integration with first class objects such as oracles, the nam-
ing system, and state channels since those are all managed by specific types of
transactions described on the protocol level. FATE is a simple-to-use machine
language, superior to the more traditional byte-code virtual machines currently
used on other platforms. It enables easier, safe coding, faster transactions, and
smaller code sizes. It is custom-built to seamlessly integrate with the functional
smart contract language Sophia.

5.3.1 More secure

Every operation and every value is typed. Any type violation results in an
exception and reverts all state changes. This prevents people to circumvent the
compiler and write or modify their own FATE code to use type violations as an
attack vector.

The instruction memory is divided into functions and basic blocks. Only
basic blocks can be indexed and used as jump destinations. This is a precaution
to be unable to jump to arbitrary positions in memory. It also fit FATE’s
function style by having function calls instead of jumps. Moreover, data and
control flow are separated, one cannot possibly modify the running contract,
since the code memory cannot be written to.

FATE is “functional” in the sense that “updates” of data structures, such
as tuples, lists or maps do not change the old values of the structure, instead
a new version is created. FATE does have the ability to write the value of an
operation back to the same register or stack position as one of the arguments,
in effect updating the memory.

FATE solves a fundamental problem programmers run into when coding for
Ethereum: integer overflow, weak type checking and poor data flow. FATE
checks all arithmetic operations to keep the right meaning of it. Integers cannot
overflow, since FATE uses unbounded integer arithmetic (cf. Bignums [26]).
Floats are not part of the language, avoiding a bunch of issues associated with
floating point arithmetic. Also you cannot cast types (e.g integers to booleans).
This makes FATE ultimately a safer coding platform for smart contracts.

5.3.2 More efficient

FATE uses high level instructions. There are instructions to operate on the chain
state tree in a safe and formalized way. Likewise the virtual machine has high-
level support for most of the transactions available on the seternity blockchain.
There are operations such as ‘ORACLE_CHECK_QUERY’ for querying an or-
acle or ‘AENS_CLAIM’ for claiming a name.

Having higher level instructions makes the code deployed smaller and it
reduces the blockchain size. FATE contracts use on average ten times less space
than the same contract compiled to the AEVM, the Ethereum compatible VM.
At the same time, it performs on average much faster and uses therefore less
gas.

22

FATE byte code by itself is already a readable program. For example, the
bid function of the Dutch auction contract compiles to this code:

FUNCTION bid() : {tuple,[1}
;; BB : O
ELEMENT a 3 storel
NOT a a
JUMPIF a 2
;; BB 1
ABORT "sold"
;; BB 1 2
CALL "(h:p"
;; BB : 3
POP varil
BALANCE a
EGT a a varl
JUMPIF a 5
;; BB : 4
ABORT "not enough tokens"
;; BB : b
CREATOR a
SPEND a varl
BALANCE a
ORIGIN a
SPEND a a
SETELEMENT storel 3 storel true
RETURNR ()

The notion BB stands for basic block and jumps are always to such a basic
block. Note that for example ‘CREATOR’, ‘SPEND’ and ‘BALANCE’ are
native instructions used in basic block 5. The instruction CALL "(h:p" in
basic block 2 looks a bit cryptic for a call to the function demanded_price().
Each function name is hashed to 4 bytes that are printed as a string.

Both memory constraints and computation efficiency are important to enable
smaller contracts to to get more computation into a micro-block.

6 Future ambitions and past evolution

The seternity blockchain went live on November 28th, 2018. For the curious
reader, there is a timestamp in each block and the first mined key-block has
timestamp “1543373685748”, which is the time in milliseconds using POSIX
time. Since that first date, 3 major protocol updates have successfully be applied
as of March 2020, enriching the seternity blockchain with new features. The
new protocols are effective at a certain height and the software supports the
old protocol under that height and the new protocol from that height. Each
protocol is referred to by name for ease in communication with developers of

23

blockchain applications: Roma, effective at height 0, Minerva, effective at height
47800, Fortuna, effective at height 90800, and Lima, effective at height 161150.

In the future, there will be more protocol upgrades with additional features,
some of which we are going to outline in this section.

6.1 Formal verification

Over the course of its existence Ethereum has had many flaws of deployed
contracts uncovered and abused. Some of these were simple developer errors
and others very subtle due to the complexity of both the EVM and Solidity.

Formal verification is one of the approaches to prevent these problems by al-
lowing code to be proven correctly with regards to a given specification. Formal
verification is used in many areas where high assurance is of vital importance,
e.g. cryptographic systems. Take the parity multi-sig contract flaw, which
allowed anyone to destroy one of the libraries used by the multi-sig contract
rendering it useless, as an example. A formal specification of this contract
could include the assumption that destruction functions can only be called by
authorized accounts or not at all. Checking this specification against the code
would then have raised an error. But there is certainly still the problem of
writing good specifications.

Since Sophia was written with formal verification in mind, we have laid most
of the ground work required to provide these tools. Together with Sophia being
a functional language, this should prevent many classes of bugs plaguing Solidity
smart contracts.

6.2 Native tokens

The ERC-20 standard, which specified an interface for fungible tokens, was
arguably one of the biggest drivers of adoption for Ethereum. With that came
the ability for anyone to design and test economic systems, which was a great
catalyst for the innovation happening on Ethereum. A big drawback of the
token contracts deployed was and still is the requirement to pay gas and thus
own Eth, which can be a major hurdle for users, who don’t necessarily want
to own any Eth or even know what that is. In addition to that, interacting or
integrating with token can be a pain, especially since the interface evolved over
time and if upgradability was not baked into the contract there are only very
clumsy upgrade paths for old contracts.

To address these drawbacks, seternity will make tokens native to the blockchain.
That opens the way to be able to use tokens to pay transaction fees, which frees
users from the requirement to own any other tokens. It will make usage cheaper
since the basic token logic and storage can be optimized in the virtual machine.
Finally, this will allow tokens to benefit from updates and upgrades for free,
without needing complex upgrade strategies.

24

6.3 Computational integrity

Computational integrity assures that a given function was computed correctly.
This could mean that a coin transfer correctly deducts coins from one account
while adding it to another or the correct execution of a smart contract call.
Currently assuring these correct executions is done by miners and node operators
via complex consensus rules. It also requires everyone who wants to check the
correct execution to re-run the full computation, which could be very costly.

There are different ways that allow checking the integrity of a function ex-
ecution but we are going to assume that the prover, the agent running the
computation and trying to prove that they executed it correctly, can generate a
succinct proof. Succinctness implies that checking the proof is computationally
less expensive than actually re-running the computation. This proof can then
be read and validated by another party, the verifier, who wants to check the
integrity of the computation.

The existence of such primitives then allows scaling, since checking the proof
takes less resources than running the computation. Additionally, these proofs
can be generated in such a way that the function itself can be private, while
still being verifiable by a third party, which would be a big gain in privacy.

Sophia already comes with some primitives to write efficient proof verifiers
and in the future we want to integrate these primitives even further into the
aternity protocol, to make it faster and private.

6.4 Further scaling

The Bitcoin-NG consensus described in section [3.1] allows us to handle around
120 transaction per second which is sufficient to process everything almost with-
out delay or block congestion at the time of writing. But in a future where
millions of people want to use seternity we will need higher throughput. One
partial solution, state channels, are already available today and will become
more relevant as usability improves.

Another direction to go is to split the blockchain into distinct parts, which
is also common for databases. These parts are then called shards and each one
will then be responsible for only a subset of all available transactions. Dividing
up the work like this would then offer each shard more room to scale just by
virtue of only having to handle a fraction of the previous load. Shards will still
have to communicate with each other, which is a possible bottleneck, and have
to know of each others existence. But overall the system could present a big
gain in throughput.

The third widely researched concept are then child-chains, app-chains or
side-chains. Other names for child-chains are app-chains or side-chains. In the
context of aeternity they will (most likely) be called hyperchains. Unlike shard-
ing, side-chains do not divide a global state space but each one has its own state.
The idea of this approach is to have many specific, maybe even single purpose,
chains which do not necessarily have to know of each other. The name child-
chain implies that they are hooked into a parent chain. Communication between

25

childen and parents, accross any hierarchy usually can happen via cross-chain
atomic swaps. Alternatively it can be achieved via some sort of hierarchical
escalation, in similar fashion to state channel force progress. Childchain then
imply that each use case or &pp could get its own chain, thus only having to
handle transactions for this one sepp and not be concerned with all the other
applications. This in turn would then allow each sepp much more throughput
and maybe even specific optimizations.

All the solutions described here offer different trade-offs but could certainly
be used in tandem. @eternity will most likely evolve into all the presented ap-
proaches in order to meet demands by billions of users.

6.5 Differences to v0.1 aeternity blockchain whitepaper

The seternity blockchain has evolved from a whitepaper published in 2017 to
a working system loaded with real value, also known as the &ternity mainnet.
In the process several things got adapted and fully re-engineered from scratch
by (co)creators of Erlang, Haskell, Skala and Agda, languages in industrial use
today.

- Next generation Nakamoto consensus (also with cuckoo cycle PoW)

- more state on chain.

- secure, functional, higher level, smarter contract language.

- more advanced and performat virtual machine.

- integration of higher level concepts into smart contract language.

- differentiation between oracles and prediction markets.

- accounts are now public keys and not anymore IDs.

References

[1] ADLER, J., BERRYHILL, R., VENERIS, A., PouLOs, Z., VEIRA, N., AND
KaAsTANIA, A. Astraea: A decentralized blockchain oracle. In 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physi-
cal and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
(2018), IEEE, pp. 1145-1152.

[2] AETERNITY. Aeternity protocol. https://aeternity.com/, 2019. Ac-
cessed: 2019-05-20.

[3] ALHARBY, M., AND VAN MOORSEL, A. Blockchain-based smart contracts:
A systematic mapping study. CoRR abs/1710.06372 (2017).

[4] ARMSTRONG, J. Erlang. Commun. ACM 53, 9 (Sept. 2010), 68-75.

[6] AtzEl, N., BARTOLETTI, M., AND CimoLI, T. A survey of attacks on
ethereum smart contracts (sok). In International Conference on Principles
of Security and Trust (2017), Springer, pp. 164-186.

26

https://aeternity.com/

[6]

O

[12]

[17]
[18]

AuMASSON, J.-P., NEVEs, S., WILCOX-O’HEARN, Z., AND WINNER-
LEIN, C. Blake2: simpler, smaller, fast as md5. In International Con-
ference on Applied Cryptography and Network Security (2013), Springer,
pp. 119-135.

BAck, A. Hashcash, 1997.

BasHIR, 1. Mastering blockchain: Distributed ledger technology, decentral-
ization, and smart contracts explained. Packt Publishing Ltd, 2018.

BERNSTEIN, D. J. Curve25519: new diffie-hellman speed records. In Inter-
national Workshop on Public Key Cryptography (2006), Springer, pp. 207—
228.

BERNSTEIN, D. J., Duir, N., LANGE, T., SCHWABE, P., AND YANG,
B.-Y. High-speed high-security signatures. Journal of Cryptographic En-
gineering 2, 2 (2012), 77-89.

BHARGAVAN, K., DELIGNAT-LAVAUD, A., FOURNET, C., GOLLAMUDI,
A., GONTHIER, G., KOBEIssI, N., KuLATOVA, N., RASTOGI, A., SIBUT-
PinoTE, T., SwaMy, N., ET AL. Formal verification of smart contracts:
Short paper. In Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security (2016), ACM, pp. 91-96.

Bos, J. W., HALDERMAN, J. A., HENINGER, N., MOORE, J., NAEHRIG,
M., AND WusTROW, E. Elliptic curve cryptography in practice. In Inter-
national Conference on Financial Cryptography and Data Security (2014),
Springer, pp. 157-175.

Cong, L. W., AND HE, Z. Blockchain Disruption and Smart Contracts.
The Review of Financial Studies 32, 5 (04 2019), 1754-1797.

DeLmoLiNO, K., ARNETT, M., KosBA, A., MILLER, A., AND SHI, E.
Step by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab. In International Conference on Financial Cryp-
tography and Data Security (2016), Springer, pp. 79-94.

Dwork, C., AND NAOR, M. Pricing via processing or combatting junk
mail. In Annual International Cryptology Conference (1992), Springer,
pp- 139-147.

EvaL, I., GENCER, A. E., SIRER, E. G., AND VAN RENESSE, R. Bitcoin-
ng: A scalable blockchain protocol. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation (Berkeley,
CA, USA, 2016), NSDI'16, USENIX Association, pp. 45-59.

ForD, B. A. Delegative democracy. Tech. rep., 2002.

GUARNIZO, J., AND SZALACHOWSKI, P. Pdfs: practical data feed service
for smart contracts. In Furopean Symposium on Research in Computer

Security (2019), Springer, pp. 767-789.

27

[19]

[20]

[21]

[22]

[23]

[31]

[32]

HuGHES, J. Why functional programming matters. The computer journal
32, 2 (1989), 98-107.

JOHNSON, D., MENEZES, A., AND VANSTONE, S. The elliptic curve digital

signature algorithm (ecdsa). International journal of information security
1, 1 (2001), 36-63.

MAaGAzzENI, D., MCBURNEY, P., AND NAsSH, W. Validation and ver-
ification of smart contracts: A research agenda. Computer 50, 9 (2017),
50-57.

MAYER, H. ECDSA security in bitcoin and ethereum: a research survey.
CoinFaabrik, June 28 (2016), 126.

MEHAR, M. 1., SHIER, C. L., GIAMBATTISTA, A., GONG, E., FLETCHER,
G., SANAYHIE, R., Kim, H. M., AND LASKOWSKI, M. Understanding a
revolutionary and flawed grand experiment in blockchain: the dao attack.
Journal of Cases on Information Technology (JCIT) 21, 1 (2019), 19-32.

NAKAMOTO, S., ET AL. Bitcoin: A peer-to-peer electronic cash system.
White Paper (2008).

RAIKWAR, M., GLIGOROSKI, D., AND KRALEVSKA, K. Sok of used cryp-
tography in blockchain. arXiv preprint arXiv:1906.08609 (2019).

SERPETTE, B., VUILLEMIN, J., AND HERVE, J.-C. BigNum: a portable
and efficient package for arbitrary-precision arithmetic. Digital. Paris Re-
search Laboratory, 1989.

SUICHE, M. The $280m ethereum’s parity bug. A critical security vulner-
ability in Parity multi-sig wallet (2017).

SYVERSON, P. A taxonomy of replay attacks [cryptographic protocols].
In Proceedings The Computer Security Foundations Workshop VII (June
1994), pp. 187-191.

SzABO, N. Smart contracts: building blocks for digital markets. FEX-
TROPY: The Journal of Transhumanist Thought,(16) 18 (1996), 2.

TrowMmP, J. Cuckoo cycle: A memory bound graph-theoretic proof-of-work.
In Financial Cryptography and Data Security (Berlin, Heidelberg, 2015),
M. Brenner, N. Christin, B. Johnson, and K. Rohloff, Eds., Springer Berlin
Heidelberg, pp. 49-62.

WIGER, U. Building a blockchain in erlang — code mesh ldn
18. https://www.youtube.com/watch?v=I4_xX_Zs2eE&feature=youtu.
be&t=1730, 2018.

ZHANG, F., CECccHETTI, E., CROMAN, K., JUELS, A., AND SHI, E. Town
crier: An authenticated data feed for smart contracts. In Proceedings of the
2016 aCM sIGSAC conference on computer and communications security
(2016), ACM, pp. 270-282.

28

https://www.youtube.com/watch?v=I4_xX_Zs2eE&feature=youtu.be&t=1730
https://www.youtube.com/watch?v=I4_xX_Zs2eE&feature=youtu.be&t=1730

	Introduction
	Transactions and Blockchain primitives
	AE coins
	Fees for usage

	Accounts and Signatures
	Standard accounts
	Generalized accounts

	ÆNS and .chain name space
	Oracles for data from outside
	Data as a service
	Timing

	Paying-for-others transaction wrapper

	Consensus and Governance
	Mining the blockchain
	Cuckoo Cycle PoW
	Difficulty
	Forks

	Next Generation Nakamoto Consensus
	Key- and micro-blocks
	Fraudulent leaders
	Divide and conquer

	Weighted delegated coin-voting
	Economics

	Scaling with state channels
	Off-chain
	On-chain

	Sophia smart contracts
	The Sophia language
	Dutch auction contract
	State Channel example

	Readable Smart Contracts in Lexon
	The FATE virtual machine
	More secure
	More efficient

	Future ambitions and past evolution
	Formal verification
	Native tokens
	Computational integrity
	Further scaling
	Differences to v0.1 æternity blockchain whitepaper

