# libprimesieve C API
libprimesieve is a highly optimized library for generating prime numbers, it can generate primes
and [prime k-tuplets](https://en.wikipedia.org/wiki/Prime_k-tuple) up to 264.
libprimesieve generates primes using the segmented
[sieve of Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes) with
[wheel factorization](https://en.wikipedia.org/wiki/Wheel_factorization).
This algorithm has a run time complexity of $O(n\ \log\ \log\ n)$ operations and uses
$O(\sqrt{n})$ memory. This page contains a selection of C code snippets that show how to use
libprimesieve to generate prime numbers. These examples cover the most frequently used
functionality of libprimesieve. Arguably the most useful feature provided by libprimesieve
is the ```primesieve_iterator``` which lets you iterate over primes using the
```primesieve_next_prime()``` or ```primesieve_prev_prime()``` functions.
The functions of libprimesieve's C API are defined in the [``````](../include/primesieve.h)
and [``````](../include/primesieve/iterator.h) header files. If you
need detailed information about libprimesieve's function signatures, e.g. because you want to
write libprimesieve bindings for another programming language, then I suggest you read
the libprimesieve header files which also contain additional documentation about the function
parameters and return values.
## Contents
* [```primesieve_next_prime()```](#primesieve_next_prime)
* [```primesieve_jump_to()```](#primesieve_jump_to-since-primesieve-110)
* [```primesieve_prev_prime()```](#primesieve_prev_prime)
* [```primesieve_generate_primes()```](#primesieve_generate_primes)
* [```primesieve_generate_n_primes()```](#primesieve_generate_n_primes)
* [```primesieve_count_primes()```](#primesieve_count_primes)
* [```primesieve_nth_prime()```](#primesieve_nth_prime)
* [Error handling](#error-handling)
* [Performance tips](#performance-tips)
* [Multi-threading](#Multi-threading)
* [SIMD (vectorization)](#SIMD-vectorization)
* [Compiling and linking](#compiling-and-linking)
* [pkgconf support](#pkgconf-support)
* [CMake support](#cmake-support)
## ```primesieve_next_prime()```
By default ```primesieve_next_prime()``` generates primes ≥ 0 i.e. 2, 3, 5, 7, ...
* If you have specified a non-default start number using the ```primesieve_jump_to()```
function, then the first ```primesieve_next_prime()``` call returns the first
prime ≥ start number. If want to generate primes > start number you need to
use e.g. ```primesieve_jump_to(iter, start+1, stop)```.
* Note that ```primesieve_iterator``` is not ideal if you are
repeatedly iterating over the same primes in a loop, in this case it is better
to [store the primes in an array](#primesieve_generate_primes) (provided your PC has
sufficient RAM memory).
* If needed, you can also use multiple ```primesieve_iterator``` objects within the
same program.
```C
#include
#include
#include
int main(void)
{
primesieve_iterator it;
primesieve_init(&it);
uint64_t sum = 0;
uint64_t prime = 0;
/* Iterate over the primes <= 10^9 */
while ((prime = primesieve_next_prime(&it)) <= 1000000000)
sum += prime;
printf("Sum of the primes <= 10^9: %" PRIu64 "\n", sum);
primesieve_free_iterator(&it);
return 0;
}
```
* [Build instructions](#compiling-and-linking)
## ```primesieve_jump_to()``` *(since primesieve-11.0)*
This function changes the start number of the ```primesieve_iterator``` object. (By
default the start number is initialized to 0). The ```stop_hint``` parameter is
used for performance optimization, ```primesieve_iterator``` only buffers primes
up to this limit.
* The first ```primesieve_next_prime()``` call after ```primesieve_jump_to()``` returns the first
prime ≥ start number. If want to generate primes > start number you need to use e.g.
```primesieve_jump_to(iter, start+1, stop)```.
* The first ```primesieve_next_prime()``` call after ```primesieve_jump_to()``` incurs an initialization
overhead of $O(\sqrt{start}\ \times\ \log\ \log\ \sqrt{start})$ operations. After that, any
additional ```primesieve_next_prime()``` call executes in amortized
$O(\log\ n\ \times\ \log\ \log\ n)$ operations.
```C
#include
#include
#include
int main(void)
{
primesieve_iterator it;
primesieve_init(&it);
/* primesieve_jump_to(&it, start, stop_hint) */
primesieve_jump_to(&it, 1000, 1100);
uint64_t prime;
/* Iterate over primes from [1000, 1100] */
while ((prime = primesieve_next_prime(&it)) <= 1100)
printf("%" PRIu64 "\n", prime);
primesieve_free_iterator(&it);
return 0;
}
```
* [Build instructions](#compiling-and-linking)
## ```primesieve_skipto()``` *(deprecated in primesieve-11.0)*
Similar to ```primesieve_jump_to()```, the ```primesieve_skipto()``` function changes
the start number of the ```primesieve_iterator``` object. However, when calling
```primesieve_next_prime()``` or ```primesieve_prev_prime()``` for the first time
the start number will be excluded. Hence ```primesieve_next_prime()``` will generate
primes > start and ```primesieve_prev_prime()``` will generate primes < start.
```primesieve_skipto()``` has been deprecated in primesieve-11.0 in favor of
```primesieve_jump_to()```, because the use of ```primesieve_skipto()``` requires to
correct the start number in most cases using e.g.
```primesieve_skipto(iter, start-1, stop)```.
* The first ```primesieve_next_prime()``` call after ```primesieve_skipto()``` incurs an initialization
overhead of $O(\sqrt{start}\ \times\ \log\ \log\ \sqrt{start})$ operations. After that, any
additional ```primesieve_next_prime()``` call executes in amortized
$O(\log\ n\ \times\ \log\ \log\ n)$ operations.
```C
#include
#include
#include
int main(void)
{
primesieve_iterator it;
primesieve_init(&it);
/* primesieve_skipto(&it, start, stop_hint) */
primesieve_skipto(&it, 1000, 1100);
uint64_t prime;
/* Iterate over primes from ]1000, 1100] */
while ((prime = primesieve_next_prime(&it)) <= 1100)
printf("%" PRIu64 "\n", prime);
primesieve_free_iterator(&it);
return 0;
}
```
* [Build instructions](#compiling-and-linking)
## ```primesieve_prev_prime()```
Before using ```primesieve_prev_prime()``` you must first change the start number using the
```primesieve_jump_to()``` function (because the start number is initialized to 0 by default).
* Please note that the first ```primesieve_prev_prime()``` call returns the first prime ≤ start
number. If want to generate primes < start number you need to use e.g. ```primesieve_jump_to(iter, start-1, stop)```.
* As a special case, ```primesieve_prev_prime()``` returns 0 after the prime 2 (i.e. when there are no
more primes). This makes it possible to conveniently iterate backwards over all primes > 0 as can be
seen in the example below.
```C
#include
#include
#include
int main(void)
{
primesieve_iterator it;
primesieve_init(&it);
/* primesieve_jump_to(&it, start, stop_hint) */
primesieve_jump_to(&it, 2000, 0);
uint64_t prime;
/* Iterate over primes from [2000, 0[ */
while ((prime = primesieve_prev_prime(&it)) > 0)
printf("%" PRIu64 "\n", prime);
primesieve_free_iterator(&it);
return 0;
}
```
* [Build instructions](#compiling-and-linking)
## ```primesieve_generate_primes()```
Stores the primes inside [start, stop] in an array. The last primes ```type``` parameter
may be one of: ```SHORT_PRIMES```, ```USHORT_PRIMES```, ```INT_PRIMES```, ```UINT_PRIMES```,
```LONG_PRIMES```, ```ULONG_PRIMES```, ```LONGLONG_PRIMES```, ```ULONGLONG_PRIMES```,
```INT16_PRIMES```, ```UINT16_PRIMES```, ```INT32_PRIMES```, ```UINT32_PRIMES```,
```INT64_PRIMES```, ```UINT64_PRIMES```.
```C
#include
#include
int main(void)
{
uint64_t start = 0;
uint64_t stop = 1000;
size_t size;
/* Get an array with the primes inside [start, stop] */
int* primes = (int*) primesieve_generate_primes(start, stop, &size, INT_PRIMES);
for (size_t i = 0; i < size; i++)
printf("%i\n", primes[i]);
primesieve_free(primes);
return 0;
}
```
* [Build instructions](#compiling-and-linking)
## ```primesieve_generate_n_primes()```
Stores the first n primes ≥ start in an array. The last primes ```type``` parameter may
be one of: ```SHORT_PRIMES```, ```USHORT_PRIMES```, ```INT_PRIMES```, ```UINT_PRIMES```,
```LONG_PRIMES```, ```ULONG_PRIMES```, ```LONGLONG_PRIMES```, ```ULONGLONG_PRIMES```,
```INT16_PRIMES```, ```UINT16_PRIMES```, ```INT32_PRIMES```, ```UINT32_PRIMES```,
```INT64_PRIMES```, ```UINT64_PRIMES```.
```C
#include
#include
int main(void)
{
uint64_t n = 1000;
uint64_t start = 0;
/* Get an array with the first 1000 primes */
int64_t* primes = (int64_t*) primesieve_generate_n_primes(n, start, INT64_PRIMES);
for (size_t i = 0; i < n; i++)
printf("%li\n", primes[i]);
primesieve_free(primes);
return 0;
}
```
* [Build instructions](#compiling-and-linking)
## ```primesieve_count_primes()```
Counts the primes inside [start, stop]. This function is multi-threaded and uses all
available CPU cores by default.
```C
#include
#include
#include
int main(void)
{
/* primesieve_count_primes(start, stop) */
uint64_t count = primesieve_count_primes(0, 1000);
printf("Primes <= 1000: %" PRIu64 "\n", count);
return 0;
}
```
* [Build instructions](#compiling-and-linking)
## ```primesieve_nth_prime()```
This function finds the nth prime e.g. ```nth_prime(25) = 97```. This function is
multi-threaded and uses all available CPU cores by default.
```C
#include
#include
#include
int main(void)
{
/* primesieve_nth_prime(n, start) */
uint64_t n = 25;
uint64_t prime = primesieve_nth_prime(n, 0);
printf("%" PRIu64 "th prime = %" PRIu64 "\n", n, prime);
return 0;
}
```
* [Build instructions](#compiling-and-linking)
# Error handling
## ```PRIMESIEVE_ERROR```
If an error occurs, libprimesieve functions with a ```uint64_t``` return type return
```PRIMESIEVE_ERROR``` (which is defined as ```UINT64_MAX``` in ``````)
and the corresponding error message is printed to the standard error stream.
```C
#include
#include
#include
int main(void)
{
uint64_t count = primesieve_count_primes(0, 1000);
if (count != PRIMESIEVE_ERROR)
printf("Primes <= 1000: %" PRIu64 "\n", count);
else
printf("Error in libprimesieve!\n");
return 0;
}
```
## ```primesieve_iterator.is_error```
For the ```primesieve_iterator```, you can check if the return value of ```primesieve_next_prime()```
is ```PRIMESIEVE_ERROR``` to know if an error occurred. However, ```primesieve_iterator``` also supports
a 2nd option for error handling: by default ```primesieve_iterator.is_error``` is initialized to 0 in
```primesieve_init()```, if any error occurs ```primesieve_iterator.is_error``` is set to 1.
This is useful to check after a computation that no error has occurred, this way you don't have to
check the return value of every single ```primesieve_next_prime()``` call.
```C
#include
#include
#include
#include
uint64_t get_prime_sum(uint64_t stop)
{
primesieve_iterator it;
primesieve_init(&it);
uint64_t sum = 0;
uint64_t prime = 0;
while ((prime = primesieve_next_prime(&it)) <= stop)
sum += prime;
if (it.is_error) {
printf("Error in libprimesieve!\n");
primesieve_free_iterator(&it);
exit(EXIT_FAILURE);
}
else {
primesieve_free_iterator(&it);
return sum;
}
}
```
## ```errno```
libprimesieve C API functions also set the C ```errno``` variable to ```EDOM``` if any error
occurs. This makes it possible to check if an error has occurred in libprimesieve
functions with e.g. a ```void``` return type. ```errno``` is also useful to
check after a computation that no error has occurred, this way you don't have to
check the return value of every single primesieve function call.
```C
#include
#include
#include
#include
int* get_primes(int n, int start)
{
/* Reset errno before computation */
errno = 0;
int* primes = (int*) primesieve_generate_n_primes(n, start, INT_PRIMES);
/* Check errno after computation */
if (errno == EDOM) {
printf("Error in libprimesieve!\n");
exit(EXIT_FAILURE);
}
return primes;
}
```
# Performance tips
* If you are repeatedly iterating over the same primes in a loop, you should use
```primesieve_generate_primes()``` or ```primesieve_generate_n_primes()``` to store
these primes in an array (provided your PC has sufficient RAM memory) instead of using
a ```primesieve_iterator```.
* ```primesieve_next_prime()``` runs up to 2x faster and uses only
half as much memory as ```primesieve_prev_prime()```. Oftentimes algorithms
that iterate over primes using ```primesieve_prev_prime()``` can be rewritten
using ```primesieve_next_prime()``` which improves performance in most cases.
* ```primesieve_iterator``` is single-threaded. See the
[Multi-threading](#Multi-threading) section for how to
parallelize an algorithm using multiple ```primesieve_iterator``` objects.
* The ```primesieve_iterator``` data structure allows you to access the underlying
64-bit ```primes``` array, together with the ```primesieve_generate_next_primes()```
function, this can be used for all kinds of low-level optimizations. E.g. the
[SIMD (vectorization)](#SIMD-vectorization) section contains an example that shows how
to process primes using SIMD instructions.
* The ```primesieve_jump_to()``` function takes an optional ```stop_hint```
parameter that can provide a significant speedup if the sieving distance
is relatively small e.g. < sqrt(start). If ```stop_hint``` is set
```primesieve_iterator``` will only buffer primes up to this limit.
* Many of libprimesieve's functions e.g. ```primesieve_count_primes(start, stop)``` and
```primesieve_nth_prime(n, start)``` incur an initialization overhead of $O(\sqrt{start})$
even if the total sieving distance is tiny. It is therefore not a good idea to
call these functions repeatedly in a loop unless the sieving distance is
sufficiently large e.g. > sqrt(start). If the sieving distance is mostly
small consider using a ```primesieve_iterator``` instead to avoid the
recurring initialization overhead.
# Multi-threading
By default libprimesieve uses multi-threading for counting primes/k-tuplets
and for finding the nth prime. However ```primesieve_iterator``` the most
useful feature provided by libprimesieve runs single-threaded because
it is simply not possible to efficiently parallelize the generation of primes
in sequential order.
Hence if you want to parallelize an algorithm using ```primesieve_iterator```
you need to implement the multi-threading part yourself. The basic technique
for parallelizing an algorithm using ```primesieve_iterator``` is:
* Subdivide the sieving distance into equally sized chunks.
* Process each chunk in its own thread.
* Combine the partial thread results to get the final result.
The C example below calculates the sum of the primes ≤ 1010 in parallel
using [OpenMP](https://en.wikipedia.org/wiki/OpenMP). Each thread processes a
chunk of size ```(dist / threads) + 1``` using its own ```primesieve_iterator```
object. The OpenMP reduction clause takes care of adding the partial
prime sum results together in a thread safe manner.
```C
#include
#include
#include
#include
int main(void)
{
uint64_t sum = 0;
uint64_t dist = 1e10;
int threads = omp_get_max_threads();
uint64_t thread_dist = (dist / threads) + 1;
#pragma omp parallel for reduction(+: sum)
for (int i = 0; i < threads; i++)
{
uint64_t start = i * thread_dist;
uint64_t stop = start + thread_dist;
stop = stop < dist + 1 ? stop : dist + 1;
primesieve_iterator it;
primesieve_init(&it);
primesieve_jump_to(&it, start, stop);
uint64_t prime = primesieve_next_prime(&it);
/* Sum primes inside [start, stop[ */
for (; prime < stop; prime = primesieve_next_prime(&it))
sum += prime;
}
printf("Sum of the primes <= 10^10: %" PRIu64 "\n", sum);
return 0;
}
```
Build instructions
```bash
# Unix-like OSes
cc -O3 -fopenmp primesum.c -o primesum -lprimesieve
time ./primesum
```
# SIMD (vectorization)
SIMD stands for Single Instruction/Multiple Data, it is also commonly known as
vectorization. SIMD is supported by most CPUs e.g. all ARM64 CPUs support the ARM NEON
instruction set and most x64 CPUs support the AVX2 or AVX512 instruction sets. Using
SIMD instructions can significantly speed up some algorithms. The
```primesieve_iterator``` data structure allows you to access the underlying 64-bit
```primes``` array and process its elements using SIMD instructions.
The C example below calculates the sum of all primes ≤ 10^10 using the AVX512 vector
instruction set for x64 CPUs. This code uses the ```primesieve_generate_next_primes()```
function to generate the next 2^10 primes in a loop and then calculates their sum using
AVX512 vector intrinsics. Note that ```primesieve_generate_next_primes()``` is also
used under the hood by the ```primesieve_next_prime()``` function.
```C
#include
#include
#include
#include
int main(void)
{
primesieve_iterator it;
primesieve_init(&it);
primesieve_generate_next_primes(&it);
uint64_t limit = 10000000000;
__m512i sums = _mm512_setzero_si512();
while (it.primes[it.size - 1] <= limit)
{
// Sum 64-bit primes using AVX512
for (size_t i = 0; i < it.size; i += 8) {
__mmask8 mask = (i + 8 < it.size) ? 0xff : 0xff >> (i + 8 - it.size);
__m512i primes = _mm512_maskz_loadu_epi64(mask, (__m512i*) &it.primes[i]);
sums = _mm512_add_epi64(sums, primes);
}
// Generate up to 2^10 new primes
primesieve_generate_next_primes(&it);
}
// Sum the 8 partial sums
uint64_t sum = _mm512_reduce_add_epi64(sums);
// Process the remaining primes (at most 2^10)
for (size_t i = 0; it.primes[i] <= limit; i++)
sum += it.primes[i];
printf("Sum of the primes <= %" PRIu64 ": %" PRIu64 "\n", limit, sum);
primesieve_free_iterator(&it);
return 0;
}
```
Build instructions
```bash
# Unix-like OSes
cc -O3 -mavx512f -funroll-loops primesum.c -o primesum -lprimesieve
time ./primesum
```
# Compiling and linking
### Unix-like OSes
If [libprimesieve is installed](https://github.com/kimwalisch/primesieve#installation)
on your system, then you can compile any of the C example programs above using:
```sh
# Link against shared libprimesieve
cc -O3 primes.c -o primes -lprimesieve
# For statically linking libprimesieve into your C program you need to link
# against libprimesieve, the C++ standard library and the math library.
# Please note that the linking command may be different for your particular
# compiler and operating system.
gcc -O3 -static primes.c -o primes -lprimesieve -lstdc++ -lm
```
If you have [built libprimesieve yourself](BUILD.md#primesieve-build-instructions),
then the default installation path is usually ```/usr/local/lib```. Running
the ```ldconfig``` program after ```make install``` ensures that Linux's dynamic
linker/loader will find the shared primesieve library when you execute your program.
However, some OSes are missing the ```ldconfig``` program or ```ldconfig``` does
not include ```/usr/local/lib``` by default. In these cases you need to export
some environment variables:
```sh
export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export C_INCLUDE_PATH=/usr/local/include:$C_INCLUDE_PATH
```
### Microsoft Visual C++
```sh
cl /O2 /EHsc /MD primes.c /I "path\to\primesieve\include" /link "path\to\primesieve.lib"
```
# pkgconf support
primesieve also has support for the
[pkgconf](https://github.com/pkgconf/pkgconf) program which
allows to easily compile C and C++ programs depending on libprimesieve
without having to care about the library and include paths:
```sh
cc -O3 main.c -o main $(pkgconf --libs --cflags primesieve)
```
# CMake support
If you are using the CMake build system to compile your program and
[libprimesieve is installed](https://github.com/kimwalisch/primesieve#installation) on your
system, then you can add the following two lines to your ```CMakeLists.txt``` to link your
program against libprimesieve.
```CMake
find_package(primesieve REQUIRED)
target_link_libraries(your_program primesieve::primesieve)
```
To link against the static libprimesieve use:
```CMake
find_package(primesieve REQUIRED static)
target_link_libraries(your_program primesieve::primesieve)
```
# Minimal CMake project file
If you want to build your C program (named ```primes.c```) using CMake, then you can use
the minimal ```CMakeLists.txt``` below. Note that this requires that
[libprimesieve is installed](https://github.com/kimwalisch/primesieve#installation) on your
system. Using CMake has the advantage that you don't need to specify the libprimesieve include
path and the ```-lprimesieve``` linker option when building your project.
```CMake
# File: CMakeLists.txt
cmake_minimum_required(VERSION 3.4...3.19)
project(primes C CXX)
find_package(primesieve REQUIRED)
add_executable(primes primes.c)
target_link_libraries(primes primesieve::primesieve)
```
Put the ```CMakeLists.txt``` file from above into the same directory as your ```primes.c``` file.
Then open a terminal, cd into that directory and build your project using:
```sh
cmake . -DCMAKE_BUILD_TYPE=Release
cmake --build .
```
Using the MSVC compiler (Windows) the build instructions are slightly different. First you should link
against the static libprimesieve in your ```CMakeLists.txt``` using:
```find_package(primesieve REQUIRED static)```. Next open a Visual Studio Command Prompt, cd into your
project's directory and build your project using:
```sh
# Use 'cmake -G' to find your Visual Studio version
cmake -G "Visual Studio 18 2026" .
cmake --build . --config Release
```