Neur2BiLO: Neural Bilevel Optlmlzatlon
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- Summary: A fast learning-based heuristic for mixed

integer (non-)linear bilevel optimization

. Objective: Find the leader / upper-level solution (x)

that minimize the objective /(x, y) while considering the
will maximize their

own objective , Subject to any constraints

1

Train a ML model to approximate the value functions of the leader and follower

Upper-Level Approximation (ULA)

NNg(x) = F(x,y*)

~ max{f(x,y) : g(x,y) > 0}
YEY

Efficiency: Neur2BiLO finds solutions 100-1000x faster
Solution Quality: Neur2BiLO finds STOA solutions on
larger instances

Knapsack Interdlctlon Problem (Comb/nator/al lnterd/ct/on)

min  F(x,y) 2 | Reformulate as a single-level mixed integer program by optimizing over predictive model
ey ULA Requires lower-level
S.t. G X, Z 0 : NNM : G > 0 . ¢ eC]UII‘eS Owel’- eve
(X.¥) , / 2;15?{ o(x) = G(x) 2 0} min  F(X,y) + As variables (y), a slack
y € arg H}Ea;{f (x,y) : g(x,y") 2 0} €Ly variable (s), and
’ Less variables (no y) s.t. GKx,y) >0 hyperparameter (1)
 Challenge: Integer decisions variables make gradient and Faster to optimize (X,y)> 0 * Always feasible
duality-based methods inapplicable Does not model coupling constraints G(X, y) S Y) = « Better for highly
- STOA: Fast problem-specific heuristics for well-studied May be infeasible f(x,y) > ) constrained problems
problems and less efficient general-purpose algorithms
Example Architecture Guarantees

- Discrete Network Design Problem: A city planner
wants to build a subset of roads (x) to a road network to
minimize the total travel time in the network, F(X,y).

Based on the roads added, drivers will reach a
clL.e., a In which no user

can unilaterally reduce their travel time
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For data-driven settings where we want to train one model

across variables instances ( 7 € 11)
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Set / graph-based architectures can be used to create
models that handle invariance in variable ordering and
allow generalization to varying instances sizes

- For min max problems, i.e., / = /, Neur2BiLO
computes a solution with an optimality gap bounded
by an additive function of the prediction error
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If [NN{(x) — O(x)| < a, Vx € 2, then the
upper-level approximation returns a solution
(X*,y*) that is bounded by /(x*, y*) < opt + 2«

|f , then the lower-level

approximation returns a solution (x*, y*) that is bounded

by
A =max{f(x,y) —f(x,y),Vx e X,y,y € ¢/}

, Where

Discrete Network Design Problem (rransportation)
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