

Arduino Language Reference

By: Paul A. Teseny

 2

	 The text of the Arduino Language Reference is licensed under a Creative
Commons Attribution-ShareAlike 3.0 License. Code samples in the reference are
released into the public domain. This is not a unique work; much of this material
comes directly from the Arduino website. The information in this booklet is typeset
for printing. The body text is Garamond and the section headings, code samples,
headers and footers are Gill Sans MT.

	 Trademarked names, logos, and images may appear in this book. Rather than use
a trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark. The use in this
publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

	 The information in this booklet is distributed on an “as is” basis, without
warranty. Although every precaution has been taken in the preparation of this work, the
author shall not have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

 Arduino Language Reference

 3

Table of Contents
Arduino Language Reference 7

Structure 7

setup() 7

loop() 7

Control Structures 8

Comparison Operators: 9

if / else 9

for statements 10

switch / case statements 12

while loops 13

do – while 13

break 14

continue 14

return 14

goto 15

Further Syntax 16

; semicolon 16

{} Curly Braces 16

Comments 18

#define 18

#include 19

Arithmetic Operators 20

= assignment operator (single equal sign) 20

Addition, Subtraction, Multiplication, & Division Description 20

% (modulo) 21

Comparison Operators 22

if (conditional) and ==, !=, <, > (comparison operators) 22

Boolean Operators 23

Pointer Operators 24

& (reference) and * (dereference) 24

Bitwise Operators 24

Bitwise AND (&) 24

Bitwise OR (|) 25

Bitwise XOR (^) 26

Bitwise NOT (~) 26

bitshift left (<<), bitshift right (>>) 27

 4

Compound Operators 28

++ (increment) / -- (decrement) 28

Shorthand Operators 29

Compound bitwise AND (&=), compound bitwise OR (|=) 29

Compound bitwise AND (&=) 29

Compound bitwise OR (|=) 30

Variables 32

Constants 32

Logical Levels, true and false (Boolean Constants) 32

Pin Levels, HIGH and LOW 32

Digital Pins, INPUT and OUTPUT 33

Pins Configured as Inputs 33

Pins Configured as Outputs 33

Integer Constants 33

U & L formatters 34

floating point constants 34

Data Types 36

void 36

boolean 36

char 37

unsigned char 37

byte 37

int 38

unsigned int 38

word 39

long 39

unsigned long 40

float 41

double 41

String - char array 42

String – object 43

Arrays 44

Conversion 46

char() 46

byte() 46

int() 46

word() 47

long() 47

float() 47

 Arduino Language Reference

 5

Variable Scope & Qualifiers 48

Variable Scope 48

Static 49

volatile keyword 50

const keyword 51

Utilities 52

sizeof 52

Functions 53

Digital I/O 53

pinMode() 53

digitalWrite() 54

digitalRead() 55

Analog I/O 56

analogReference(type) 56

analogRead() 56

analogWrite() 57

Advanced I/O 59

tone() 59

noTone() 59

shiftOut() 60

pulseIn() 62

Time 63

millis() 63

micros() 64

delay() 65

delayMicroseconds() 66

Math 67

min(x, y) 67

max(x, y) 67

abs(x) 68

constrain(x, a, b) 68

map(value, fromLow, fromHigh, toLow, toHigh) 69

pow(base, exponent) 70

sqrt(x) 70

Trigonometry 71

sin(rad) 71

cos(rad) 71

tan(rad) 71

 6

Random Numbers 72

randomSeed(seed) 72

random() 72

Bits and Bytes 74

lowByte() 74

highByte() 74

bitRead() 74

bitWrite() 75

bitSet() 75

bitClear() 75

bit() 76

External Interrupts 77

attachInterrupt(interrupt, function, mode) 77

detachInterrupt(interrupt) 78

Interrupts 79

interrupts() 79

noInterrupts() 79

Communication 80

Serial 80

begin() 80

end() 81

available() 82

read() 83

flush() 84

print() 85

println() 87

write() 88

Libraries 89

Official Libraries 89

Contributed Libraries 89

ASCII Table 90

Arduino Language Summary 91

 Arduino Language Reference

 7

Arduino Language Reference

The Arduino language is based on C and C++ languages. The C understood by the Arduino compiler is

not standard C; rather, it is a robust subset of standard C. A few standard C features are missing, but, the

absence of those features is not crippling by any means. Arduino C, is more than able to perform just

about any task you can throw at it. The missing features can easily be worked around, albeit sometimes in a

less elegant manner.

Arduino programs can be divided in three main parts: structure, variables, and functions.

Structure

An Arduino program has two parts:

void setup()

void loop()

Setup() is preparation, and loop() is execution. In the setup section, always at the top of your program, you

would set pinModes, initialize serial communication, etc. The loop section is the code to be executed --

reading inputs, triggering outputs, etc.

setup()

The setup() function is called when a sketch starts. Use it to initialize variables, pin modes, start using

libraries, etc. The setup function will only run once, after each power-up or reset of the Arduino board.

Example:

int buttonPin = 3;

void setup()

{

 Serial.begin(9600);

 pinMode(buttonPin, INPUT);

}

void loop()

{

 // ...

}

loop()

After creating a setup() function, which initializes and sets the initial values, the loop() function does
precisely what its name suggests, and loops consecutively, allowing your program to change and respond.
Use it to actively control the Arduino board.

 8

Example:

int buttonPin = 3;

// setup initializes serial and the button pin

void setup()

{

 beginSerial(9600);

 pinMode(buttonPin, INPUT);

}

// loop checks the button pin each time,

// and will send serial if it is pressed

void loop()

{

 if (digitalRead(buttonPin) == HIGH)

 serialWrite('H');

 else

 serialWrite('L');

 delay(1000);

}

Control Structures

if (conditional) and ==, !=, <, > (comparison operators)

if, which is used in conjunction with a comparison operator, tests whether a certain condition has been

reached, such as an input being above a certain number. The format for an if test is:

 if (someVariable > 50)

 {

 // do something here

 }

This program tests to see if someVariable is greater than 50. If it is, the program takes a particular action.

Put another way, if the statement in parentheses is true, the statements inside the brackets are run. If not,

the program skips over the code.

The brackets may be omitted after an if statement. If this is done, the next line (defined by the semicolon)

becomes the only conditional statement.

 if (x > 120) digitalWrite(LEDpin, HIGH);

 if (x > 120)

 digitalWrite(LEDpin, HIGH);

 if (x > 120){ digitalWrite(LEDpin, HIGH); }

 if (x > 120){

 digitalWrite(LEDpin1, HIGH);

 digitalWrite(LEDpin2, HIGH);

 } // all are correct

The statements being evaluated inside the parentheses require the use of one or more operators:

 Arduino Language Reference

 9

Comparison Operators:

 x == y (x is equal to y)

 x != y (x is not equal to y)

 x < y (x is less than y)

 x > y (x is greater than y)

 x <= y (x is less than or equal to y)

 x >= y (x is greater than or equal to y)

Warning

Beware of accidentally using the single equal sign (e.g. if (x = 10)). The single equal sign is the assignment

operator, and sets x to 10 (puts the value 10 into the variable x). Instead use the double equal sign (e.g. if (x

== 10)), which is the comparison operator, and tests whether x is equal to 10 or not. The latter statement

is only true if x equals 10, but the former statement will always be true.

This is because C evaluates the statement if (x=10) as follows: 10 is assigned to x (remember that the

single equal sign is the assignment operator), so x now contains 10. Then the 'if' conditional evaluates 10,

which always evaluates to TRUE, since any non-zero number evaluates to TRUE. Consequently, if (x =

10) will always evaluate to TRUE, which is not the desired result when using an 'if' statement. Additionally,

the variable x will be set to 10, which is also not a desired action. if can also be part of a branching control

structure using the if...else] construction.

if / else

if/else allows greater control over the flow of code than the basic if statement, by allowing multiple tests

to be grouped together. For example, an analog input could be tested and one action taken if the input was

less than 500, and another action taken if the input was 500 or greater. The code would look like this:

 if (pinFiveInput < 500)

 {

 // action A

 }

 else

 {

 // action B

 }

else can proceed another if test, so that multiple, mutually exclusive tests can be run at the same time.

Each test will proceed to the next one until a true test is encountered. When a true test is found, its

associated block of code is run, and the program then skips to the line following the entire if/else

construction. If no test proves to be true, the default else block is executed, if one is present, and sets the

default behavior.

Note: An else if block may be used with or without a terminating else block and vice versa. An unlimited

number of such else if branches is allowed.

 10

Example:

 if (pinFiveInput < 500)

 {

 // do Thing A

 }

 else if (pinFiveInput >= 1000)

 {

 // do Thing B

 }

 else

 {

 // do Thing C

 }

Another way to express branching, mutually exclusive tests, is with the switch case statement.

for statements

The for statement is used to repeat a block of statements enclosed in curly braces. An increment counter is

usually used to increment and terminate the loop. The for statement is useful for any repetitive operation,

and is often used in combination with arrays to operate on collections of data/pins. There are three parts

to the for loop header:

for (initialization; condition; increment) {

 //statement(s);

}

The initialization happens first and exactly once. Each time through the loop, the condition is tested; if it's

true, the statement block, and the increment is executed, then the condition is tested again. When the

condition becomes false, the loop ends.

 Arduino Language Reference

 11

Example:

void setup()

{

 // no setup needed

}

void loop()

{

 for (int i=0; i <= 255; i++) {

 analogWrite(PWMpin, i);

 delay(10);

 }

}

Coding Tips
The C for loop is much more flexible than for loops found in some other computer languages, including

BASIC. Any or all of the three header elements may be omitted, although the semicolons are required.

Also the statements for initialization, condition, and increment can be any valid C statements with

unrelated variables, and use any C datatypes including floats. These types of unusual for statements may

provide solutions to some rare programming problems.

For example, using a multiplication in the increment line will generate a logarithmic progression:

 for(int x = 2; x < 100; x = x * 1.5){

 println(x);

 }

Generates: 2,3,4,6,9,13,19,28,42,63,94

Another example, fade an LED up and down with one for loop:

void loop()

{

 int x = 1;

 for (int i = 0; i > -1; i = i + x){

 analogWrite(PWMpin, i);

 if (i = 255) x = -1; // switch direction at peak

 delay(10);

 }

}

 12

switch / case statements

Like if statements, switch...case controls the flow of programs by allowing programmers to specify

different code that should be executed in various conditions. In particular, a switch statement compares

the value of a variable to the values specified in case statements. When a case statement is found whose

value matches that of the variable, the code in that case statement is run.

The break keyword exits the switch statement, and is typically used at the end of each case. Without a

break statement, the switch statement will continue executing the following expressions ("falling-

through") until a break, or the end of the switch statement is reached.

Syntax:

switch (var) {

 case label:

 // statements

 break;

 case label:

 // statements

 break;

 default:

 // statements

}

Parameters:

var: the variable whose value to compare to the various cases

label: a value to compare the variable to

Example:

switch (var) {

 case 1:

 //do something when var equals 1

 break;

 case 2:

 //do something when var equals 2

 break;

 default:

 // if nothing else matches, do the default

 // default is optional

}

 Arduino Language Reference

 13

while loops

while loops will loop continuously, and infinitely, until the expression inside the parenthesis, () becomes

false. Something must change the tested variable, or the while loop will never exit. This could be in your

code, such as an incremented variable, or an external condition, such as testing a sensor.

Syntax:

while(expression){

 // statement(s)

}

Parameters:

 expression - a (boolean) C statement that evaluates to true or false

Example:

var = 0;

while(var < 200){

 // do something repetitive 200 times

 var++;

}

do – while

The do loop works in the same manner as the while loop, with the exception that the condition is tested at

the end of the loop, so the do loop will always run at least once.

do

{

 // statement block

} while (test condition);

Example:

do

{

 delay(50); // wait for sensors to stabilize

 x = readSensors(); // check the sensors

} while (x < 100);

 14

break

break is used to exit from a do, for, or while loop, bypassing the normal loop condition. It is also used to

exit from a switch statement.

Example:

for (x = 0; x < 255; x ++)

{

 digitalWrite(PWMpin, x);

 sens = analogRead(sensorPin);

 if (sens > threshold){ // bail out on sensor detect

 x = 0;

 break;

 }

delay(50);

}

continue

The continue statement skips the rest of the current iteration of a loop (do, for, or while). It continues by

checking the conditional expression of the loop, and proceeding with any subsequent iterations.

Example:

for (x = 0; x < 255; x ++)

{

 if (x > 40 && x < 120){ // create jump in values

 continue;

 }

 digitalWrite(PWMpin, x);

 delay(50);

}

return

Terminate a function and return a value from a function to the calling function, if desired.

Syntax:

return;

return value; // both forms are valid

Parameters:

value: any variable or constant type

 Arduino Language Reference

 15

Examples:

// A function to compare a sensor input to a threshold

int checkSensor(){

 if (analogRead(0) > 400) {

 return 1;

 else{

 return 0;

 }

}

The return keyword is handy to test a section of code without having to "comment out" large sections of

possibly buggy code.

void loop(){

 // brilliant code idea to test here

 return;

 // the rest of a dysfunctional sketch here

 // this code will never be executed

}

goto

Transfers program flow to a labeled point in the program

Syntax

label:

goto label; // sends program flow to the label

Example:

for(byte r = 0; r < 255; r++){

 for(byte g = 255; g > -1; g--){

 for(byte b = 0; b < 255; b++){

 if (analogRead(0) > 250){ goto bailout;}

 // more statements ...

 }

 }

}

bailout:

Tip

The use of goto is discouraged in C programming, and some authors of C programming books claim that

the goto statement is never necessary, but used judiciously, it can simplify certain programs. The reason

that many programmers frown upon the use of goto is that with the unrestrained use of goto statements,

it is easy to create a program with undefined program flow, which can never be fully debugged.

With that said, there are instances where a goto statement can come in handy, and simplify coding. One of

these situations is to break out of deeply nested for loops, or if logic blocks, on a certain condition.

 16

Further Syntax

; semicolon

Used to end a statement.

Example:

int a = 13;

Tip

Forgetting to end a line in a semicolon will result in a compiler error. The error text may be obvious, and

refer to a missing semicolon, or it may not. If an impenetrable or seemingly illogical compiler error comes

up, one of the first things to check is a missing semicolon, in the immediate vicinity, preceding the line at

which the compiler complained.

{} Curly Braces

Curly braces (also referred to as just "braces" or as "curly brackets") are a major part of the C

programming language. They are used in several different constructs, outlined below, and this can

sometimes be confusing for beginners.

An opening curly brace "{" must always be followed by a closing curly brace "}". This is a condition that is

often referred to as the braces being balanced. The Arduino IDE (integrated development environment)

includes a convenient feature to check the balance of curly braces. Just select a brace, or even click the

insertion point immediately following a brace, and its logical companion will be highlighted.

At present this feature is slightly buggy as the IDE will often find (incorrectly) a brace in text that has been

"commented out." Beginning programmers and programmers coming to C from the BASIC language

often find using braces confusing or daunting. After all, the same curly braces replace the RETURN

statement in a subroutine (function), the ENDIF statement in a conditional and the NEXT statement in a

FOR loop.

Because the use of the curly brace is so varied, it is good programming practice to type the closing brace

immediately after typing the opening brace when inserting a construct which requires curly braces. Then

insert some carriage returns between your braces and begin inserting statements. Your braces, and your

attitude, will never become unbalanced.

Unbalanced braces can often lead to cryptic, impenetrable compiler errors that can sometimes be hard to

track down in a large program. Because of their varied usages, braces are also incredibly important to the

syntax of a program and moving a brace one or two lines will often dramatically affect the meaning of a

program.

 Arduino Language Reference

 17

The main uses of curly braces:

Functions:

void myfunction(datatype argument){

 statements(s)

}

Loops:

while (boolean expression)

{

 statement(s)

}

do

{

 statement(s)

} while (boolean expression);

for (initialisation; termination condition; incrementing expr)

{

 statement(s)

}

Conditional statements:

if (boolean expression)

{

 statement(s)

}

else if (boolean expression)

{

 statement(s)

}

else

{

 statement(s)

}

 18

Comments

Comments are lines in the program that are used to inform yourself or others about the way the program

works. They are ignored by the compiler, and not exported to the processor, so they don't take up any

space on the processor.

Comments only purpose are to help you understand (or remember) how your program works or to inform

others how your program works. There are two different ways of marking a line as a comment:

Example:

 x = 5; // This is a single line comment. Anything after the slashes is a comment

 // to the end of the line

 /* this is multiline comment - use it to comment out whole blocks of code

 if (gwb == 0){ // single line comment is OK inside a multiline comment

 x = 3; /* but not another multiline comment - this is invalid */

 }

 // don't forget the "closing" comment - they have to be balanced!

 */

Tip

When experimenting with code, "commenting out" parts of your program is a convenient way to remove

lines that may be buggy. This leaves the lines in the code, but turns them into comments, so the compiler

just ignores them. This can be especially useful when trying to locate a problem, or when a program

refuses to compile and the compiler error is cryptic or unhelpful.

#define

#define is a useful C component that allows the programmer to give a name to a constant value before

the program is compiled. Defined constants in arduino don't take up any program memory space on the

chip. The compiler will replace references to these constants with the defined value at compile time.

This can have some unwanted side effects though, if for example, a constant name that had been

#defined is included in some other constant or variable name. In that case the text would be replaced by

the #defined number (or text).

In general, the const keyword is preferred for defining constants and should be used instead of #define.

Arduino defines have the same syntax as C defines:

Syntax:

#define constantName value // Note that the # is necessary

Example:

#define ledPin 3 // The compiler will replace any mention of ledPin with the value 3 at compile time.

 Arduino Language Reference

 19

Tip
There is no semicolon after the #define statement. If you include one, the compiler will throw cryptic

errors further down the page.

#define ledPin 3; // this is an error

Similarly, including an equal sign after the #define statement will also generate a cryptic compiler error

further down the page.

#define ledPin = 3 // this is also an error

#include

#include is used to include outside libraries in your sketch. This gives the programmer access to a large

group of standard C libraries (groups of pre-made functions), and also libraries written especially for

Arduino.

This example includes a library that is used to put data into the program space flash instead of ram. This

saves the ram space for dynamic memory needs and makes large lookup tables more practical.

Example:

#include <avr/pgmspace.h>

prog_uint16_t myConstants[] PROGMEM = {0, 21140, 702 , 9128, 0, 25764, 8456, 0,0,0,0,0,0,0,0,

29810,8968,29762,29762,4500};

Note: #include, similar to #define, has no semicolon terminator, and the compiler will yield cryptic error

messages if you add one.

 20

Arithmetic Operators

= assignment operator (single equal sign)

Stores the value to the right of the equal sign in the variable to the left of the equal sign.

The single equal sign in the C programming language is called the assignment operator. It has a different

meaning than in algebra class where it indicated an equation or equality. The assignment operator tells the

microcontroller to evaluate whatever value or expression is on the right side of the equal sign, and store it

in the variable to the left of the equal sign.

Example:

int sensVal; // declare an integer variable named sensVal

senVal = analogRead(0); // store the (digitized) input voltage at analog pin 0 in SensVal

Programming Tips
The variable on the left side of the assignment operator (= sign) needs to be able to hold the value stored

in it. If it is not large enough to hold a value, the value stored in the variable will be incorrect.

Don't confuse the assignment operator [=] (single equal sign) with the comparison operator [==]

(double equal signs), which evaluates whether two expressions are equal.

Addition, Subtraction, Multiplication, & Division Description

These operators return the sum, difference, product, or quotient (respectively) of the two operands.

The operation is conducted using the data type of the operands, so, for example, 9 / 4 gives 2 since 9 and

4 are ints. This also means that the operation can overflow if the result is larger than that which can be

stored in the data type (e.g. adding 1 to an int with the value 32,767 gives -32,768). If the operands are of

different types, the "larger" type is used for the calculation.

If one of the numbers (operands) are of the type float or of type double, floating point math will be used

for the calculation.

Examples:

y = y + 3;

x = x - 7;

i = j * 6;

Syntax:

result = value1 + value2;

result = value1 - value2;

result = value1 * value2;

result = value1 / value2;

Parameters:

value1: any variable or constant

value2: any variable or constant

 Arduino Language Reference

 21

Programming Tips
Know that integer constants default to int, so some constant calculations may overflow (e.g. 60 * 1000 will

yield a negative result).

Choose variable sizes that are large enough to hold the largest results from your calculations.

Know at what point your variable will "roll over" and also what happens in the other direction e.g. (0 - 1)

OR (0 - - 32768).

For math that requires fractions, use float variables, but be aware of their drawbacks: large size, slow

computation speeds.

Use the cast operator e.g. (int)myFloat to convert one variable type to another on the fly.

% (modulo)

Calculates the remainder when one integer is divided by another. It is useful for keeping a variable within a

particular range (e.g. the size of an array).

Syntax:

result = dividend % divisor

Parameters:

dividend: the number to be divided

divisor: the number to divide by

Returns (the remainder)

Examples:

x = 7 % 5; // x now contains 2

x = 9 % 5; // x now contains 4

x = 5 % 5; // x now contains 0

x = 4 % 5; // x now contains 4

Example Code:

/* update one value in an array each time through a loop */

int values[10];

int i = 0;

void setup() {}

void loop()

{

 values[i] = analogRead(0);

 i = (i + 1) % 10; // modulo operator rolls over variable

}

Tip
The modulo operator does not work on floats.

 22

Comparison Operators

if (conditional) and ==, !=, <, > (comparison operators)

if, which is used in conjunction with a comparison operator, tests whether a certain condition has been

reached, such as an input being above a certain number. The format for an if test is:

if (someVariable > 50)

{

 // do something here

}

The program tests to see if someVariable is greater than 50. If it is, the program takes a particular action.

Put another way, if the statement in parentheses is true, the statements inside the brackets are run. If not,

the program skips over the code. The brackets may be omitted after an if statement. If this is done, the

next line (defined by the semicolon) becomes the only conditional statement.

Examples:

if (x > 120) digitalWrite(LEDpin, HIGH);

if (x > 120)

digitalWrite(LEDpin, HIGH);

if (x > 120){ digitalWrite(LEDpin, HIGH); }

if (x > 120){

digitalWrite(LEDpin1, HIGH);

digitalWrite(LEDpin2, HIGH);

} // all are correct

The statements being evaluated inside the parentheses require the use of one or more operators:

Comparison Operators:

x == y (x is equal to y)

x != y (x is not equal to y)

x < y (x is less than y)

x > y (x is greater than y)

x <= y (x is less than or equal to y)

x >= y (x is greater than or equal to y)

Warning

Beware of accidentally using the single equal sign (e.g. if (x = 10)). The single equal sign is the assignment

operator, and sets x to 10 (puts the value 10 into the variable x). Instead use the double equal sign (e.g. if (x

== 10)), which is the comparison operator, and tests whether x is equal to 10 or not. The latter statement

is only true if x equals 10, but the former statement will always be true.

This is because C evaluates the statement if (x=10) as follows: 10 is assigned to x (remember that the

single equal sign is the assignment operator), so x now contains 10. Then the 'if' conditional evaluates 10,

which always evaluates to TRUE, since any non-zero number evaluates to TRUE.

 Arduino Language Reference

 23

Consequently, if (x = 10) will always evaluate to TRUE, which is not the desired result when using an 'if'

statement. Additionally, the variable x will be set to 10, which is also not a desired action.

if can also be part of a branching control structure using the if...else] construction.

Boolean Operators

These can be used inside the condition of an if statement.

&& (logical and)

True only if both operands are true, e.g.

if (digitalRead(2) == HIGH && digitalRead(3) == HIGH) { // read two switches

 // ...

}

is true only if both inputs are high.

|| (logical or)

True if either operand is true, e.g.

if (x > 0 || y > 0) {

// ...

}

is true if either x or y is greater than 0.

! (not)

True if the operand is false, e.g.

if (!x) {

// ...

}

is true if x is false (i.e. if x equals 0).

Warning

Make sure you don't mistake the boolean AND operator, && (double ampersand) for the bitwise AND

operator & (single ampersand). They are entirely different beasts. Similarly, do not confuse the boolean ||

(double pipe) operator with the bitwise OR operator | (single pipe).

The bitwise not ~ (tilde) looks much different than the Boolean not ! (exclamation point or "bang" as the

programmers say) but you still have to be sure which one you want where.

Examples:

if (a >= 10 && a <= 20){} // true if a is between 10 and 20

 24

Pointer Operators

& (reference) and * (dereference)

Pointers are one of the more complicated subjects for beginners in learning C, and it is possible to write

the vast majority of Arduino sketches without ever encountering pointers. However for manipulating

certain data structures, the use of pointers can simplify the code, and and knowledge of manipulating

pointers is handy to have in one's toolkit.

Bitwise Operators

Bitwise AND (&)

The bitwise operators perform their calculations at the bit level of variables. They help solve a wide range

of common programming problems.

The bitwise AND operator in C++ is a single ampersand, &, used between two other integer expressions.

Bitwise AND operates on

each bit position of the surrounding expressions independently, according to this rule: if both input bits

are 1, the resulting output is 1, otherwise the output is 0. Another way of expressing this is:

0 0 1 1 operand1

0 1 0 1 operand2

0 0 0 1 (operand1 & operand2) - returned result

In Arduino, the type int is a 16-bit value, so using & between two int expressions causes 16 simultaneous

AND operations to occur. In a code fragment like:

int a = 92; // in binary: 0000000001011100

int b = 101; // in binary: 0000000001100101

int c = a & b; // result: 0000000001000100, or 68 in decimal.

Each of the 16 bits in a and b are processed by using the bitwise AND, and all 16 resulting bits are stored

in c, resulting in the value 01000100 in binary, which is 68 in decimal.

One of the most common uses of bitwise AND is to select a particular bit (or bits) from an integer value,

often called masking. See below for an example

 Arduino Language Reference

 25

Bitwise OR (|)

The bitwise OR operator in C++ is the vertical bar symbol, |. Like the & operator, | operates

independently each bit in its two surrounding integer expressions, but what it does is different (of course).

The bitwise OR of two bits is 1 if either or both of the input bits is 1, otherwise it is 0. In other words:

0 0 1 1 operand1

0 1 0 1 operand2

0 1 1 1 (operand1 | operand2) - returned result

Here is an example of the bitwise OR used in a snippet of C++ code:

int a = 92; // in binary: 0000000001011100

int b = 101; // in binary: 0000000001100101

int c = a | b; // result: 0000000001111101, or 125 in decimal.

Example Program:

A common job for the bitwise AND and OR operators is what programmers call Read-Modify-Write on a

port. Writing to a port controls all of the pins at once.

PORTD is a built-in constant that refers to the output states of digital pins 0,1,2,3,4,5,6,7. If there is 1 in a

bit position, then that pin is HIGH. If we write PORTD = B00110001; we have made pins 2,3 & 7

HIGH. One slight hitch here is that we may also have changed the state of Pins 0 & 1, which are used for

serial communications so we may have interfered with serial communication.

Our algorithm for the program is:

Get PORTD and clear out only the bits corresponding to the pins we wish to control (with bitwise AND).

Combine the modified PORTD value with the new value for the pins under control (with biwise OR).

int i; // counter variable

int j;

void setup(){

 // set direction bits for pins 2 to 7, leave 0 and 1 untouched (xx | 00 == xx)

 // same as pinMode(pin, OUTPUT) for pins 2 to 7

 DDRD = DDRD | B11111100;

 Serial.begin(9600);

}

void loop(){

 for (i=0; i<64; i++){

 // clear out bits 2 - 7, leave pins 0 and 1 untouched (xx & 11 == xx)

 PORTD = PORTD & B00000011;

 j = (i << 2); // shift variable up to pins 2 - 7 - to avoid pins 0 and 1

 PORTD = PORTD | j; // combine the port information with the new information for LED pins

 Serial.println(PORTD, BIN); // debug to show masking

 delay(100);

 }

}

 26

Bitwise XOR (^)

There is a somewhat unusual operator in C++ called bitwise EXCLUSIVE OR, also known as bitwise

XOR. (In English this is usually pronounced "eks-or".) The bitwise XOR operator is written using the

caret symbol ^. This operator is very similar to the bitwise OR operator |, only it evaluates to 0 for a given

bit position when both of the input bits for that position are 1:

0 0 1 1 operand1

0 1 0 1 operand2

0 1 1 0 (operand1 ^ operand2) - returned result

Another way to look at bitwise XOR is that each bit in the result is a 1 if the input bits are different, or 0 if

they are the same.

Example:

int x = 12; // binary: 1100

int y = 10; // binary: 1010

int z = x ^ y; // binary: 0110, or decimal 6

The ^ operator is often used to toggle (i.e. change from 0 to 1, or 1 to 0) some of the bits in an integer

expression. In a bitwise OR operation if there is a 1 in the mask bit, that bit is inverted; if there is a 0, the

bit is not inverted and stays the same. Below is a program to blink digital pin 5.

// Blink_Pin_5

// demo for Exclusive OR

void setup(){

 DDRD = DDRD | B00100000; // set digital pin five as OUTPUT

 Serial.begin(9600);

}

void loop(){

 PORTD = PORTD ^ B00100000; // invert bit 5 (digital pin 5), leave others untouched

 delay(100);

}

Bitwise NOT (~)

The bitwise NOT operator in C++ is the tilde character ~. Unlike & and |, the bitwise NOT operator is

applied to a single operand to its right. Bitwise NOT changes each bit to its opposite: 0 becomes 1, and 1

becomes 0. For example:

0 1 operand1

1 0 ~ operand1

int a = 103; // binary: 0000000001100111

int b = ~a; // binary: 1111111110011000 = -104

 Arduino Language Reference

 27

Note
You might be surprised to see a negative number like -104 as the result of this operation. This is because

the highest bit in an int variable is the so-called sign bit. If the highest bit is 1, the number is interpreted as

negative. This encoding of positive and negative numbers is referred to as two's complement. For more

information, see the Wikipedia article on two's complement.

As an aside, it is interesting to note that for any integer x, ~x is the same as -x-1.

At times, the sign bit in a signed integer expression can cause some unwanted surprises.

bitshift left (<<), bitshift right (>>)

There are two bit shift operators in C++: the left shift operator << and the right shift operator >>. These

operators cause the bits in the left operand to be shifted left or right by the number of positions specified

by the right operand.

Syntax:

variable << number_of_bits

variable >> number_of_bits

Parameters:

variable - (byte, int, long) number_of_bits integer <= 32

Example:

int a = 5; // binary: 0000000000000101

int b = a << 3; // binary: 0000000000101000, or 40 in decimal

int c = b >> 3; / binary: 0000000000000101, or back to 5 like we started with

When you shift a value x by y bits (x << y), the leftmost y bits in x are lost, literally shifted out of

existence:

int a = 5; // binary: 0000000000000101

int b = a << 14; // binary: 0100000000000000 - the first 1 in 101 was discarded

If you are certain that none of the ones in a value are being shifted into oblivion, a simple way to think of

the left-shift operator is that it multiplies the left operand by 2 raised to the right operand power. For

example, to generate powers of 2, the following expressions can be employed:

1 << 0 == 1

1 << 1 == 2

1 << 2 == 4

1 << 3 == 8

...

1 << 8 == 256

1 << 9 == 512

1 << 10 == 1024

...

 28

When you shift x right by y bits (x >> y), and the highest bit in x is a 1, the behavior depends on the exact

data type of x. If x is of type int, the highest bit is the sign bit, determining whether x is negative or not, as

we have discussed above. In that case, the sign bit is copied into lower bits, for esoteric historical reasons:

int x = -16; // binary: 1111111111110000

int y = x >> 3; // binary: 1111111111111110

This behavior, called sign extension, is often not the behavior you want. Instead, you may wish zeros to be

shifted in from the left. It turns out that the right shift rules are different for ones being copied from the

left:

int x = -16; // binary: 1111111111110000

int y = (unsigned int)x >> 3; // binary: 0001111111111110

If you are careful to avoid sign extension, you can use the right shift operator >> as a way to divide by

powers of 2. For example:

int x = 1000;

int y = x >> 3; // integer division of 1000 by 8, causing y = 125.

Compound Operators

++ (increment) / -- (decrement)

Increment or decrement a variable

Syntax:

x++; // increment x by one and returns the old value of x

++x; // increment x by one and returns the new value of x

x-- ; // decrement x by one and returns the old value of x

--x ; // decrement x by one and returns the new value of x

Parameters:

x: an integer or long (possibly unsigned)

Returns:

The original or newly incremented / decremented value of the variable.

Examples:

x = 2;

y = ++x; // x now contains 3, y contains 3

y = x--; // x contains 2 again, y still contains 3

 Arduino Language Reference

 29

Shorthand Operators

Perform a mathematical operation (+= , -= , *= , /=) on a variable with another constant or variable. The

+= (et al) operators are just a convenient shorthand for the expanded syntax, listed below.

Syntax:

x += y; // equivalent to the expression x = x + y;

x -= y; // equivalent to the expression x = x - y;

x *= y; // equivalent to the expression x = x * y;

x /= y; // equivalent to the expression x = x / y;

Parameters

x: any variable type

y: any variable type or constant

Examples

x = 2;

x += 4; // x now contains 6

x -= 3; // x now contains 3

x *= 10; // x now contains 30

x /= 2; // x now contains 15

Compound bitwise AND (&=), compound bitwise OR (|=)

The compound bitwise operators perform their calculations at the bit level of variables. They are often

used to clear and set specific bits of a variable.

See the bitwise AND (&) and bitwise OR (|) operators for the details of their operation, and also the

Bitmath Tutorial for more information on bitwise operators.

Compound bitwise AND (&=)

The compound bitwise AND operator (&=) is often used with a variable and a constant to force particular

bits in a variable to the LOW state (to 0). This is often referred to in programming guides as "clearing" or

"resetting" bits.

Syntax:

x &= y; // equivalent to x = x & y;

Parameters:

x: a char, int or long variable

y: an integer constant or char, int, or long

 30

Example:

First, a review of the Bitwise AND (&) operator

0 0 1 1 operand1

0 1 0 1 operand2

0 0 0 1 (operand1 & operand2) - returned result

Bits that are "bitwise ANDed" with 0 are cleared to 0 so, if myByte is a byte variable,

myByte & B00000000 = 0;

Bits that are "bitwise ANDed" with 1 are unchanged so,

myByte & B11111111 = myByte;

Note
Because we are dealing with bits in a bitwise operator – it is convenient to use the binary formatter with

constants. The numbers are still the same value in other representations, they are just not as easy to

understand. Also, B00000000 is shown for clarity, but zero in any number format is zero.

Consequently - to clear (set to zero) bits 0 & 1 of a variable, while leaving the rest of the variable

unchanged, use the compound bitwise AND operator (&=) with the constant B11111100.

1 0 1 0 1 0 1 0 variable

1 1 1 1 1 1 0 0 mask

1 0 1 0 1 0 0 0 // variable unchanged & bits cleared

Here is the same representation with the variable's bits replaced with the symbol x

x x x x x x x x variable

1 1 1 1 1 1 0 0 mask

x x x x x x 0 0 // variable unchanged & bits cleared

So if:

myByte = 10101010;

myByte &= B1111100 == B10101000;

Compound bitwise OR (|=)

The compound bitwise OR operator (|=) is often used with a variable and a constant to "set" (set to 1)

particular bits in a variable.

Syntax:

x |= y; // equivalent to x = x | y;

 Arduino Language Reference

 31

Parameters:

x: a char, int or long variable

y: an integer constant or char, int, or long

Example:

First, a review of the Bitwise OR (|) operator

0 0 1 1 operand1

0 1 0 1 operand2

0 1 1 1 (operand1 | operand2) - returned result

Bits that are "bitwise ORed" with 0 are unchanged, so if myByte is a byte variable,

myByte | B00000000 = myByte;

Bits that are "bitwise ORed" with 1 are set to 1 so:

myByte & B11111111 = B11111111;

Consequently - to set bits 0 & 1 of a variable, while leaving the rest of the variable unchanged, use the

compound bitwise AND operator (&=) with the constant B00000011

1 0 1 0 1 0 1 0 variable

0 0 0 0 0 0 1 1 mask

1 0 1 0 1 0 1 1 // variable unchanged & bits cleared

Here is the same representation with the variables bits replaced with the symbol x

x x x x x x x x variable

0 0 0 0 0 0 1 1 mask

x x x x x x 1 1 // variable unchanged & bits cleared

So if:

myByte = B10101010;

myByte |= B00000011 == B10101011;

 32

Variables

Constants

Constants are predefined variables in the Arduino language. They are used to make the programs easier to

read. We classify constants in groups.

Logical Levels, true and false (Boolean Constants)

There are two constants used to represent truth and falsity in the Arduino language: true, and false.

false

false is the easier of the two to define. false is defined as 0 (zero).

true

true is often said to be defined as 1, which is correct, but true has a wider definition. Any integer which is

non-zero is TRUE, in a Boolean sense. So -1, 2 and -200 are all defined as true, too, in a Boolean sense.

Note
The true and false constants are typed in lowercase unlike HIGH, LOW, INPUT, & OUTPUT.

Pin Levels, HIGH and LOW

When reading or writing to a digital pin there are only two possible values a pin can take/be-set-to: HIGH

and LOW.

HIGH

The meaning of HIGH (in reference to a pin) is somewhat different depending on whether a pin is set to

an INPUT or OUTPUT. When a pin is configured as an INPUT with pinMode, and read with digitalRead,

the microcontroller will report HIGH if a voltage of 3 volts or more is present at the pin.

A pin may also be configured as an INPUT with pinMode, and subsequently made HIGH with

digitalWrite, this will set the internal 20K pullup resistors, which will steer the input pin to a HIGH

reading unless it is pulled LOW by external circuitry.

When a pin is configured to OUTPUT with pinMode, and set to HIGH with digitalWrite, the pin is at 5

volts. In this state it can source current, e.g. light an LED that is connected through a series resistor to

ground, or to another pin configured as an output, and set to LOW.

LOW

The meaning of LOW also has a different meaning depending on whether a pin is set to INPUT or

OUTPUT. When a pin is configured as an INPUT with pinMode, and read with digitalRead, the

microcontroller will report LOW if a voltage of 2 volts or less is present at the pin.

When a pin is configured to OUTPUT with pinMode, and set to LOW with digitalWrite, the pin is at 0

volts. In this state it can sink current, e.g. light an LED that is connected through a series resistor to, +5

volts, or to another pin configured as an output, and set to HIGH.

 Arduino Language Reference

 33

Digital Pins, INPUT and OUTPUT

Digital pins can be used either as INPUT or OUTPUT. Changing a pin from INPUT TO OUTPUT with

pinMode() drastically changes the electrical behavior of the pin.

Pins Configured as Inputs

Arduino (Atmega) pins configured as INPUT with pinMode() are said to be in a high-impedance state.

One way of explaining this is that pins configured as INPUT make extremely small demands on the circuit

that they are sampling, say equivalent to a series resistor of 100 Megohms in front of the pin. This makes

them useful for reading a sensor, but not powering an LED.

Pins Configured as Outputs

Pins configured as OUTPUT with pinMode() are said to be in a low impedance state. This means that they

can provide a substantial amount of current to other circuits. Atmega pins can source (provide positive

current) or sink (provide negative current) up to 40 mA (milliamps) of current to other devices/circuits.

This makes them useful for powering LED's but useless for reading sensors. Pins configured as outputs

can also be damaged or destroyed if short circuited to either ground or 5 volt power rails. The amount of

current provided by an Atmega pin is also not enough to power most relays or motors, and some interface

circuitry will be required.

Integer Constants

Integer constants are numbers used directly in a sketch, like 123. By default, these numbers are treated as

int's but you can change this with the U and L modifiers (see below).

Normally, integer constants are treated as base 10 (decimal) integers, but special notation (formatters) may

be used to enter numbers in other bases.

Base Example Formatter Comment
10 (decimal) 123 none
2 (binary) B1111011 leading 'B' only works with 8 bit values (0 to 255) characters (0-1 valid)
8 (octal) 0173 leading "0" characters 0-7 valid
16 (hexadecimal) 0x7B leading "0x" characters 0-9, AF, (a-f valid)

Decimal is base 10. This is the common-sense math with which you are acquainted. Constants without

other prefixes are assumed to be in decimal format.

Example:

101 // same as 101 decimal ((1 * 10^2) + (0 * 10^1) + 1)

Binary is base two. Only characters 0 and 1 are valid.

Example:

B101 // same as 5 decimal ((1 * 2^2) + (0 * 2^1) + 1)

 34

The binary formatter only works on bytes (8 bits) between 0 (B0) and 255 (B11111111). If it is convenient

to input an int (16 bits) in binary form you can do it a two-step procedure such as:

myInt = (B11001100 * 256) + B10101010; // B11001100 is the high byte

Octal is base eight. Only characters 0 through 7 are valid. Octal values are indicated by the prefix "0"

Example:

0101 // same as 65 decimal ((1 * 8^2) + (0 * 8^1) + 1)

Warning

It is possible to generate a hard-to-find bug by (unintentionally) including a leading zero before a constant

and having the compiler unintentionally interpret your constant as octal.

Hexadecimal (or hex) is base sixteen. Valid characters are 0 through 9 and letters A through F; A has the

value 10, B is 11, up to F, which is 15. Hex values are indicated by the prefix "0x". Note that A-F may be

sited in upper or lower case (a-f).

Example:

0x101 // same as 257 decimal ((1 * 16^2) + (0 * 16^1) + 1)

U & L formatters

By default, an integer constant is treated as an int with the attendant limitations in values. To specify an

integer constant with another data type, follow it with:

 a 'u' or 'U' to force the constant into an unsigned data format.

33u

 a 'l' or 'L' to force the constant into a long data format.

100000L

 a 'ul' or 'UL' to force the constant into an unsigned long constant.

 32767ul

floating point constants

Similar to integer constants, floating point constants are used to make code more readable. Floating point

constants are swapped at compile time for the value to which the expression evaluates.

Examples:

n = .005;

 Arduino Language Reference

 35

Floating point constants can also be expressed in a variety of scientific notation. 'E' and 'e' are both

accepted as valid exponent indicators.

floating-point
constant

evaluates to: also evaluates to:

10.0 10
2.34E5 2.34 * 10^5 234000
67e-12 67.0 * 10^-12 0.000000000067

 36

Data Types

void

The void keyword is used only in function declarations. It indicates that the function is expected to return

no information to the function from which it was called.

Example:

// actions are performed in the functions "setup" and "loop"

// but no information is reported to the larger program

void setup()

{

 // ...

}

void loop()

{

 // ...

}

boolean

A boolean holds one of two values, true or false. (Each boolean variable occupies one byte of memory.)

Example

int LEDpin = 5; // LED on pin 5

int switchPin = 13; // momentary switch on 13, other side connected to ground

boolean running = false;

void setup()

{

 pinMode(LEDpin, OUTPUT);

 pinMode(switchPin, INPUT);

 digitalWrite(switchPin, HIGH); // turn on pullup resistor

}

void loop()

{

 if (digitalRead(switchPin) == LOW) { // switch is pressed - pullup keeps pin high normally

 delay(100); // delay to debounce switch

 running = !running; // toggle running variable

 digitalWrite(LEDpin, running) // indicate via LED

 }

}

 Arduino Language Reference

 37

char

A data type that takes up 1 byte of memory that stores a character value. Character literals are written in

single quotes, like this:

'A'

for multiple characters - strings - use double quotes:

"ABC"

Characters are stored as numbers however. You can see the specific encoding in the ASCII chart. This

means that it is possible to do arithmetic on characters, in which the ASCII value of the character is used

(e.g. 'A' + 1 has the value 66, since the ASCII value of the capital letter A is 65). See Serial.println reference

for more on how characters are translated to numbers.

The char datatype is a signed type, meaning that it encodes numbers from -128 to 127. For an unsigned,

one-byte (8 bit) data type, use the byte data type.

Example

char myChar = 'A';

char myChar = 65; // both are equivalent

unsigned char

An unsigned data type that occupies 1 byte of memory. Same as the byte datatype. The unsigned char

datatype encodes numbers from 0 to 255. For consistency of Arduino programming style, the byte data

type is to be preferred.

Example

unsigned char myChar = 240;

byte

A byte stores an 8-bit unsigned number, from 0 to 255.

Example

byte b = B10010; // "B" is the binary formatter (B10010 = 18 decimal)

 38

int

Integers are your primary datatype for number storage, and store a 2 byte value. This yields a range of -

32,768 to 32,767 (minimum value of -2^15 and a maximum value of (2^15) - 1).

Int's store negative numbers with a technique called 2's complement math. The highest bit, sometimes

referred to as the "sign" bit, flags the number as a negative number. The rest of the bits are inverted and 1

is added.

The Arduino takes care of dealing with negative numbers for you, so that arithmetic operations work

transparently in the expected manner. There can be an unexpected complication in dealing with the bitshift

right operator (>>) however.

Example:

int ledPin = 13;

Syntax:

int var = val;

var - your int variable name

val - the value you assign to that variable

Coding Tip
When variables are made to exceed their maximum capacity they "roll over" back to their minimum

capacity, note that this happens in both directions.

int x

x = -32,768;

x = x - 1; // x now contains 32,767 - rolls over in neg. direction

x = 32,767;

x = x + 1; // x now contains -32,768 - rolls over

unsigned int

An Unsigned int (unsigned integers) are the same as ints in that they store a 2 byte value. Instead of

storing negative numbers however they only store positive values, yielding a useful range of 0 to

65,535 (2^16) - 1).

The difference between unsigned ints and (signed) ints, lies in the way the highest bit, sometimes

referred to as the "sign" bit, is interpreted. In the Arduino int type (which is signed), if the high bit is a "1",

the number is interpreted as a negative number, and the other 15 bits are interpreted with 2's complement

math.

Example:

unsigned int ledPin = 13;

 Arduino Language Reference

 39

Syntax:

unsigned int var = val;

var - your unsigned int variable name

val - the value you assign to that variable

Coding Tip
When variables are made to exceed their maximum capacity they "roll over" back to their minimum

capacity, note that this happens in both directions

unsigned int x

x = 0;

x = x - 1; // x now contains 65535 - rolls over in neg direction

x = x + 1; // x now contains 0 - rolls over

word

A word stores a 16-bit unsigned number, from 0 to 65535. Same as an unsigned int.

Example

word w = 10000;

long

Long variables are extended size variables for number storage, and store 32 bits (4 bytes), from -

2,147,483,648 to 2,147,483,647.

Example

long speedOfLight = 186000L; // see Integer Constants for explanation of the 'L'

Syntax

long var = val;

var - the long variable name

val - the value assigned to the variable

 40

unsigned long

Unsigned long variables are extended size variables for number storage, and store 32 bits (4 bytes). Unlike

standard longs unsigned longs won't store negative numbers, making their range from 0 to 4,294,967,295

(2^32 - 1).

Example:

// unsigned long time;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Time: ");

 time = millis(); // gets time since program started

 Serial.println(time);

 delay(1000); // wait a second so as not to send massive amounts of data

}

 Arduino Language Reference

 41

float

The float datatype is for floating-point numbers, a number that has a decimal point. Floating-point

numbers are often used to approximate analog and continuous values because they have greater resolution

than integers. Floating-point numbers can be as large as 3.4028235E+38 and as low as -3.4028235E+38.

They are stored as 32 bits (4 bytes) of information.

Floats have only 6-7 decimal digits of precision. That means the total number of digits, not the number to

the right of the decimal point. Unlike other platforms, where you can get more precision by using a double

(e.g. up to 15 digits), on the Arduino, double is the same size as float.

Floating point numbers are not exact, and may yield strange results when compared. For example 6.0 / 3.0

may not equal 2.0. You should instead check that the absolute value of the difference between the

numbers is less than some small number.

Floating point math is also much slower than integer math in performing calculations, so it should be

avoided if, for example, a loop has to run at top speed for a critical timing function. Programmers often go

to some lengths to convert floating point calculations to integer math to increase speed.

Examples:

float myfloat;

float sensorCalbrate = 1.117;

Syntax:

float var = val;

var - your float variable name

val - the value you assign to that variable

Example Code

int x;

int y;

float z;

x = 1;

y = x / 2; // y now contains 0, ints can't hold fractions

z = (float)x / 2.0; // z now contains .5 (you have to use 2.0, not 2)

double

Double precision floating point number. Occupies 4 bytes. The double implementation on the Arduino is

currently exactly the same as the float, with no gain in precision.

Tip
Users who borrow code from other sources that includes double variables may wish to examine the code

to see if the implied precision is different from that actually achieved on the Arduino.

 42

String - char array

Text strings can be represented in two ways. you can use the String data type, which is part of the core as

of version 0019, or you can make a string out of an array of type char and null terminate it. This page

described the latter method. For more details on the String object, which gives you more functionality at

the cost of more memory, see the String object page.

Examples:

// All of the following are valid declarations for strings.

char Str1[15];

char Str2[8] = {'a', 'r', 'd', 'u', 'i', 'n', 'o'};

char Str3[8] = {'a', 'r', 'd', 'u', 'i', 'n', 'o', '\0'};

char Str4[] = "arduino";

char Str5[8] = "arduino";

char Str6[15] = "arduino";

Possibilities for declaring strings:

Declare an array of chars without initializing it as in Str1

Declare an array of chars (with one extra char) and the compiler will add the required null

character, as in Str2

Explicitly add the null character, Str3

Initialize with a string constant in quotation marks; the compiler will size the array to fit the string

constant and a terminating null character, Str4

Initialize the array with an explicit size and string constant, Str5

Initialize the array, leaving extra space for a larger string, Str6

Null termination

Generally, strings are terminated with a null character (ASCII code 0). This allows functions (like

Serial.print()) to tell where the end of a string is. Otherwise, they would continue reading subsequent bytes

of memory that aren't actually part of the string.

This means that your string needs to have space for one more character than the text you want it to

contain. That is why Str2 and Str5 need to be eight characters, even though "arduino" is only seven - the

last position is automatically filled with a null one for the extra null. In Str3, we've explicitly included the

null character (written '\0') ourselves.

Note that it's possible to have a string without a final null character (e.g. if you had specified the length of

Str2 as seven instead of eight). This will break most functions that use strings, so you shouldn't do it

intentionally. If you notice something behaving strangely (operating on characters not in the string),

however, this could be the problem.

 Arduino Language Reference

 43

Single quotes or double quotes?

Strings are always defined inside double quotes ("Abc") and characters are always defined inside single

quotes('A').

Wrapping long strings

You can wrap long strings like this:

char myString[] = "This is the first line"

" this is the second line"

" etcetera";

Arrays of strings

It is often convenient, when working with large amounts of text, such as a project with an LCD display, to

setup an array of strings. Because strings themselves are arrays, this is in actually an example of a two-

dimensional array.

In the code below, the asterisk after the datatype char "char*" indicates that this is an array of "pointers".

All array names are actually pointers, so this is required to make an array of arrays. Pointers are one of the

more esoteric parts of C for beginners to understand, but it isn't necessary to understand pointers in detail

to use them effectively here.

Example:

char* myStrings[]={"This is string 1", "This is string 2", "This is string 3",

"This is string 4", "This is string 5","This is string 6"};

void setup(){

Serial.begin(9600);

}

 void loop(){

 for (int i = 0; i < 6; i++){

 Serial.println(myStrings[i]);

 delay(500);

 }

}

String – object

The String class, part of the core as of version 0019, allows you to use and manipulate strings of text in

more complex ways than character arrays do. You can concatenate Strings, append to them, search for and

replace substrings, and more. It takes more memory than a simple character array, but it is also more

useful.

For reference, character arrays are referred to as strings with a small s, and instances of the String class are

referred to as Strings with a capital S. Note that constant strings, specified in "double quotes" are treated

as char arrays, not instances of the String class.

 44

Functions:

String()
charAt()
compareTo()
concat?()
endsWith()
equals()
equalsIgnoreCase()
getBytes()
indexOf()
lastIndexOf()
length()
replace?()
setCharAt()
startsWith()
substring()
toCharArray()
toLowerCase()
toUpperCase()
trim()

Operators:

[] (element access)

+ (concatenation)

== (comparison)

Arrays

An array is a collection of variables that are accessed with an index number. Arrays in the C programming

language, on which Arduino is based, can be complicated, but using simple arrays is relatively

straightforward.

Creating (Declaring) an Array

All of the methods below are valid ways to create (declare) an array.

int myInts[6];

int myPins[] = {2, 4, 8, 3, 6};

int mySensVals[6] = {2, 4, -8, 3, 2};

char message[6] = "hello";

You can declare an array without initializing it as in myInts.

In myPins we declare an array without explicitly choosing a size. The compiler counts the elements and

creates an array of the appropriate size.

Finally you can both initialize and size your array, as in mySensVals. Note that when declaring an array of

type char, one more element than your initialization is required, to hold the required null character.

 Arduino Language Reference

 45

Accessing an Array

Arrays are zero indexed, that is, referring to the array initialization above, the first element of the array is at

index 0, hence;

mySensVals[0] == 2, mySensVals[1] == 4, and so forth.

It also means that in an array with ten elements, index nine is the last element. Hence;

int myArray[10]={9,3,2,4,3,2,7,8,9,11};

// myArray[9] contains 11

// myArray[10] is invalid and contains random information (other memory address)

For this reason you should be careful in accessing arrays.

Accessing past the end of an array (using an index number greater than your declared array size - 1) is

reading from memory that is in use for other purposes. Reading from these locations is probably not going

to do much except yield invalid data. Writing to random memory locations is definitely a bad idea and can

often lead to unhappy results such as crashes or program malfunction. This can also be a difficult bug to

track down.

Unlike BASIC or JAVA, the C compiler does no checking to see if array access is within legal bounds of

the array size that you have declared.

To assign a value to an array:

mySensVals[0] = 10;

To retrieve a value from an array:

x = mySensVals[4];

Arrays and FOR Loops

Arrays are often manipulated inside for loops, where the loop counter is used as the index for each array

element. For example, to print the elements of an array over the serial port, you could do something like

this:

int i;

for (i = 0; i < 5; i = i + 1) {

 Serial.println(myPins[i]);

}

 46

Conversion

char()

Converts a value to the char data type.

Syntax:

char(x)

Parameters:

x: a value of any type

Returns:

char

byte()

Converts a value to the byte data type.

Syntax:

byte(x)

Parameters:

x: a value of any type

Returns:

Byte

int()

Converts a value to the int data type.

Syntax:

int(x)

Parameters:

x: a value of any type

Returns:

int

 Arduino Language Reference

 47

word()

Convert a value to the word data type or create a word from two bytes.

Syntax:

word(x)

word(h, l)

Parameters:

x: a value of any type

h: the high-order (leftmost) byte of the word

l: the low-order (rightmost) byte of the word

Returns:

Word

long()

Converts a value to the long data type.

Syntax:

long(x)

Parameters:

x: a value of any type

Returns:

long

float()

Converts a value to the float data type.

Syntax:

float(x)

Parameters:

x: a value of any type

Returns:

float

 48

Variable Scope & Qualifiers

Variable Scope

Variables in the C programming language, which Arduino uses, have a property called scope. This is in

contrast to languages such as BASIC where every variable is a global variable.

A global variable is one that can be seen by every function in a program. Local variables are only visible to

the function in which they are declared. In the Arduino environment, any variable declared outside of a

function (e.g. setup(), loop(), etc.), is a global variable.

When programs start to get larger and more complex, local variables are a useful way to insure that only

one function has access to its own variables. This prevents programming errors when one function

inadvertently modifies variables used by another function.

It is also sometimes handy to declare and initialize a variable inside a for loop. This creates a variable that

can only be accessed from inside the for-loop brackets.

Example:

int gPWMval; // any function will see this variable

void setup()

{

 // ...

}

void loop()

{

 int i; // "i" is only "visible" inside of "loop"

 float f; // "f" is only "visible" inside of "loop"

 // ...

 for (int j = 0; j <100; j++){

 // variable j can only be accessed inside the for-loop brackets

 }

}

 Arduino Language Reference

 49

Static

The static keyword is used to create variables that are visible to only one function. However unlike local

variables that get created and destroyed every time a function is called, static variables persist beyond the

function call, preserving their data between function calls.

Variables declared as static will only be created and initialized the first time a function is called.

Example

/* RandomWalk

* RandomWalk wanders up and down randomly between two endpoints.

* The maximum move in one loop is governed by * the parameter "stepsize".

* A static variable is moved up and down a random amount.

* This technique is also known as "pink noise" and "drunken walk".

*/

#define randomWalkLowRange -20

#define randomWalkHighRange 20

int stepsize;

int thisTime;

int total;

void setup()

{

 Serial.begin(9600);

}

void loop()

{ // tetst randomWalk function

 stepsize = 5;

 thisTime = randomWalk(stepsize);

 Serial.println(thisTime);

 delay(10);

}

int randomWalk(int moveSize){

// variable to store value in random walk- declared static so that it

// stores values in between function calls, but no other functions can change its value

 static int place;

 place = place + (random(-moveSize, moveSize + 1));

 if (place < randomWalkLowRange){ // check lower and upper limits

 place = place + (randomWalkLowRange - place); // reflect

 number back in positive direction

 }

 else if(place > randomWalkHighRange){

 place = place - (place - randomWalkHighRange); // reflect

 number back in negative direction

 }

 return place;

}

 50

volatile keyword

volatile is a keyword known as a variable qualifier, it is usually used before the datatype of a variable, to

modify the way in which the compiler and subsequent program treats the variable.

Declaring a variable volatile is a directive to the compiler. The compiler is software which translates your

C/C++ code into the machine code, which are the real instructions for the Atmega chip in the Arduino.

Specifically, it directs the compiler to load the variable from RAM and not from a storage register, which is

a temporary memory location where program variables are stored and manipulated. Under certain

conditions, the value for a variable stored in registers can be inaccurate.

A variable should be declared volatile whenever its value can be changed by something beyond the

control of the code section in which it appears, such as a concurrently executing thread. In the Arduino,

the only place that this is likely to occur is in sections of code associated with interrupts, called an interrupt

service routine.

Example:

// toggles LED when interrupt pin changes state

int pin = 13;

volatile int state = LOW;

void setup()

{

 pinMode(pin, OUTPUT);

 attachInterrupt(0, blink, CHANGE);

}

void loop()

{

 digitalWrite(pin, state);

}

void blink()

{

 state = !state;

}

 Arduino Language Reference

 51

const keyword

The const keyword stands for constant. It is a variable qualifier that modifies the behavior of the variable,

making a variable "read-only". This means that the variable can be used just as any other variable of its

type, but its value cannot be changed. You will get a compiler error if you try to assign a value to a const

variable.

Constants defined with the const keyword obey the rules of variable scoping that govern other variables.

This, and the pitfalls of using #define, makes the const keyword a superior method for defining constants

and is preferred over using #define.

Example

const float pi = 3.14;

float x;

//

x = pi * 2; // it's fine to use const's in math

pi = 7; // illegal - you can't write to (modify) a constant

#define or const
You can use either const or #define for creating numeric or string constants. For arrays, you will need to

use const. In general const is preferred over #define for defining constants.

 52

Utilities

sizeof

The sizeof operator returns the number of bytes in a variable type, or the number of bytes occupied by an

array. The sizeof operator is useful for dealing with arrays (such as strings) where it is convenient to be

able to change the size of the array without breaking other parts of the program.

Syntax:

sizeof(variable)

Parameters:

variable: any variable type or array (e.g. int, float, byte)

Example code:

// This program prints out a text string one character at a time. Try changing the text phrase.

char myStr[] = "this is a test";

int i;

void setup(){

 Serial.begin(9600);

}

void loop() {

 for (i = 0; i < sizeof(myStr) - 1; i++){

 Serial.print(i, DEC);

 Serial.print(" = ");

 Serial.println(myStr[i], BYTE);

 }

}

Note that sizeof returns the total number of bytes. So for larger variable types such as ints, the for loop

would look something like this.

for (i = 0; i < (sizeof(myInts)/sizeof(int)) - 1; i++) {

 // do something with myInts[i]

}

 Arduino Language Reference

 53

Functions

Digital I/O

pinMode()

Configures the specified pin to behave either as an input or an output. See the description of digital pins

for details.

Syntax:

pinMode(pin, mode)

Parameters:

pin: the number of the pin whose mode you wish to set

mode: either INPUT or OUTPUT

Returns:

None

Example:

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

Note

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

 54

digitalWrite()

Write a HIGH or a LOW value to a digital pin.

If the pin has been configured as an OUTPUT with pinMode(), its voltage will be set to the corresponding

value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for LOW.

If the pin is configured as an INPUT, writing a HIGH value with digitalWrite() will enable an internal 20K

pullup resistor (see the tutorial on digital pins). Writing LOW will disable the pullup. The pullup resistor is

enough to light an LED dimly, so if LEDs appear to work, but very dimly, this is a likely cause. The

remedy is to set the pin to an output with the pinMode() function.

Note
Digital pin 13 is harder to use as a digital input than the other digital pins because it has an LED and

resistor attached to it that's soldered to the board on most boards. If you enable its internal 20k pull-up

resistor, it will hang at around 1.7 V instead of the expected 5V because the onboard LED and series

resistor pull the voltage level down, meaning it always returns LOW.

Syntax:

digitalWrite(pin, value)

Parameters:

pin: the pin number

value: HIGH or LOW

Returns:

none

Example:

// Sets pin 13 to HIGH, makes a one-second-long delay, and sets the pin back to LOW.

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

Note

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

 Arduino Language Reference

 55

digitalRead()

Reads the value from a specified digital pin, either HIGH or LOW.

Syntax:

digitalRead(pin)

Parameters:

pin: the number of the digital pin you want to read (int)

Returns:

HIGH or LOW

Example:

// Sets pin 13 to the same value as the pin 7, which is an input.

int ledPin = 13; // LED connected to digital pin 13

int inPin = 7; // pushbutton connected to digital pin 7

int val = 0; // variable to store the read value

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin 13 as output

 pinMode(inPin, INPUT); // sets the digital pin 7 as input

}

void loop()

{

 val = digitalRead(inPin); // read the input pin

 digitalWrite(ledPin, val); // sets the LED to the button's value

}

Note
If the pin isn't connected to anything, digitalRead() can return either HIGH or LOW randomly.

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

 56

Analog I/O

analogReference(type)

Configures the reference voltage used for analog input (i.e. the value used as the top of the input range).

The options are:

DEFAULT: the default analog reference of 5 volts (on 5V Arduino boards) or 3.3 volts (on

3.3V Arduino boards)

INTERNAL: an built-in reference, equal to 1.1 volts on the ATmega168 or ATmega328 and

2.56 volts on the ATmega8.

EXTERNAL: the voltage applied to the AREF pin is used as the reference.

Parameters:

type: which type of reference to use (DEFAULT, INTERNAL, or EXTERNAL).

Returns:

None.

Warning
If you're using an external reference voltage (applied to the AREF pin), you must set the analog reference

to EXTERNAL before calling analogRead(). Otherwise, you will short together the active reference

voltage (internally generated) and the AREF pin, possibly damaging the micro-controller on your Arduino

board.

Alternatively, you can connect the external reference voltage to the AREF pin through a 5K resistor,

allowing you to switch between external and internal reference voltages. Note that the resistor will alter the

voltage that gets used as the reference because there is an internal 32K resistor on the AREF pin. The two

act as a voltage divider, so, for example, 2.5V applied through the resistor will yield 2.5 * 32 / (32 + 5) =

~2.2V at the AREF pin.

analogRead()

Reads the value from the specified analog pin. The Arduino board contains a 6 channel (8 channels on the

Mini and Nano, 16 on the Mega), 10-bit analog to digital converter. This means that it will map input

voltages between 0 and 5 volts into integer values between 0 and 1023. This yields a resolution between

readings of: 5 volts / 1024 units or, .0049 volts (4.9 mV) per unit. The input range and resolution can be

changed using analogReference().

It takes about 100 microseconds (0.0001 s) to read an analog input, so the maximum reading rate is about

10,000 times a second.

Syntax:

analogRead(pin)

 Arduino Language Reference

 57

Parameters:

pin: the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on the Mini and Nano, 0 to

15 on the Mega)

Returns:

int (0 to 1023)

Example:

int analogPin = 3; // potentiometer wiper (middle terminal)

connected to analog pin 3 // outside leads to ground and +5V

int val = 0; // variable to store the value read

void setup()

{

 Serial.begin(9600); // setup serial

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 Serial.println(val); // debug value

}

Note
If the analog input pin is not connected to anything, the value returned by analogRead() will fluctuate

based on a number of factors (e.g. the values of the other analog inputs, how close your hand is to the

board, etc.).

analogWrite()

Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying brightnesses or drive a

motor at various speeds. After a call to analogWrite(), the pin will generate a steady square wave of the

specified duty cycle until the next call to analogWrite() (or a call to digitalRead() or digitalWrite() on the

same pin). The frequency of the PWM signal is approximately 490 Hz.

On most Arduino boards (those with the ATmega168 or ATmega328), this function works on pins 3, 5, 6,

9, 10, and 11. On the Arduino Mega, it works on pins 2 through 13. Older Arduino boards with an

ATmega8 only support analogWrite() on pins 9, 10, and 11. You do not need to call pinMode() to set the

pin as an output before calling analogWrite().

The analogWrite function has nothing whatsoever to do with the analog pins or the analogRead function.

 58

Syntax:

analogWrite(pin, value)

Parameters:

pin: the pin to write to.

value: the duty cycle: between 0 (always off) and 255 (always on).

Returns:

Nothing

Notes and Known Issues
The PWM outputs generated on pins 5 and 6 will have higher-than expected duty cycles. This is because of

interactions with the millis() and delay() functions, which share the same internal timer used to generate

those PWM outputs. This will be noticed mostly on low duty-cycle settings (e.g 0 - 10) and may result in a

value of 0 not fully turning off the output on pins 5 and 6.

Example:

// Sets the output to the LED proportional to the value read from the potentiometer.

int ledPin = 9; // LED connected to digital pin 9

int analogPin = 3; // potentiometer connected to analog pin 3

int val = 0; // variable to store the read value

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the pin as output

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 analogWrite(ledPin, val / 4); // analogRead values go from 0 to 1023, analogWrite values from 0 to 255

}

 Arduino Language Reference

 59

Advanced I/O

tone()

Generates a square wave of the specified frequency (and 50% duty cycle) on a pin. A duration can be

specified, otherwise the wave continues until a call to noTone(). The pin can be connected to a piezo

buzzer or other speaker to play tones.

Only one tone can be generated at a time. If a tone is already playing on a different pin, the call to tone()

will have no effect. If the tone is playing on the same pin, the call will set its frequency.

Note
If you want to play different pitches on multiple pins, you need to call noTone() on one pin before calling

tone() on the next pin.

Use of the tone() function will interfere with PWM output on pins 3 and 11 (other than the Mega).

Syntax:

tone(pin, frequency)

tone(pin, frequency, duration)

Parameters:

pin: the pin on which to generate the tone

frequency: the frequency of the tone in hertz

duration: the duration of the tone in milliseconds (optional)

Returns:

nothing

noTone()

Stops the generation of a square wave triggered by tone(). Has no effect if no tone is being generated.

Note
If you want to play different pitches on multiple pins, you need to call noTone() on one pin before calling

tone() on the next pin.

Syntax:

noTone(pin)

Parameters:

pin: the pin on which to stop generating the tone

Returns:

nothing

 60

shiftOut()

Shifts out a byte of data one bit at a time. Starts from either the most (i.e. the leftmost) or least (rightmost)

significant bit. Each bit is written in turn to a data pin, after which a clock pin is pulsed to indicate that the

bit is available.

This is a software implementation; Arduino (as of 0019) also provides an SPI library that uses the

hardware implementation.

Syntax:

shiftOut(dataPin, clockPin, bitOrder, value)

Parameters:

dataPin: the pin on which to output each bit (int)

clockPin: the pin to toggle once the dataPin has been set to the correct value (int)

bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST.

(Most Significant Bit First, or, Least Significant Bit First) value: the data to shift out. (byte)

Returns:

None

Note
The dataPin and clockPin must already be configured as outputs by a call to pinMode().

shiftOut is currently written to output 1 byte (8 bits) so it requires a two step operation to output values

larger than 255.

// Do this for MSBFIRST serial

int data = 500;

// shift out highbyte

shiftOut(dataPin, clock, MSBFIRST, (data >> 8));

// shift out lowbyte

shiftOut(data, clock, MSBFIRST, data);

// Or do this for LSBFIRST serial

data = 500;

// shift out lowbyte

shiftOut(dataPin, clock, LSBFIRST, data);

// shift out highbyte

shiftOut(dataPin, clock, LSBFIRST, (data >> 8));

 Arduino Language Reference

 61

Example:

For accompanying circuit, see the tutorial on controlling a 74HC595 shift register.

//***//

// Name : shiftOutCode, Hello World //

// Author : Carlyn Maw,Tom Igoe //

// Date : 25 Oct, 2006 //

// Version : 1.0 //

// Notes : Code for using a 74HC595 Shift Register //

// to count from 0 to 255 //

//***//

//Pin connected to ST_CP of 74HC595

int latchPin = 8;

//Pin connected to SH_CP of 74HC595

int clockPin = 12;

////Pin connected to DS of 74HC595

int dataPin = 11;

void setup() {

//set pins to output because they are addressed in the main loop

 pinMode(latchPin, OUTPUT);

 pinMode(clockPin, OUTPUT);

 pinMode(dataPin, OUTPUT);

}

void loop() {

//count up routine

 for (int j = 0; j < 256; j++) {

 //ground latchPin and hold low for as long as you are transmitting

 digitalWrite(latchPin, LOW);

 shiftOut(dataPin, clockPin, LSBFIRST, j);

 //return the latch pin high to signal chip that it

 //no longer needs to listen for information

 digitalWrite(latchPin, HIGH);

 delay(1000);

 }

}

 62

pulseIn()

Reads a pulse (either HIGH or LOW) on a pin. For example, if value is HIGH, pulseIn() waits for the pin

to go HIGH, starts timing, then waits for the pin to go LOW and stops timing. Returns the length of the

pulse in microseconds. Gives up and returns 0 if no pulse starts within a specified time out.

The timing of this function has been determined empirically and will probably show errors in longer

pulses. Works on pulses from 10 microseconds to 3 minutes in length.

Syntax:

pulseIn(pin, value)

pulseIn(pin, value, timeout)

Parameters:

pin: the number of the pin on which you want to read the pulse. (int)

value: type of pulse to read: either HIGH or LOW. (int)

timeout (optional): the number of uS to wait for the pulse to start; default is one second (unsigned long)

Returns:

The length of the pulse (in microseconds) or 0 if no pulse started before the timeout (unsigned long).

Example:

int pin = 7;

unsigned long duration;

void setup()

{

 pinMode(pin, INPUT);

}

void loop()

{

 duration = pulseIn(pin, HIGH);

}

 Arduino Language Reference

 63

Time

millis()

Returns the number of milliseconds since the Arduino board began running the current program. This

number will overflow (go back to zero), after approximately 50 days.

Parameters:

None

Returns:

Number of milliseconds since the program started (unsigned long)

Example:

unsigned long time;

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.print("Time: ");

 time = millis();

 Serial.println(time); //prints time since program started

 delay(1000); // wait a second so as not to send massive amounts of data

}

Tip

Note that the parameter for millis is an unsigned long, errors may be generated if a programmer tries to do

math with other datatypes such as ints.

 64

micros()

Returns the number of microseconds since the Arduino board began running the current program. This

number will overflow (go back to zero), after approximately 70 minutes. On 16 MHz Arduino boards (e.g.

Duemilanove and Nano), this function has a resolution of four microseconds (i.e. the value returned is

always a multiple of four). On 8 MHz Arduino boards (e.g. the LilyPad), this function has a resolution of

eight microseconds.

Note
There are 1,000 microseconds in a millisecond and 1,000,000 microseconds in a second.

Parameters:

None

Returns:

Number of uS since the program started (unsigned long).

Example:

unsigned long time;

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.print("Time: ");

 time = micros();

 Serial.println(time); //prints time since program started

 delay(1000); // wait a second so as not to send massive amounts of data

}

 Arduino Language Reference

 65

delay()

Pauses the program for the amount of time (in milliseconds) specified as parameter. (There are 1000

milliseconds in a second.)

Syntax:

delay(ms)

Parameters:

ms: the number of milliseconds to pause (unsigned long).

Returns:

Nothing

Example:

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

Caveat
While it is easy to create a blinking LED with the delay() function, and many sketches use short delays for

such tasks as switch debouncing, the use of delay() in a sketch has significant drawbacks. No other reading

of sensors, mathematical calculations, or pin manipulation can go on during the delay function, so in

effect, it brings most other activity to a halt. For alternative approaches to controlling timing see the

millis() function and the sketch sited below. More knowledgeable programmers usually avoid the use of

delay() for timing of events longer than 10's of milliseconds unless the Arduino sketch is very simple.

Certain things do go on while the delay() function is controlling the Atmega chip however, because the

delay function does not disable interrupts. Serial communication that appears at the RX pin is recorded,

PWM (analogWrite) values and pin states are maintained, and interrupts will work as they should.

 66

delayMicroseconds()

Pauses the program for the amount of time (in microseconds) specified as parameter. There are a

thousand microseconds in a millisecond, and a million microseconds in a second.

Currently, the largest value that will produce an accurate delay is 16383. This could change in future

Arduino releases. For delays longer than a few thousand microseconds, you should use delay() instead.

Syntax:

delayMicroseconds(us)

Parameters:

us: the number of microseconds to pause (unsigned int)

Returns:

None

Example:

// configures pin number 8 to work as an output pin.

// It sends a train of pulses with 100 microseconds period.

int outPin = 8; // digital pin 8

void setup()

{

 pinMode(outPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(outPin, HIGH); // sets the pin on

 delayMicroseconds(50); // pauses for 50 microseconds

 digitalWrite(outPin, LOW); // sets the pin off

 delayMicroseconds(50); // pauses for 50 microseconds

}

Caveats and Known Issues

This function works very accurately in the range 3 microseconds and up. We cannot assure that

delayMicroseconds will perform precisely for smaller delay-times.

As of Arduino 0018, delayMicroseconds() no longer disables interrupts.

 Arduino Language Reference

 67

Math

min(x, y)

Calculates the minimum of two numbers.

Parameters:

x: the first number, any data type

y: the second number, any data type

Returns:

The smaller of the two numbers.

Examples:

sensVal = min(sensVal, 100); // assigns sensVal to the smaller of

sensVal or 100; // ensuring that it never gets above 100.

Note
Perhaps counter-intuitively, max() is often used to constrain the lower end of a variable's range, while

min() is used to constrain the upper end of the range.

Warning
Because of the way the min() function is implemented, avoid using other functions inside the brackets, it

may lead to incorrect results.

min(a++, 100); // avoid this - yields incorrect results

a++;

min(a, 100); // use this instead - keep other math outside the function

max(x, y)

Description

Calculates the maximum of two numbers.

Parameters:

x: the first number, any data type

y: the second number, any data type

Returns:

The larger of the two parameter values.

Example:

sensVal = max(senVal, 20); // assigns sensVal to the larger of

sensVal or 20; // (effectively ensuring that it is at least 20)

 68

Note
Perhaps counter-intuitively, max() is often used to constrain the lower end of a variable's range, while

min() is used to constrain the upper end of the range.

Warning
Because of the way the max() function is implemented, avoid using other functions inside the brackets, it

may lead to incorrect results.

max(a--, 0); // avoid this - yields incorrect results

a--; // use this instead -

max(a, 0); // keep other math outside the function abs(x)

abs(x)

Computes the absolute value of a number.

Parameters:

x: the number

Returns:

x: if x is greater than or equal to 0.

-x: if x is less than 0.

Warning

Because of the way the abs() function is implemented, avoid using other functions inside the brackets, it

may lead to incorrect results.

abs(a++); // avoid this - yields incorrect results

a++; // use this instead

abs(a); // keep other math outside the function

constrain(x, a, b)

Constrains a number to be within a range.

Parameters:

x: the number to constrain, all data types

a: the lower end of the range, all data types

b: the upper end of the range, all data types

Returns:

x: if x is between a and b

a: if x is less than a

b: if x is greater than b

Example:

sensVal = constrain(sensVal, 10, 150); // limits range of sensor values to between 10 and 150

 Arduino Language Reference

 69

map(value, fromLow, fromHigh, toLow, toHigh)

Re-maps a number from one range to another. That is, a value of fromLow would get mapped to toLow, a

value of fromHigh to toHigh, values in-between to values in-between, etc. This does not constrain values

to within the range, because out-ofrange values are sometimes intended and useful. The constrain()

function may be used either before or after this function, if limits to the ranges are desired.

Note
The "lower bounds" of either range may be larger or smaller than the "upper bounds" so the map()

function may be used to reverse a range of numbers, for example

y = map(x, 1, 50, 50, 1);

The function also handles negative numbers well, so that this example

y = map(x, 1, 50, 50, -100);

is also valid and works well. The map() function uses integer math so will not generate fractions, when the

math might indicate that it should do so. Fractional remainders are truncated, and are not rounded or

averaged.

Parameters:

value: the number to map

fromLow: the lower bound of the value's current range

fromHigh: the upper bound of the value's current range

toLow: the lower bound of the value's target range

toHigh: the upper bound of the value's target range

Returns:

The mapped value.

Example:

/* Map an analog value to 8 bits (0 to 255) */

void setup() {}

void loop()

{

 int val = analogRead(0);

 val = map(val, 0, 1023, 0, 255);

 analogWrite(9, val);

}

For the mathematically inclined, here's the whole function:

long map(long x, long in_min, long in_max, long out_min, long out_max)

{

return (x - in_min) * (out_max - out_min) / (in_max - in_min) +out_min;

}

 70

pow(base, exponent)

Calculates the value of a number raised to a power. Pow() can be used to raise a number to a fractional

power. This is useful for generating exponential mapping of values or curves.

Parameters:

base: the number (float)

exponent: the power to which the base is raised (float)

Returns:

The result of the exponentiation (double)

Example:

See the fscale function in the code library.

sqrt(x)

Calculates the square root of a number.

Parameters:

x: the number, any data type

Returns:

The number's square root (double)

 Arduino Language Reference

 71

Trigonometry

sin(rad)

Calculates the sine of an angle (in radians). The result will be between -1 and 1.

Parameters:

rad: the angle in radians (float)

Returns:

the sine of the angle (double)

cos(rad)

Calculates the cos of an angle (in radians). The result will be between -1 and 1.

Parameters:

rad: the angle in radians (float)

Returns:

The cos of the angle ("double")

tan(rad)

Calculates the tangent of an angle (in radians). The result will be between negative infinity and infinity.

Parameters:

rad: the angle in radians (float)

Returns:

The tangent of the angle (double)

 72

Random Numbers

randomSeed(seed)

randomSeed() initializes the pseudo-random number generator, causing it to start at an arbitrary point in

its random sequence. This sequence, while very long, and random, is always the same.

If it is important for a sequence of values generated by random() to differ, on subsequent executions of a

sketch, use randomSeed() to initialize the random number generator with a fairly random input, such as

analogRead() on an unconnected pin.

Conversely, it can occasionally be useful to use pseudo-random sequences that repeat exactly. This can be

accomplished by calling randomSeed() with a fixed number, before starting the random sequence.

Parameters:

long, int - pass a number to generate the seed.

Returns:

no returns

Example:

long randNumber;

void setup(){

 Serial.begin(9600);

 randomSeed(analogRead(0));

}

void loop(){

 randNumber = random(300);

 Serial.println(randNumber);

 delay(50);

}

random()

The random function generates pseudo-random numbers.

Syntax:

random(max)

random(min, max)

Parameters:

min - lower bound of the random value, inclusive (optional)

max - upper bound of the random value, exclusive

Returns:

a random number between min and max-1 (long)

 Arduino Language Reference

 73

Note:
If it is important for a sequence of values generated by random() to differ, on subsequent executions of a

sketch, use randomSeed() to initialize the random number generator with a fairly random input, such as

analogRead() on an unconnected pin.

Conversely, it can occasionally be useful to use pseudo-random sequences that repeat exactly. This can be

accomplished by calling randomSeed() with a fixed number, before starting the random sequence.

Example:

long randNumber;

void setup(){

Serial.begin(9600);

// if analog input pin 0 is unconnected, random analog

// noise will cause the call to randomSeed() to generate

// different seed numbers each time the sketch runs.

// randomSeed() will then shuffle the random function.

randomSeed(analogRead(0));

}

void loop() {

// print a random number from 0 to 299

randNumber = random(300);

Serial.println(randNumber);

// print a random number from 10 to 19

randNumber = random(10, 20);

Serial.println(randNumber);

delay(50);

}

 74

Bits and Bytes

lowByte()

Extracts the low-order (rightmost) byte of a variable (e.g. a word).

Syntax:

lowByte(x)

Parameters:

x: a value of any type

Returns:

byte

highByte()

Extracts the high-order (leftmost) byte of a word (or the second lowest byte of a larger data type).

Syntax:

highByte(x)

Parameters:

x: a value of any type

Returns:

byte

bitRead()

Reads a bit of a number.

Syntax:

bitRead(x, n)

Parameters:

x: the number from which to read

n: which bit to read, starting at 0 for the least-significant (rightmost) bit

Returns:

the value of the bit (0 or 1).

 Arduino Language Reference

 75

bitWrite()

Writes a bit of a numeric variable.

Syntax:

bitWrite(x, n, b)

Parameters:

x: the numeric variable to which to write

n: which bit of the number to write, starting at 0 for the leastsignificant (rightmost) bit

b: the value to write to the bit (0 or 1)

Returns:

none

bitSet()

Sets (writes a 1 to) a bit of a numeric variable.

Syntax:

bitSet(x, n)

Parameters:

x: the numeric variable whose bit to set

n: which bit to set, starting at 0 for the least-significant (rightmost) bit

Returns:

none

bitClear()

Clears (writes a 0 to) a bit of a numeric variable.

Syntax:

bitClear(x, n)

Parameters:

x: the numeric variable whose bit to clear

n: which bit to clear, starting at 0 for the least-significant (rightmost) bit

Returns:

none

 76

bit()

Computes the value of the specified bit (bit 0 is 1, bit 1 is 2, bit 2 is 4, etc.).

Syntax:

bit(n)

Parameters:

n: the bit whose value to compute

Returns:

the value of the bit

 Arduino Language Reference

 77

External Interrupts

attachInterrupt(interrupt, function, mode)

Specifies a function to call when an external interrupt occurs. Replaces any previous function that was

attached to the interrupt. Most Arduino boards have two external interrupts: numbers 0 (on digital pin 2)

and 1 (on digital pin 3). The Arduino Mega has an additional four: numbers 2 (pin 21), 3 (pin 20), 4 (pin

19), and 5 (pin 18).

Parameters:

interrupt: the number of the interrupt (int)

function: the function to call when the interrupt occurs; this function must take no parameters and return

nothing. This function is sometimes referred to as an interrupt service routine.

mode defines when the interrupt should be triggered. Four constants are predefined as valid values:

 LOW to trigger the interrupt whenever the pin is low,

 CHANGE to trigger the interrupt whenever the pin changes value

 RISING to trigger when the pin goes from low to high,

 FALLING for when the pin goes from high to low.

Returns:

none

Example:

int pin = 13;

volatile int state = LOW;

void setup()

{

 pinMode(pin, OUTPUT);

 attachInterrupt(0, blink, CHANGE);

}

void loop()

{

 digitalWrite(pin, state);

}

void blink()

{

 state = !state;

}

 78

Note
Inside the attached function, delay() won't work and the value returned by millis() will not increment. Serial

data received while in the function may be lost. You should declare as volatile any variables that you

modify within the attached function.

Using Interrupts
Interrupts are useful for making things happen automatically in microcontroller programs, and can help

solve timing problems. A good task for using an interrupt might be reading a rotary encoder, monitoring

user input.

If you wanted to insure that a program always caught the pulses from a rotary encoder, never missing a

pulse, it would make it very tricky to write a program to do anything else, because the program would need

to constantly poll the sensor lines for the encoder, in order to catch pulses when they occurred. Other

sensors have a similar interface dynamic too, such as trying to read a sound sensor that is trying to catch a

click, or an infrared slot sensor (photo-interrupter) trying to catch a coin drop. In all of these situations,

using an interrupt can free the microcontroller to get some other work done while not missing the

doorbell.

detachInterrupt(interrupt)

Turns off the given interrupt.

Parameters:

interrupt: the number of interrupt to disable (0 or 1).

 Arduino Language Reference

 79

Interrupts

interrupts()

Re-enables interrupts (after they've been disabled by noInterrupts()). Interrupts allow certain important

tasks to happen in the background and are enabled by default. Some functions will not work while

interrupts are disabled, and incoming communication may be ignored. Interrupts can slightly disrupt the

timing of code, however, and may be disabled for particularly critical sections of code.

Parameters:

None

Returns:

None

Example:

void setup() {}

void loop()

{

 noInterrupts();

 // critical, time-sensitive code here

 interrupts();

 // other code here

}

noInterrupts()

Disables interrupts (you can re-enable them with interrupts()). Interrupts allow certain important tasks to

happen in the background and are enabled by default. Some functions will not work while interrupts are

disabled, and incoming communication may be ignored. Interrupts can slightly disrupt the timing of code,

however, and may be disabled for particularly critical sections of code.

Returns:

None

Example:

void setup() {}

void loop()

{

noInterrupts();

// critical, time-sensitive code here

interrupts();

// other code here

}

 80

Communication

Serial

Used for communication between the Arduino board and a computer or other devices. All Arduino

boards have at least one serial port (also known as a UART or USART): Serial. It communicates on digital

pins 0 (RX) and 1 (TX) as well as with the computer via USB. Thus, if you use these functions, you cannot

also use pins 0 and 1 for digital input or output.

You can use the Arduino environment's built-in serial monitor to communicate with an Arduino board.

Click the serial monitor button in the toolbar and select the same baud rate used in the call to begin().

The Arduino Mega has three additional serial ports: Serial1 on pins 19 (RX) and 18 (TX), Serial2 on pins

17 (RX) and 16 (TX)

Serial3 on pins 15 (RX) and 14 (TX). To use these pins to communicate with your personal computer, you

will need an additional USB-to-serial adaptor, as they are not connected to the Mega's USB-to-serial

adaptor. To use them to communicate with an external TTL serial device, connect the TX pin to your

device's RX pin, the RX to your device's TX pin, and the ground of your Mega to your device's ground.

(Don't connect these pins directly to an RS232 serial port; they operate at +/- 12V and can damage your

Arduino board.)

begin()

Sets the data rate in bits per second (baud) for serial data transmission. For communicating with the

computer, use one of these rates: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or

115200. You can, however, specify other rates; for example, to communicate over pins 0 and 1 with a

component that requires a particular baud rate.

Syntax:

Serial.begin(speed)

// Arduino Mega only

Serial1.begin(speed)

Serial2.begin(speed)

Serial3.begin(speed)

Parameters:

speed: in bits per second (baud) – long

Returns:

nothing

 Arduino Language Reference

 81

Example:

void setup() {

 Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

}

void loop() {}

// Arduino Mega using all four of its Serial ports

// (Serial, Serial1, Serial2, Serial3),

// with different baud rates:

void setup(){

 Serial.begin(9600);

 Serial1.begin(38400);

 Serial2.begin(19200);

 Serial3.begin(4800);

 Serial.println("Hello Computer");

 Serial1.println("Hello Serial 1");

 Serial2.println("Hello Serial 2");

 Serial3.println("Hello Serial 3");

}

void loop() {}

 Thanks to Jeff Gray for the mega example.

end()

Disables serial communication, allowing the RX and TX pins to be used for general input and output. To

re-enable serial communication, call Serial.begin().

Syntax:

Serial.end()

// Arduino Mega only

Serial1.end()

Serial2.end()

Serial3.end()

Parameters:

none

Returns:

nothing

 82

available()

Get the number of bytes (characters) available for reading from the serial port. This is data that's already

arrived and stored in the serial receive buffer (which holds 128 bytes).

Syntax:

Serial.available()

// Arduino Mega only

Serial1.available()

Serial2.available()

Serial3.available()

Parameters:

none

Returns:

The number of bytes available to read

Example:

int incomingByte = 0; // for incoming serial data

void setup() {

 Serial.begin(9600); // opens serial port, sets data rate to

 9600 bps

}

void loop() {

 // send data only when you receive data:

 if (Serial.available() > 0) {

 IncomingByte = Serial.read(); // read the incoming byte:

 Serial.print("I received: "); // say what you got

 Serial.println(incomingByte, DEC);

 }

}

 Arduino Language Reference

 83

Arduino Mega example:

void setup() {

 Serial.begin(9600);

 Serial1.begin(9600);

}

void loop() {

 // read from port 0, send to port 1:

 if (Serial.available()) {

 int inByte = Serial.read();

 Serial1.print(inByte, BYTE);

 }

 // read from port 1, send to port 0:

 if (Serial1.available()) {

 int inByte = Serial1.read();

 Serial.print(inByte, BYTE);

 }

}

read()

Reads incoming serial data.

Syntax:

Serial.read()

// Arduino Mega only

Serial1.read()

Serial2.read()

Serial3.read()

Parameters:

None

Returns:

The first byte of incoming serial data available (or -1 if no data is available) – int

 84

Example:

int incomingByte = 0; // for incoming serial data

void setup() {

 Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

}

void loop() {

 // send data only when you receive data:

 if (Serial.available() > 0) {

 incomingByte = Serial.read(); // read the incoming byte

 Serial.print("I received: "); // say what you got

 Serial.println(incomingByte, DEC);

 }

}

flush()

Flushes the buffer of incoming serial data. That is, any call to Serial.read() or Serial.available() will return

only data received after all the most recent call to Serial.flush().

Syntax:

Serial.flush()

// Arduino Mega only

Serial1.flush()

Serial2.flush()

Serial3.flush()

Parameters:

none

Returns:

nothing

 Arduino Language Reference

 85

print()

Prints data to the serial port as human-readable ASCII text. This command can take many forms.

Numbers are printed using an ASCII character for each digit. Floats are similarly printed as ASCII digits,

defaulting to two decimal places. Bytes are sent as a single character. Characters and strings are sent as is.

For example:

Serial.print(78) gives "78"

Serial.print(1.23456) gives "1.23"

Serial.print(byte(78)) gives "N" (whose ASCII value is 78)

Serial.print('N') gives "N"

Serial.print("Hello world.") gives "Hello world."

An optional second parameter specifies the base (format) to use; permitted values are BYTE, BIN (binary,

or base 2), OCT (octal, or base 8), DEC (decimal, or base 10), HEX (hexadecimal, or base 16). For

floating point numbers, this parameter specifies the number of decimal places to use. For example:

Serial.print(78, BYTE) gives "N"

Serial.print(78, BIN) gives "1001110"

Serial.print(78, OCT) gives "116"

Serial.print(78, DEC) gives "78"

Serial.print(78, HEX) gives "4E"

Serial.println(1.23456, 0) gives "1"

Serial.println(1.23456, 2) gives "1.23"

Serial.println(1.23456, 4) gives "1.2346"

Syntax:

Serial.print(val)

Serial.print(val, format)

Parameters:

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of decimal places (for floating point types)

Returns:

None

 86

Example:

/*

Uses a FOR loop for data and prints a number in various formats.

*/

int x = 0; // variable

void setup() {

 Serial.begin(9600); // open the serial port at 9600 bps:

}

void loop() {

 // print labels

 Serial.print("NO FORMAT"); // prints a label

 Serial.print("\t"); // prints a tab

 Serial.print("DEC");

 Serial.print("\t");

 Serial.print("HEX");

 Serial.print("\t");

 Serial.print("OCT");

 Serial.print("\t");

 Serial.print("BIN");

 Serial.print("\t");

 Serial.println("BYTE");

 for(x=0; x< 64; x++){ // only part of the ASCII chart, change to suit

 // print it out in many formats:

 Serial.print(x); // print as an ASCII-encoded decimal - same as "DEC"

 Serial.print("\t"); // prints a tab

 Serial.print(x, DEC); // print as an ASCII-encoded decimal

 Serial.print("\t"); // prints a tab

 Serial.print(x, HEX); // print as an ASCII-encoded hexadecimal

 Serial.print("\t"); // prints a tab

 Serial.print(x, OCT); // print as an ASCII-encoded octal

 Serial.print("\t"); // prints a tab

 Serial.print(x, BIN); // print as an ASCII-encoded binary

 Serial.print("\t"); // prints a tab

 Serial.println(x, BYTE); // prints as a raw byte value,

 // then adds the carriage return with "println"

 delay(200); // delay 200 milliseconds

 }

 Serial.println(""); // prints another carriage return

}

Programming Tip
The last character to be printed is transmitted over the serial port after Serial.print() has returned.

 Arduino Language Reference

 87

println()

Prints data to the serial port as human-readable ASCII text followed by a carriage return character (ASCII

13, or '\r') and a newline character (ASCII 10, or '\n'). This command takes the same forms as

Serial.print().

Syntax:

Serial.println(val)

Serial.println(val, format)

Parameters:

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of decimal places (for floating point types)

Returns:

None

Example:

/*

Analog input

reads an analog input on analog in 0, prints the value out.

created 24 March 2006

by Tom Igoe

*/

int analogValue = 0; // variable to hold the analog value

void setup() {

 // open the serial port at 9600 bps:

 Serial.begin(9600);

}

void loop() {

 // read the analog input on pin 0:

 analogValue = analogRead(0);

 // print it out in many formats:

 Serial.println(analogValue); // print as an ASCII-encoded decimal

 Serial.println(analogValue, DEC); // print as an ASCII-encoded decimal

 Serial.println(analogValue, HEX); // print as an ASCII-encoded hexadecimal

 Serial.println(analogValue, OCT); // print as an ASCII-encoded octal

 Serial.println(analogValue, BIN); // print as an ASCII-encoded binary

 Serial.println(analogValue, BYTE); // print as a raw byte value

 // delay 10 milliseconds before the next reading:

 delay(10);

}

 88

write()

Writes binary data to the serial port. This data is sent as a byte or series of bytes; to send the characters

representing the digits of a number use the print() function instead.

Syntax:

Serial.write(val)

Serial.write(str)

Serial.write(buf, len)

// Arduino Mega also supports: Serial1, Serial2, Serial3 (in place of Serial)

Parameters:

val: a value to send as a single byte

str: a string to send as a series of bytes

buf: an array to send as a series of bytes

len: the length of the buffer

 Arduino Language Reference

 89

Libraries

To use an existing library in a sketch, go to the Sketch menu, choose "Import Library", and pick from the

libraries available. This will insert one or more #include statements at the top of the sketch and allow it to

use the library.

Because libraries are uploaded to the board with your sketch, they increase the amount of space it takes up.

If a sketch no longer needs a library, simply delete its #include statements from the top of your code.

Official Libraries

These are the "official" libraries that are included in the Arduino distribution.

EEPROM - reading and writing to "permanent" storage

SoftwareSerial - for serial communication on any digital pins

Stepper - for controlling stepper motors

Wire - Two Wire Interface (TWI/I2C) for sending and receiving data over a net of devices or sensors.

These libraries are compatible Wiring versions, and the links below point to the (excellent) Wiring
documentation.

Matrix - Basic LED Matrix display manipulation library

Sprite - Basic image sprite manipulation library for use in animations with an LED matrix

Contributed Libraries

Libraries written by members of the Arduino community.

DateTime - a library for keeping track of the current date and time in software.

Firmata - for communicating with applications on the computer using a standard serial protocol.

GLCD - graphics routines for LCD based on the KS0108 or equivalent chipset.

LCD - control LCDs (using 8 data lines)

LCD 4 Bit - control LCDs (using 4 data lines)

LedControl - for controlling LED matrices or seven-segment displays with a MAX7221 or MAX7219.

LedControl - an alternative to the Matrix library for driving multiple LEDs with Maxim chips.

TextString - handle strings

Metro - help you time actions at regular intervals

MsTimer2 - uses the timer 2 interrupt to trigger an action every N milliseconds.

OneWire - control devices (from Dallas Semiconductor) that use the One Wire protocol.

PS2Keyboard - read characters from a PS2 keyboard.

Servo - provides software support for Servo motors on any pins.

Servotimer1 - provides hardware support for Servo motors on pins 9 and 10

Simple Message System - send messages between Arduino and the computer

SSerial2Mobile - send text messages or emails using a cell phone (via AT commands over software serial)

X10 - Sending X10 signals over AC power lines

To install, unzip the library to a sub-directory of the hardware/libraries sub-directory of the Arduino

application directory. Then launch the Arduino environment; you should see the library in the Import

Library menu.

 90

ASCII Table

Dec Hex Char Description Dec Hex Char Dec Hex Char

0 0 null 43 2B + 86 56 V

1 1 start of heading 44 2C , 87 57 W

2 2 start of text 45 2D - 88 58 X

3 3 end of text 46 2E . 89 59 Y

4 4 end of trans 47 2F / 90 5A Z

5 5 enquiry 48 30 0 91 5B [

6 6 acknowledge 49 31 1 92 5C \

7 7 bell 50 32 2 93 5D]

8 8 backspace 51 33 3 94 5E ^

9 9 horizontal tab 52 34 4 95 5F _

10 A new line 53 35 5 96 60 `

11 B vertical tab 54 36 6 97 61 a

12 C new page 55 37 7 98 62 b

13 D carriage return 56 38 8 99 63 c

14 E shift out 57 39 9 100 64 d

15 F shift in 58 3A : 101 65 e

16 10 data link escape 59 3B ; 102 66 f

17 11 device control 1 60 3C < 103 67 g

18 12 device control 2 61 3D = 104 68 h

19 13 device control 3 62 3E > 105 69 i

20 14 device control 4 63 3F ? 106 6A j

21 15 neg ack 64 40 @ 107 6B k

22 16 synchronous idle 65 41 A 108 6C l

23 17 end of trans block 66 42 B 109 6D m

24 18 cancel 67 43 C 110 6E n

25 19 end of medium 68 44 D 111 6F o

26 1A substitute 69 45 E 112 70 p

27 1B escape 70 46 F 113 71 q

28 1C file separator 71 47 G 114 72 r

29 1D group separator 72 48 H 115 73 s

30 1E record separator 73 49 I 116 74 t

31 1F unit separator 74 4A J 117 75 u

32 20 space 75 4B K 118 76 v

33 21 ! 76 4C L 119 77 w

34 22 " 77 4D M 120 78 x

35 23 # 78 4E N 121 79 y

36 24 $ 79 4F O 122 7A z

37 25 % 80 50 P 123 7B {

38 26 & 81 51 Q 124 7C |

39 27 ' 82 52 R 125 7D }

40 28 (83 53 S 126 7E ~

41 29) 84 54 T 127 7F DEL

42 2A * 85 55 U

 Arduino Language Reference

 91

Arduino Language Summary

Structure
In Arduino, the standard program entry
point (main) is defined in the core and
calls into two functions in a sketch.
setup() is called once, then loop() is
called repeatedly (until the board is reset).
 void setup()
 void loop()

Control Structures
 if
 if...else
 for
 switch case
 while
 do... while
 break
 continue
 return

Further Syntax
 ; (semicolon)
 {} (curly braces)
 // (single line comment)
 /* */ (multi-line comment)
 #define
 #include

Arithmetic Operators
 + (addition)
 - (subtraction)
 * (multiplication)
 / (division)
 % (modulo)

Comparison Operators
 == (equal to)
 != (not equal to)
 < (less than)
 > (greater than)
 <= (less than or equal to)
 >= (greater than or equal to)

Boolean Operators
 && (and)
 || (or)
 ! (not)

Bitwise Operators
 & (bitwise and)
 | (bitwise or)
 ^ (bitwise xor)
 ~ (bitwise not)
 << (bitshift left)
 >> (bitshift right)

Compound Operators
 ++ (increment)
 -- (decrement)
 += (compound addition)
 -= (compound subtraction)
 *= (compound multiplication)
 /= (compound division)
 &= (compound bitwise and)
 |= (compound bitwise or)

Pointer Access Operators
 * dereference operator
 & reference operator

Variables

Constants
 HIGH | LOW
 INPUT | OUTPUT
 true | false
 integer constants
 floating point constants

Data Types
 void keyword
 boolean
 char
 unsigned char
 byte
 int
 unsigned int
 long
 unsigned long
 float
 double
 string
 array

Variable Scope & Qualifiers
 static
 volatile
 const
 PROGMEM

Functions

Math
 min(x, y)
 max(x, y)
 abs(x)
 constrain(x, a, b)
 map(value, frL, frH, toL, toH)
 pow(base, exponent)
 sqrt(x)

Trigonometry
 sin(rad)
 cos(rad)
 tan(rad)

Random Numbers
 randomSeed(seed)
 long random(max)
 long random(min, max)

Digital I/O
 pinMode(pin, mode)
 digitalWrite(pin, value)
 int digitalRead(pin)

Analog I/O
 analogReference(type)
 int analogRead(pin)
 analogWrite(pin, value) – PWM

Advanced I/O
 shiftOut(dPin, clkPin, bitOrd, val)
 unsigned long pulseIn(pin, value)

Time
 unsigned long millis()
 delay(ms)
 delayMicroseconds(us)

Port Manipulation
 DDRX Data Direction Register
 PORTX Data Register
 PINX Input Pin - read only
 X = B (digital pin 8 to 13)
 C (analog input pins)
 D (digital pins 0 to 7)

Serial Communication
 Serial.begin(speed)
 int Serial.available()
 int Serial.read()
 Serial.flush()
 Serial.print(data)
 Serial.println(data)

Interrupts
 interrupts()
 noInterrupts()

External Interrupts
 attachInterrupt(int, func, mode)
 detachInterrupt(interrupt)

 92

