{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Spatial Correlation (tasks)\n", "## M.Sc. Vladimir Fadeev\n", "### Kazan, 15.03.2019" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Theory\n", "\n", "Ideally, spatial channels should be independent to each other, i.e. uncorrelated. \n", "![Kron1](https://raw.githubusercontent.com/kirlf/CSP/master/MIMO/assets/MIMObasics_3d_ed.png)\n", "\n", "However, it is almost unreachable case in real systems. Therefore we can calculate spatial correlation matrix to estimate correlation:\n", "\n", "$$ \\mathbf{R} = E\\left\\{vec\\left(H\\right)\\left(vec\\left(H\\right)\\right)^H\\right\\} \\qquad (1) $$\n", "\n", "![Kron2](https://raw.githubusercontent.com/kirlf/CSP/master/MIMO/assets/MIMObasics_r.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If the Tx and Rx sides are **uncorrelated** (e.g. fig. 1) to each other, simplification can be applied: **Kronecker model**. \n", "\n", "![](https://raw.githubusercontent.com/kirlf/CSP/master/MIMO/assets/Uncorrelated_case.png)\n", "\n", "*Fig. 1. The scatters model in case of uncorrelated Rx and Tx. Green dots mean scatters, blue and red - RX and Tx.*\n", "\n", "![Kron3](https://raw.githubusercontent.com/kirlf/CSP/master/MIMO/assets/Kroneker%20Model.jpg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, in case of correlated channel (e.g. fig. 2) the formula (1) should be used.\n", "\n", "![](https://raw.githubusercontent.com/kirlf/CSP/master/MIMO/assets/Correlated_case.png) \n", "\n", "*Fig. 2. The scatters model in case of correlated Rx and Tx. Green dots mean scatters, blue and red - RX and Tx.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Tasks" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Task #1\n", "\n", "If we consider the Kroneker model, can we say that $r_1 = r_2$ and $t_1 = t_2$?\n", "\n", "What about $3\\times 3$ or $4 \\times 3$ channels?\n", "\n", "**Hint**: See \\[1, p.40\\] about the Kronecker product and properties of $\\mathbf{R}_T$ and $\\mathbf{R}_R$.\n", "\n", "\n", "\n", "## Task #2\n", "\n", "Calculate all of the $\\gamma^{opt}$ if $\\mathbf{R}_T = \\begin{bmatrix} 0.6 & 0 \\\\ 0 & 0.7 \\end{bmatrix}$ and $\\mathbf{R}_R = \\begin{bmatrix} 1 && 1 \\\\ 1 && 1 \\end{bmatrix}$, if SNR $-> + \\infty$ (values of co-variance matrices are random, the main part is the logic of the solution).\n", "\n", "**Hint**: Use the Water-pouring algorithm and see \\[1, p.40\\].\n", "\n", "## Task #3\n", "\n", "Is it possible to use Kronecker model for the following case:\n", "$$\\mathbf{R} = \\begin{bmatrix} 1 && 0.6 && 0.4 && 0.9 \\\\ 0.6 && 1 && 0.8 && 0.4 \\\\ 0.4 && 0.8 && 1 && 0.6 \\\\ 0.9 && 0.4 && 0.6 && 1 \\end{bmatrix}$$\n", "\n", "Explain why, if not. If yes, explain too.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Reference" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Paulraj, Arogyaswami, Rohit Nabar, and Dhananjay Gore. Introduction to space-time wireless communications. Cambridge university press, 2003." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }