{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**Authors:** Kleanthis Karamvasis
\n", "**Copyright:** 2024 Kleanthis Karamvasis
\n", "**License:** GPLv3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

FLOODPY: Mapping flooded regions of Daniel Flood event Greece, September 2023

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "### Important:\n", " Before running this notebook, please make sure that \n", "1. you have successufully created floodpy_gpu conda environment based on [FLOODPY_gpu_env](FLOODPY_gpu_env.yml)\n", "2. you have activated the floodpy_gpu conda environment for running this notebook \n", "3. you have downloaded Floodvit model from https://www.dropbox.com/scl/fi/srw7u4cw1gtxrf4xzmsh7/floodvit.pt?rlkey=snskpq1qrdav5u2jya8k2bocg&e=1&dl=0\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# NOTEBOOK INTRODUCTION\n", "\n", "### Data used\n", "\n", "| Product Name | Description | Usage | Access Link |\n", "|:--------------------:|:-----------------:|:-----------------:|:-----------------:|\n", "| ERA5 | ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 4 to 7 decades. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis. ERA5 is updated daily with a latency of about 5 days. | Precipitation | link |\n", "| Sentinel-1 GRD | The Sentinel-1 mission comprises a constellation of two polar-orbiting satellites, operating day and night performing C-band synthetic aperture radar imaging, enabling them to acquire imagery regardless of the weather. | Backscatter changes | link |" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Learning outcomes\n", "\n", "At the end of this notebook you will be able to identify flooded regions from Sentinel-1 data using FloodPy. Be aware that the estimated run time of the notebook depends on your **area of interest**, your **temporal span of interest** and your network **download speed**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Outline\n", "\n", "Floods are considered the second gravest disaster for the agricultural sector. The increasing intensity and the frequency of flood events can result to significant yield losses. In the present notebook, we present a ViT-based (Visual Transformer) approach (Bountos et al., 2023) to extract flooded area based on multitemporal Sentinel-1 intensity observations.\n", "
\n", " \n", "The FLOODPY - FLOOD PYthon toolbox is a free and open-source python toolbox for mapping of floodwater. FLOODPY requires a specified time of interest related to the flood event and corresponding geographical boundaries. We believe that the produced maps with delineated flood-affected agricultural fields can be helpful for governments, insurers and disaster response agencies to improve flood risk assessment, relief targeting, and ultimately to protect climate-vulnerable communities from floods. \n", "\n", "References:\n", "\n", "\n", " \n", "Bountos, N. I., Sdraka, M., Zavras, A., Karasante, I., Karavias, A., Herekakis, T., ... & Papoutsis, I. (2023). Kuro Siwo: 12.1 billion $ m^ 2$ under the water. A global multi-temporal satellite dataset for rapid flood mapping. arXiv preprint [paper link](https://arxiv.org/abs/2311.12056) [github link](https://github.com/Orion-AI-Lab/KuroSiwo)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", " \n", "## Contents\n", "\n", "
\n", " \n", "[1. Flood event description](#section1)\n", "\n", "[2. Set input arguments for FLOODPY](#section2)\n", "\n", "[3. Estimation of Flooded Area](#section3)\n", "\n", "[4. Interactive Plotting](#section4)\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "## 1. Flood event description\n", "[Back to top](#TOC_TOP)\n", "\n", "
\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In September 2023 large areas in the Mediterranean were affected by Storm Daniel. On 5-7 September 2023 Thessaly experienced extreme rainfall followed by extensive floods, resulting in the loss of human lives, livestock, harvests, land and assets. The flooding was a sudden-onset event as the floods occurred very fast.\n", "\n", "More information: https://european-flood.emergency.copernicus.eu/en/news/storm-daniel-affects-greece-bulgaria-and-turkiye-september-2023 \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "## 2. Set input parameters for FLOODPY\n", "[Back to top](#TOC_TOP)\n", "\n", "
\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# The path of your project. Make sure you have enough free space disk on the specific location.\n", "projectfolder = '/home/kleanthis/Projects/Thessalia_Floods_2023'\n", "\n", "# Please provide a description of the flood event (e.g. Thessalia September 2023)\n", "flood_event = 'Thessalia September 2023'\n", "\n", "# The location of floodpy code \n", "src_dir = '/home/kleanthis/Projects/FLOODPY/floodpy/'\n", "\n", "# SNAP ORBIT DIRECTORY\n", "snap_orbit_dir = '/home/kleanthis/.snap/auxdata/Orbits/Sentinel-1'\n", "\n", "# SNAP GPT full path\n", "GPTBIN_PATH = '/home/kleanthis/snap9/bin/gpt'\n", "\n", "# The start and end datetimes for Pre-flood time span and flood time span (Format is YYYYMMDDTHHMMSS in UTC)\n", "pre_flood_start = '20230803T030000'\n", "pre_flood_end = '20230903T030000'\n", "flood_start = '20230903T030000'\n", "flood_end = '20230919T030000'\n", "\n", "# Flood event spatial information \n", "# - You can provide AOI VECTOR FILE or AOI BBOX. \n", "# - Please ensure that your AOI BBOX has dimensions smaller than 100km x 100km\n", "# - If you provide AOI VECTOR, AOI BBOX parameters will be ommited\n", "# - In case you provide AOI BBOX coordinates, set AOI_File = None\n", "\n", "# AOI VECTOR FILE (if given AOI BBOX parameters can be ommited)\n", "AOI_File = \"None\"\n", "\n", "# AOI BBOX (WGS84)\n", "LONMIN = 21.82\n", "LATMIN = 39.35\n", "LONMAX = 22.30\n", "LATMAX = 39.65\n", "\n", "# Data access and processing\n", "# The number of Sentinel-1 relative orbit. The default \n", "# value is Auto. Auto means that the relative orbit that has\n", "# the Sentinel-1 image closer to the Flood_datetime is selected. \n", "# S1_type can be GRD or SLC.\n", "relOrbit = 'Auto' \n", "\n", "# The minimum mapping unit area in square meters\n", "minimum_mapping_unit_area_m2=4000\n", "\n", "# Computing resources to employ\n", "CPU=8\n", "RAM='20G'\n", "\n", "# Credentials for Sentinel-1/2 downloading\n", "Copernicus_username = 'Floodmappingteam@gmail.com'\n", "Copernicus_password = '!!2024Floodpy'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "#### Important: Please provide the path of the Floodvit model [link](https://www.dropbox.com/scl/fi/srw7u4cw1gtxrf4xzmsh7/floodvit.pt?rlkey=snskpq1qrdav5u2jya8k2bocg&e=1&dl=0)
" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "ViT_model_filename = '/home/kleanthis/Projects/Thessalia_Floods_2023/Vit_model/floodvit.pt'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "params_dict = {'projectfolder':projectfolder,\n", " 'flood_event':flood_event,\n", " 'src_dir' : src_dir,\n", " 'snap_orbit_dir' : snap_orbit_dir,\n", " 'GPTBIN_PATH' : GPTBIN_PATH,\n", " 'pre_flood_start' : pre_flood_start,\n", " 'pre_flood_end' : pre_flood_end,\n", " 'flood_start' : flood_start,\n", " 'flood_end' : flood_end,\n", " 'AOI_File' : AOI_File,\n", " 'LONMIN' : LONMIN,\n", " 'LATMIN' : LATMIN,\n", " 'LONMAX' : LONMAX,\n", " 'LATMAX' : LATMAX,\n", " 'relOrbit' : relOrbit,\n", " 'minimum_mapping_unit_area_m2' : minimum_mapping_unit_area_m2,\n", " 'CPU' : CPU,\n", " 'RAM' : RAM,\n", " 'Copernicus_username' : Copernicus_username,\n", " 'Copernicus_password' : Copernicus_password,\n", " }" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "## 3. Estimation of Flooded Area using Sentinel-1 data\n", "[Back to top](#TOC_TOP)\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Insert Python Modules" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import copy\n", "\n", "# FLOODPY libraries\n", "from floodpy.FLOODPYapp import FloodwaterEstimation\n", "from floodpy.Visualization.interactive_plotting import plot_interactive_map\n", "from floodpy.utils.add_metadata_to_geojson import add_metadata" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Start up" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "Floodpy_app = FloodwaterEstimation(params_dict = params_dict)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Download Landcover" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "Floodpy_app.download_landcover_data()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Downloading Precipitation from ERA5 model\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Precipitation data can be found at /home/kleanthis/Projects/Thessalia_Floods_2023/ERA5\n" ] } ], "source": [ "Floodpy_app.download_ERA5_Precipitation_data()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAAJ9CAYAAABzdDHAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2aklEQVR4nOzdd3hUZf7+8ftMyaQTQksCoRcXAVGxAKv0UERQ3EVFV1FcO+oqFnDVYEEWu7iiuyJFRcWCbVEEERCxAIIiIE06BJCQhBQy5ZzfH/yYLyGB1Gnwfl1XLmfOnHM+n2eIPJmbk+cYlmVZAgAAAAAAAACEJVuoGwAAAAAAAAAAHB8hLgAAAAAAAACEMUJcAAAAAAAAAAhjhLgAAAAAAAAAEMYIcQEAAAAAAAAgjBHiAgAAAAAAAEAYI8QFAAAAAAAAgDDmCHUD4cA0Te3atUsJCQkyDCPU7QAAAAAAAAA4yVmWpYMHDyotLU0224mvtSXElbRr1y6lp6eHug0AAAAAAAAAp5jt27erUaNGJ9yHEFdSQkKCpMNvWGJiYsUOMiXvKq9WrVqldn9tJ6fLGcAOJY/Hoy+//FIZGRlyOgNbK9j1TtZawa7H2CKzHmOLvFrBrsfYIrMeY4u8WsGux9gisx5jqxlet1fvvfCetm/frpFPjlRMXExA652s72Ow6zG2yKzH2CKvVrDrMbaa4fV6NXPmTK1atUoPP/ywYmIqNrfl5eUpPT3dn02eCCGu5F9CITExseIhrk/yuX1qYGugxIREOaMD/40XGxurxMTEoP1PFax6J2utYNdjbJFZj7FFXq1g12NskVmPsUVerWDXY2yRWY+x1Qx3kVs7t+5UTnaO4uPiFZcYF9B6J+v7GOx6jC0y6zG2yKsV7HqMrWa43W7t3LlT+/fvV3x8vOLiKje3VWR5V25sBgAAAAAAAABhjBAXAAAAAAAAAMJYSEPcSZMmqUOHDv5lDDp37qzPP//c/7plWcrMzFRaWppiYmLUvXt3rV69usQ5iouLNXLkSNWtW1dxcXEaNGiQduzYEeyhAAAAAAAAAEBAhDTEbdSokcaPH69ly5Zp2bJl6tmzpwYPHuwPaidMmKBnn31WL730kpYuXaqUlBT16dNHBw8e9J/jrrvu0qxZs/TOO+9o8eLFys/P18CBA+Xz+UI1LAAAAAAAAACoMSENcS+++GINGDBArVu3VuvWrfXEE08oPj5e33//vSzL0vPPP68HH3xQQ4YMUbt27TRt2jQVFhZqxowZkqTc3FxNnjxZzzzzjHr37q0zzzxTb775platWqV58+aFcmgAAAAAAAAAUCMcoW7gCJ/Pp/fee08FBQXq3LmzNm/erKysLGVkZPj3cblc6tatm5YsWaKbbrpJy5cvl8fjKbFPWlqa2rVrpyVLlqhv375l1iouLlZxcbH/eV5enqTDd63zeDwVbFiSKf9xslduvJV1pK8K9xdB9U7WWsGux9gisx5ji7xawa7H2CKzHmOLvFrBrsfYIrMeY6u5WpZl+R8HuubJ+j4Gux5ji8x6jC3yagW7HmOruVqmafofV7RmZXozrCOzZ4isWrVKnTt31qFDhxQfH68ZM2ZowIABWrJkibp27aqdO3cqLS3Nv/+NN96orVu3as6cOZoxY4auu+66EoGsJGVkZKhZs2Z69dVXy6yZmZmpsWPHlto+Y8YMxcbG1uwAAQAAAAAAAOAYhYWFGjZsmHJzc5WYmHjCfUN+JW6bNm20cuVK5eTk6IMPPtC1116rhQsX+l83DKPE/pZlldp2rPL2GT16tO6++27/87y8PKWnpysjI6PcN+xoHo9Hc+fOVZ8+feR0Oit8XFUEs1aw652stYJdj7FFZj3GFnm1gl2PsUVmPcYWebWCXY+xRWY9xhaZ9U7WWsGux9gisx5ji7xawa7H2EJb78jqABUR8hA3KipKLVu2lCR16tRJS5cu1QsvvKD7779fkpSVlaXU1FT//nv37lWDBg0kSSkpKXK73Tpw4IBq165dYp8uXboct6bL5ZLL5Sq13el0VukPtarHVUUwawW73slaK9j1GFtk1mNskVcr2PUYW2TWY2yRVyvY9RhbZNZjbJFZ72StFex6jC0y6zG2yKsV7HqMLTT1KtNXSG9sVhbLslRcXKxmzZopJSVFc+fO9b/mdru1cOFCf0B79tlny+l0lthn9+7d+vXXX08Y4tYIUzLWGEo7kOZfGxcAAAAAcGJet1fvP/e+Vs9ZLa/bG+p2AACoNq/Xq/fee0+LFy+W1xuYuS2kV+KOGTNG/fv3V3p6ug4ePKh33nlHCxYs0BdffCHDMHTXXXdp3LhxatWqlVq1aqVx48YpNjZWw4YNkyTVqlVLI0aM0D333KM6deooOTlZo0aNUvv27dW7d+/ANm9Jxh+GEg4lSCFdVRgAAAAAIofpM7X217XKzs6W6eOKGABA5DNNU2vXrtX27dv9NziraSENcffs2aO//e1v2r17t2rVqqUOHTroiy++UJ8+fSRJ9913n4qKinTrrbfqwIEDOu+88/Tll18qISHBf47nnntODodDQ4cOVVFRkXr16qWpU6fKbreHalgAAAAAAAAAUGNCGuJOnjz5hK8bhqHMzExlZmYed5/o6GhNnDhREydOrOHuAAAAAAAAACD0wm5NXAAAAAAAAADA/yHEBQAAAAAAAIAwRogLAAAAAAAAAGGMEBcAAAAAAAAAwhghblXZJLOrqfUN1vMuAgAAAEAFOV1O3f/S/epxTQ85Xc5QtwMAQLU5nU498MAD+stf/iKnMzBzG/FjVRmS7JJlsw4/BgAAAACUy7AZioqJksPlkGHjwxQAIPIZhqGoqCg5nU4ZRmDmNkJcAAAAAAAAAAhjhLhVZUrGOkMpOSmSGepmAAAAACAyeN1effLyJ1r31Tp53d5QtwMAQLV5vV59/PHH+v777+X1BmZucwTkrKcCSzL2GKpVVEuyQt0MAAAAAEQG02fq5+U/Kzs7W6aPK2IAAJHPNE39/PPP2rx5s0wzMHMbV+ICAAAAAAAAQBjjSlwAAAAAAMJY0wf+V+Z2l93ShHOldplzVOwrfSOdLeMvCnRrAIAg4UpcAAAAAAAAAAhjhLgAAAAAAAAAEMYIcQEAAAAAAAAgjBHiAgAAAAAAAEAYI8StKptknm9qY/2NvIsAAAAAUEFOl1N3P323ug/rLqfLGep2AACoNqfTqXvuuUeXXnqpnM7AzG3Ej1VlSIqSfHbf4ccAAAAAgHIZNkNxtePkjHPKsPFhCgAQ+QzDUFxcnKKjo2UYgZnbCHEBAAAAAAAAIIwR4laVKRkbDTXIbSCZoW4GAAAAACKD1+3V55M/18aFG+V1e0PdDgAA1eb1ejV79mwtW7ZMXm9g5jZHQM56KrAkY5ehpMIkyQp1MwAAAAAQGUyfqWVLlik7O1umjytiAACRzzRNLVu2TBs2bJBpBmZu40pcAAAAAAAAAAhjhLgAAAAAAAAAEMYIcQEAAAAAAAAgjBHiAgAAAAAAAEAYI8QFAAAAAAAAgDBGiAsAAAAAAAAAYYwQt6psknmuqU31NvEuAgAAAEAFOV1OjXxipC4YeoGcLmeo2wEAoNqcTqfuuOMOXXzxxXI6AzO3ET9WlSEpWvI6vIcfAwAAAADKZdgMJaUkKbpWtAwbH6YAAJHPMAwlJSUpPj5ehhGYuY0QFwAAAAAAAADCGCFuVZmS8buhenn1JDPUzQAAAABAZPB5fJo3fZ5+//Z3+Ty+ULcDAEC1+Xw+zZ07VytWrJDPF5i5zRGQs54KLMnYYSi5IFmyQt0MAAAAAEQGn9en7xZ+p+zsbPm8hLgAgMjn8/n03XffacOGDQELcbkSFwAAAAAAAADCGFfiAgAAAABQSU0f+F+pbS67pQnnSu0y56jYV/rGNlvGXxSM1gAAJyGuxAUAAAAAAACAMEaICwAAAAAAAABhjBAXAAAAAAAAAMIYIS4AAAAAAAAAhDFC3KqySebZpjbX3cy7CAAAAAAV5HQ5ddNDN6nrpV3ldDlD3Q4AANXmdDp18803q3///nI6AzO3ET9WlSEpTnI73YcfAwAAAADKZdgM1W9aX7F1Y2XY+DAFAIh8hmGofv36SkpKkmEEZm4jxAUAAAAAAACAMEaIW1WmZGw1VOdgHckMdTMAAAAAEBl8Hp8WzVykbT9uk8/jC3U7AABUm8/n08KFC7Vq1Sr5fIGZ2xwBOeupwDoc4tbNrytZoW4GAAAAACKDz+vTwjkLlZ2dLZ+XEBcAEPmOhLgbNmwIWIjLlbgAAAAAAAAAEMYIcQEAAAAAAAAgjBHiAgAAAAAAAEAYI8QFAAAAAAAAgDBGiAsAAAAAAAAAYYwQFwAAAAAAAADCGCFuVdkk80xTW+ts5V0EAAAAgApyRDl0/X3Xq/PFneWIcoS6HQAAqs3hcGjEiBHKyMiQwxGYuY34saoMSQnSoahDhx8DAAAAAMpls9vUsE1DxafEy2bnIykAIPLZbDY1bNhQderUkc0WmLmNGRMAAAAAAAAAwhghblWZkrHdUHJ+smSGuhkAAAAAiAw+j09LZi3Rzp92yufxhbodAACqzefzacmSJVq7dq18vsDMbSxAVFWWZGw2VO9gPckKdTMAAAAAEBl8Xp+++uwrZWdny+clxAUARD6fz6d58+Zpw4YNAQtxuRIXAAAAAAAAAMIYIS4AAAAAAAAAhDFCXAAAAAAAAAAIY4S4AAAAAAAAABDGCHEBAAAAAAAAIIwR4gIAAAAAAABAGCPErSqbZHYwtS15G+8iAAAAAFSQI8qhv935N53b71w5ohyhbgcAgGpzOBy65ppr1LNnTzkcgZnbiB+rypCUJBW5ig4/BgAAAACUy2a3qWmHpqqVXks2Ox9JAQCRz2azqWnTpmrQoIFstsDMbcyYAAAAAAAAABDGCHGrypSMXYaSCpIkM9TNAAAAAEBk8Hl8Wjp7qXb/sls+jy/U7QAAUG0+n09Lly7V+vXr5fMFZm5jAaKqsiRjo6EGeQ0kK9TNAAAAAEBk8Hl9+uKDL5SdnS2flxAXABD5fD6fPv/8c23YsCFgIS5X4gIAAAAAAABAGCPEBQAAAAAAAIAwRogLAAAAAAAAAGGMEBcAAAAAAAAAwhghLgAAAAAAAACEMUJcAAAAAAAAAAhjhLhVZZPM003tqL2DdxEAAAAAKsgR5dDlN12uTr06yRHlCHU7AABUm8Ph0BVXXKELL7xQDkdg5jbix6oyJNWRCqILDj8GAAAAAJTLZrep9bmtVbt5bdnsfCQFAEQ+m82m1q1bq2HDhrLZAjO3MWMCAAAAAAAAQBgjxK0qU9IeKbEw8fBjAAAAAEC5fB6fVs5fqb1r9srn8YW6HQAAqs3n82nlypX6/fff5fMFZm4jxK0qS7Ktsyk1N1WyQt0MAAAAAEQGn9enT9/6VD9/+7N8XkJcAEDk8/l8+uSTT/TDDz8Q4gIAAAAAAADAqYgQFwAAAAAAAADCGCEuAAAAAAAAAISxkIa4Tz75pM455xwlJCSofv36uuSSS7Ru3boS+wwfPlyGYZT4Ov/880vsU1xcrJEjR6pu3bqKi4vToEGDtGPHjmAOBQAAAAAAAAACIqQh7sKFC3Xbbbfp+++/19y5c+X1epWRkaGCgoIS+/Xr10+7d+/2f82ePbvE63fddZdmzZqld955R4sXL1Z+fr4GDhwYsIWEAQAAAAAAACBYHKEs/sUXX5R4PmXKFNWvX1/Lly/XhRde6N/ucrmUkpJS5jlyc3M1efJkvfHGG+rdu7ck6c0331R6errmzZunvn37Bm4AAAAAAAAAABBgIQ1xj5WbmytJSk5OLrF9wYIFql+/vpKSktStWzc98cQTql+/viRp+fLl8ng8ysjI8O+flpamdu3aacmSJWWGuMXFxSouLvY/z8vLkyR5PB55PJ6KNWtJ3lZe7dq3S419jaUKHlZVR/qqcH8RVO9krRXseowtMusxtsirFex6jC0y6zG2yKsV7HqMLTLrMbaaYRmWBl8zWD+v+FmWYQW8ZqDG5rJbpbfZrBL/PV4vNVErkPVOdC6+/yOrHmOLvFrBrsfYaoZlWRo8eLC+++47WVbF57bK9GZYllX23/ZBdmSwBw4c0DfffOPf/u677yo+Pl5NmjTR5s2b9dBDD8nr9Wr58uVyuVyaMWOGrrvuuhKhrCRlZGSoWbNmevXVV0vVyszM1NixY0ttnzFjhmJjY2t+cAAAAAAAAABwlMLCQg0bNky5ublKTEw84b5hcyXu7bffrl9++UWLFy8usf3yyy/3P27Xrp06deqkJk2a6H//+5+GDBly3PNZliXDMMp8bfTo0br77rv9z/Py8pSenq6MjIxy37CjeTwezZ07V3369JHT6azwcVURzFrBrney1gp2PcYWmfUYW+TVCnY9xhaZ9Rhb5NUKdj3GFpn1GFtk1gtUrXaZc0ptc9ksPdbJ1EPLbCo2S38e/TWzasv9lVUrkPXKwvdIZNZjbJFXK9j1GFto6x1ZHaAiwiLEHTlypD755BMtWrRIjRo1OuG+qampatKkiTZs2CBJSklJkdvt1oEDB1S7dm3/fnv37lWXLl3KPIfL5ZLL5Sq13el0VvwP1ZK0T0ooSpDTUYnjqqlSPUZYvZO1VrDrMbbIrMfYIq9WsOsxtsisx9gir1aw6zG2yKzH2KrH9Jla/cNq7V+/X/a+9ogdW7Gv7IuGJKnYNMp8var1T1QrEPVOhO//yKzH2CKvVrDrMbbqMU1Tq1ev1rZt22S3V3xuq0xftqo2VxMsy9Ltt9+uDz/8UPPnz1ezZs3KPWb//v3avn27UlNTJUlnn322nE6n5s6d699n9+7d+vXXX48b4tYIU7KttSktJ00yA1cGAAAAAE4mXrdXH075UD8t/EletzfU7QAAUG1er1cffPCBvv32W3m9gZnbQnol7m233aYZM2bo448/VkJCgrKysiRJtWrVUkxMjPLz85WZmanLLrtMqamp2rJli8aMGaO6devq0ksv9e87YsQI3XPPPapTp46Sk5M1atQotW/fXr179w7l8AAAAAAAAACg2kIa4k6aNEmS1L179xLbp0yZouHDh8tut2vVqlWaPn26cnJylJqaqh49eujdd99VQkKCf//nnntODodDQ4cOVVFRkXr16qWpU6fKbrcHczgAAAAAAAAAUONCGuJalnXC12NiYjRnTtkLuB8tOjpaEydO1MSJE2uqNQAAAAAAAAAICyFdExcAAAAAAAAAcGKEuAAAAAAAAAAQxghxAQAAAAAAACCMEeJWlSGZbUztrrVbMkLdDAAAAABEBrvDrouvulhndD1Ddgc3owYARD673a5BgwbpvPPOk90emLktpDc2i2g2SQ2kvNg8onAAAAAAqCC7066OPTtq16FdsjsJcQEAkc9ut6tjx47atWtXwEJc4kcAAAAAAAAACGOEuFVlSdovxR2KO/wYAAAAAFAu02dq/Y/rdeD3AzJ9ZqjbAQCg2kzT1Pr167Vz506ZZmDmNkLcqjIl22qbGh1oJPFzBwAAAABUiNft1buvvqtlXy2T1+0NdTsAAFSb1+vVO++8o0WLFsnrDczcRogLAAAAAAAAAGGMEBcAAAAAAAAAwhghLgAAAAAAAACEMUJcAAAAAAAAAAhjhLgAAAAAAAAAEMYIcQEAAAAAAAAgjDlC3UDEMiSrpaU9e/aohdEi1N0AAAAAQESwO+zqd1k//fLLL7I77KFuBwCAarPb7erfv78SExNltwdmbiPErSqbZKVZyonL4XpmAAAAAKggu9Oucwaco33aJ7uTEBcAEPnsdrvOOecc7du3L2AhLvEjAAAAAAAAAIQxQtyqsiTlSDHFMYcfAwAAAADKZfpMbflli3K358r0maFuBwCAajNNU1u2bNGePXtkmoGZ2whxq8qUbL/Y1Di7scTPHQAAAABQIV63V2+88IZ+/OJHed3eULcDAEC1eb1eTZ8+XfPnz5fXG5i5jRAXAAAAAAAAAMIYIS4AAAAAAAAAhDFCXAAAAAAAAAAIY4S4AAAAAAAAABDGCHEBAAAAAAAAIIwR4gIAAAAAAABAGHOEuoGIZUhWM0v7svaphdEi1N0AAAAAQESwO+zqNbCXVq9eLbvDHup2AACoNrvdrt69eysuLk52e2DmNkLcqrJJVrql7FXZXM8MAAAAABVkd9rV5dIuynHlyO4kxAUARD673a4uXbooJycnYCEu8SMAAAAAAAAAhDFC3KqyJB2Uot3Rhx8DAAAAAMpl+kztXLdT+Vn5Mn1mqNsBAKDaTNPUzp07tX//fplmYOY2QtyqMiXbCpua7G8i8XMHAAAAAFSI1+3V6xNe13effiev2xvqdgAAqDav16vJkyfryy+/lNcbmLmNEBcAAAAAAAAAwhghLgAAAAAAAACEMUJcAAAAAAAAAAhjhLgAAAAAAAAAEMYIcQEAAAAAAAAgjBHiAgAAAAAAAEAYc4S6gYhlSFYTS3/s/kMtjBah7gYAAAAAIoLdYVe3vt20Zs0a2R32ULcDAEC12e12devWTS6XS3Z7YOY2Qtyqsh0Ocfev3s/1zAAAAABQQXanXRcOvVD5s/NldxLiAgAi35EQt6CgIGAhLvEjAAAAAAAAAIQxQtyqsiQVSFGeqMOPAQAAAADlskxLe7fsVeEfhbJMPkwBACKfZVnau3evcnJyZFmBmdsIcavKlGzLbWr2RzPJDHUzAAAAABAZPMUevfrYq/p21rfyFHtC3Q4AANXm8Xj0yiuv6PPPP5fHE5i5jRAXAAAAAAAAAMIYIS4AAAAAAAAAhDFCXAAAAAAAAAAIY4S4AAAAAAAAABDGCHEBAAAAAAAAIIwR4gIAAAAAAABAGHOEuoGIZUhWI0vZu7LVwmgR6m4AAAAAICLYHXZ17tZZv637TXaHPdTtAABQbXa7XZ07d5bdbpfdHpi5jRC3qmyS1dzSvt/2cT0zAAAAAFSQ3WlX72t6yz3bLbuTEBcAEPnsdrv69Okjj8cTsBCX+BEAAAAAAAAAwhghblVZkg5JDq/j8GMAAAAAQLks01JOVo4O5R6SZfJhCgAQ+SzLUk5OjvLz82VZgZnbCHGrypRsP9rUYl8LyQx1MwAAAAAQGTzFHk18cKK+mfmNPMWeULcDAEC1eTwevfjii/r000/l8QRmbiPEBQAAAAAAAIAwRogLAAAAAAAAAGGMEBcAAAAAAAAAwhghLgAAAAAAAACEMUJcAAAAAAAAAAhjhLgAAAAAAAAAEMYcoW4gYhmSlWYpZ2eOZIS6GQAAAACIDDa7TZ26dNKG9Rtks3NdEQAg8tlsNnXq1Mn/OBAIcavKJlktLe1Zv4frmQEAAACgghxRDvUf0V/WbEuOKD6SAgAin8Ph0IABA/yPA4H4EQAAAAAAAADCGCFuVVmS3JLdZz/8GAAAAABQLsu0VHCgQJ4CjyyTD1MAgMhnWZYKCgp06NAhWVZg5jZC3KoyJdv3NrXc21IyQ90MAAAAAEQGT7FHz456VgtmLJCn2BPqdgAAqDaPx6NnnnlGs2bNkscTmLmNEBcAAAAAAAAAwhghLgAAAAAAAACEMUJcAAAAAAAAAAhjhLgAAAAAAAAAEMYIcQEAAAAAAAAgjBHiAgAAAAAAAEAYc4S6gYhlSFYDS7k7ciUj1M0AAAAAQGSw2W064+wztGnTJtnsXFcEAIh8NptNZ5xxhrxer2y2wMxthLhVZZOsNpayNmVxPTMAAAAAVJAjyqFBtw7S7Nmz5YjiIykAIPI5HA4NHjxYTqdTDkdg5jbiRwAAAAAAAAAIY4S4VWVJ8kmGaRx+DAAAAAAol2Vache55S32yjL5MAUAiHyWZcntdsvj8ciyAjO3EeJWlSnZvrWp9Z7WkhnqZgAAAAAgMniKPfrX7f/S19O/lqfYE+p2AACoNo/Ho/Hjx+v999+XxxOYuY0QFwAAAAAAAADCGCEuAAAAAAAAAIQxQlwAAAAAAAAACGMhDXGffPJJnXPOOUpISFD9+vV1ySWXaN26dSX2sSxLmZmZSktLU0xMjLp3767Vq1eX2Ke4uFgjR45U3bp1FRcXp0GDBmnHjh3BHAoAAAAAAAAABERIQ9yFCxfqtttu0/fff6+5c+fK6/UqIyNDBQUF/n0mTJigZ599Vi+99JKWLl2qlJQU9enTRwcPHvTvc9ddd2nWrFl65513tHjxYuXn52vgwIHy+XyhGBYAAAAAAAAA1BhHKIt/8cUXJZ5PmTJF9evX1/Lly3XhhRfKsiw9//zzevDBBzVkyBBJ0rRp09SgQQPNmDFDN910k3JzczV58mS98cYb6t27tyTpzTffVHp6uubNm6e+ffsGfVwAAAAAAAAAUFNCGuIeKzc3V5KUnJwsSdq8ebOysrKUkZHh38flcqlbt25asmSJbrrpJi1fvlwej6fEPmlpaWrXrp2WLFlSZohbXFys4uJi//O8vDxJksfjkcfjqVizpmTWNnUw+qA8Xo9UwcOq6khfFe4vguqdrLWCXY+xRWY9xhZ5tYJdj7FFZj3GFnm1gl2PsUVmPcZWM3ymT23attHWbVvlM30BrxmosbnsVultNqvEf4/XS03UCmS9E52L7//IqsfYIq9WsOsxtprh8/nUunVrHTp0SD5fxee2yvRmWJZV9t/2QWZZlgYPHqwDBw7om2++kSQtWbJEXbt21c6dO5WWlubf98Ybb9TWrVs1Z84czZgxQ9ddd12JUFaSMjIy1KxZM7366qulamVmZmrs2LGlts+YMUOxsbE1PDIAAAAAAAAAKKmwsFDDhg1Tbm6uEhMTT7hv2FyJe/vtt+uXX37R4sWLS71mGEaJ55Zlldp2rBPtM3r0aN19993+53l5eUpPT1dGRka5b9jRPB6P5s6dqz59+sjpdFb4uKoIZq1g1ztZawW7HmOLzHqMLfJqBbseY4vMeowt8moFux5ji8x6jC0y6wWqVrvMOaW2uWyWHutk6qFlNhWbpT+P/ppZteX+yqoVyHpl4XskMusxtsirFex6jC209Y6sDlARYRHijhw5Up988okWLVqkRo0a+benpKRIkrKyspSamurfvnfvXjVo0MC/j9vt1oEDB1S7du0S+3Tp0qXMei6XSy6Xq9R2p9NZpT/Uqh5XFcGsFex6J2utYNdjbJFZj7FFXq1g12NskVmPsUVerWDXY2yRWY+xRWa9mq5V7Dv+hUXFplHm61Wtf6Jagah3InyPRGY9xhZ5tYJdj7GFpl5l+rJVtaGaYFmWbr/9dn344YeaP3++mjVrVuL1Zs2aKSUlRXPnzvVvc7vdWrhwoT+gPfvss+V0Okvss3v3bv3666/HDXFrhE+yLbKpze42ki9wZQAAAADgZOIucuuxEY9p7n/nyl3kDnU7AABUm9vt1qOPPqq3335bbndg5raQXol72223acaMGfr444+VkJCgrKwsSVKtWrUUExMjwzB01113ady4cWrVqpVatWqlcePGKTY2VsOGDfPvO2LECN1zzz2qU6eOkpOTNWrUKLVv3169e/cO5fAAAAAAAAAAoNpCGuJOmjRJktS9e/cS26dMmaLhw4dLku677z4VFRXp1ltv1YEDB3Teeefpyy+/VEJCgn//5557Tg6HQ0OHDlVRUZF69eqlqVOnym63B2soAAAAAAAAABAQIQ1xLcsqdx/DMJSZmanMzMzj7hMdHa2JEydq4sSJNdgdAAAAAAAAAIReSNfEBQAAAAAAAACcGCEuAAAAAAAAAIQxQlwAAAAAAAAACGMhXRM3ohmSlWypwFUgGaFuBgAAAAAig81uU8s2LbVt6zbZ7FxXBACIfDabTS1btlRBQYFstsDMbcyYVWWTrHaWdiTv4F0EAAAAgApyRDl05X1Xqv1F7eWI4roiAEDkczgcGjZsmLp16yaHIzBzG/EjAAAAAAAAAIQxQlwAAAAAAAAACGOEuFXlk2zf2tQ6q7XkC3UzAAAAABAZ3EVujb9lvOa/Pl/uIneo2wEAoNrcbreefPJJvffee3K7AzO3EeJWh08yLO5qBgAAAACV4XF75PNxNQwA4OTh8Xjk9XoDdn5CXAAAAAAAAAAIY4S4AAAAAAAAABDGCHEBAAAAAAAAIIwR4gIAAAAAAABAGCPEBQAAAAAAAIAw5qjKQdu3b9eWLVtUWFioevXq6fTTT5fL5arp3sKelWSpMKow1G0AAAAAQMQwDENNmjeRzWGTYRihbgcAgGozDENNmzZVbm5uwOa2Coe4W7du1SuvvKK3335b27dvl2VZ/teioqJ0wQUX6MYbb9Rll10mm+0UuMDXLlkdLG3fsV3t7e1D3Q0AAAAARARntFPXPHiNZs+eLWe0M9TtAABQbU6nU9dc8//nNmdg5rYKpa133nmn2rdvrw0bNujRRx/V6tWrlZubK7fbraysLM2ePVt//vOf9dBDD6lDhw5aunRpQJoFAAAAAAAAgFNNha7EjYqK0qZNm1SvXr1Sr9WvX189e/ZUz5499cgjj2j27NnaunWrzjnnnBpvFgAAAAAAAABONRUKcZ966qkKn3DAgAFVbiai+CTbdza13NNS8knit4AAAAAAoFzuIree/cez2rdvn3r36B2wXzsFACBY3G63nnnmGf3222/q3Tswc9spsHhtAHkku2kPdRcAAAAAEFEKCwtVXFwc6jYAAKgxgZ7bKnxjsyP279+vhx9+WF9//bX27t0r0zRLvJ6dnV1jzQEAAAAAAADAqa7SIe7VV1+tTZs2acSIEWrQoIEMwwhEXwAAAAAAAAAAVSHEXbx4sRYvXqwzzjgjEP0AAAAAAAAAAI5S6TVxTzvtNBUVFQWiFwAAAAAAAADAMSod4r788st68MEHtXDhQu3fv195eXklvgAAAAAAAAAANafSyykkJSUpNzdXPXv2LLHdsiwZhiGfz1djzYU7K8HSIeehULcBAAAAABHDMAylNkyVJYt7rAAATgqGYSgtLU379+8P2NxW6RD3qquuUlRUlGbMmHFq39jMLllnWtq6e6tOt58e6m4AAAAAICI4o5264dEbNHv2bDmjnaFuBwCAanM6nbrhhv8/tzkDM7dVOsT99ddftWLFCrVp0yYQ/QAAAAAAAAAAjlLpNXE7deqk7du3B6IXAAAAAAAAAMAxKn0l7siRI3XnnXfq3nvvVfv27UtdItyhQ4caay6s+STbjzY139tc8knit4AAAAAAoFyeQx5NvH+isrKy1Kdnn4D92ikAAMHi8Xj04osvas2aNerTJzBzW6VD3Msvv1ySdP311/u3GYZxSt7YTIckp48fOAAAAACgoizLUs6BHBUWFMqyrFC3AwBAtVmWpZycHBUUFARsbqt0iLt58+ZA9AEAAAAAAAAAKEOlQ9wmTZoEog8AAAAAAAAAQBkqHeJK0s6dO/Xtt99q7969Mk2zxGt33HFHjTQGAAAAAAAAAKhCiDtlyhTdfPPNioqKUp06dWQYhv81wzAIcQEAAAAAAACgBlU6xH344Yf18MMPa/To0bLZbIHoCQAAAAAAAADw/1U6xC0sLNQVV1xBgCtJsZLb4Q51FwAAAAAQMQzDUL369eT1eUv8ZicAAJHKMAzVq1dPe/fuDdjcVukkdsSIEXrvvfcC0UtksUtmJ1Ob622W7KFuBgAAAAAigzPaqZufvFnnDT1PzmhnqNsBAKDanE6nbrnlFg0YMEBOZ2Dmtkpfifvkk09q4MCB+uKLL9S+fftSjT377LM11hwAAAAAAAAAnOoqHeKOGzdOc+bMUZs2bSSp1I3NAAAAAAAAAAA1p9Ih7rPPPqvXX39dw4cPD0A7EcQn2ZbZ1GxfM8knid8CAgAAAIByeQ559Mo/X9Hu3bvVp2efgP3aKQAAweLxeDRp0iStXr1affoEZm6r9Jq4LpdLXbt2rfFGIlKhFOWNCnUXAAAAABAxLMvSvr37lJebJ8uyQt0OAADVZlmW9u3bp9zc3IDNbZUOce+8805NnDgxEL0AAAAAAAAAAI5R6eUUfvzxR82fP1+fffaZTj/99FKXB3/44Yc11hwAAAAAAAAAnOoqHeImJSVpyJAhgegFAAAAAAAAAHCMSoe4U6ZMCUQfAAAAAAAAAIAyVHpNXAAAAAAAAABA8FQoxO3Xr5+WLFlS7n4HDx7Uv/71L/373/+udmMRIVry2D2h7gIAAAAAIoZhGEqqnaTYuFgZhhHqdgAAqDbDMJSUlKS4uLiAzW0VWk7hr3/9q4YOHaqEhAQNGjRInTp1UlpamqKjo3XgwAGtWbNGixcv1uzZszVw4EA99dRTAWk2rNgl81xTv//xu06znxbqbgAAAAAgIjijnRr59EjNnj1bzmhn+QcAABDmnE6n7rjjjsNzmzMwc1uFQtwRI0bob3/7m95//329++67+u9//6ucnBxJh5Pmtm3bqm/fvlq+fLnatGkTkEYBAAAAAAAA4FRU4RubRUVFadiwYRo2bJgkKTc3V0VFRapTp07AEmYAAAAAAAAAONVV+cZmtWrVUkpKyqkb4PokY4WhJn80kXyhbgYAAAAAIoPnkEevPfyaln2wTJ5D3GMEABD5PB6PXnvtNc2ZM0ceT2DmtiqHuJCMg4aiPdGhbgMAAAAAIoZlWdq9c7cOZB+QZVmhbgcAgGqzLEu7du1SdnZ2wOY2QlwAAAAAAAAACGOEuAAAAAAAAAAQxghxAQAAAAAAACCMOap6oNvt1t69e2WaZontjRs3rnZTAAAAAAAAAIDDKh3ibtiwQddff72WLFlSYrtlWTIMQz6fr8aaAwAAAAAAAIBTXaVD3OHDh8vhcOizzz5TamqqDMMIRF+RwSn5bITWAAAAAFAZsbGxKigoCHUbAADUmNjYWLlcroCdv9Ih7sqVK7V8+XKddtppgegnctgls7OpjQc2qrW9dai7AQAAAICIEBUTpXsm3qPZs2crKiYq1O0AAFBtUVFRGjVq1OG5LSowc1ulb2zWtm1b/fHHH4HoBQAAAAAAAABwjEqHuP/617903333acGCBdq/f7/y8vJKfAEAAAAAAAAAak6ll1Po3bu3JKlXr14ltp9yNzbzScYvhtL3p0s+Sc5QNwQAAAAA4c9zyKPp46dr+7bt6tOzj5xOPkwBACKbx+PR9OnT9fPPP6tPn8DMbZUOcb/++usabyJSGTmGYt2xoW4DAAAAACKGZVna+vtWZWdny7KsULcDAEC1WZalLVu2aO/evQGb2yod4nbr1i0QfQAAAAAAAAAAylDpEFeScnJyNHnyZK1du1aGYaht27a6/vrrVatWrZruDwAAAAAAAABOaZW+sdmyZcvUokULPffcc8rOztYff/yhZ599Vi1atNBPP/0UiB4BAAAAAAAA4JRV6Stx//GPf2jQoEH673//K4fj8OFer1c33HCD7rrrLi1atKjGmwQAAAAAAACAU1WlQ9xly5aVCHAlyeFw6L777lOnTp1qtDkAAAAAAAAAONVVejmFxMREbdu2rdT27du3KyEhoUaaihh2yTK4myoAAAAAVIYzyim73R7qNgAAqDFOp7PERa81rdIh7uWXX64RI0bo3Xff1fbt27Vjxw698847uuGGG3TllVcGosfwZJfMrqbWp6yX+NkDAAAAACokKiZKD0x6QD2v76momKhQtwMAQLVFRUVp9OjR+utf/6qoqMDMbZWOh59++mkZhqFrrrlGXq9X0uGk+ZZbbtH48eNrvEEAAAAAAAAAOJVVOsSNiorSCy+8oCeffFKbNm2SZVlq2bKlYmNjA9EfAAAAAAAAAJzSKr2cwhGxsbFq3769OnTocGoGuKZk/GqoUXYjyQx1MwAAAAAQGbxur96e8LZW/W+VvG5vqNsBAKDavF6vZsyYoYULF/pXLqhpFboSd8iQIZo6daoSExM1ZMiQE+774Ycf1khjYc+SjGxDccVxEvc2AwAAAIAKMX2mNq7bqOzsbJk+rogBAEQ+0zS1ceNG7dq1S6YZmLmtQiFurVq1ZBiGJCkxMdH/GAAAAAAAAAAQWBUKcadMmeJ/PHXq1ED1AgAAAAAAAAA4RqXXxO3Zs6dycnJKbc/Ly1PPnj0rda5Fixbp4osvVlpamgzD0EcffVTi9eHDh8swjBJf559/fol9iouLNXLkSNWtW1dxcXEaNGiQduzYUdlhAQAAAAAAAEBYqnSIu2DBArnd7lLbDx06pG+++aZS5yooKNAZZ5yhl1566bj79OvXT7t37/Z/zZ49u8Trd911l2bNmqV33nlHixcvVn5+vgYOHCifz1epXgAAAAAAAAAgHFVoOQVJ+uWXX/yP16xZo6ysLP9zn8+nL774Qg0bNqxU8f79+6t///4n3MflciklJaXM13JzczV58mS98cYb6t27tyTpzTffVHp6uubNm6e+fftWqh8AAAAAAAAACDcVDnE7duzoX9KgrGUTYmJiNHHixBptTjp85W/9+vWVlJSkbt266YknnlD9+vUlScuXL5fH41FGRoZ//7S0NLVr105Lliw5bohbXFys4uJi//O8vDxJksfjkcfjqVhjPkn//2ZzHo9Hsld+bJVxpK8K9xdB9U7WWsGux9gisx5ji7xawa7H2CKzHmOLvFrBrsfYIrMeY6u5WpZl+R8HumagxuayW6W32awS/z1eLzVRK5D1TnQuvv8jqx5ji7xawa7H2Gqulmma/scVrVmZ3gzryOxZjq1bt8qyLDVv3lw//vij6tWr538tKipK9evXl91e9STTMAzNmjVLl1xyiX/bu+++q/j4eDVp0kSbN2/WQw89JK/Xq+XLl8vlcmnGjBm67rrrSgSykpSRkaFmzZrp1VdfLbNWZmamxo4dW2r7jBkzFBsbW+UxAAAAAAAAAEBFFBYWatiwYcrNzVViYuIJ963wlbhNmjSRJH+qHAyXX365/3G7du3UqVMnNWnSRP/73/80ZMiQ4x5nWZYMwzju66NHj9bdd9/tf56Xl6f09HRlZGSU+4YdzePxaO7cuerTp4+cTmeFj6uKYNYKdr2TtVaw6zG2yKzH2CKvVrDrMbbIrMfYIq9WsOsxtsisx9gis16garXLnFNqm8tm6bFOph5aZlOxWfoz6a+ZVVvyr6xagaxXFr5HIrMeY4u8WsGux9hCW+/I6gAVUeEQ91hr1qzRtm3bSt3kbNCgQVU9ZblSU1PVpEkTbdiwQZKUkpIit9utAwcOqHbt2v799u7dqy5duhz3PC6XSy6Xq9R2p9NZpT/Uqh5XFcGsFex6J2utYNdjbJFZj7FFXq1g12NskVmPsUVerWDXY2yRWY+xRWa9mq5V7Dv+hUPFplHm61Wtf6Jagah3InyPRGY9xhZ5tYJdj7GFpl5l+qp0iPv777/r0ksv1apVq2QYhn8toyNXvvp8vsqessL279+v7du3KzU1VZJ09tlny+l0au7cuRo6dKgkaffu3fr11181YcKEgPUhSTIlY42htANp/rVxAQAAAAAn5nV79f7z72vzls3K6J0R1A/WAAAEgtfr1XvvvacVK1YoIyMwc5utsgfceeedatasmfbs2aPY2FitXr1aixYtUqdOnbRgwYJKnSs/P18rV67UypUrJUmbN2/WypUrtW3bNuXn52vUqFH67rvvtGXLFi1YsEAXX3yx6tatq0svvVSSVKtWLY0YMUL33HOPvvrqK61YsUJXX3212rdvr969e1d2aJVjScYfhhIOJUgVWlUYAAAAAGD6TK39da12bdsl08cVMQCAyGeaptauXavt27cHbCnaSl+J+91332n+/PmqV6+ebDabbDab/vznP+vJJ5/UHXfcoRUrVlT4XMuWLVOPHj38z4+sU3vttddq0qRJWrVqlaZPn66cnBylpqaqR48eevfdd5WQkOA/5rnnnpPD4dDQoUNVVFSkXr16aerUqdW6yRoAAAAAAAAAhItKh7g+n0/x8fGSpLp162rXrl1q06aNmjRponXr1lXqXN27d/cvx1CWOXPKXrz9aNHR0Zo4caImTpxYqdoAAAAAAAAAEAkqHeK2a9dOv/zyi5o3b67zzjtPEyZMUFRUlP7zn/+oefPmgegRAAAAAAAAAE5ZlQ5x//nPf6qgoECS9Pjjj2vgwIG64IILVKdOHb3zzjs13iAAAAAAAAAAnMoqHeL27dvX/7h58+Zas2aNsrOzVbt2bRmGUaPNAQAAAAAAAMCpzlbZA66//nodPHiwxLbk5GQVFhbq+uuvr7HGAAAAAAAAAABVCHGnTZumoqKiUtuLioo0ffr0GmkqItgks6up9Q3WV+FdBAAAAIBTk9Pl1P0v3a8e1/SQ0+UMdTsAAFSb0+nUAw88oL/85S9yOgMzt1V4OYW8vDxZliXLsnTw4EFFR0f7X/P5fJo9e7bq168fkCbDkiHJLlk26/BjAAAAAEC5DJuhqJgoOVwOGTY+TAEAIp9hGIqKipLT6QzYcrMVDnGTkpJkGIYMw1Dr1q1LvW4YhsaOHVujzQEAAAAAAADAqa7CIe7XX38ty7LUs2dPffDBB0pOTva/FhUVpSZNmigtLS0gTYYlUzLWGUrJSZHMUDcDAAAAAJHB6/bqk0mfaNOmTcronRGwXzsFACBYvF6vPv74Yy1fvlwZGYGZ2yoc4nbr1k2StHnzZjVu3DhglwZHDEsy9hiqVVRLskLdDAAAAABEBtNn6uflPys7O1umjytiAACRzzRN/fzzz9q8ebNMMzBzW4VC3F9++UXt2rWTzWZTbm6uVq1addx9O3ToUGPNAQAAAAAAAMCprkIhbseOHZWVlaX69eurY8eOMgxDllX68lPDMOTz+Wq8SQAAAAAAAAA4VVUoxN28ebPq1avnfwwAAAAAAAAACI4KhbhNmjQp8zEAAAAAAAAAILAqfGOzo61bt04TJ07U2rVrZRiGTjvtNI0cOVJt2rSp6f4AAAAAAAAA4JRmq+wB77//vtq1a6fly5frjDPOUIcOHfTTTz+pXbt2eu+99wLRIwAAAAAAAACcsip9Je59992n0aNH69FHHy2x/ZFHHtH999+vv/71rzXWXFizSeb5pjbmblQLW4tQdwMAAAAAEcHpcurup+/WvHnz5HQ5Q90OAADV5nQ6dc8992jOnDlyOgMzt1X6StysrCxdc801pbZfffXVysrKqpGmIoIhKUry2X2HHwMAAAAAymXYDMXVjpMzzinDxocpAEDkMwxDcXFxio6OlmEEZm6rdIjbvXt3ffPNN6W2L168WBdccEGNNAUAAAAAAAAAOKzSyykMGjRI999/v5YvX67zzz9fkvT999/rvffe09ixY/XJJ5+U2PekZUrGRkMNchtIZqibAQAAAIDI4HV79fnrn2vj+o3y9vYG7NdOUTVNH/hfmdtddksTzpXaZc5Rsa/0VWZbxl8U6NYAIGx5vV7Nnj1by5YtU0ZGRkDmtkqHuLfeeqsk6eWXX9bLL79c5mvS4cuIfT5fNdsLY5Zk7DKUVJgkWaFuBgAAAAAig+kztWzJMmVnZ8v0cUUMACDymaapZcuWacOGDTLNwMxtlQ5xA9UIAAAAAAAAAKC0Sq+JCwAAAAAAAAAIngpdifviiy/qxhtvVHR0tF588cUT7nvHHXfUSGMAAAAAAAAAgAqGuM8995yuuuoqRUdH67nnnjvufoZhEOICAAAAAAAAQA2qUIi7efPmMh8DAAAAAAAAAAKLNXEBAAAAAAAAIIxVOsT9y1/+ovHjx5fa/tRTT+mvf/1rjTQVEWySea6pTfU2EYUDAAAAQAU5XU6NfGKkLhh6gZwuZ6jbAQCg2pxOp+644w5dfPHFcjoDM7dVOn5cuHChLrroolLb+/Xrp0WLFtVIUxHBkBQteR3ew48BAAAAAOUybIaSUpIUXStaho0PUwCAyGcYhpKSkhQfHy/DCMzcVukQNz8/X1FRUaW2O51O5eXl1UhTAAAAAAAAAIDDKh3itmvXTu+++26p7e+8847atm1bI01FBFMyfjdUL6+eZIa6GQAAAACIDD6PT/Omz9Pv3/4un8cX6nYAAKg2n8+nuXPnasWKFfL5AjO3OSp7wEMPPaTLLrtMmzZtUs+ePSVJX331ld5++2299957Nd5g2LIkY4eh5IJkyQp1MwAAAAAQGXxen75b+J2ys7Pl8xLiAgAin8/n03fffacNGzaET4g7aNAgffTRRxo3bpzef/99xcTEqEOHDpo3b566desWiB4BAAAAAAAA4JRV6RBXki666KIyb24GAAAAAAAAAKhZlV4TV5JycnL02muvacyYMcrOzpYk/fTTT9q5c2eNNgcAAAAAAAAAp7pKX4n7yy+/qHfv3qpVq5a2bNmiG264QcnJyZo1a5a2bt2q6dOnB6JPAAAAAAAAADglVfpK3LvvvlvDhw/Xhg0bFB0d7d/ev39/LVq0qEabAwAAAAAAAIBTXaVD3KVLl+qmm24qtb1hw4bKysqqkaYAAAAAAAAAAIdVOsSNjo5WXl5eqe3r1q1TvXr1aqSpiGCTzLNNba67uYorCwMAAADAqcfpcuqmh25S10u7yulyhrodAACqzel06uabb1b//v3ldAZmbqt0/Dh48GA9+uij8ng8kiTDMLRt2zY98MADuuyyy2q8wbBlSIqT3E734ccAAAAAgHIZNkP1m9ZXbN1YGTY+TAEAIp9hGKpfv76SkpJkGIGZ2yod4j799NPat2+f6tevr6KiInXr1k0tW7ZUQkKCnnjiiUD0CAAAAAAAAACnLEdlD0hMTNTixYs1f/58/fTTTzJNU2eddZZ69+4diP7ClykZWw3VOVhHMkPdDAAAAABEBp/Hp0UzF2nbmm3y9fEF7NdOAQAIFp/Pp4ULF2rVqlXq27dvQOa2SoW4Xq9X0dHRWrlypXr27KmePXvWeEMRwzoc4tbNrytZoW4GAAAAACKDz+vTwjkLlZ2dLZ/XF+p2AACotiMh7oYNG+TzBWZuq9RyCg6HQ02aNAlYMwAAAAAAAACAkiq9Ju4///lPjR49WtnZ2YHoBwAAAAAAAABwlEqvifviiy9q48aNSktLU5MmTRQXF1fi9Z9++qnGmgMAAAAAAACAU12lQ9zBgwfLMIxA9AIAAAAAAAAAOEalQ9zMzMwAtAEAAAAAAAAAKEuF18QtLCzUbbfdpoYNG6p+/foaNmyY/vjjj0D2BgAAAAAAAACnvAqHuI888oimTp2qiy66SFdccYXmzp2rW265JZC9hTebZJ5pamudrVW4PRwAAAAAnJocUQ5df9/16nxxZzmiKv3LoQAAhB2Hw6ERI0YoIyNDDkdg5rYKn/XDDz/U5MmTdcUVV0iSrr76anXt2lU+n092uz0gzYU1Q1KCdCjq0OHHAAAAAIBy2ew2NWzTUPGb4mWzc0UMACDy2Ww2NWzYUHXq1JHNFpi5rcJn3b59uy644AL/83PPPVcOh0O7du0KSGMAAAAAAAAAgEqEuD6fT1FRUSW2ORwOeb3eGm8qIpiSsd1Qcn6yZIa6GQAAAACIDD6PT0tmLdHOn3bK5/GFuh0AAKrN5/NpyZIlWrt2rXy+wMxtFV5OwbIsDR8+XC6Xy7/t0KFDuvnmmxUXF+ff9uGHH9Zsh+HKkozNhuodrCdZoW4GAAAAACKDz+vTV599pezsbPm8hLgAgMjn8/k0b948bdiwIfQh7rXXXltq29VXX12jzQAAAAAAAAAASqpwiDtlypRA9gEAAAAAAAAAKAO3AgUAAAAAAACAMEaICwAAAAAAAABhjBAXAAAAAAAAAMIYIS4AAAAAAAAAhDFC3KqySWYHU9uSt/EuAgAAAEAFOaIc+tudf9O5/c6VI6rC99oGACBsORwOXXPNNerZs6ccjsDMbcSPVWVISpKKXEWHHwMAAAAAymWz29S0Q1PVSq8lm52PpACAyGez2dS0aVM1aNBANltg5jZmTAAAAAAAAAAIY4S4VWVKxi5DSQVJkhnqZgAAAAAgMvg8Pi2dvVS7f9ktn8cX6nYAAKg2n8+npUuXav369fL5AjO3sQBRVVmSsdFQg7wGkhXqZgAAAAAgMvi8Pn3xwRfKzs6Wz0uICwCIfD6fT59//rk2bNgQsBCXK3EBAAAAAAAAIIwR4gIAAAAAAABAGCPEBQAAAAAAAIAwRogLAAAAAAAAAGGMEBcAAAAAAAAAwhghLgAAAAAAAACEMULcqrJJ5ummdtTewbsIAAAAABXkiHLo8psuV6deneSIcoS6HQAAqs3hcOiKK67QhRdeKIcjMHMb8WNVGZLqSAXRBYcfAwAAAADKZbPb1Prc1qrdvLZsdj6SAgAin81mU+vWrdWwYUPZbIGZ25gxAQAAAAAAACCMEeJWlSlpj5RYmHj4MQAAAACgXD6PTyvnr9TeNXvl8/hC3Q4AANXm8/m0cuVK/f777/L5AjO3EeJWlSXZ1tmUmpsqWaFuBgAAAAAig8/r06dvfaqfv/1ZPi8hLgAg8vl8Pn3yySf64YcfCHEBAAAAAAAA4FREiAsAAAAAAAAAYYwQFwAAAAAAAADCWEhD3EWLFuniiy9WWlqaDMPQRx99VOJ1y7KUmZmptLQ0xcTEqHv37lq9enWJfYqLizVy5EjVrVtXcXFxGjRokHbs2BHEUQAAAAAAAABA4IQ0xC0oKNAZZ5yhl156qczXJ0yYoGeffVYvvfSSli5dqpSUFPXp00cHDx7073PXXXdp1qxZeuedd7R48WLl5+dr4MCBAVtEGAAAAAAAAACCyRHK4v3791f//v3LfM2yLD3//PN68MEHNWTIEEnStGnT1KBBA82YMUM33XSTcnNzNXnyZL3xxhvq3bu3JOnNN99Uenq65s2bp759+wZtLAAAAAAAAAAQCCENcU9k8+bNysrKUkZGhn+by+VSt27dtGTJEt10001avny5PB5PiX3S0tLUrl07LVmy5LghbnFxsYqLi/3P8/LyJEkej0cej6diDVqSt5VXu/btUmNfY6mCh1XVkb4q3F8E1TtZawW7HmOLzHqMLfJqBbseY4vMeowt8moFux5ji8x6jK1mWIalwdcM1s8rfpZlWAGvGaixuexW6W02q8R/j9dLTdQKVL1g1jqRk/X7P9j1GFvk1Qp2PcZWMyzL0uDBg/Xdd9/Jsio+t1WmN8OyrLL/Bg4ywzA0a9YsXXLJJZKkJUuWqGvXrtq5c6fS0tL8+914443aunWr5syZoxkzZui6664rEchKUkZGhpo1a6ZXX321zFqZmZkaO3Zsqe0zZsxQbGxszQ0KAAAAAAAAAMpQWFioYcOGKTc3V4mJiSfcN2yvxD3CMIwSzy3LKrXtWOXtM3r0aN19993+53l5eUpPT1dGRka5b9jRPB6P5s6dqz59+sjpdFb4uKoIZq1g1ztZawW7HmOLzHqMLfJqBbseY4vMeowt8moFux5ji8x6jC0y6wWqVrvMOaW2uWyWHutk6qFlNhWbpT+T/ppZtSX/yqoVqHrBrHUiJ8P3SDjUY2yRVyvY9RhbaOsdWR2gIsI2xE1JSZEkZWVlKTU11b997969atCggX8ft9utAwcOqHbt2iX26dKly3HP7XK55HK5Sm13Op0V/0O1JO2TEooS5HRU4rhqqlSPEVbvZK0V7HqMLTLrMbbIqxXseowtMusxtsirFex6jC0y6zG26jF9plb/sFr71++Xva+9xuo1feB/ZW532S1NOFc684n5KvaVDh+3jL+oSvXKOpf/NdMo8/WqjvVEtWq6XjBrVcTJ9v0fqnqMLfJqBbseY6se0zS1evVqbdu2TXZ7xee2yvRlq2pzgdasWTOlpKRo7ty5/m1ut1sLFy70B7Rnn322nE5niX12796tX3/99YQhbo0wJdtam9Jy0iQzsKUAAAAA4GThdXv14ZQP9dPCn+R1e0PdDgAA1eb1evXBBx/o22+/ldcbmLktpFfi5ufna+PGjf7nmzdv1sqVK5WcnKzGjRvrrrvu0rhx49SqVSu1atVK48aNU2xsrIYNGyZJqlWrlkaMGKF77rlHderUUXJyskaNGqX27durd+/eoRoWAAAAAAAAANSYkIa4y5YtU48ePfzPj6xTe+2112rq1Km67777VFRUpFtvvVUHDhzQeeedpy+//FIJCQn+Y5577jk5HA4NHTpURUVF6tWrl6ZOnSq73R708QAAAAAAAABATQtpiNu9e3dZlnXc1w3DUGZmpjIzM4+7T3R0tCZOnKiJEycGoEMAAAAAAAAACK2wXRMXAAAAAAAAAECICwAAAAAAAABhjRAXAAAAAAAAAMIYIW5VGZLZxtTuWrslI9TNAAAAAEBksDvsuviqi3VG1zNkd3BDagBA5LPb7Ro0aJDOO+882e2BmdtCemOziGaT1EDKi80jCgcAAACACrI77erYs6N2Hdolu5MQFwAQ+ex2uzp27Khdu3YFLMQlfgQAAAAAAACAMEaIW1WWpP1S3KG4w48BAAAAAOUyfabW/7heB34/INNnhrodAACqzTRNrV+/Xjt37pRpBmZuI8StKlOyrbap0YFGEj93AAAAAECFeN1evfvqu1r21TJ53d5QtwMAQLV5vV698847WrRokbzewMxthLgAAAAAAAAAEMYIcQEAAAAAAAAgjBHiAgAAAAAAAEAYI8QFAAAAAAAAgDBGiAsAAAAAAAAAYYwQFwAAAAAAAADCmCPUDUQsQ7JaWtqzZ49aGC1C3Q0AAAAARAS7w65+l/XTL7/8IrvDHup2AACoNrvdrv79+ysxMVF2e2DmNkLcqrJJVpqlnLgcrmcGAAAAgAqyO+06Z8A52qd9sjsJcQEAkc9ut+ucc87Rvn37AhbiEj8CAAAAAAAAQBgjxK0qS1KOFFMcc/gxAAAAAKBcps/Ull+2KHd7rkyfGep2AACoNtM0tWXLFu3Zs0emGZi5jRC3qkzJ9otNjbMbS/zcAQAAAAAV4nV79cYLb+jHL36U1+0NdTsAAFSb1+vV9OnTNX/+fHm9gZnbCHEBAAAAAAAAIIwR4gIAAAAAAABAGCPEBQAAAAAAAIAwRogLAAAAAAAAAGGMEBcAAAAAAAAAwhghLgAAAAAAAACEMUeoG4hYhmQ1s7Qva59aGC1C3Q0AAAAARAS7w65eA3tp9erVsjvsoW4HAIBqs9vt6t27t+Li4mS3B2ZuI8StKptkpVvKXpXN9cwAAAAAUEF2p11dLu2iHFeO7E5CXABA5LPb7erSpYtycnICFuISPwIAAAAAAABAGCPErSpL0kEp2h19+DEAAAAAoFymz9TOdTuVn5Uv02eGuh0AAKrNNE3t3LlT+/fvl2kGZm4jxK0qU7KtsKnJ/iYSP3cAAAAAQIV43V69PuF1fffpd/K6vaFuBwCAavN6vZo8ebK+/PJLeb2BmdsIcQEAAAAAAAAgjBHiAgAAAAAAAEAYI8QFAAAAAAAAgDBGiAsAAAAAAAAAYYwQFwAAAAAAAADCGCEuAAAAAAAAAIQxR6gbiFiGZDWx9MfuP9TCaBHqbgAAAAAgItgddnXr201r1qyR3WEPdTsAAFSb3W5Xt27d5HK5ZLcHZm4jxK0q2+EQd//q/VzPDAAAAAAVZHfadeHQC5U/O192JyEuACDyHQlxCwoKAhbiEj8CAAAAAAAAQBgjxK0qS1KBFOWJOvwYAAAAAFAuy7S0d8teFf5RKMvkwxQAIPJZlqW9e/cqJydHlhWYuY0Qt6pMybbcpmZ/NJPMUDcDAAAAAJHBU+zRq4+9qm9nfStPsSfU7QAAUG0ej0evvPKKPv/8c3k8gZnbCHEBAAAAAAAAIIwR4gIAAAAAAABAGCPEBQAAAAAAAIAwRogLAAAAAAAAAGGMEBcAAAAAAAAAwhghLgAAAAAAAACEMUeoG4hYhmQ1spS9K1stjBah7gYAAAAAIoLdYVfnbp3127rfZHfYQ90OAADVZrfb1blzZ9ntdtntgZnbCHGryiZZzS3t+20f1zMDAAAAQAXZnXb1vqa33LPdsjsJcQEAkc9ut6tPnz7yeDwBC3GJHwEAAAAAAAAgjBHiVpUl6ZDk8DoOPwYAAAAAlMsyLeVk5ehQ7iFZJh+mAACRz7Is5eTkKD8/X5YVmLmNELeqTMn2o00t9rWQzFA3AwAAAACRwVPs0cQHJ+qbmd/IU+wJdTsAAFSbx+PRiy++qE8//VQeT2DmNkJcAAAAAAAAAAhj3NgMAACgmnw+X4l/cfd4PHI4HDp06JB8Pl/A6wez3slaK9j1GFtk1jteLbvdLofDIcMwAlofAACcughxAQAAqiE/P187duwosfaVZVlKSUnR9u3bgxLqBLPeyVor2PUYW2TWO1Gt2NhYpaamKioqKqA9AACAUxMhLgAAQBX5fD7t2LFDsbGxqlevnj/UMU1T+fn5io+Pl80W+NWrglnvZK0V7HqMLTLrlVXLsiy53W7t27dPmzdvVqtWrYIybgAAcGohxAUAAKgij8cjy7JUr149xcTE+Lebpim3263o6OighVjBqney1gp2PcYWmfWOVysmJkZOp1Nbt271vw4AAFCT+CdiAACAamIdTABcfQsAAAKJK3GrypCsNEs5O3MkPrcBAAAAQIXY7DZ16tJJG9ZvkM1O+A0AiHw2m02dOnXyPw4EQtyqsklWS0t71u/hemYAAAAAqCBHlEP9R/SXNduSI4qPpACAyOdwODRgwAD/44DUCMhZAQAATmHNx3we1Hq/j+sf1HqRZvjw4crJydFHH30kSerevbs6duyo559/PqR9VdbUqVN11113KScnp8LHHBn7hx9+WOP9bNmyRc2aNdOKFSvUsWPHGj//0dxut9q2batp06apa9euAa11rL179+r000/XypUrlZqaGtTaAAAAR3ANaVVZktyS3Wc//BgAACBCDB8+XIZhlPrq16+ff5+mTZv6t8fExOi0007TU089Jcsq/YPPkiVLZLfbSxx/tLJqvfLKKyfssWnTprLb7apdu7bi4uLUtGlTDR06VPPnz6/0eF944QVNnTq10scdz5YtW0qMpXbt2rrwwgu1cOHCGqtRlssvv1zr16+v1DHHjr1nz5666667Kl17+PDhuuSSS0psS09P1+7du9WuXbtKn6+y/vOf/6hJkyZBD3AlqX79+vrb3/6mRx55JOi1T1aWaangQIE8BR5ZJh+mAACRz7IsFRQU6NChQ2X+vFwTCHGrypRs39vUcm9LyQx1MwAAAJXTr18/7d69u8TX22+/XWKfRx99VLt379batWs1atQojRkzRv/5z39Knev111/XyJEjtXjxYm3btq3MelOmTClR69prry23x7Fjx+q3337T2rVrNX36dCUlJal379564oknKjXWWrVqKSkpqVLHVMS8efO0e/duLVy4UImJiRowYIA2b95c5r4ej6fa9WJiYlS/fv1KHROosUuS3W5XSkpKwH5l8GgTJ07UDTfcEPA6x3Pdddfprbfe0oEDB0LWw8nEU+zRs6Oe1YIZC+Qprv7/GwAAhJrH49EzzzyjWbNm1cjPfWUhxAUAADgFuVwupaSklPiqXbt2iX0SEhKUkpKipk2b6oYbblCHDh00d+7cEvsUFBRo5syZuuWWWzRw4MDjXvGalJRUolZMTEy5PSYkJKhBgwZq3LixLrzwQv3nP//RQw89pIcffljr1q2TJPl8Po0YMULNmjVTTEyM2rRpoxdeeKHEecq6ivSIRx99VO3bty+1/eyzz9bDDz98wv7q1KmjlJQUdejQQa+++qoKCwv15ZdfSpL/auPBgwcrLi5Ojz/+uCTp008/1dlnn63Y2Fh17NhRjz76qLxer/+cOTk5uvHGG9WgQQNFR0erXbt2+uyzzyQdXk7h6EA2MzNTHTt21Kuvvqr09HTFxsbqr3/9a4nlFo4e+6233qqFCxfqhRde8F9FvGXLlnLfw8zMTE2bNk0ff/yx/7gFCxb4r0heuXKlf9+FCxfq/PPPV4MGDdSwYUM98MADJcbXvXt33XHHHbrvvvuUnJyslJQUZWZmnvB9/umnn7Rx40ZddNFF/m1Has+cOVPdunVTamqqzjvvPK1fv15Lly5Vp06dFB8fr379+mnfvn2l3o9x48apQYMGSkpK0tixY+X1enXvvfcqOTlZjRo10uuvv16ih/bt2yslJUWzZs06Ya8AAACBQogLAACAE7IsSwsWLNDatWvldDpLvPbuu++qTZs2atOmja6++mpNmTKlzF8hu/3221W3bl2dc845euWVV2SaVftVpjvvvFOWZenjjz+WJJmmqUaNGmnmzJlas2aNHn74YY0ZM0YzZ86s0Pmuv/56rVmzRkuXLvVv++WXX7RixQoNHz68wn3FxsZKKnnF7SOPPKLBgwdr1apVuv766zVnzhxdffXVuuOOO/Trr7/queee07Rp0/xXFpumqf79+2vJkiV68803tWbNGo0fP152u/24dTdu3KiZM2fq008/1RdffKGVK1fqtttuK3PfJ598Up07d9bf//53/xXR6enp5b6Ho0aN0tChQ0tcvd2lS5dS59+5c6cGDBigTp066ZtvvtG///1vTZ482R9gHzFt2jTFxcXphx9+0IQJE/Too4+W+seBoy1atEitW7dWYmJiqdceeeQRjRkzRgsWLJDD4dCVV16p++67Ty+88IK++eYbbdq0qVQYP3/+fO3atUuLFi3Ss88+q8zMTA0cOFC1a9fWDz/8oJtvvlk333yztm/fXuK4c889V4sXLz5unwAAAIHEjc0AAABOQZ999pni4+NLbLv//vv10EMPlXj+z3/+U263Wx6PR9HR0Ro5cmSJYyZPnqyrr75a0uElGvLz8/XVV1+pd+/e/n0ee+wx9erVSzExMfrqq690zz336I8//tA///nPSvednJys+vXra8uWLZIkp9OpsWPH+l9v1qyZlixZopkzZ2ro0KHlnq9Ro0bq27evpkyZorPPPlvS4Steu3XrpubNm1eop4KCAo0ePVp2u13dunXzbx82bJiuv/56//O//e1veuCBB3TttdfKNE3VrVtXY8eO1QMPPKBHHnlE8+bN048//qi1a9eqdevWklRuD4cOHdK0adPUqFEjSYeXHbjooov0zDPPKCUlpcS+tWrVUlRUlGJjY0u8ZrfbT/gexsfHKyYmRsXFxaXOebSXX35Z6enpmjhxog4ePKhOnTopKytL999/vx5++GHZbIevH+nQoYN/fdlWrVrppZde0ldffaU+ffqUed4tW7YoLS2tzNdGjRqlvn37Ki8vTyNHjtRVV12lr776yr927ogRI0pdHZ6cnKwXX3xRNptNbdq00YQJE1RYWKgxY8ZIkkaPHq3x48fr22+/1RVXXOE/rmHDhlqxYsVxxw8AABBIhLgAAACnoB49emjSpEkltiUnJ5d4fu+992r48OHat2+fHnzwQfXs2VNdunRRXl6eJGndunX68ccf9eGHH0qSHA6HLr/8cr3++uslQtyjw9qOHTtKOryMQVVCXOnwlcGGYfifv/LKK3rttde0detWFRUVye12++tUxN///nddf/31evrpp+XxeDRjxgw988wz5R7XpUsX2Ww2FRYWKjU1VVOnTi2xNEOnTp1K7L98+XItXbq0xJq+Pp9Phw4dUmFhoVauXKlGjRr5A9yKaNy4sT/AlaTOnTvLNE2tW7fuhIHrsar7HkrS2rVr1blz5xJ/Nl27dlV+fr527Nihxo0bSzoc4h4tNTVVe/fuPe55i4qKFB0dXeZrR5+rQYMGklTiz6BBgwalzn366af7A+Uj+xx9cza73a46deqUOi4mJkaFhYXH7RMAACCQCHEBAABOQXFxcWrZsuUJ96lbt65atmypli1b6oMPPlDLli117rnn6txzz5V0+Cpcr9erhg0b+o+xLEtOp1MHDhwotcbuEeeff77y8vK0Z88ef/BWUfv379e+ffvUrFkzSdLMmTP1j3/8Q88884w6d+6shIQEPfXUU/rhhx8qfM6LL75YLpdLs2bNkmmaKi4u1mWXXVbuce+++67atm2rpKQk1alTp9TrcXFxJZ6bpqmxY8dqyJAhMk1T+fn5io+Pl81mU3R0dIXWCS7PkQD16CC1PDXxHkqlw/Uj247t59glOQzDOOHyGnXr1tWqVavKfO3ocx2pcey2Y89dVv2K9JSdna26deset08AAIBAIsQFAABAuWrXrq2RI0fqvvvu09dffy2v16vp06frmWeeUUZGRol9L7vsMr311lu6/fbbyzzXihUrFB0dXeImXRX1wgsvyGaz+W/W9c0336hLly669dZb/fts2rSpUud0OBy69tprNXXqVNntdl1++eX+NW5PJD09XS1atKhwnbPOOkvr1q1Ty5YtZZqm8vLylJiYWGKZgR07dmj9+vUVvhp327Zt2rVrl3+5ge+++042m+24xzudTvl8vhLbKvIeRkVFlTruWG3bttUHH3xQYk3kJUuWKCEhoUTQX1lnnnmmJk2aVGZIHEy//vprieUyAAAAgokQt6oMyWpgKXdHrhS6nyUBAACqpLi4WFlZWSW2ORyOE15peNttt+lf//qXPvnkEyUkJOjAgQMaMWKEatWqVWK/v/zlL5o8ebJuv/12ffrpp8rKylLnzp0VExOjr7/+Wg8++KBuvPFGuVyuE/Z48OBB7dmzR7m5udq6davefPNNvfbaa3ryySf9VxG3bNlS06dP15w5c9SsWTO98cYbWrp0qf9K3Yq64YYb9Kc//UnS4VAzEB5++GENHDhQ6enpuuyyy1RYWKjff/9dq1ev1uOPP65u3brpwgsv1GWXXaZnn31WLVu21G+//SbDMNSvX78yzxkdHa1rr71WTz/9tPLy8nTHHXdo6NChx11KoWnTpvrhhx+0ZcsWxcfHKzk5uULvYdOmTTVnzhytW7dOderUKfVnLkm33nqrnn/+ed1xxx269tprtXPnTj3yyCO6++67SyxfUFk9evRQQUGBVq9eXWLZg2AqLCzU8uXLS92kDVVjs9t0xtlnaNOmTbLZudc2ACDy2Ww2nXHGGfJ6vdX6uedECHGryiZZbSxlbcqS+LkDAAAc5fdx/UtdZRlIJ/pV9OP54osvlJqaWmJbmzZt9Ntvvx33mHr16unqq6/W+PHj1aJFC/Xu3bvMMO+yyy7TuHHj9NNPP8npdOrll1/W3XffLdM01bx5cz366KO67bbbyu3xkUce0SOPPKKoqCilpKTo/PPP11dffaUePXr497n55pu1cuVKXX755TIMQ1deeaVuvfVWff7555V4Nw7fYKtLly7at2+fzjvvvEodW1F9+/bVZ599pkcffVQTJkyQw+HQn/70J91www3+fT744AONGjVKV155pQoKCtSyZUuNHz/+uOds2bKlhgwZogEDBig7O1sDBgzQyy+/fNz977nnHl133XVq27atioqKtHnz5gq9h3//+9+1YMECderUSfn5+fr666/VtGnTEudu2LChZs+erXvvvVevvfaakpOTNWLEiCqvfXxEnTp1NGTIEL311lt68sknq3Wuqvr444/VuHFjXXDBBf41oVF1jiiHBt06SLNnz5Yjio+kAIDI53A4NHjwYDmdTjkcgZnbmDEBAABOMVOnTtXUqVNPuM+WLVvK3P7qq6+WG1CfddZZJX6l/nhXkZZXv6wlB47lcrk0ZcoUTZkypcT2o8O+Y8e6YMGCUuexLEt79uzRNddcU25vTZs2LTG+shzv9b59+6pv377HHVtycrJef/31Mo8dPny4hg8fXmr7LbfcoltuuaXMY46M/UjQ37p1a3333Xel9ivvPaxXr56+/PLLUscdO85u3brp+++/P+6fW1nv/UcffVRm70cbM2aMevfurTFjxighIaHEn8GRsXXv3r1UP8e+Z2V935fV07Hf/88995wefvjhcvsEAAAIFK4hrSpLkk8yTOPwYwAAAESkvXv36tlnn9XOnTt11VVXhbodlKF9+/aaMGHCcf9xIZD27t2rv/zlL7ryyiuDXvtkZZmW3EVueYu9skw+TAEAIp9lWXK73fJ4POX+Y39VcSVuVZmS7VubWu9pLVX+NxgBAAAQJho0aKC6devqlVdeqdLN1hAc1157bUjq1q9fX/fdd5+k419hjcrxFHv0r9v/pezsbPXr109RrqhQtwQAQLV4PB6NHz9eGzZsUP/+/RUVVfNzGyEuAAAATmlH/1p+JK13mpmZqczMzFC3AQAAgCBgOQUAAAAAAAAACGOEuAAAAAAAAAAQxsI6xM3MzJRhGCW+UlJS/K9blqXMzEylpaUpJiZG3bt31+rVq0PYMQAAAAAAAADUrLAOcSXp9NNP1+7du/1fq1at8r82YcIEPfvss3rppZe0dOlSpaSkqE+fPjp48GAIOwYAAAAAAACAmhP2Ia7D4VBKSor/q169epIOX4X7/PPP68EHH9SQIUPUrl07TZs2TYWFhZoxY0aIuwYAAAAAAACAmuEIdQPl2bBhg9LS0uRyuXTeeedp3Lhxat68uTZv3qysrCxlZGT493W5XOrWrZuWLFmim2666bjnLC4uVnFxsf/5kbsQezweeTyeijVmSmZtUwejD8rj9UgVPKyqjvRV4f4iqN7JWivY9RhbZNZjbJFXK9j1GFt41/N4PLIsS6ZpyjRN/3bLsvz/PXp7oASz3slaK9j1GFtk1jtRLdM0ZVmWPB6P7HZ7jdQ7Wf9O9pk+tWnbRlu3bZXP9NVYTZfdKnu7zSrx32NVtX5Z9YJZK1D1gv0+Hs/J+v0f7HqMLfJqBbseY6sZPp9PrVu31qFDh+TzVXxuq0xvhnXkJ5Ew9Pnnn6uwsFCtW7fWnj179Pjjj+u3337T6tWrtW7dOnXt2lU7d+5UWlqa/5gbb7xRW7du1Zw5c4573szMTI0dO7bU9hkzZig2NjYgYwEAACefI78xlJ6erqioqFC3E7bGjx+v119/Xfv27dObb76p//3vf8rNzdVbb70V0LoDBw5U+/bt9eSTTwa0TqBt27ZNZ5xxhhYtWqT27duHuh0ch9vt1vbt25WVlSWv1xvqdgAAQAQoLCzUsGHDlJubq8TExBPuG9ZX4vbv39//uH379urcubNatGihadOm6fzzz5ckGYZR4hjLskptO9bo0aN19913+5/n5eUpPT1dGRkZ5b5hR/N4PJo7d6769Okjp9NZ4eOqIpi1gl3vZK0V7HqMLTLrMbbIqxXseowtvOsdOnRI27dvV3x8vKKjo/3bLcvSwYMHlZCQUO7PJTWhsvWuu+46TZ8+XdLhIDo9PV2XXnqpMjMzFRcXV6O11q5dq3/961/64IMPdP7556t27dr68ssv5XA4yv25q7rvo8PhUFRUVIV/vju63rRp03T33XcrOzu70nXLMnbsWH388cf66aefStU6emzXXXedcnJyNGvWLP+2P/3pT9q5c6fq1q0rh6NqP74H83sy3L//A1Xr0KFDiomJ0YUXXlji74Pq4O/kymmXWfaFPC6bpcc6mXpomU3FZunvkV8z+9ZYvWDWClS9YL+Px8P3f+TVCna9k7VWsOsxttDWO7I6QEWEdYh7rLi4OLVv314bNmzQJZdcIknKyspSamqqf5+9e/eqQYMGJzyPy+WSy+Uqtd3pdFbpD7Wqx1VFMGsFu97JWivY9RhbZNZjbJFXK9j1GFt41vP5fDIMQzabTTbb/91q4MivWR95LdAqW88wDPXr109TpkyRx+PRN998oxtuuEGFhYWaNGlSqf09Ho//Patsrc2bN0uSLr30Un/oZRhGhY6vifexMseWVa+6f36WZfm/T44+3/HGVtZ7Y7PZSvzmWVUE83sy3L//A1XLZrPJMIyA/J3G38kVU+w7cYhfbBpl7lPV+ieqF8xaNV0v2O9jefj+j7xawa53stYKdj3GFpp6lekr7G9sdrTi4mKtXbtWqampatasmVJSUjR37lz/6263WwsXLlSXLl0C34xPsi2yqc3uNpIv8OUAAEAE8Z3g69glO0+077E/Y1RknwpyuVz+pSCGDRumq666Sh999JGkw0tPdezYUa+//rqaN28ul8sly7KUm5urm266Sa1atVJSUpJ69uypn3/++bg1MjMzdfHFF0v6v4CrLMXFxbrjjjtUv359RUdH689//rOWLl1aYp+FCxfq3HPPlcvlUmpqqh544IESv7JeUFCga665RvHx8UpNTdUzzzxT7nvw888/q0ePHkpISFBiYqLOOeccrVixQgsWLNB1112n3Nxcf6iamZkpSXrzzTfVqVMnJSQkKCUlRcOGDdPevXv951ywYIEMw9CcOXPUqVMnuVwuvfHGGxo7dqx+/vln//mmTp1a5vs1bdo0ffzxx/79FixYoC1btsgwDK1cubJUjTPPPFMxMTHq2bOn9u7dq88//1x/+tOflJiYqCuvvFKFhYX+81uWpaeeekrNmzdXTEyMzjjjDL3//vvlvk9ATXMXufXYiMc0979z5S5yh7odAACqze1269FHH9Xbb78ttzswc1tYX4k7atQoXXzxxWrcuLH27t2rxx9/XHl5ebr22mtlGIbuuusujRs3Tq1atVKrVq00btw4xcbGatiwYaFuHQAAnMKMxYaii6NluAzp2NwyWVKHo55/q9LB7hFJkjoe9fx7lX0z1Qur2OhRYmJiStxYYePGjZo5c6Y++OAD/02aLrroItWuXVszZ85UWlqa/vvf/6pXr15av369kpOTS51z1KhRatq0qa677jrt3r37uLXvu+8+ffDBB5o2bZqaNGmiCRMmqG/fvlq/fr0cDod27typAQMGaPjw4Zo+fbp+++03/f3vf1d0dLQ/XL333nv19ddfa9asWUpJSdGYMWO0fPlydezY8bh1r7rqKp155pmaNGmS7Ha7fvrpJzkcDp1zzjl6/vnn9fDDD2vdunWSpPj4eEmHf0B/7LHH1KZNG+3du1f/+Mc/NHz4cM2ePbvUmJ5++mk1b95c0dHRuueee/TFF19o3rx5kqSEhIRSN7IYNWqU1q5dq7y8PE2ZMkWSlJycrF27dpXZf2Zmpl566SXFxsZq6NChGjp0qFwul2bMmKH8/Hxdeumlmjhxou6//35J0uOPP67Zs2dr0qRJatWqlRYtWqSrr75a9erVU7du3Y77PgEAACD0wjrE3bFjh6688kr98ccfqlevns4//3x9//33atKkiaTDPxwXFRXp1ltv1YEDB3Teeefpyy+/VEJCQog7BwAAiBw//vijZsyYoV69evm3ud1uvfHGG6pXr54kaf78+Vq1apWysrJUXFysxMREPf300/roo4/0/vvv68Ybbyx13vj4eCUlJUmSUlJSyqxdUFCgSZMmaerUqf77Ifz3v//V3Llz9frrr+vGG2/UpEmTlJ6erpdeekmGYei0007Trl27dP/99+vhhx9WYWGhJk+erOnTp6tPnz6SpGnTpqlRo0YnHPe2bdt077336rTTTpMktWjRQnl5eYqKilKtWrVkGEapvq+//nr/4+bNm+vFF1/Uueeeq/z8fH/QK0mPPvqov5cj78WRG+FJh38t/9gQNz4+XjExMSouLj7u+3W0xx9/XF27dpUkjRgxQqNHj9amTZvUvHlzSdJf/vIXff3117r//vtVUFCgl19+WfPmzfMf07x5cy1evFivvvoqIS4AAECYC+sQ95133jnh60d+te3IFRgAAADhwPqzpUN5hxSVGCXDdsyluMdemdu1Eic+v7qd/Z/PPvtM8fHx8nq98ng8Gjx4sCZOnOh/vUmTJv4AV5KWL1+u/Pz8EtskqaioSJs2bdK2bdvUtm1b//YxY8ZozJgx5faxadMmeTwef7AoHV4b7Nxzz9XatWslHb45WufOnUssx9C1a1fl5+drx44dOnDggNxutzp37ux/PTk5WW3atDlh7bvvvls33HCD3njjDfXu3VuXXXZZqfEda8WKFcrMzNTKlSuVnZ3tXyP12PF36tSp3LFXV4cO/3dJd4MGDRQbG+sPcI9s+/HHHyVJa9as0aFDh9S3b8kbD7ndbp155pkB7xUAAADVE9YhLgAAQESyH/VV3h0I7JU8b1mOtxzDCfTo0UOTJk2S0+lUWlpaqZsqxMXFlSxhmkpNTdX8+fP9V50eubFTUlKSkpKS/Gu2SipzeYWyWJYlSaXWy7Usy7/t6MdlHXfkcWVlZmZq2LBh+t///qfPP/9cjzzyiCZPnnzcpbkKCgqUkZGhjIwMvfnmm6pXr562bdumvn37llr77Nj3LxCO/jM7ckOtoxmG4Q+Zj/z3008/VXp6eon9yrrhLwAAAMILIS4AAMApKC4uTi1btqzw/meddZaysrLkcDjUvHlzJSYm+kPcIypzvqOPiYqK0uLFi/3hqcfj0bJly3TnnXdKktq2basPP/ywRJi7ZMkSJSQkqGHDhqpdu7acTqe+//57NW7cWJJ04MABrV+/vtxlAlq3bq3WrVvrH//4h6644gq99dZbGjZsmKKiouTzlbxr3G+//aY//vhD48eP9wehy5Ytq9A4yzpfdfarrLZt28rlcmnbtm3q0aNHjZ8fAAAAgVXetSEAAACAevfurc6dO2vIkCH66quvtGXLFi1ZskT//Oc/KxxkliUuLk633HKL7r33Xn3xxRdas2aN/v73v6uwsNC//uwtt9yi7du3a+TIkfrtt9/08ccf65FHHtHdd98tm82m+Ph4jRgxQvfee6+++uor/frrrxo+fHipkPloRUVFuv3227VgwQJt3bpV3377rZYtW6bWrVtLkpo2bar8/Hx99dVX+uOPP1RYWKjGjRsrKipKEydO1O+//65PPvlEjz32WIXG2bRpU23evFkrV67UH3/8oeLi4uPu98svv2jdunX6448/Sq2bW1UJCQm6/fbbdc8992jatGnatGmTVqxYoX//+9+aNm1ajdQAAABA4BDiVpUhWcmWClwFpde2AwAAOMkYhqHZs2frggsu0MiRI3Xaaafpiiuu0JYtW9SgQYNqnXv8+PG67LLL9Le//U1nnXWWNm7cqDlz5qh27dqSpIYNG2r27Nn68ccfdcYZZ+jmm2/WiBEj9M9//tN/jqeeekoXXnihBg0apN69e+vPf/6zzj777OPWtNvt2r9/v6655hq1bt1aQ4cOVb9+/TR69GhJUpcuXXTzzTfr8ssvV7169TRhwgTVq1dPU6dO1Xvvvae2bdtq/Pjxevrppys0xssuu0z9+vVTjx49VK9ePb399ttl7vf3v/9dbdq0UadOnVSvXj19++23FX0by/Xggw/qoYce0pNPPqk//elP6tu3rz799FM1a9asxmoAFWGz29SyTUulpKXIZucjKQAg8tlsNrVs2VJpaWknvJCgOlhOoapsktXO0o5tO9TB1qH8/QEAAMLE1KlTT/j68W4cm5CQoBdeeEGPPfZYmcsplOWSSy4ptWbtsfWjo6P14osv6sUXXyyx/cg6rpLUrVs3/026yhIfH6833nhDb7zxhn/bvffee9z9o6KiSgWppmkqLy/P/3zSpEmaNGlSiX2uvPJKXXnllSW2HT2+7t27l7lGr8vl0vvvv3/cWkfUq1dPX375Zant5dUYPny4hg8fXmLbsX+OhmFo5MiR/mUqgFBxRDl05X1Xavbs2XJE8ZEUABD5HA6Hhg0bpqSkJDkcgZnb+GdPAAAAAAAAAAhjhLgAAAAAAAAAEMYIcavKJ9m+tal1Vmup5m8gDAAAAAAnJXeRW+NvGa/5r8+Xu8gd6nYAAKg2t9utJ598Uu+9957c7sDMbYS41eGTDIu7mgEAAABAZXjcHvl8XA0DADh5eDweeb3egJ2fEBcAAAAAAAAAwhghLgAAAAAAAACEMUJcAAAAAAAAAAhjhLgAAAAAAAAAEMYIcQEAAAAAAAAgjBHiVoOVZKkwqjDUbQAAAIS1zMxMNWjQQIZh6KOPPtLw4cN1ySWXBLxu9+7ddddddwW8zrEWLFggwzCUk5NTqeMyMzPVsWPHgPQEhBPDMNSkeRPVrV9XhmGEuh0AAKrNMAw1bdpU9evXD9jcRohbVXbJ6mBpe53tkj3UzQAAAFTc8OHDZRiGDMOQ0+lU8+bNNWrUKBUUFNR4rbVr12rs2LF69dVXtXv3bvXv37/Ga0Qiu92u//3vfyW2jRo1Sl999VWIOgKCxxnt1DUPXqMzB58pZ7Qz1O0AAFBtTqdT11xzjXr16iWnMzBzmyMgZwUAAEBY69evn6ZMmSKPx6NvvvlGN9xwgwoKCjRp0qRS+3o8nir/MLpp0yZJ0uDBg7nirhzx8fGKj48PdRsAAAAIQ1yJCwAAUNN8J/gyK7Gvr4L7VoHL5VJKSorS09M1bNgwXXXVVfroo48k/d+v9b/++utq3ry5XC6XLMtSbm6ubrrpJrVq1UpJSUnq2bOnfv755+PWyMzM1MUXXyxJstlsxw1xi4uLdccdd6h+/fqKjo7Wn//8Zy1durTEPgsXLtS5554rl8ul1NRUPfDAA/J6vf7XCwoKdM011yg+Pl6pqal65plnKvQ+fPrppzr77LMVHR2tli1b6l//+leJ8xqGoddee02XXnqpYmNj1apVK33yySclzjF79my1bt1aMTEx6tGjh7Zs2XLCmk2bNpUkXX311bLb7f7nxy6ncGTZiXHjxqlBgwZKSkrS2LFj5fV6de+99yo5OVmNGjXS66+/XuL8O3fu1OWXX67atWurTp06Gjx4cLk9AQAAILwR4laVT7J9Z1PLPS2r/OEJAACcnIzFhqKXRstYbEjfqOTXr8fs/K1K73Pka9Ux+35/nP1qQExMjDwej//5xo0bNXPmTH3wwQdauXKlJOmiiy5SVlaWZs6cqaVLl+qss85Sr169lJ2dXeY5R40apSlTpkiSdu/erd27d5e533333acPPvhA06ZN008//aSWLVuqb9++/vPu3LlTAwYM0DnnnKOff/5ZkyZN0uTJk/X444/7z3Hvvffq66+/1qxZs/Tll19qwYIFWr58+QnHPGfOHF199dW64447tGbNGk2aNEkzZszQuHHjSuw3duxYDR06VL/88osGDBigq666yt/b9u3bNWTIEA0YMEArV67UDTfcoAceeOCEdY8E1P/+97+1c+fOUoH10ebPn69du3Zp0aJFevbZZ5WZmamBAweqdu3a+uGHH3TzzTfr5ptv1vbt2yVJhYWF6tGjh+Lj47Vo0SItXrxY8fHxGjBggNxu9wn7AoLFXeTWMyOf0aLpi+Qu4vsSABD53G63nn76aX344YcB+5mLELc6PJLdZEFcAAAQ2X788UfNmDFDvXr18m9zu9164403dOaZZ6pDhw76+uuvtWrVKs2cOVNnnnmmWrVqpaefflpJSUl6//33yzxvfHy8kpKSJEkpKSlKSUkptc+RJRyeeuop9e/fX23bttV///tfxcTE+K8wnTRpktLT0/XSSy/ptNNO0yWXXKKxY8fqmWeekWmays/P1+TJk/X000+rT58+at++vaZNmyaf78T/0v7EE0/ogQce0LXXXqvmzZurT58+GjNmjP7zn/+U2G/48OG68sor1bJlS40bN04FBQX68ccf/b01b95czz33nNq0aaOrrrpKw4cPP2HdevXqSZJq1aqllJQU//OyJCcn68UXX1SbNm10/fXXq02bNiosLNSYMWPUqlUrjR49WlFRUfr2228lSe+8845sNptee+01tW/fXn/60580ZcoUbdu2TYsXLz5hX0AwFRYWqri4ONRtAABQYwI9t7EmLgAAQA2z/mzpUN4hRSVGybAds4TAsSsKdK3Eic+vbmf/57PPPlN8fLy8Xq88Ho8GDx6siRMn+l9v0qRJiXBx+fLlys/PLxU4FhUVadOmTdq2bZvatm3r3z5mzBiNGTOm3D42bdokj8ejrl3/741wOp0699xztXbtWkmHb47WuXPnEssxdO3aVfn5+dqxY4cOHDggt9utzp07+19PTk5WmzZtTlh7+fLlWrp0qZ544gn/Np/Pp0OHDqmwsFCxsbGSpA4dOvhfj4uLU0JCgvbu3evv7fzzzy/R29F9VNfpp58um+3/rrto0KCB2rVr539ut9tVp04dfz/Lly/Xxo0blZCQUOI8hw4d0ubNm2usLwAAAAQXIS4AAEBNsx/1Vd7vPVXml3qOt++x6+xWQI8ePTRp0iQ5nU6lpaWVunFZXFxcyRKmqdTUVM2fP1/5+fmKj4/3h4tJSUlKSkryL7sgHQ5RK8KyLEkqtV6uZVn+bUc/Luu4I48ryzRNjR07VkOGDPE/PzK26Oho/37HvjeGYcg0zRJ9BEpZtU/Uj2maOvvss/XWW2+V2Mc0TblcroD2CgAAgMAhxAUAADgFxcXFqWXLlhXe/6yzzlJWVpYcDoeaN2+uxMTEEleISqrU+Y4+JioqSosXL9awYcMkSR6PR8uWLdOdd94pSWrbtq0+/PDDEmHukiVLlJCQoIYNG6p27dpyOp36/vvv1bhxY0nSgQMHtH79enXr1u2EY1q3bp2/b9M0lZeXV+bYjqdt27b+G8Id8f3335d7nNPpLHe5h6o466yz9O6776p+/fpKTEz0bz8yNgAAAEQm1sQFAOD/tXfn4TGe+//A308meyKCRhIkEkskltqLpIjtCGIvTusgCFVK1XZQtbZolRP0WHqcSrRU21OnlmNpLdGittiqUUEFrUTUFkTWuX9/+GW+RpaJzEyeuR/v13XlqmeZ5/688+hnxp3JPURkUseOHdGqVSv06dMHe/bsQXJyMg4dOoQZM2bg+PHjpb6um5sb3njjDUyePBk7d+5EYmIiRowYgYyMDAwbNgwA8MYbb+DatWsYO3Ysfv31V2zevBmzZs3ChAkTYGdnB3d3dwwfPhyTJ0/Gnj17cPbsWURFRZmciJ05cybWrVuH2bNn45dffsG5c+ewadMmvPvuuyWuf9SoUbh06RImTJiA8+fPY8OGDYiNjTX5uICAAOzfvx+pqam4c+dOicczZeDAgXjhhRfQs2dP/Pjjj7h8+TL279+P8ePH448//rDYOERERERUtjiJS0REREQmKYqC7du3o3Xr1hg7diyCg4Px17/+FcnJyfD29jbr2gsXLkTfvn0xaNAgNGnSBBcvXsSuXbtQoUIFAEDVqlWxfft2HD16FA0bNsSoUaMwfPhwzJgxw3CNRYsWoU2bNujRowc6duyIl19+GU2bNi123M6dO2Pbtm34/vvv0bx5c4SGhmLFihWGd/OWhL+/P7755hts3boVDRs2xKpVqzB//nyTj1u0aBHi4+NRvXp1NG7cuMTjmeLq6ooffvgB/v7+6NOnD0JCQjBs2DA8evSowDq5RERERCQPLqdgBlFOINMhU+0yiIiIiJ6JqXeKzp49G7Nnzy6wv1y5cli6dCnmzZtX4iUHevXqVWDd2KfHd3Z2xrJly7Bs2TKj/fnrvAJA27ZtcfTo0SLHcXd3x2effYbPPvvMsG/y5Mkm6+vcuTM6d+5sGC9/OYV8ha15e/fuXaPtyMhIREZGGu0bOnRoseN2794dbdu2Nfo+Pv19L+w+xcfHF9iXnJxstO3j44O4uDijfVxOgWyJoijwreoLgYLrXRMREclIURRUqVIFt27dstpzG9+JW1o6QDQWuPLClWf7QBIiIiIiIqLnmIOzA6LnRqNZ32ZwcHYw/QAiIiIb5+DggOjoaHTu3LnAh9BaCidxiYiIiIiIiIiIiGwYJ3GJiIiIiIiIiIiIbBgncUsrD7A7aocaaTWAPLWLISIiIiIikkNOZg6WT1qOgxsOIiczR+1yiIiIzJaTk4Nly5Zhy5YtyMmxznMbJ3HNkQk45HENJyIiIiIiopISQuDunbvIeJhR6IcHEhERyUYIgbt37+Lhw4dWe27jJC4RERERERERERGRDeMkLhEREREREREREZEN4yQuERERERERERERkQ3jJC4RERERERERERGRDeMkLhEREREZCQ8Px/jx460+TkBAAGJiYqw+jrXFx8dDURTcvXtX7VKIiIiISKM4iWsOVyDbPlvtKoiIiIieSVRUFBRFKfB18eJFtUsrsdmzZ6NRo0YWu15UVBR69+5t8rzCJrhDQ0ORkpKC8uXLW6weIi1TFAVelb3gUd4DiqKoXQ4REZHZFEWBl5cXypcvb7XnNk7ilpYO0DfT47LXZUCndjFEREREzyYiIgIpKSlGX4GBgWqXVeby8vKg1+vNuoajoyN8fHw4GUVUQg7ODhi1YBRa9G8BB2cHtcshIiIym4ODA9544w107doVDg7WeW7jJC4RERGRhWVnZxf5lZubW+Jzc3JySnRuaTg5OcHHx8foS6cr/CfTd+7cweDBg1GhQgW4u7vjlVdewYULF4zO+eabb1CvXj04OTkhICAAixcvNjqelpaG7t27w8XFBYGBgVi/fr3JGuPj49GhQweUK1cOnp6eCAsLw5UrVxAbG4s5c+bg9OnThncRx8bGAgCWLFmCBg0awM3NDX5+fhg9ejQePHhguGZsbCw8PT2xbds21K1bF05OThg6dCji4uKwZcsWVKhQATqdDvHx8QXqiYqKwv79+7F06VLDuMnJyQWWU3hyjDp16sDV1RWvvPIKHj58iLi4OAQEBKBSpUqYMmUK8vLyDNfPzs7GlClTULVqVbi5uaFFixaF1kFEREREzx97tQsgIiIi0poFCxYgKysLTk5OBd6dWbt2bQwcONCwvWjRogKTtfkCAgIQFRVl2I6JiUFGRkaB82bOnGmZwosQFRWFCxcuYMuWLXB3d8fkyZMRGRmJxMREODg4ICEhAf3798fs2bMxYMAAHDp0CKNHj0alSpUM9UdFReHatWvYu3cvHB0dMW7cOKSlpRU5Zm5uLvr06YNBgwZh48aNyM3NxdGjR6EoCgYMGICzZ89i586d2L17NwAYljKws7PDsmXLEBAQgMuXL2P06NGYMmUKVqxYYbh2RkYGFixYgDVr1qBSpUrw8fFBZmYm7t27h6VLl6JcuXJ44YUXCtS0dOlSJCUloX79+pg7dy4AwMvLC8nJyQXOzcjIwLJly7Bx40bcv38fffr0QZ8+feDp6Ynt27fj4sWL6NevH9q1a4dXX30VADB06FAkJydj48aNqFKlCv773/8iIiICP//8M2rXrl2qe0dERERE2sBJ3NLKA+yO2yHwZiCQB4C/BUREREQS2bZtG9zd3Q3bXbp0wddff13gvPzJ24MHDyI0NBR6vR6ffPIJ6tevj2+//Rb9+vXDkiVL0KFDB7z77rsAgKCgICQmJmLRokWIiopCUlISduzYgcOHD6NFixYAgH//+98ICQkpsr709HTcu3cPERERqFmzJuzs7IzOd3d3h729PXx8fIwe9+R6tYGBgZg3bx7eeOMNo0ncnJwcrFixAg0bNjTsc3FxQWZmJry9veHh4QE7u4K/sFa+fHk4OjrC1dW1wLhPy8nJwcqVK1GzZk0AwCuvvILPPvsMN27cgLu7O4KDg9G6dWvEx8fj1VdfxaVLl/DFF1/g999/R5UqVQAAkyZNws6dO7F27VrMnz+/2PGIZJKTmYNVM1YhJSUFndp3stqvnRIREZWV/Nd+v/zyCzp1ss5zGydxzZEBOOY6ql0FERER2Zhp06YhPT290MnAp7cnT55c5HWefhfv0x+oZY527dph5cqVhm03N7dCzzt37hzs7e0Nk68AULFiRdSpUwfnzp0znNOzZ0+jx4WFhSEmJgZ5eXmGazRr1sxwPDg4GJ6enkXWV7FiRQwZMgR9+/ZFx44d0alTJ/Tv3x++vr7F5tq3bx/mz5+PxMREpKenIzc3F5mZmXj48KEho6OjI1588cVir2MuV1dXwwQuAHh7eyMgIMBo4tzLy8vwbuQTJ05ACIGgoCCj62RlZaFSpUpWrZWorAkhcDPtJtLvpUMIoXY5REREZhNC4ObNm7h3757Vnts4iUtERERkYY6Ojoavwt7R+fS5z3LdwpTmg7nc3NxQq1Ytk+cV9SJUCGGYZH7yz4U9Lv/Pz/rBX59++imGDRuGAwcO4Msvv8SMGTPw/fffo2XLloWef+XKFXTt2hWjRo3CvHnzULFiRRw4cADDhw83WrLCxcXF6h9C9vS7LxRFKXRf/r3T6/XQ6XRISEgosDbxkxO/RERERPR84gebEREREVGR6tati9zcXBw5csSw7/bt20hKSjIsb1C3bl0cOHDA6HGHDh1CUFAQdDodQkJCkJubi+PHjxuOnz9/3vBBYMV58cUXMXXqVBw6dAj169fHhg0bADye0H7yQ8EA4Pjx48jNzcXixYvRsmVLBAUF4fr16yXKWdj1zDnvWTVu3Bh5eXlIS0tDrVq1jL5MLd1ARERERNrHSVwiIiIiKlLt2rXRs2dPjBgxAgcOHMDp06cxcuRIVK1a1bCEwsSJE7Fnzx7MmzcPSUlJiIuLw8cff4xJkyYBAOrUqYOIiAiMGDECR44cQUJCAqKjo+Hi4lLkuJcvX8b06dNx9OhRXLlyBd99953RxHH+B5edOnUKf/75J7KyslCzZk3k5uZi+fLl+O233/DZZ59h1apVJcoZEBCAn3/+GRcuXMCff/5Z7IfNHTlyBMnJyfjzzz9L9S7owgQFBWHgwIEYPHgwNm3ahMuXL+PYsWP44IMPsH37douMQURERETy4iQuERERERVr7dq1aNq0KSIjIxEWFgbg8Qej5S8P0KRJE3z11VfYuHEj6tevj5kzZ2Lu3LmIiooyuoafnx/atm2LPn36YOTIkahcuXKRY7q6uuLXX3/FkCFDEBwcjJEjR+LNN9/E66+/DgDo27cvIiIi0K5dO3h5eeGLL75Ao0aNsGTJEnzwwQeoX78+1q9fjwULFpQo44gRIxAUFIT27dvD29sbBw8eLPS8SZMmQafToW7duvDy8sLVq1dLdP2SWLt2LQYPHoyJEyeiTp066NGjB44cOQI/Pz+LjUFEREREcuKauERERETPmdjY2GKPx8fHG21XqFAB69atA/B47db8D217Ut++fdG3b98ir+nj44Nt27YZ7Rs0aFCR53t7e2PTpk1FfkCck5MT/vOf/xR43Ntvv4233367yHGioqKMJpfzeXl5YdeuXUWOly8oKAg//fST0b6AgACjNYALG2P27NmYPXu20b4VK1YYfR8dHBwwZ84czJkzp9CxiYiIiOj5xUlcczgDObrCf9WOiIiIiIiIClIUBZ4VPJGZlWn1DxkkIiIqC4qiwNPTE25ublZ7buNyCqWlA/Qv6fFb5d8AnenTiYiIiIiICHBwdsDYj8Yi7LUwODg7qF0OERGR2RwcHDBu3Dj06NHDsOSYpXESl4iIiIiIiIiIiMiGcRKXiIiIiIiIiIiIyIZxEre08gDlpILqf1YH8tQuhoiIiIiISA45mTlYM3MNjn9zHDmZ/IwRIiKSX05ODtasWYNdu3YhJ8c6z22cxDWDcl+Bc46z2mUQERERERFJQwiBlD9ScOf2HQgh1C6HiIjIbEIIXL9+Hbdv37bacxsncYmIiIiIiIiIiIhsGCdxiYiIiIiIiIiIiGwYJ3GJiIiIiIiIiIiIbBgncYmIiIjISHh4OMaPH2/1cQICAhATE2P1cZ4WGxsLT0/PZ35cVFQUevXqZfF6iIiIiIhM4SQuERER0XMmKioKiqIU+Lp48aLapdmE5ORkKIqCU6dOGe1funQpYmNjVamJiIiIiJ5v9moXIDUHIM8uT+0qiIiIiJ5ZREQE1q5da7TPy8tLpWrkUL58ebVLINIMV1dXPHz4UO0yiIiILMbV1RVOTk5Wuz7fiVtaOkDfSo+L3hcBndrFEBERkS3Jzs4u8is3N7fE5+bk5JTo3NJwcnKCj4+P0ZdOV/iLmjt37mDw4MGoUKEC3N3d8corr+DChQtG53zzzTeoV68enJycEBAQgMWLFxsdT0tLQ/fu3eHi4oLAwECsX7++RHWuX78e9erVg7OzM4KDg7FixQrDsfx3zG7atAnt2rWDq6srGjZsiJ9++snoGrGxsfD394erqyt69+6NW7duFTtmzZo1AQCNGzeGoigIDw8HUHA5hfDwcIwdOxbjx49HhQoV4O3tjU8++QQPHz7E0KFDUa5cOdSsWRM7duwwun5iYiK6deuGatWqwdfXF4MGDcKff/5Zou8HkRY4ujhi4vKJaDO4DRxdHNUuh4iIyGyOjo6YNGkS+vTpA0dH6zy38Z24RERERBa2YMECZGVlwcnJCYqiGB2rXbs2Bg4caNhetGhRgcnafAEBAYiKijJsx8TEICMjo8B5M2fOtEzhRYiKisKFCxewZcsWuLu7Y/LkyYiMjERiYiIcHByQkJCA/v37Y/bs2RgwYAAOHTqE0aNHo1KlSob6o6KicO3aNezduxeOjo4YN24c0tLSih33X//6F9577z0sX74cTZs2xcmTJzFixAi4ublhyJAhhvPeeecdfPTRR6hduzbeeecdvPrqq7h48SLs7e1x5MgRDBs2DPPnz0efPn2wc+dOzJo1q9hxDx8+jJYtW2L37t2oV69esS/E4+LiMGXKFBw9ehRffvkl3njjDXz77bfo3bs3pk+fjn/84x8YNGgQrl69CldXV6SkpKBt27aIjo7GnDlzoNPpMG3aNPTv3x979+4t+U0hIiIioucKJ3GJiIiInkPbtm2Du7u7YbtLly74+uuvC5yXP3l78OBBhIaGQq/X45NPPkH9+vXx7bffol+/fliyZAk6dOiAd999FwAQFBSExMRELFq0CFFRUUhKSsKOHTtw+PBhtGjRAgDw73//GyEhIcXW+P7772PevHno06cP7OzsEBgYiMTERKxevdpoEnfSpEno1q0bAGDOnDmoV68eLl68iODgYCxduhSdO3fG1KlTDbUdOnQIO3fuLHLc/GUlKlWqBB8fn2JrbNiwIWbMmAEAmDZtGhYuXIgXXngBI0aMAPB4gn3lypU4c+YMWrZsiZUrV6JJkyZ4//33kZ6eDg8PD3z66afw8/NDUlISgoKCih2PiIiIiJ5PnMQtrTxAOaPA75YfkAfAQe2CiIiIyFZMmzbNMEFnZ2e8etXT25MnTy7yOk+/i3f8+PEWq7Fdu3ZYuXKlYdvNza3Q886dOwd7e3vD5CsAVKxYEXXq1MG5c+cM5/Ts2dPocWFhYYiJiUFeXp7hGs2aNTMcDw4OhqenZ5H13bx5E9euXcO4ceOMcufm5hZYm/bFF180/NnX1xfA4+UbgoODce7cOfTu3dvo/FatWhU7ifssnhxbp9OhUqVKaNCggWGft7e3oR4ASEhIwL59++Dh4VHgWpcuXeIkLj0XcjJzsG7hOly7eg2d2neCgwP/MUVERHLLycnBunXrcPr0aXTqZJ3nNk7imkG5q8A121XtMoiIiMjGODo6Gr6enrQt7NxnuW5h9Hr9M9UHPJ60rVWrlsnzhBBF7s+fZH7yz4U9Lv/PT59TnPxMMTExCA8PN/o+Pr1275MvkvPHyH98UfVbytMv0BVFKbYevV6P7t27Y8GCBXjw4AHc3d0N2fInoIm0TgiBK79dwe3bt63+/ygREVFZEEIgOTkZaWlpVntu4yQuERERERWpbt26yM3NxZEjRxAaGgoAuH37NpKSkgzLIdStWxcHDhwwetyhQ4cQFBQEnU6HkJAQ5Obm4vjx43jppZcAAOfPn8fdu3eLHNfb2xtVq1bFlStXUKtWLZOT4cXVf/jwYaN9T28/LX+yPC8vr1RjFqdJkyb45ptvEBAQgIyMjELfrU1ERERE9DS+YiQiIiKiItWuXRs9e/bEiBEjcODAAZw+fRojR45E1apVDUsoTJw4EXv27MG8efOQlJSEuLg4fPzxx5g0aRIAoE6dOoiIiMCIESNw5MgRJCQkIDo6Gi4uLsWOPXPmTPzjH//AsmXLkJSUhJ9//hlr167FkiVLSlz/uHHjsHPnTnz44YdISkrCxx9/bHIphcqVK8PFxQU7d+7EjRs3cO/evRKPZ8qYMWNw+/ZtvPbaa0hISMBvv/2G7777DsOGDbPKpDERERERaQMncYmIiIioWGvXrkXTpk0RGRmJsLAwAI8/GC1/2YAmTZrgq6++wsaNG1G/fn3MnDkTc+fORVRUlNE1/Pz80LZtW/Tp0wcjR45E5cqVix03OjoaS5cuRVxcHBo0aIC2bdsiNjYWgYGBJa69ZcuWWLNmDZYvX45GjRrhu+++M3wQWVHs7e2xbNkyrF69GlWqVCmw3q85qlSpgoMHDyIvLw99+/bFiy++iLfeegvly5fnO3KJiIiIqEhcToGIiIjoORMbG1vs8fj4eKPtChUqYN26dQAer+ma/6FtT+rbty/69u1b5DV9fHywbds2o32DBg0yWWu/fv0wfPjwQic4AwICCqw55unpWWDfsGHDMGzYMKN9EydOLHbc6OhoREdHG+17+vv29PcJAJKTkwvse7qe2rVr45tvvinyw++IiIiIiJ7GV4xERERERERERERENoyTuObQAULhp6kSERERERE9CwdHB+h0OrXLICIishgHBwfY21tv0QNO4paWDtCH6ZHkkwTwtQcREREREVGJOLo4YurKqWg/rD0cXRzVLoeIiMhsjo6OmDZtGvr16wdHR+s8t3FNXCIqVsDU/xW630kn8OFLQP3Zu5CVpxQ4nrywm7VLIyIiIiIiIiJ6LvCduERERERmevqDq4jo+cM+QERERNbESdzS0gPKWQXVblcD9GoXQ0RERGrIX88xOztb5UqISG0ZGRkAHq+HR8XLzc7FFx9+gZ//9zNys3PVLoeIiMhsubm52LBhA/bv34/cXOs8t3E5hdISgHJbgVuWG8AfuhMRET2X7O3t4erqips3b8LBwQF2do9/Pq7X65GdnY3MzEzDPmsqy/G0OlZZj8dsco5X2FhCCGRkZCAtLQ2enp78sK4S0OfpcfH8Rdy+fRv6PL4jhoiI5KfX63Hx4kVcv34der11nts4iUtEpEGlWcuY6xgTPTtFUeDr64vLly/jypUrhv1CCDx69AguLi5QlILrhltaWY6n1bHKejxmk3O84sby9PSEj4+PVccnIiKi5xcncYmIiIjM4OjoiNq1axstqZCTk4MffvgBbdq0KZNfrS7L8bQwVofF8YXud7QTmPSiHh+dsUO2vuBk4J6J4RargX9H5ByvqLEcHBz4DlwiIiKyKs1M4q5YsQKLFi1CSkoK6tWrh5iYGLRu3VrtsogsrjTvsAT4LksiImuys7ODs7OzYVun0yE3NxfOzs5lMolVluNpYaw/7ucVut9JJ5Cbm4frD3SFPpc+eY/Nxb8jco5X1tmIiIiI8mliEvfLL7/E+PHjsWLFCoSFhWH16tXo0qULEhMT4e/vr3Z5RERERGRCYT+k5A8oiYiIiIge08Qk7pIlSzB8+HBER0cDAGJiYrBr1y6sXLkSCxYsULk6IiIiIiIiIioMf9OQiKhkpJ/Ezc7ORkJCAqZOnWq0/y9/+QsOHTpU6GOysrKQlZVl2L537x4A4Pbt28jJySnZwHkA7gMPHj3ArVu34OBs/fW3MjIyHo9VRmuLldV4Wh3LWuPZ5z4sfL9eICNDD/scO+QVso7frVu3pBivMFq4b2U9VmnumyXvGaCN76MtjMdsco6nhWwtFuwpdL+TncCMxno0emcTsgrp/0emdSjVeIX1LT63WY4W/o4Uhf9vyzdW9qNsZGZlIjsnG7du30JmTqZFrmsLr5O10Lds4ftozfEKw/+35RxPq2NZazwtP2/bQrbs7Gw8evQIOTk5uHXrFjIzS/bcdv/+fQCPPzzVFEWU5Cwbdv36dVStWhUHDx5EaGioYf/8+fMRFxeH8+fPF3jM7NmzMWfOnLIsk4iIiIiIiIiIiKiAa9euoVq1asWeI/07cfMpivGMuhCiwL5806ZNw4QJEwzber0et2/fRqVKlYp8TGHS09Ph5+eHa9euwcPDo3SF2+BYZT2eVscq6/GYTc7xmE2+scp6PGaTczxmk2+ssh6P2eQcj9nkHE+rY5X1eMwm53jMJt9YZT0es6k7nhAC9+/fR5UqVUyeK/0k7gsvvACdTofU1FSj/WlpafD29i70MU5OTnBycjLa5+npWeoaPDw8yuQvQ1mPVdbjaXWssh6P2eQcj9nkG6usx2M2OcdjNvnGKuvxmE3O8ZhNzvG0OlZZj8dsco7HbPKNVdbjMZt645UvX75E59mVtiBb4ejoiKZNm+L777832v/9998bLa9AREREREREREREJCPp34kLABMmTMCgQYPQrFkztGrVCp988gmuXr2KUaNGqV0aERERERERERERkVk0MYk7YMAA3Lp1C3PnzkVKSgrq16+P7du3o3r16lYd18nJCbNmzSqwNIPsY5X1eFodq6zHYzY5x2M2+cYq6/GYTc7xmE2+scp6PGaTczxmk3M8rY5V1uMxm5zjMZt8Y5X1eMwmz3iKEEJY5cpEREREREREREREZDbp18QlIiIiIiIiIiIi0jJO4hIRERERERERERHZME7iEhEREREREREREdkwTuISERERERERERER2TBO4hIRERERERERERHZMHu1C7BlQggIIWBnx7lusk1Xr15FSkoKdDodAgIC8MILL6hdEj0j9hmyBewl8mMvIbWxj5Ati42NRe/evVG+fHm1S7GoCxcu4OrVq6hevTpq1aqldjkm5eXlQafTGbaPHj0KvV6Pxo0bw8nJScXKysaVK1eQmpoKRVHg7e2N6tWrq10SPQP2ETlovc/wlT6A3NxczJgxA23btsWsWbMAAIsWLYK7uztcXFwwZMgQZGdnq1yldXz33XfIzc01bG/YsAGNGjWCm5sbatWqhWXLlqlYXemVK1cOw4cPx6FDh9QuxSpWrFiB6tWrIzAwEKGhoWjRogW8vb3x8ssvIyEhQe3yrOb06dNGDVkmMvcZrfaJkmAv0Sb2Etsjc5/Rep8whX1ETv/73/8QHR2NKVOm4NdffzU6dufOHbRv316lyqxj5MiRuH79utplmGXhwoXYu3cvgMf3qGPHjqhTpw46deqEOnXqoEuXLrh79666RRYhOTkZTZs2hZOTE7p164b09HR06tQJLVu2RGhoKOrWrYukpCS1y7Saf/zjH/Dz80ONGjXQqlUrtGzZEjVq1ICfnx9iYmLULs8sz1MvYR+xbc9NnxEkZsyYIby9vcWECRNE3bp1xahRo4Sfn5/4/PPPxbp160S1atXEBx98oHaZVmFnZydu3LghhBDiP//5j9DpdGLs2LFi/fr1YuLEicLJyUls2LBB5SqfnaIool69ekJRFBEcHCw++ugjQ07ZLVq0SPj6+oqYmBixatUqERISIubOnSt27NghBg0aJFxdXcWxY8fULtMqTp06JRRFUbuMUpG5z2i1T5QEewl7ia2RuZcUR+Y+o+U+YQr7iJx9ZP369UKn04lu3bqJl19+WTg7O4vPP//ccDw1NVXY2dmpWGHpVahQodAvRVFE+fLlDdsy8vf3F6dPnxZCCBEdHS0aN24sTpw4IR49eiROnTolWrZsKYYPH65ylYXr27evaNu2rdi6davo37+/CAsLE+Hh4eL3338X169fF507dxa9evVSu0yrmDt3rvDw8BALFy4UJ0+eFNevXxd//PGHOHnypFi4cKEoX768mDdvntpllopWewn7iG32EVOelz7DSVwhRI0aNcTWrVuFEEJcuHBB2NnZiY0bNxqOf/XVV6J+/fpqlWdViqIY/qERFhYmZs6caXR80aJFonnz5mqUZpb8XKdOnRJvvvmmqFixonB0dBR9+vQR27dvF3q9Xu0SSy0gIEBs377dsH3+/HlRqVIlkZOTI4QQYty4caJTp05qlWeW3r17F/vVvn17KV8ICCF3n9FqnygJ9hL2Elsjcy8pjsx9Rst9whT2ETn7SOPGjcWyZcsM219//bVwd3cXa9asEULIO/EihBDu7u6iW7duIjY21vC1du1aodPpxPvvv2/YJyMnJyeRnJwshHj8/97+/fuNjh8/flz4+vqqUZpJXl5e4uTJk0IIIe7evSsURRE//vij4XhCQoLw9vZWqTrrqlatmvjvf/9b5PFNmzaJKlWqlF1BFqTVXsI+Ypt9xJTnpc9wOQUA169fR8OGDQEAtWrVgqOjo2EbAJo1a4YrV66oVV6ZuXDhAnr27Gm0r0ePHlK/5bxhw4ZYvnw5UlJSEBsbi3v37iEyMhL+/v6YOXOm2uWVSlpaGkJCQgzbtWvXxr1793Dz5k0AwLBhw/DTTz+pVZ5Ztm7diszMTJQvX77QL3d3d7VLLDWt9Bkt9omSYC+RC3uJ7feS4sjaZ7TYJ0xhH5FTUlISIiMjDduvvPIKtm7dirfffhurVq1SsTLznTx5Emlpadi7dy/69u2LIUOGICoqCoqioFevXhgyZAiGDBmidpmlUr16dZw9exYAoCgK7O2NP95Gp9Ph4cOHapRmUv7/S8DjJWh0Oh3KlStnOO7h4YGMjAy1yrOqW7duoU6dOkUeDwoKwp07d8qwIsvRai9hH7HNPmLKc9Nn1J5FtgXe3t7izJkzhu3Q0FDx+++/G7bPnTsnPDw81CjN6hRFEfv27ROnT58W1atXL/Arb+fOnRPu7u4qVVd6T/5a5tMuX74sZsyYIfz8/Mq4Ksto1KiR+OSTTwzbe/bsEa6uroZ3+vz666+iXLlyapVnlgYNGhh+cluYkydPSvnTXCHk7jNa7RMlwV7CXmJrZO4lxZG5z2i5T5jCPiJnH/H19RU//fRTgf3x8fHC3d1dvPPOO9JmE0KInJwcMWXKFFGzZk1x4MABIYQQ9vb24pdfflG5MvMsWrRIhISEiAsXLojFixeLVq1aiYsXLwohhPjtt99EeHi4eOWVV1SusnAtW7YUM2bMEEII8emnnwpvb28xdepUw/G5c+eKpk2bqlWeVbVt21YMHDjQ8BsKT8rJyRGvvfaaaNu2bdkXZgFa7iXsI/J5XvoMJ3GFEO3atSv27fBfffWVJm52YRRFEXZ2dkJRFKEoioiJiTE6vmHDBlG3bl2Vqiu9J38tsyiy/nrjl19+KRwcHET//v3F4MGDhbu7u1FzWrVqlWjVqpWKFZZeVFSUGD16dJHHExMTRUBAQBlWZDky9xmt9omSYC9hL7E1MveS4sjcZ7TcJ0xhH5Gzj/Ts2bPAkiX59u3bJ9zc3KSdeHnSnj17hL+/v5g2bZpwcHCQfvJFCCHGjh0rHBwcRHBwsHB2dhZ2dnbC0dFR2NnZiWbNmomUlBS1SyzUzp07hbOzs3B0dBQuLi7ihx9+EEFBQaJ58+aiZcuWQqfTiS+//FLtMq3izJkzwsfHR1SoUEH06tVLvP7662LUqFGiV69eomLFisLX11ecPXtW7TJL5XnoJewj8nhe+owihBBqvxtYbUlJSXBwcEBgYGChxzds2AB7e3v079+/jCuzvqd/5dLd3R2VKlUybK9btw4AMHjw4DKty1xz5szB5MmT4erqqnYpVrFjxw58/vnnyMrKQufOnTFixAjDsVu3bgGA0X2URVZWFvLy8jR532TuM1rtEyXBXsJeYmtk7iXFkbnPaL1PmMI+Ip/9+/fj0KFDmDZtWqHH4+PjERcXh7Vr15ZxZZZ369YtjBgxAvv27cPhw4eL/bV2WZw7dw7btm3Db7/9Br1eD19fX4SFhaFjx45QFEXt8op0+fJlnDhxAs2aNUP16tVx48YN/POf/0RGRga6deuGdu3aqV2i1dy/fx+ff/45Dh8+jNTUVACAj48PWrVqhddeew0eHh4qV1g6z0svYR+Rx/PQZziJa2F5eXnQ6XSG7SNHjiArKwutWrWCg4ODipUREamPPZKIqGjskURExWOfJKLnmb3pU54fDx48QEJCAlJTU6EoCry9vdG0adMSfXBBSkoK+vXrh8OHDyMsLAzffvstBg0ahO3btwN4/EEP8fHx8PX1tXaMUjEnuy3Tai5A29mKkpubi+vXr8Pf31/tUixO5mwlqV32HlkUme+bKVrORmRrtNojtejGjRvIysrSRG/U8mvJp7P5+PigSZMmmswm0317nv+9XZScnBykpKRooqc8TauvJbWaC+DfRymou5qDbcjOzhbjxo0TLi4uQlEU4eTkJBwdHYWiKMLFxUW89dZbIjs7u9hrDBo0SISGhootW7aIAQMGiNDQUNG6dWvx+++/i6tXr4rWrVuLMWPGlFGiksvJyTE7uy2yxD21VVq9ZyVx6tQp6ddVKorM2UpSu6w90hSZ75spsmf75z//KTp06CD69esn9uzZY3Ts5s2bIjAwUKXKzKfVbDLnMrd2mXukzPetOOnp6WLgwIHC399fDB48WGRlZYnRo0cb1m9u06aNuHfvntpllgpfJzNbWbNE7TL3yeLI/nqrOFrNptVcQjCbDDiJK4QYN26cqFq1qti4caO4c+eOYf+dO3fExo0bhZ+fn3jrrbeKvcaTn8x469YtoSiK2L17t+H43r17RY0aNaxRvlkskd0WaTWXENrOZopWGm9hZM5Wktpl7ZGmyHzfTJE529KlS4Wrq6sYM2aM+Nvf/iacnJzE/PnzDcdTU1OZzcbInMsStcvaI2W+b6a8+eabIjg4WCxbtkyEh4eLnj17ivr164sDBw6IH374QdSvX19Mnz5d7TJLRcuvJZntLdXqK87z/O9tU2R+vWWKVrNpNZcQzCYDrokLwMvLC19++SXat29f6PE9e/bgr3/9K27evFnkNVxcXJCUlAQ/Pz8Ajz+Q49SpU6hVqxYA4OrVqwgODkZGRoblA5jBEtltkVZzAdrO1qRJk2KPP3r0CElJScjLyyujiixH5myWqF3WHinzfTNFy9nq1auHd955B6+99hoA4KeffkKvXr3w+uuvY+7cubhx4waqVKnCbDZE5lyWqF3WHinzfTPF398fcXFxaNeuHa5fv45q1aph8+bN6N69OwBg+/btmDBhAn799VeVK312Wn4tyWy2me15/ve2ll9vaTWbVnMBzCZrtidxTVw8vpkvvPBCkccrVaqER48eFXuNypUrIyUlxfCk8uabb6JixYqG43fu3IGbm5tlCrYgS2S3RVrNBWg7W2JiIv76178W+anrKSkpSEpKKuOqLEPmbJaoXdYeKfN9M0XL2S5fvozQ0FDDdqtWrbB371506NABOTk5GD9+vHrFmUmr2WTOZYnaZe2RMt83U9LS0gyTQ1WqVIGLi4vRJ5LXq1cP165dU6s8s2j5tSSz2Wa25/nf21p+vaXVbFrNBTCbrNmMqP1WYFsQGRkpOnToIFJTUwscS01NFZ06dRLdu3cv9ho9evQQMTExRR7/+OOPRfv27c2u1dIskd0WaTWXENrO1rRpU7FixYoij588eVLaX4GQOZslape1R8p830zRcjY/Pz/xww8/FNj/yy+/CG9vbzFo0CBmszEy57JE7bL2SJnvmylVqlQRCQkJhu1XX31V3Lhxw7B99uxZUaFCBTVKM5uWX0sym21me57/va3l11tazabVXEIwm6zZnsR34gJYsWIFunbtimrVqqF+/frw9vaGoihITU3F2bNnUbduXfzvf/8r9hqbN28u9vhLL72Etm3bWrJsi7BEdluk1VyAtrO9/PLLOH/+fJHHy5UrhzZt2pRhRZYjczZL1C5rj5T5vpmi9WzffPMNWrdubbS/bt262LNnD9q1a6dSZebTajaZc1midpl7pKz3zZQXX3wRx44dM/x65oYNG4yOHzt2DCEhIWqUZjYtv5ZkNtvM9jz/e1vrr7e0mE2ruQBmkzXbk7gm7v+n1+uxa9cuHD58GKmpqQAAHx8ftGrVCn/5y19gZ2encoXWo9XsWs0FaDsbEZG5zpw5g4SEBAwdOrTQ47/88gv+85//YNasWWVcmfm0mk3mXDLXbi4tZ799+zbs7Ozg6elZ6PEdO3bAxcUF4eHhZVqXpWj5tSSz2SaZaycishWcxLUwvV5f6BOQXq/H77//Dn9/fxWqIiKyDeyRRERFY48kIioe+yQRPc/44y4LSU9PR//+/eHm5gZvb2/MmjXL6FPvbt68WeQCy0REWsceSURUNPZIIqLisU8SEQFcE9dC3n33XZw+fRqfffYZ7t69i/feew8JCQnYtGkTHB0dAQB80zMRPa/YI4mIisYeSURUPPZJIiIup2Ax1atXR1xcnGFdrFu3bqFbt24oX748tmzZgrt376JKlSpGPy0kInpesEcSERWNPZKIqHjsk0REXE7BYv78809Ur17dsF2pUiV8//33uH//Prp27YqMjAwVqyMiUhd7JBFR0dgjiYiKxz5JRMTlFCzGz88P586dM1qHp1y5cvjuu+/wl7/8Bb1791axOiIidbFHEhEVjT2S1JSWlobz589DURQEBQWhcuXKapdkMcxmm0pTu1b6pMz3zRStZtNqLoDZZMTlFJ7QuHFjKIpSYL+iKHB2dkatWrUQFRWFdu3aFThn3LhxSElJwddff13g2P3799GpUyccO3bMZn+9w5zstkyruQBmY7ayxx4p530zhdmYzZbInIs9Us77ZoqWs6Wnp2PMmDHYuHGj4e+WTqfDgAED8M9//hPly5dXucLSYzbbZE7tsvdJme+bKVrNptVcALPJjMspPCEiIgK//fYb3Nzc0K5dO4SHh8Pd3R2XLl1C8+bNkZKSgo4dO2Lz5s0FHjtnzhzMnj270OuWK1cOu3fvxt69e62coPTMyW7LtJoLYDZmK3vskXLeN1OYjdlsicy52CPlvG+maDlbdHQ0jhw5gm3btuHu3bu4d+8etm3bhuPHj2PEiBFql2cWZrNN5tQue5+U+b6ZotVsWs0FMJvUBBlER0eLuXPnFtg/b948ER0dLYQQYubMmaJp06ZlXZrVaTW7VnMJwWzMVvZkrt1cWs7ObMxmS2TOJXPt5tJydi1nc3V1FT/++GOB/T/88INwdXVVoSLLYTbbJHPt5tJydq1m02ouIZhNZpzEfYKHh4e4cOFCgf0XLlwQHh4eQgghzp07J9zd3Qt9/IMHD8Qnn3wioqKiREREhOjSpYuIiooS//rXv8SDBw+sWru5zM1uq7SaSwhmY7ayxx4p530zhdmYzZbInIs9Us77ZoqWs/n5+YkzZ84U2H/69GlRtWpVFSqyHGazTebWLnOflPm+maLVbFrNJQSzyYzLKTzB2dkZhw4dKrD/0KFDcHZ2BgDo9Xo4OTkVOCcxMRFBQUGYMmUK7ty5A39/f1SrVg137tzB5MmTUadOHSQmJlo9Q2mZk92WaTUXwGzMVvbYI+W8b6YwG7PZEplzsUfKed9M0XK2GTNmYMKECUhJSTHsS01NxeTJk/Huu++qWJn5mM02mVO77H1S5vtmilazaTUXwGwys1e7AFsyduxYjBo1CgkJCWjevDkURcHRo0exZs0aTJ8+HQCwa9cuNG7cuMBjx4wZgzZt2iAuLg6Ojo5Gx7KzsxEVFYUxY8Zg3759ZZLlWZmT3ZZpNRfAbMxW9tgj5bxvpjAbs9kSmXOxR8p530zRcraVK1fi4sWLqF69Ovz9/QEAV69ehZOTE27evInVq1cbzj1x4oRaZZYKsz1ma9nMqV32PinzfTNFq9m0mgtgtnyyZQMARQgh1C7Clqxfvx4ff/wxzp8/DwCoU6cOxo4di9deew0A8OjRI8On0T7J1dUVx48fR926dQu97tmzZ/HSSy8hIyPDugHMUNrstk6ruQBmY7ayxx4p530zhdmYzZbInIs9Us77ZopWs82ZM6fE586aNcuKlVgesz1ma9nMqV32PinzfTNFq9m0mgtgtnyyZQM4iWsxVatWxYoVK9CzZ89Cj3/77bcYM2YM/vjjjzKujIhIfeyRRERFY48kIioe+yQREcA1cS1kxIgRGDJkCD766COcPn0aqampuHHjBk6fPo2PPvoIw4YNw+uvv652mUREqmCPJCIqGnskqeXu3btYs2YNpk2bhtu3bwN4/OulWpgIYzbbVNratdAnZb5vpmg1m1ZzAcwmLXU/V822KIoi7OzsivwyZeHChcLX19foOoqiCF9fX/HBBx+UQYLSMze7rdJqLiGYTVYyZ2OPlPO+mcJsctJqNplzsUfKed9M0XK206dPCy8vL1GrVi1hb28vLl26JIQQYsaMGWLQoEEqV2ceZrNN5tYuc5+U+b6ZotVsWs0lBLPJjB9s9oT//ve/Rts5OTk4efIk4uLiSrSuxt///nf8/e9/x+XLl5GamgoA8PHxQWBgoFXqtSRzs9sqreYCmE1WMmdjj/w/Mt03U5hNTlrNJnMu9sj/I9N9M0XL2SZMmICoqCh8+OGHKFeunGF/ly5dDOv9yorZbJO5tcvcJ2W+b6ZoNZtWcwHMJjW1Z5FlsH79etGjRw+1y1CFVrNrNZcQzCYrmbPJXLu5tJyd2eSk1Wwy55K5dnNpObsWsnl4eIiLFy8KIYRwd3c3vFspOTlZODk5qVma2ZjNNslcu7m0nF2r2bSaSwhmkxnXxC2BFi1aYPfu3SbPe/ToEQ4cOIDExMQCxzIzM7Fu3TprlGdVJc0uG63mAphNVjJnY4+U876Zwmxy0mo2mXOxR8p530zRQjZnZ2ekp6cX2H/+/Hl4eXmpUJHlMJttMrd2mfukzPfNFK1m02ougNlkxklcEx49eoTly5ejWrVqxZ6XlJSEkJAQtGnTBg0aNEB4eDhSUlIMx+/du4ehQ4dau1yLKml22Wg1F8BsspI5G3uknPfNFGaTk1azyZyLPVLO+2aKVrL17NkTc+fORU5ODgBAURRcvXoVU6dORd++fVWuzjzMZpvMqV32PinzfTNFq9m0mgtgNqmp/VZgW+Lp6SkqVKhg+PL09BQ6nU6UK1dObN68udjH9urVS0RGRoqbN2+KCxcuiO7du4vAwEBx5coVIYQQqampNv3hB+Zkt2VazSUEs8lK5mzskXLeN1OYTU5azSZzLvZIOe+bKVrOdu/ePREWFmbI5OfnJxwcHESbNm3EgwcP1C7PLMxmm8ypXfY+KfN9M0Wr2bSaSwhmk5kihBBqTyTbiri4OKNtOzs7eHl5oUWLFqhQoUKxj/X29sbu3bvRoEEDw74xY8Zg27Zt2LdvH9zc3FClShXk5eVZpXZzmZPdlmk1F8BsspI5G3vk/5HpvpnCbHLSajaZc7FH/h+Z7pspWs6Wb+/evThx4gT0ej2aNGmCjh07ql2SxTCbbSpN7bL3yXwy3zdTtJpNq7kAZpMRJ3FL6NSpU2jUqFGRxz08PHDkyBGEhIQY7R87diy+/fZbbNiwAeHh4Tb/pFIYU9llpdVcALPJSuZs7JGN1C7DKphNTlrNJnMu9shGapdhFVrORmRrtNwniYhKimviFuPevXtYsWIFmjRpgqZNmxZ7bnBwMI4fP15g//Lly9GzZ0/06NHDWmVaxbNkl4lWcwHMJiuZs7FHynnfTGE2OWk1m8y52CPlvG+maCHbkSNHsGPHDqN969atQ2BgICpXroyRI0ciKytLperMw2y2mc0StcvaJ2W+b6ZoNZtWcwHMJms2I+qu5mCb9uzZIwYOHChcXFxEcHCweOedd8SJEyeKfcz8+fNFly5dijz+xhtvCEVRLF2qxZUmuwy0mksIZpOVzNnYI+W8b6Ywm5y0mk3mXOyRct43U7SULSIiQixcuNCwfebMGWFvby+io6PF4sWLhY+Pj5g1a5Z6BZqB2WapV2AxLFG7rH1S5vtmilazaTWXEMwma7YncRL3/7t27ZqYN2+eCAwMFJUrVxZvvvmmsLe3F7/88ovapVmdVrNrNZcQzCYrmbPJXLu5tJyd2eSk1Wwy55K5dnNpObtWs/n4+Ihjx44ZtqdPny7CwsIM21999ZUICQlRozSzMZttZpO5dnNpObtWs2k1lxDMJmu2J3E5BQBdu3ZF3bp1kZiYiOXLl+P69etYvny52mWVCa1m12ougNlkJXM2mWs3l5azM5uctJpN5lwy124uLWfXcrY7d+7A29vbsL1//35EREQYtps3b45r166pUZrZmM02s8lcu7m0nF2r2bSaC2A2WbMZUXsW2RbodDrx9ttvi6SkJKP9WvhJuylaza7VXEIwm6xkziZz7ebScnZmk5NWs8mcS+bazaXl7FrO5u/vL/bv3y+EECIrK0u4uLiI3bt3G46fOXNGVKhQQa3yzMJstplN5trNpeXsWs2m1VxCMJus2Z7Ed+IC+PHHH3H//n00a9YMLVq0wMcff4ybN2+qXVaZ0Gp2reYCmE1WMmeTuXZzaTk7s8lJq9lkziVz7ebScnYtZ4uIiMDUqVPx448/Ytq0aXB1dUXr1q0Nx8+cOYOaNWuqWGHpMZttZpO5dnNpObtWs2k1F8BssmYzovYssi15+PCh+Pe//y3CwsKEg4ODsLOzEzExMSI9PV3t0qxOq9m1mksIZpOVzNlkrt1cWs7ObHLSajaZc8lcu7m0nF2L2dLS0sTLL78sFEUR5cqVE5s2bTI63r59ezF9+nSVqjMPs9lmNplrN5eWs2s1m1ZzCcFssmZ7Eidxi/Drr7+KyZMnCx8fH+Hs7Cy6d++udkllRqvZtZpLCGaTlczZZK7dXFrOzmxy0mo2mXPJXLu5tJxda9nu3r0rcnNzC+y/deuWyMrKUqEiy2E22yRz7ebScnatZtNqLiGYTWaKEEKo/W5gW5aXl4etW7fi008/xZYtW9Qup0xpNbtWcwHMJiuZs8lcu7m0nJ3Z5KTVbDLnkrl2c2k5u5azERERke3iJC4RERERERERERGRDeMHmxERERERERERERHZME7iEhEREREREREREdkwTuISERERERERERER2TBO4hIRERERERERERHZME7iEhERERFZUUBAAGJiYtQug4iIiIgkxklcIiIiItKEqKgoKIoCRVHg4OAAb29vdOrUCZ9++in0en2JrxMbGwtPT89nHr+oxx07dgwjR4585usREREREeXjJC4RERERaUZERARSUlKQnJyMHTt2oF27dnjrrbcQGRmJ3NxcVWry8vKCq6urKmMTERERkTZwEpeIiIiINMPJyQk+Pj6oWrUqmjRpgunTp2Pz5s3YsWMHYmNjAQBLlixBgwYN4ObmBj8/P4wePRoPHjwAAMTHx2Po0KG4d++e4V29s2fPBgBkZ2djypQpqFq1Ktzc3NCiRQvEx8ebfNzTyykoioLVq1cjMjISrq6uCAkJwU8//YSLFy8iPDwcbm5uaNWqFS5dumSUbevWrWjatCmcnZ1Ro0YNzJkzR7WJaSIiIiIqW5zEJSIiIiJNa9++PRo2bIhNmzYBAOzs7LBs2TKcPXsWcXFx2Lt3L6ZMmQIACA0NRUxMDDw8PJCSkoKUlBRMmjQJADB06FAcPHgQGzduxJkzZ9CvXz9ERETgwoULxT6uMPPmzcPgwYNx6tQpBAcH47XXXsPrr7+OadOm4fjx4wCAN99803D+rl278Le//Q3jxo1DYmIiVq9ejdjYWLz//vvW+rYRERERkQ3hJC4RERERaV5wcDCSk5MBAOPHj0e7du0QGBiI9u3bY968efjqq68AAI6OjihfvjwURYGPjw98fHzg7u6OS5cu4YsvvsDXX3+N1q1bo2bNmpg0aRJefvllrF27tsjHFWXo0KHo378/goKC8Pe//x3JyckYOHAgOnfujJCQELz11luGd/kCwPvvv4+pU6diyJAhqFGjBjp16oR58+Zh9erV1vy2EREREZGNsFe7ACIiIiIiaxNCQFEUAMC+ffswf/58JCYmIj09Hbm5ucjMzMTDhw/h5uZW6ONPnDgBIQSCgoKM9mdlZaFSpUrPXM+LL75o+LO3tzcAoEGDBkb7MjMzkZ6eDg8PDyQkJODYsWNG77zNy8tDZmYmMjIyuOYuERERkcZxEpeIiIiINO/cuXMIDAzElStX0LVrV4waNQrz5s1DxYoVceDAAQwfPhw5OTlFPl6v10On0yEhIQE6nc7oWHHvuC2Kg4OD4c/5k8uF7dPr9Yb/zpkzB3369ClwLWdn52cen4iIiIjkwklcIiIiItK0vXv34ueff8bbb7+N48ePIzc3F4sXL4ad3eOVxfKXUsjn6OiIvLw8o32NGzdGXl4e0tLS0Lp160LHKexxltKkSROcP38etWrVssr1iYiIiMi2cRKXiIiIiDQjKysLqampyMvLw40bN7Bz504sWLAAkZGRGDx4MH7++Wfk5uZi+fLl6N69Ow4ePIhVq1YZXSMgIAAPHjzAnj170LBhQ7i6uiIoKAgDBw7E4MGDsXjxYjRu3Bh//vkn9u7diwYNGqBr166FPs5SyxzMnDkTkZGR8PPzQ79+/WBnZ4czZ87g559/xnvvvWeRMYiIiIjIdvGDzYiIiIhIM3bu3AlfX18EBAQgIiIC+/btw7Jly7B582bodDo0atQIS5YswQcffID69etj/fr1WLBggdE1QkNDMWrUKAwYMABeXl748MMPAQBr167F4MGDMXHiRNSpUwc9evTAkSNH4OfnV+zjLKFz587Ytm0bvv/+ezRv3hwtW7bEkiVLUL16dYuNQURERES2SxFCCLWLICIiIiIiIiIiIqLC8Z24RERERERERERERDaMk7hERERERERERERENoyTuEREREREREREREQ2jJO4RERERERERERERDaMk7hERERERERERERENoyTuEREREREREREREQ2jJO4RERERERERERERDaMk7hERERERERERERENoyTuEREREREREREREQ2jJO4RERERERERERERDaMk7hERERERERERERENuz/AUBsJlPJhYSQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Floodpy_app.plot_ERA5_precipitation_data()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Download Sentinel-1 data" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The available dates for flood mapping are: \n", " --> 2023-09-06 04:39:47.095652\n", " --> 2023-09-07 16:24:12.139701\n", " --> 2023-09-12 16:32:24.059385\n", " --> 2023-09-13 04:31:57.827516\n", " --> 2023-09-18 04:39:47.608904\n" ] } ], "source": [ "Floodpy_app.query_S1_data()\n", "print('The available dates for flood mapping are: \\n --> {}'.format('\\n --> '.join(map(str, Floodpy_app.flood_datetimes))))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Calculate flooded regions" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The flooded region for the following datetimes will be calculated:\n", "2023-09-06 04:39:47.095652\n", "2023-09-07 16:24:12.139701\n", "2023-09-12 16:32:24.059385\n", "2023-09-13 04:31:57.827516\n", "2023-09-18 04:39:47.608904\n" ] } ], "source": [ "print('The flooded region for the following datetimes will be calculated:')\n", "print(*list(Floodpy_app.flood_datetimes),sep='\\n')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# You can also select specific flood dates following the example:\n", "# Example --> \n", "\n", "# Floodpy_app.flood_datetimes = [pd.Timestamp('2023-09-13 04:31:57.827516'),\n", "# pd.Timestamp('2023-09-07 16:24:12.139701')]\n", "\n", "Floodpy_app_objs = {}\n", "for flood_date in Floodpy_app.flood_datetimes:\n", " Floodpy_app.sel_S1_data(flood_date)\n", " Floodpy_app.download_S1_GRD_products()\n", " Floodpy_app.download_S1_orbits()\n", " Floodpy_app.create_S1_stack(overwrite=False)\n", " Floodpy_app.calc_flooded_regions_ViT(ViT_model_filename = ViT_model_filename,\n", " device = 'cuda',\n", " generate_vector = True,\n", " overwrite = False)\n", " Floodpy_app_objs[flood_date] = copy.deepcopy(Floodpy_app)\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot area of flooded regions over time" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The figure can be found at: /home/kleanthis/Projects/Thessalia_Floods_2023/Results/Thessalia September 2023.svg\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAHqCAYAAAD2yRGtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsqUlEQVR4nO3deXxM1/sH8M/JHonYEkRkIXaKWlqNtdbai9pbpZaiLZqftUq1FLV+qa9qUaq1tKWorbXWXlTUGkSIWCNNkCCJSfL8/sh3bjMyyYSJ3Cyf9+vl1ebec+4598lM5pl77zlHiYiAiIiIiNJlo3cHiIiIiHI6JkxEREREFjBhIiIiIrKACRMRERGRBUyYiIiIiCxgwkRERERkARMmIiIiIguYMBERERFZYKd3B/KL5ORk3Lx5EwULFoRSSu/uEBER5XsigtjYWJQqVQo2NhlfQ2LClE1u3rwJb29vvbtBRERET7h27RpKly6dYRkmTNmkYMGCAFJ+KW5ubjr3JmsZDAZs374dLVu2hL29vd7dyTcYd30w7vph7PWRl+MeExMDb29v7TM6I0yYsonxNpybm1ueTJgKFCgANze3PPdmyskYd30w7vph7PWRH+KemUdl+NA3ERERkQVMmIiIiIgsYMJEREREZAETJiIiIiILmDARERERWcCEiYiIiMgCJkxEREREFjBhIiIiIrKACRMRERGRBUyYiIiIiCxgwkRERERkARMmIiIiIguYMBERERFZwISJiIiIyAImTEREREQW2OndAaLcqunQcF3bd7BNwpDmQPvA63icZKtbP3Yv9NGtbSKi7MIrTEREREQWMGEiIiIisoAJExEREZEFTJiIiIiILGDCRERERGQBEyYiIiIiC5gwEREREVnAhImIiIjIAiZMRERERBYwYSIiIiKygAkTERERkQVMmIiIiIgsYMJEREREZAETJiIiIiILmDARERERWcCEiYiIiMgCJkxEREREFjBhIiIiIrKACRMRERGRBUyYiIiIiCzItQnTxx9/DKUUlFKYMmVKuuUOHz6Mjh07wsPDA87OzqhSpQomT56M+Pj4DI8fHByM3r17w9PTE05OTvD398fIkSNx7969LD4TIiIiyulyZcIUHByMmTNnWiy3cuVKNGzYEL/++iscHR1RuXJlXLp0CRMnTkSjRo3w6NEjs/X27NmD2rVrY9WqVUhKSkLVqlVx+/ZtzJ49G7Vr10ZERERWnxIRERHlYLkuYRIRvPvuu7C3t0fTpk3TLRcWFob+/fsjKSkJM2bMwLVr1xAUFISQkBBUrFgRx44dw+jRo9PUi42NRffu3REXF4dhw4bhxo0bOH78OMLDw1G/fn1cvnwZ/fv3f56nSERERDlMrkuYli5div3792PixInw9vZOt9zMmTORkJCAli1bYtSoUVBKAQB8fX3x7bffAgC++eabNFeLFi1ahMjISFSuXBlz5syBvb09AKBYsWJYtWoV7OzssGXLFgQFBT2nMyQiIqKcJlclTJGRkRgzZgyqVKmCDz/8MN1yIoL169cDgNmrQQEBAahUqRIMBgM2btxosu+XX34BAPTt2xe2trYm+3x8fNC8eXMAwNq1a606FyIiIso9clXC9OGHHyI6OhoLFy7UrvyYEx4ejlu3bgEA6tevb7aMcfuRI0e0bYmJiTh+/PhT1yMiIqK8LdckTLt27cLKlSvx5ptvonHjxhmWDQkJAQA4OjqiVKlSZsuULVvWpCyQ8tyTwWAw2Z+ZekRERJS32endgcyIj4/H4MGDUahQIcyaNcti+bt37wIAChcurD279KQiRYqYlH3y/437M1PPnISEBCQkJGg/x8TEAAAMBoOWlOUVxvPJa+dliYNtkq7t2/+vfXud+5Hffu/59fWeEzD2+sjLcX+ac8oVCdOUKVNw6dIlLFiwACVKlLBY3jjHkoODQ7plHB0dAQBxcXFp6mVU11w9c6ZNm4ZPP/00zfbt27ejQIECGdbNrXbs2KF3F7LVkOZ69yDFgFfP6tr+1q2ndG1fL/nt9Z6TMPb6yItxT296IXNyfMJknHOpVq1aGDJkSKbqODk5AQAeP36cbhnj1R9nZ+c09Yx1U/+cUT1zxo0bh8DAQO3nmJgYeHt7o2XLlnBzc8vEWeQeBoMBO3bsQIsWLTJ8tiyvaR94Xdf27W2TMODVs1iypyoMSbaWKzwnm+aU1q1tPeTX13tOwNjrIy/H3Xj3JzNyfMI0dOhQJCYm4quvvoKNTeYeuTLeNrt37x5ExOxtOeMttdS33lL//927d+Hp6ZmpeuY4OjpqV6NSs7e3z3MvOKO8fG7mPNYxSUnNkGSra1/y0+88tfz2es9JGHt95MW4P8355PiHvk+cOAGlFDp06ICSJUua/Pvxxx8BAF988QVKliyJunXrAgDKly8PIOVq0M2bN80e9/LlyyZlAcDPz08LnnF/ZuoRERFR3pbjEyYASEpKQkRERJp/xmeOHjx4gIiICERGRgJImS+pZMmSAICDBw+aPaZx+8svv6xts7OzQ61atZ66HhEREeVtOT5hMt5WM/fv7bffBgBMnjwZIoKwsDAAgFIKnTp1ApAyM/iTDh06hPPnz8Pe3h4dOnQw2de5c2cAwPLly5GUZDr6KDw8HDt37gQAdOnSJUvPk4iIiHKuHJ8wPatRo0bBwcEB27dvx8yZMyEiAICrV6/inXfeAQAMGDBAuxJlNHjwYLi7uyM4OBiBgYHakMOoqCj06tULiYmJaN26NWrXrp29J0RERES6ybMJU5kyZbB48WLY2Nhg9OjR8Pb2Rq1atVC+fHlcuHABtWvXxsyZM9PUc3Nzw5o1a+Dk5IT58+fDy8sLderUgY+PDw4ePAg/Pz9tLToiIiLKH/JswgQAffr0wf79+9GuXTvExcXh3LlzKFu2LCZNmoQDBw7AxcXFbL1mzZrhr7/+Qo8ePaCUwunTp1GiRAkEBgYiKCgozVUpIiIiytty/LQCGVm+fDmWL1+eYZmAgABs2rTpqY9dtWpVrF69+hl7RkRERHlJnr7CRERERJQVmDARERERWcCEiYiIiMgCJkxEREREFjBhIiIiIrKACRMRERGRBUyYiIiIiCxgwkRERERkARMmIiIiIguYMBERERFZwISJiIiIyAImTEREREQWMGEiIiIisoAJExEREZEFTJiIiIiILGDCRERERGQBEyYiIiIiC5gwEREREVnAhImIiIjIAiZMRERERBYwYSIiIiKygAkTERERkQVMmIiIiIgsYMJEREREZIGdNZUNBgOOHTuGAwcO4OrVq4iMjERcXBzc3d3h4eGBWrVqoWHDhvDy8sqq/hIRERFlu2dKmPbs2YMlS5Zgw4YNiI+PBwCISJpySikAQOXKlfHOO++gT58+cHd3t6K7RERERNnvqRKmTZs2Ydy4cQgODoaIwM7ODjVr1kTdunXh6emJokWLwtnZGdHR0YiOjsa5c+dw7NgxnDt3DiNHjsRHH32EQYMGYcKECfDw8Hhe50RERESUpTKdMDVq1AgHDx6Es7MzunXrhh49eqBVq1ZwcnKyWDc0NBRr1qzB6tWrsWDBAnz33XdYsWIFOnbsaFXniYiIiLJDph/6PnPmDCZMmIDr169j9erV6NixY6aSJQDw9/fH+PHjcebMGezatQu1a9fGqVOnnrnTRERERNkp01eYrl69ioIFC1rd4KuvvopXX30VsbGxVh+LiIiIKDtk+gpTViRLz/N4RERERM8L52EiIiIisuCZEqYzZ85g/vz5+PPPP9PsGz58uNWdIiIiIspJnjph2rVrF+rUqYMRI0agfv36GDRoEBITE7X9q1evztIOEhEREentqROmTz/9FN26dcOJEycwatQoLFu2DK1bt0ZCQgIA8xNYEhEREeVmTz3T97lz5/Dbb7+hQIECqFGjBho3boxu3bqhS5cu2Lhx4/PoIxEREZGunvoKk62tLZydnbWfW7dujd9//x379u1Dv379tOVQiIiIiPKKp06YPD09cfLkSZNtAQEB2LJlC9avX4+oqKgs6xwRERFRTvDUCdPrr7+OP/74I832hg0bYv369fDz88uCbhERERHlHE/9DNOkSZPS3de8eXOEhoZa0x8iIiKiHIcTVxIRERFZ8NRXmNJz7949XLlyBQ8ePMhwaoFGjRplVZNERERE2cLqhGn37t0YP348jh49arGsUspkkksiIiKi3MCqhGnr1q14/fXXkZiYCCcnJ5QpUwYeHh6cWoCIiIjyFKsSpokTJyIpKQnvvvsupk+fjkKFCmVVv4iIiIhyDKsSpnPnzsHd3R1fffVVVvWHiIiIKMexKmEqUqQIvLy8sqovRERERDmSVdMKtGzZEsHBwXj48GFW9YeIiIgox7EqYfr000/h4uKCd999F/Hx8VnVJyIiIqIcxapbcj4+Pti3bx/69OmDcuXKoWfPnvD390eBAgXSrdOnTx9rmiQiIiLKdlbPw3T06FFcu3YNt27dwpw5cyyWZ8JEREREuY1VCdOPP/6oJUClS5fGCy+8wHmYiIiIKM+xKmGaNm0alFKYNm0aRo4cCRsbLk1HREREeY9VCdPFixfh5eWF0aNHZ1V/iIiIiHIcqy4JFStWDCVKlMiqvhARERHlSFYlTO3bt8eZM2cQFRWVVf0hIiIiynGsSpimTJkCb29v9OjRAxEREVnVJyIiIqIcxapnmBYsWIA2bdrgq6++gr+/P1q3bp3hPExKKUyYMMGaJomIiIiynVUJ06RJk6CUgojAYDBg3bp1ZssZyzBhIiIiotzIqoRp4sSJnHOJiIiI8jyrrzARERER5XXZOtMkR9MRERFRbmRVwjRkyJBMl42IiECTJk2eqZ0NGzbg3XffRe3ateHp6QkHBwcULlwYAQEBmDdvHh4/fpxu3cOHD6Njx47w8PCAs7MzqlSpgsmTJyM+Pj7DNoODg9G7d294enrCyckJ/v7+GDlyJO7du/dM50BERES5l1UJ09dff42xY8daLHfz5k00atQI586de6Z2Zs2ahW+++QZnz56Fs7MzatSoAVdXVxw+fBgjRoxAQECA2URm5cqVaNiwIX799Vc4OjqicuXKuHTpEiZOnIhGjRrh0aNHZtvbs2cPateujVWrViEpKQlVq1bF7du3MXv2bNSuXZtTKBAREeUzViVMFStWxMyZMzF16tR0y1y7dg2NGzdGSEgIunTp8kztDBgwAHv27EFsbCwuX76MY8eO4fr16zh8+DBKly6N48ePY/z48SZ1wsLC0L9/fyQlJWHGjBm4du0agoKCEBISgooVK+LYsWNml3SJjY1F9+7dERcXh2HDhuHGjRs4fvw4wsPDUb9+fVy+fBn9+/d/pvMgIiKi3MmqhGnHjh3w8fHBhAkT8N///jfN/suXL6NRo0YIDQ1Fz549sXr16mdqp2/fvmjSpAns7e1NtterVw9z5swBkHLbLrWZM2ciISEBLVu2xKhRo7TRfL6+vvj2228BAN98802aq0WLFi1CZGQkKleujDlz5mhtFitWDKtWrYKdnR22bNmCoKCgZzoXIiIiyn2sSphKly6NnTt3onjx4hg+fDi+//57bV9ISAgaN26Mq1ev4u2338b3338PW1tbqzv8pEqVKgGAye01EcH69esBwOzVoICAAFSqVAkGgwEbN2402ffLL78ASEnSnuyvj48PmjdvDgBYu3Zt1p0EERER5WhWj5Lz9/fHjh07UKhQIfTv3x8bNmzAuXPn0KhRI9y4cQODBg3Ct99+Cxub5zMg7/DhwwCAWrVqadvCw8Nx69YtAED9+vXN1jNuP3LkiLYtMTERx48ff+p6RERElLdZNQ+TUbVq1fDbb7+hWbNm6NmzJ1xdXREVFYX33nsPX375ZVY0YSIpKQm3bt3Cr7/+irFjx8LFxQXTpk3T9oeEhAAAHB0dUapUKbPHKFu2rElZIOW5J4PBYLI/M/WIiIgob8uShAkA6tati82bN+O1115DdHQ0AgMDMWvWrKw6PADgP//5Dz788EOTba+//jomT56MatWqadvu3r0LAChcuHC6M5EXKVLEpOyT/2/cn5l65iQkJCAhIUH7OSYmBgBgMBi0pCyvMJ5PXjsvSxxsk3Rt3/5/7dvr3I/89nvPr6/3nICx10dejvvTnFOmE6Z33nknU+XKlCmDmzdvIjo6Ok0dpRSWLl2a6c49ycvLC/Xr14fBYMDVq1cRERGBPXv2YPXq1fjss8+0Z46Mcyw5ODikeyxHR0cAQFxcnLYt9dxM6dU1V8+cadOm4dNPP02zffv27ekuTpzb7dixQ+8uZKshzfXuQYoBr57Vtf2tW0/p2r5e8tvrPSdh7PWRF+Oe3vRC5mQ6YVq+fPlTdcJceWsTpq5du6Jr167az0eOHMG7776LqVOnIjo6Gl999RUAwMnJCQAynNDSePXH2dlZ22asZ6yb+ueM6pkzbtw4BAYGaj/HxMTA29sbLVu2hJubW4Z1cxuDwYAdO3agRYsWaUYy5mXtA6/r2r69bRIGvHoWS/ZUhSEp6wdUZNamOaV1a1sP+fX1nhMw9vrIy3E33v3JjEwnTMuWLXumzjxPL7/8MrZu3YqyZcvim2++wdixY+Hr66vdNrt37x5ExOxtOeMttdS33lL//927d+Hp6ZmpeuY4OjpqV6NSs7e3z3MvOKO8fG7mPNYxSUnNkGSra1/y0+88tfz2es9JGHt95MW4P835ZDphevvtt5+pM89bqVKlULNmTRw5cgQnT56Er68vypcvDyDlatDNmzfh5eWVpt7ly5cBQCsLAH5+frC3t4fBYMDly5fNJkzm6hEREVHelq2L7z4viYmJJv/18fFByZIlAQAHDx40W8e4/eWXX9a22dnZadMTPE09IiIiyttyfcIUFhaGkydPAgBq1KgBIOVZqU6dOgGA2WemDh06hPPnz8Pe3h4dOnQw2de5c2cAKc9gJSWZjj4KDw/Hzp07AeCZl3khIiKi3CfTCdPQoUNx/XrWPOS6Zs0arFq1KlNljx8/jk8++US7FZbab7/9htatWyMxMRFt2rSBv7+/tm/UqFFwcHDA9u3bMXPmTIgIAODq1ava6L0BAwZoV6KMBg8eDHd3dwQHByMwMFAbchgVFYVevXohMTERrVu3Ru3atZ/p3ImIiCj3yXTC9M0336BcuXIYMGAA9u3b99QNRUZGYsGCBahcuTJ69+6NK1euZKpebGwsPvvsM/j7+8PT0xN169ZFjRo1UKRIEbRu3Rrnz59H3bp18d1335nUK1OmDBYvXgwbGxuMHj0a3t7eqFWrFsqXL48LFy6gdu3amDlzZpr23NzcsGbNGjg5OWH+/Pnw8vJCnTp14OPjg4MHD8LPz09bi46IiIjyh0wnTH///TeaNWuGb7/9Fq+++iq8vb0xaNAgLFmyBCdOnMDt27e1Yfz379/HlStXsHXrVnz22Wdo2bIlvLy8MHz4cERFRWHu3LkYPXp0ptqtUaMG5s2bhw4dOsDFxQXnz5/H+fPn4ezsjNatW2PZsmU4dOgQ3N3d09Tt06cP9u/fj3bt2iEuLg7nzp1D2bJlMWnSJBw4cAAuLi5m22zWrBn++usv9OjRA0opnD59GiVKlEBgYCCCgoLSXJUiIiKivC3To+SqVauGLVu2YP/+/ViwYAE2btyIJUuWWJxXyXgrrFy5chg4cCAGDx6MggULZrqDRYoUwbBhwzBs2LBM10ktICAAmzZteup6VatWxerVq5+pTSIiIspbnnpplIYNG6Jhw4b4559/sH79euzbtw+HDh3CtWvXtFFqQMqtrZo1a6JBgwZo2bIlGjVqlKUdJyIiIsouz7yWnLu7OwYOHIiBAwdq2+7du4f4+HgULVo0w2VJiIiIiHKTLFt8F0hZ7JaIiIgor8n18zARERERPW9MmIiIiIgsYMJEREREZAETJiIiIiILmDARERERWcCEiYiIiMgCJkxEREREFjBhIiIiIrKACRMRERGRBVky0/f+/fuxcuVKnDx5EtHR0TAYDGbLKaUQGhqaFU0SERERZRurE6b33nsPixYtgohYLKuUsrY5IiIiomxn1S25H374AV999RUqV66MnTt3ok6dOlBKISQkBLt378bcuXPh6+sLZ2dnLFq0CJcvX86qfhMRERFlG6sSpiVLlkAphTVr1qBp06ZwdHQEAPj7+6NJkyYYPnw4QkJC0LZtWwwbNgyRkZFZ0mkiIiKi7GRVwnTq1Cn4+PigWrVqAP695Zb69pydnR0WL14MW1tbfP7559Y0R0RERKQLqxKmuLg4FC9eXPvZ2dkZAHDv3j2TcoUKFUKVKlVw6NAha5ojIiIi0oVVCVPJkiVx9+5d7WdPT08AwLlz59KUjYyMRExMjDXNEREREenCqoSpYsWKuHnzpnYLrkGDBhARfPHFFyZTC3z//fcIDw9H2bJlrestERERkQ6sSpjatm2LR48eYd++fQCAHj16wNPTE1u2bEHFihXRtWtXNGrUCH379oVSCoMHD86SThMRERFlJ6vmYerWrRtiYmJgb28PAHB1dcXmzZvRrVs3hIaGIiwsLKUROzuMGDECH3zwgdUdJiIiIspuViVMJUqUwPjx4022vfjii7hw4QKOHj2KsLAwODs7o169eihRooRVHSUiIiLSS5YsjfIkGxsb1KtXD/Xq1XsehyciIiLKVlm6+G5ycjIiIyMRHh6elYclIiIi0lWWJExbt25FixYtULBgQZQsWTLNaLjPP/8cvXr14kzfRERElCtZnTCNHj0a7du3x65du5CUlAR7e/s0C/F6enrixx9/xPr1661tjoiIiCjbWZUwrVu3DrNmzUKpUqWwefNmPHz4EHXr1k1TrlOnTgCAX3/91ZrmiIiIiHRh1UPf//3vf6GUws8//5zhA95FihRBmTJlEBISYk1zRERERLqw6grTiRMn4O3tnanRcB4eHrhx44Y1zRERERHpwqqEKSEhAYULF85U2UePHsHW1taa5oiIiIh0YVXC5O3tjUuXLpmsG2fO/fv3cf78efj7+1vTHBEREZEurEqYWrVqhbi4OMydOzfDcp999hkSExPRrl07a5ojIiIi0oVVCdOYMWNQsGBBfPTRRxg1ahTOnz+v7UtOTsapU6fwzjvvYO7cuXB3d8fw4cOt7jARERFRdrNqlJyXlxc2btyIzp07Y86cOZgzZ462z7ggr4igaNGiWL9+PYoVK2Zdb4mIiIh0YPXElY0bN8aZM2cwYsQI+Pr6QkS0f56ennj//fdx8uRJBAQEZEV/iYiIiLJdliy+6+npidmzZ2P27Nl4+PAh7t+/D1dXV7i5uWXF4YmIiIh0ZVXCZGNjg6JFi+LGjRtwdHQEALi4uMDFxSVLOkdERESUE1h1S87V1RX+/v5askRERESUF1mVMFWqVAkRERFZ1RciIiKiHMmqhGngwIEIDw/Hli1bsqo/RERERDmO1QnT4MGD0bNnT8ybNw/R0dFZ1S8iIiKiHMOqh77Lli0LAIiLi0NgYCACAwPh7u6e7kPfSimEhoZa0yQRERFRtrMqYQoLC0uzLTIyEpGRkWbLK6WsaY6IiIhIF1YlTFeuXMmqfhARERHlWFYlTL6+vlnVDyIiIqIcy+qlUYiIiIjyOiZMRERERBZkyVpy+/fvx8qVK3Hy5ElER0fDYDCYLcdRckRERJQbWZ0wvffee1i0aBFExGJZjpIjIiKi3MiqW3I//PADvvrqK1SuXBk7d+5EnTp1oJRCSEgIdu/ejblz58LX1xfOzs5YtGgRLl++nFX9JiIiIso2ViVMS5YsgVIKa9asQdOmTbVFeP39/dGkSRMMHz4cISEhaNu2LYYNG5bu/ExEREREOZlVCdOpU6fg4+ODatWqAfj3llvq23N2dnZYvHgxbG1t8fnnn1vTHBEREZEurEqY4uLiULx4ce1nZ2dnAMC9e/dMyhUqVAhVqlTBoUOHrGmOiIiISBdWJUwlS5bE3bt3tZ89PT0BAOfOnUtTNjIyEjExMdY0R0RERKQLqxKmihUr4ubNm9otuAYNGkBE8MUXX5hMLfD9998jPDxcW6yXiIiIKDexKmFq27YtHj16hH379gEAevToAU9PT2zZsgUVK1ZE165d0ahRI/Tt2xdKKQwePDhLOk1ERESUnayah6lbt26IiYmBvb09AMDV1RWbN29Gt27dEBoairCwsJRG7OwwYsQIfPDBB1Z3mIiIiCi7WZUwlShRAuPHjzfZ9uKLL+LChQs4evQowsLC4OzsjHr16qFEiRJWdZSIiIhIL1myNMqTbGxsUK9ePdSrV+95HJ6IiIgoW3HxXSIiIiILmDARERERWcCEiYiIiMiCHJ8wiQgOHDiAUaNGoV69eihcuDAcHBxQqlQpdOnSBXv27Mmw/uHDh9GxY0d4eHjA2dkZVapUweTJkxEfH59hveDgYPTu3Ruenp5wcnKCv78/Ro4cmWYWcyIiIsr7cnzCtHv3bjRs2BCzZs3CsWPHUKJECVSrVg2xsbH45Zdf0LRpU0yYMMFs3ZUrV6Jhw4b49ddf4ejoiMqVK+PSpUuYOHEiGjVqhEePHpmtt2fPHtSuXRurVq1CUlISqlatitu3b2P27NmoXbs2IiIinucpExERUQ6T4xMmEUG5cuWwcOFC/PPPP7hw4QKCgoIQFRWFcePGAQCmTJmCzZs3m9QLCwtD//79kZSUhBkzZuDatWsICgpCSEgIKlasiGPHjmH06NFp2ouNjUX37t0RFxeHYcOG4caNGzh+/DjCw8NRv359XL58Gf3798+WcyciIqKcIccnTC+99BKCg4MxZMgQFClSRNvu4OCAqVOnonXr1gCAxYsXm9SbOXMmEhIS0LJlS4waNQpKKQCAr68vvv32WwDAN998k+Zq0aJFixAZGYnKlStjzpw52qScxYoVw6pVq2BnZ4ctW7YgKCjouZ0zERER5Sw5PmFyc3ODnV3600W1aNECAHDx4kVtm4hg/fr1AGD2alBAQAAqVaoEg8GAjRs3muz75ZdfAAB9+/aFra2tyT4fHx80b94cALB27dpnOBsiIiLKjTI9cWV4eHiWNOjj45MlxzEyPrzt7OysbQsPD8etW7cAAPXr1zdbr379+jh//jyOHDmCQYMGAQASExNx/Phxi/V+++03HDlyJMvOgYiIiHK2TCdMfn5+2m2tZ6WUQmJiolXHSE1E8PPPPwMwTXBCQkIAAI6OjihVqpTZumXLljUpC6Q892QwGEz2Z6YeERER5W2ZTph8fHzSTZhu3LihJUJ2dnZwd3dHVFSUlnzY29unm7hYY/HixThx4gQcHBwwYsQIbfvdu3cBAIULF063z8bnoYxln/z/1M9LWapnTkJCAhISErSfY2JiAAAGg0GLS15hPJ+8dl6WONgm6dq+/f/at9e5H/nt955fX+85AWOvj7wc96c5p0wnTGFhYWa3v//++1i8eDGGDRuGoUOHonz58lBKQURw6dIl/Pe//8WiRYvQrl07fPnll5numCVBQUEYPnw4gJRRcv7+/to+4206BweHdOs7OjoCAOLi4tLUy6iuuXrmTJs2DZ9++mma7du3b0eBAgUyrJtb7dixQ+8uZKshzfXuQYoBr57Vtf2tW0/p2r5e8tvrPSdh7PWRF+Oe3vRC5li1+O7ChQvx1VdfYfXq1ejWrZvJPqUUypcvj//85z8ICAhAz549UaVKFQwZMsSaJgEAV65cQbt27RAfH49evXph5MiRJvudnJwAAI8fP073GMarP6mffTLWM9ZN/XNG9cwZN24cAgMDtZ9jYmLg7e2Nli1bws3NLcO6uY3BYMCOHTvQokULbVRhftA+8Lqu7dvbJmHAq2exZE9VGJJsLVd4TjbNKa1b23rIr6/3nICx10dejrvx7k9mWJUwff311/Dx8UmTLD2pW7duGDNmDL7++murE6bbt2+jRYsWuHXrFtq2bYvly5enue1mvG127949iIjZ23LGW2qpb72l/v+7d+/C09MzU/XMcXR01K5GpWZvb5/nXnBGefnczHmsY5KSmiHJVte+5KffeWr57fWekzD2+siLcX+a87FqWoFLly7Bw8MjU2U9PDysflA6OjoaLVq0QGhoKBo3boyff/7Z7MmWL18eQMrVoJs3b5o91uXLl03KAikPthuPZ9yfmXpERESUt1mVMLm6uuLs2bMW11e7d+8ezp49CxcXl2du68GDB2jTpg3OnDmDunXrYtOmTeneFvPx8UHJkiUBAAcPHjRbxrj95Zdf1rbZ2dmhVq1aT12PiIiI8jarEqYWLVogLi4OvXv3RnR0tNkyd+/eRe/evREfH49WrVo9UzsJCQno2LEjjhw5gqpVq+K3335DwYIF0y2vlEKnTp0AAEuXLk2z/9ChQzh//jzs7e3RoUMHk32dO3cGACxfvhxJSaajj8LDw7Fz504AQJcuXZ7pXIiIiCj3sSphmjp1KooWLYrffvsNPj4+6NevH2bMmIFly5ZhxowZeOedd+Dj44Nt27ahaNGimDJlylO3kZSUhB49emD37t3w9/fHjh07ULRoUYv1Ro0aBQcHB2zfvh0zZ86EiAAArl69infeeQcAMGDAAO1KlNHgwYPh7u6O4OBgBAYGakMOo6Ki0KtXLyQmJqJ169aoXbv2U58LERER5U5WPfTt4+OD/fv3480338SJEyfw3XffmTxgbUxSXnzxRXz//ffw9fV96jZ++uknbNiwAQBgY2ODrl27mi3n6empTWIJAGXKlMHixYvRr18/jB49GvPmzUPx4sVx5swZGAwG1K5dGzNnzkxzHDc3N6xZswbt2rXD/PnzsXr1avj4+CA4OBiPHj2Cn5+fthYdERER5Q9WJUwAULlyZRw/fhy7d+/G77//josXL+LBgwdwdXVFhQoV0LJlSzRr1uyZj5968seQkJB0Hxw3l4z16dMH5cqVw7Rp03Do0CGcO3cOZcuWRc+ePTFmzBiz0wYAQLNmzfDXX39hypQp2L17N06fPg0vLy906tQJH3/8scURckRERJS3WJ0wGTVt2hRNmzbNqsNp+vbti759+z5z/YCAAGzatOmp61WtWhWrV69+5naJiIgo77DqGSYiIiKi/CBLrjBFRERgyZIl2Lt3L27cuIH4+HiEhoZq+zds2IA7d+6gT58+6d4GIyIiIsqprE6YNmzYgL59+yI2NlZ7yPvJmbXPnTuHCRMmwMPDQxvuT0RERJRbWHVL7u+//0b37t3x6NEjBAYGYu/evWaH2/fs2RMignXr1lnTHBEREZEurLrCNHXqVCQmJmLJkiXo168fAJi95VamTBmUKFECp07lz1XNiYiIKHez6grTvn37UKxYMS1Zyoi3tzeuX9d3dXciIiKiZ2FVwnT37l34+PhkqqyImMypRERERJRbWJUweXh44OrVqxbLJSUl4eLFiyhVqpQ1zRERERHpwqqEqUGDBoiOjsbGjRszLLd8+XLExsY+l4ktiYiIiJ43qxKm//u//wMADBo0CFu2bDFbZsWKFRg+fDjs7OwwfPhwa5ojIiIi0oVVo+Tq1q2LWbNmYeTIkejQoQOKFy+O+Ph4AECjRo0QHByM6OhoAMCCBQtQpUoV63tMRERElM2sXhrlww8/xJYtW1CzZk1ERETg/v37EBEcOHAAUVFRqFq1KjZv3owhQ4ZkRX+JiIiIsl2WLI3y2muv4bXXXkN4eDhOnz6N+/fvw9XVFVWqVEG5cuWyogkiIiIi3WRJwmTk4+OT6WkGiIiIiHILq2/JEREREeV1mb7CtGLFiixpsE+fPllyHCIiIqLskumEqW/fvlBKPXNDIgKlFBMmIiIiynUynTD16dPHbMKUkJCAdevWwWAwwMvLCxUqVECJEiVw584dXLhwATdu3ICDgwM6d+4MR0fHLO08ERERUXbIdMK0fPnyNNsePnyIxo0bo3jx4vjyyy/RsWNHk6RKRLBx40YMHz4cISEh2Lt3b5Z0moiIiCg7WfXQ9yeffIK///4bW7duxeuvv57mCpRSCq+//jo2bdqEoKAgTJo0yZrmiIiIiHRhVcK0bt06VK5cGS+88EKG5apXr46qVati7dq11jRHREREpAurEqbbt2/DxiZzh1BK4datW9Y0R0RERKQLqxImT09PnD17FufPn8+w3Pnz53HmzBl4enpa0xwRERGRLqxKmLp3747k5GS0bdsWv//+u9ky27dvR7t27QAAPXr0sKY5IiIiIl1YtTTKhAkTsHv3bhw7dgxt2rSBr68vKlWqBA8PD0RGRuLChQsICwuDiKBOnTr4+OOPs6rfRERERNnGqoSpQIEC2LNnDz7++GN88803CAsLQ1hYWJoyAwcOxJQpU1CgQAFrmiMiIiLShdWL7xYoUABz5szBZ599hv379+PixYt48OABXF1dUaFCBTRo0AAFCxbMir4SERER6cLqhMnI1dUVrVu3RuvWrbPqkEREREQ5glUPfRMRERHlB1mSMEVERGDSpEkICAiAu7s7HB0d4e7ujoCAAHz22We4c+dOVjRDREREpAurb8lt27YNvXv3xv379yEi2vbo6Gj8+eefOHLkCObNm4eVK1fitddes7Y5IiIiomxn1RWm8+fPo0uXLrh37x6qVKmCr7/+GgcOHEBISAgOHDiAr7/+GlWqVMHdu3fRuXNnixNcEhEREeVEViVM06ZNQ3x8PN577z2cPn0aAwcOREBAAPz9/REQEICBAwfi9OnTeP/99xEfH4/p06dnVb+JiIiIso1VCdPu3btRpEgRzJkzJ8Nys2fPRuHChbFr1y5rmiMiIiLShVUJ0507d1CuXDnY29tnWM7e3h7ly5dHZGSkNc0RERER6cKqhKlIkSIIDw+3WE5EEB4ejsKFC1vTHBEREZEurEqYAgICcOfOHYu35ObOnYuIiAjUr1/fmuaIiIiIdGFVwjRy5EgAwKhRo9ClSxfs2bMHEREREBFERERgz5496Ny5M0aNGgUbGxutPBEREVFuYtU8TAEBAViwYAGGDx+ODRs2YMOGDWnKiAjs7Owwf/58vPLKK9Y0R0RERKQLq2f6HjJkCI4dO4aePXvC3d0dIqL9c3d3x5tvvoljx45h8ODBWdFfIiIiomyXJYvv1qhRAz/88AMA4P79+3jw4AFcXV1RqFChrDg8ERERka6yJGFKrVChQkyUiIiIKE/J0oTp4sWLuHjxImJjY1GwYEFUqFABFSpUyMomiIiIiLJdliRMX3/9Nb744gtcvXo1zT4/Pz+MHTsWAwcOzIqmiIiIiLKd1QlTv379sGLFCogIHB0d4e3tjRIlSiAiIgLXrl3DlStXMHjwYBw6dAjLli3Lij4TERERZSurRsmtWrUK3333HQoUKIAZM2YgMjISFy9exP79+3Hx4kVERkZixowZcHFxwYoVK7B69eqs6jcRERFRtrHqCtPixYuhlMK6devQsmXLNPtdXV0xcuRIVK9eHa+99hoWL16Mnj17WtMkEeVzTYdaXo7peXKwTcKQ5kD7wOt4nGSrWz92L/TRrW2i/MiqK0wnT55E2bJlzSZLqbVs2RLlypXDiRMnrGmOiIiISBdWJUzx8fGZXlDXzc0NCQkJ1jRHREREpAurEiYfHx+cOXMG//zzT4blIiMjcfbsWfj48BIyERER5T5WJUwdOnRAQkICunfvjsjISLNl7ty5g+7du+Px48fo2LGjNc0RERER6cKqh77Hjh2LNWvW4I8//oCvry+6du2KKlWqoHjx4rhz5w7OnTuHn3/+GfHx8fD29saYMWOyqt9ERERE2caqhKlo0aLYvXs3evbsiePHj+P777+HUkrbLyIAgLp162LVqlUoWrSodb0lIiIi0oHVE1eWK1cOx44dw65du7B9+3ZcvHhRW3y3QoUKaNWqFZo2bZoVfSUiIiLSRZatJdesWTM0a9Ysqw5HRERElGNY9dA3ERERUX7AhImIiIjIgkzfkitbtqzVjSmlEBoaavVxiIiIiLJTphOmsLAwqxtLPYKOiIiIKLfIdMJ05cqV59kPIiIiohwr0wmTr6/v8+wHERERUY7Fh76JiIiILHiqhGn+/PlYt27d8+pLuq5cuYLFixdj4MCBqFGjBuzs7KCUwpQpUyzWPXz4MDp27AgPDw84OzujSpUqmDx5MuLj4zOsFxwcjN69e8PT0xNOTk7w9/fHyJEjce/evSw6KyIiIsotniphGjFiBObNm2d2X9OmTTFixIis6FMa8+bNw6BBg7BkyRKcOnUKSUlJmaq3cuVKNGzYEL/++iscHR1RuXJlXLp0CRMnTkSjRo3w6NEjs/X27NmD2rVrY9WqVUhKSkLVqlVx+/ZtzJ49G7Vr10ZERERWnh4RERHlcFk20/cff/yBxMTErDqcCXd3d7Rr1w4vvfQS6tatiyVLlli80hUWFob+/fsjKSkJM2bMwMiRI6GUwtWrV9GqVSscO3YMo0ePxoIFC0zqxcbGonv37oiLi8OwYcMwa9Ys2NvbIyoqCh07dsTBgwfRv39/bN68+bmcKxFRTtV0aLiu7TvYJmFIc6B94HU8TrLVrR+7F/ro1jbpJ1c8w/Txxx9j06ZNmDBhAl577TW4urparDNz5kwkJCSgZcuWGDVqlDalga+vL7799lsAwDfffJPmatGiRYsQGRmJypUrY86cObC3twcAFCtWDKtWrYKdnR22bNmCoKCgLD5LIiIiyqlyRcL0tEQE69evBwD0798/zf6AgABUqlQJBoMBGzduNNn3yy+/AAD69u0LW1vTbzA+Pj5o3rw5AGDt2rXPo+tERESUA+XJhCk8PBy3bt0CANSvX99sGeP2I0eOaNsSExNx/Pjxp65HREREeVueTJhCQkIAAI6OjihVqpTZMsalXoxlgZTnngwGg8n+zNQjIiKivO2pH/q+c+cOVqxY8dT7jPr06fO0TT61u3fvAgAKFy6c7nIsRYoUMSn75P8b92emnjkJCQlISEjQfo6JiQEAGAwGLSnLK4znk9fOyxIH28yN1nxe7P/Xvr3O/cju3zvjnkKP9xtjnyK//a3Ly3/jn+acnjphCgkJQb9+/dJsV0qluy91mexImIxzLDk4OKRbxtHREQAQFxeXpl5Gdc3VM2fatGn49NNP02zfvn07ChQokGHd3GrHjh16dyFbDWmudw9SDHj1rK7tb916KlvbY9xTZHfcAcbeSI/Y5wR58W98etMLmfNUCZOPj0+uWEDXyckJAPD48eN0yxiv/jg7O6epZ6yb+ueM6pkzbtw4BAYGaj/HxMTA29sbLVu2hJubWybOIvcwGAzYsWMHWrRooY0qzA/aB17XtX172yQMePUsluypCoOOQ6w3zSmdre0x7imyO+4AY2+kR+z1lJf/xhvv/mTGUyVMYWFhT9sXXRhvm927dw8iYjbJM95SS33rLfX/3717F56enpmqZ46jo6N2NSo1e3v7PPeCM8rL52aOnvPApGZIstW1L9n9O2fcU+jxXmPsU+Snv3Op5cW/8U9zPnnyoe/y5csDSLkadPPmTbNlLl++bFIWAPz8/LTgGfdnph4RERHlbXkyYfLx8UHJkiUBAAcPHjRbxrj95Zdf1rbZ2dmhVq1aT12PiIiI8rY8mTAppdCpUycAwNKlS9PsP3ToEM6fPw97e3t06NDBZF/nzp0BAMuXL0+zZl14eDh27twJAOjSpcvz6DoRERHlQHkyYQKAUaNGwcHBAdu3b8fMmTMhIgCAq1ev4p133gEADBgwQLsSZTR48GC4u7sjODgYgYGB2pDDqKgo9OrVC4mJiWjdujVq166dvSdEREREuskVCdPBgwfh7u6u/VuzZg2AlKH7qbdfu3ZNq1OmTBksXrwYNjY2GD16NLy9vVGrVi2UL18eFy5cQO3atTFz5sw0bbm5uWHNmjVwcnLC/Pnz4eXlhTp16sDHxwcHDx6En5+fthYdERER5Q+5ImEyGAyIiorS/hmH9j969Mhk+5O30Pr06YP9+/ejXbt2iIuLw7lz51C2bFlMmjQJBw4cgIuLi9n2mjVrhr/++gs9evSAUgqnT59GiRIlEBgYiKCgoDRXpYiIiChve+qJK/XQpEkT7Zba0woICMCmTZueul7VqlWxevXqZ2qTiIiI8pZccYWJiIiISE9MmIiIiIgsYMJEREREZAETJiIiIiILmDARERERWcCEiYiIiMgCJkxEREREFjBhIiIiIrKACRMRERGRBUyYiIiIiCxgwkRERERkARMmIiIiIgtyxeK7lLGmQ8N1bd/BNglDmgPtA6/jcZKtbv3YvdBHt7aJiChv4xUmIiIiIguYMBERERFZwISJiIiIyAImTEREREQWMGEiIiIisoAJExEREZEFTJiIiIiILGDCRERERGQBEyYiIiIiC5gwEREREVnAhImIiIjIAiZMRERERBYwYSIiIiKygAkTERERkQVMmIiIiIgsYMJEREREZAETJiIiIiILmDARERERWcCEiYiIiMgCJkxEREREFjBhIiIiIrKACRMRERGRBUyYiIiIiCxgwkRERERkARMmIiIiIguYMBERERFZwISJiIiIyAImTEREREQWMGEiIiIisoAJExEREZEFTJiIiIiILLDTuwNERESUvqZDw3Vt38E2CUOaA+0Dr+Nxkq1u/di90Ee3tgFeYSIiIiKyiAkTERERkQVMmIiIiIgsYMJEREREZAETJiIiIiILmDARERERWcCEiYiIiMgCJkxEREREFjBhIiIiIrKACRMRERGRBUyYiIiIiCxgwkRERERkARMmIiIiIguYMBERERFZwISJiIiIyAImTEREREQWMGEiIiIisoAJExEREZEFTJgysHXrVjRv3hxFixaFi4sLatWqhS+//BLJycl6d42IiIiyEROmdEyfPh1t27bFrl27UKRIEZQrVw4nT57EsGHD0KlTJyZNRERE+QgTJjMOHz6Mjz76CDY2Nli1ahVCQ0Nx8uRJBAUFoUSJEvj1118xZ84cvbtJRERE2YQJkxlTpkyBiGDAgAHo2bOntr1GjRpaojR9+nQYDAa9ukhERETZiAnTE2JiYrBz504AQP/+/dPs79q1K9zc3BAVFYU9e/Zkd/eIiIhIB0yYnnDixAk8fvwYTk5OqFWrVpr99vb2qFu3LgDgyJEj2d09IiIi0gETpieEhIQAAHx8fGBnZ2e2TNmyZU3KEhERUd5mPiPIx+7evQsAKFKkSLpljPuMZc1JSEhAQkKC9vP9+/cBANHR0Vn+7JNN0r0sPd5TkyQ8evQISLwHm2Rb3boRFeWSre0x7ikYd31kd9wBxt6Ir3l9PI+4x8bGAgBExHJhIROfffaZAJCGDRumW2bChAkCQJo1a5ZumU8++UQA8B//8R//8R//8V8O/3ft2jWL+QGvMD3ByckJAPD48eN0yxivHDk7O6dbZty4cQgMDNR+Tk5ORnR0NIoVKwalVBb1NmeIiYmBt7c3rl27Bjc3N727k28w7vpg3PXD2OsjL8ddRBAbG4tSpUpZLMuE6QmZud2Wmdt2jo6OcHR0NNlWuHBh6zuYg7m5ueW5N1NuwLjrg3HXD2Ovj7wa90KFCmWqHB/6fkL58uUBAOHh4UhMTDRb5vLlyyZliYiIKG9jwvSEF198Efb29oiPj0dQUFCa/QaDAceOHQMAvPzyy9ndPSIiItIBE6YnuLm5oXnz5gCApUuXptn/888/IyYmBsWKFUOTJk2yuXc5k6OjIz755JM0tyDp+WLc9cG464ex1wfjnkKJZGYsXf5y8OBBNGzYEEop/PDDD9ryKCdPnkSrVq0QERGBL774AqNHj9a5p0RERJQdmDCl4/PPP8fHH38MIGWiSldXV5w5cwbJyclo27YtNm7cCFtb/eajICIiouzDhCkDmzdvxty5c3H8+HEYDAaUL18e/fr1w/vvv89kiYiIKB9hwkRERERkAR/6JiIiIrKACRMRERGRBUyYSMO7s/pg3ImIcj4mTAQg5UM79Rp3/BDPHox7zsC464Nx1w9j//T40DdhzZo1CA4ORnJyMooUKYK33noLHh4eencrz2Pc9RMcHIyCBQsiOTkZPj4+encn32Dc9cPYW48JUz62efNm/N///R9CQkJMtjdr1gyBgYFo3bp1misgZD3GXT+bNm3C3LlzcfnyZTx69AjOzs744IMP8MYbb8DPz49xf04Yd/0w9llIKN+5ffu2DB06VJRSYm9vLx06dJCVK1fK1KlT5YUXXhCllDRv3lwiIyP17mqewrjr5/Lly9KlSxdRSolSSipVqiSVK1cWpZQ4OjpK//79JTExUe9u5jmMu34Y+6zHhCmfuXTpkvTs2VOUUlKxYkXZsGGDyf5du3ZJ9erVxcPDQ3bt2qVTL/Mexl0fSUlJsnnzZqlWrZoopaRJkyayadMmERGJjIyUWbNmSenSpaV48eKydetWnXubdzDu+mHsnx8mTPlMUFCQKKWkS5cu8vDhQ217fHy8iIgkJCRI586dRSklQUFBenUzz2Hc9XHx4kXx8/MTpZSMGzdOEhISTPZHRERI3759xc7OTn755Redepn3MO76YeyfHzu9bwlS9nrxxRcxb948NGnSBAUKFEBiYiLs7Ozg4OCA5ORkAMCNGzdQtWpVlC5dWufe5h2Muz7Kly8PLy8vvPvuuxg7diwAICkpCTY2NlBKoXjx4rCzs9O2UdZg3PXD2D8/TJjyEfnfw33vvfee9kaxs7PTPryVUti4cSMiIyPRpk0bhISE4OHDhyhVqpT2wc432NNj3J8/MfPgalJSEmxtbfHTTz/B3t4eAJCcnAxbW1st9pGRkQgLC0OvXr3QokULi8ckU4y7fhj77MdRcnlMYmIitm7dCkdHRyQmJuKll17K1FB1g8GA0aNHY968eQBSPtCTk5NRuHBhdOrUCXPnzoWrq+vz7n6uxbjrJzk5WfugMCaWmfnD/+DBA4wePRqLFi2Cr68vatWqBX9/f7Rp0wZNmjTJhp7nboy7fhh7nehyI5Cei2XLlkn58uVFKSUODg6ilBJ3d3dZtmyZ3L9/X0REkpOT09QLDg6WSpUqiVJKSpcuLSNGjJBly5bJoEGDpGLFiqKUkkGDBmX36eQajLt+fvzxR+ncubO0bdtWatasKRMnTpSwsDBtv7m4i4h899134ubmpo0geumll6Rw4cLazwsXLsywfn7HuOuHsdcPE6Y84NKlS9rwUXt7e2nRooV07dpVqlevLkop8fT0lK+++irdIaT379+Xvn37ytixY+XSpUsm+44fP669of78808R4RvKiHHXz/Hjx6VevXpajFxcXLT/r1evnuzcuTPdutevX5caNWpIsWLFZPjw4XLp0iV5/PixnD59Wv7zn/+IUkqcnZ3l8uXLIsK4p8a464ex1x8TplwuNDRUG13VsGFD2bdvn7YvLi5OWrZsKUopadq0qZw5cyZN/aSkJBERuXv3rsm2pKQkMRgMIiIybNgwXu14AuOuD4PBIKtXrxZPT09RSkmHDh1k69atcvLkSVm6dKkUK1ZMlFLSrVs3uXjxYpr6xg+CnTt3yl9//ZVmu4hIp06dRCklI0aMSLMvv2Lc9cPY5xxMmHK5iRMnilJK+vTpo30Ii4g2lPTo0aPi4uIi9vb2snfvXhHJ+M2Q+hjGckuWLBGllAwZMkQSExP5ZhLGXS9BQUFSpUoVsbe3l9mzZ6fZ/+OPP4qTk5O4u7ubnWPGXAyNsX/8+LGIiGzbtk2UUtK4cWOJiYnJ4jPInRh3/TD2OQeH3uRiIoLg4GBUq1YNw4YNg42NDZKSkgAADg4OAIC6devilVdeQWJiIv766y8AyPDBQOMDhMnJydpw97179wIAPD09YWtrm+9HUTDu+khMTMSSJUsQHByMzz//HIGBgQBSRgYZY9atWzfUqVMHUVFROH36NABo+wDzvwNj7G1tbQEA169fBwCULl0aBQsWfH4nlEsw7vph7HMWTiuQSxmHiI4fPx6PHz9G7dq1Afz7BgBMR1IAgJ+fn8Xjiog2DBVI+dDevn07fH198frrr2f5eeQ2jLs+RAR2dnZ45ZVXkJycjLfeekvbboyZ8XdTv359HDx4ELdv3waATE3JkHrqhp07dwIAKlSooLWRX5NVxl0/jH3Ow4Qph7t//z5++uknFChQAAULFsRLL72EkiVLai/0GjVqaGXNvcjt7e0RHx8PAJkanq6Ugq2tLR48eIAFCxZg/PjxAID58+fjhRdeyKrTyvEYd/3ExcUhMTER9vb2cHJyAgDt5zfffBNvvPGGtj113O3sUv6cXbp0CUDGiarxd5Z6aHZsbCw+/vhj/PTTT2jVqhU++OCDNG3kZYy7fhj7XCK77wFS5s2fP1+KFCmijYRQSknRokVl1apVcufOHRERi4snXrt2TUqXLi0FChSQq1evZlg2NDRUrly5IgsXLpSXXnpJlFLi5OQk8+fPz1fPzzDu+pk/f77UrVtXatWqJdWqVZOPP/5YoqKitP2pn/V6UmJioiQlJUn79u1FKSW///57ptv98ccfpX79+qKUknLlysm2bdtEJP88/Mq464exzz2YMOUwycnJkpycLOPGjROllHh4eMjQoUPl008/ldatW4tSSooVK5bpkVNHjx4VW1tbadSokbZumTkhISHy7rvvavMIOTo6Srdu3eTKlSsmfcurGHd9nTx5UvvjrZQSPz8/cXJy0kYhrlixIlPHuXv3rlSsWFGcnJzk/Pnz6Za7d++erFy5UoYNGyZVqlTR2u3atatcu3Ytq04rx2Pc9cPY5z5MmHIg4+KJXl5eJsNARUTGjRsnJUqUEKWUzJo1K91jGL+VLFu2TJRSMnz4cLP7U/v+++9l8ODBMnHiRDl+/Li2Pb+M0GLc9TNgwABtceLTp09LTEyM7Ny5U2rWrCl2dnbi5uamzTOTUUyOHTumTcoXFxeXbrm4uDiZMGGCuLu7S8mSJaVLly7aaEaRlN9Tfog9464fxj73YcKUA33zzTeilJJevXqJSMqbxXiVIioqSubOnatdjUg9/485AwcOFKWU/PDDDyIiJitXJyYmmlz9MBgM8uDBA5P6lm495SWMuz4OHjwoSimpVKmSts04F1VQUJD069dPlFJStmxZCQ8Pz/BYK1euNElUjXNbmXPjxg05dOiQnDx50mR7fok9464fxj534rQCOdDff/8NAKhevTqAlNEMjo6OAICiRYti2LBhaN++PR4/foxZs2bh5s2bZo/z6NEjnDhxAq6urqhcuTKAf4e9b9u2DUOGDMEvv/yilbezs4OLi4vWJmA6+iuvY9z1cf36ddjY2KBOnToAgMePH2vn/+KLL2LixImoXLkyrly5gtmzZ+PBgwdpjiH/WxLzyJEjAKA9KK+U0h7UP3LkCE6dOqXVKVWqFF555RXt922cGiK/xJ5x1w9jnzsxYdJR6rkyUv9csWJFAMChQ4dMhpoDKW8SGxsbzJ49GwCwadMmbN++3ezx//nnHwQFBcHX11d7M509exaDBw9G586dsWTJEly5cgUGgyFN3cwMS82tGPfsJylXs83uu3PnDpKTkxEdHQ0gJblMPUrHz88PM2fOBAB89dVX2LdvX5pjKKXw6NEj7NmzB7a2ttoHglIKZ8+exaBBg9C0aVPMnz8fMTExZvuRFz80GHf9MPZ5kE5XtvKtO3fuyK5du+Tvv/+W0NBQbXvqS6g//vijuLm5ycsvv5zm0qnIv5dPjQ8o161bVx4+fJim3E8//SRKKfnwww/l0aNHMmXKFPHx8dFGRfzyyy/P4QxzJsZdP+Yeejc+ZC8ismfPHilQoIBUr15dzp07p+1/0htvvCFKKenUqZPZuF+6dEkcHBykXr16IiJy+/Ztk9iXLFkyw/W28hrGXT+Mfd7EhCmbJCYmyieffCI+Pj7aCtFeXl7So0cPiYyMFJF/3zBBQUFSunRpcXFxke+//z7N/WVjucjISHF3dxellKxbt05rx2j48OGilJLWrVtLgwYNRCklDg4OMm3aNJPjZTRsNbdj3PWTmJgoCxculL59+8pbb70lgwYNMvnjbYznn3/+Kf7+/uLu7i4///yz2eOIiAQHB2sje4wPq6aO+/bt20UpJW+88YasWLFCm6LBwcFBpk+f/jxPNUdh3PXD2OdtTJiywY4dO6RChQra/DotWrSQcuXKiZubmyilpHv37ibzboiI9OzZUxtBcePGjTTHNL7xxo8fL0opadeuXZp9r7/+uslcQm+//bb8888/WjnjQ4Z5FeOun9WrV0upUqVM4qCUEhsbG5kxY0aa8m3atBGllAwePNgkVkbG2A4ePFiUUtK5c+c0Zf7v//5PS4idnZ3zZewZd/0w9nkfE6bnbP369VKmTBlRKmUR1UuXLomIyPXr12XNmjXam8o454ZxNNWpU6dM9hkXSXzS2rVrxc3NTRo1aiS3b9/WtsfHx0vdunVFKSX169eXY8eOafvyw3B1xl0fkZGRMmbMGFFKiaurq/Tr10927NghX3/9tZaMOjg4aJPkGb8tb9q0SZRSUrhwYfn999/TjdPmzZvF1dVVKleurK3MnpycLAaDQTu+UkpeeeWVfBV7xl0/jH3+wYTpOQoPD5datWqJi4uLLFq0SNue+lZMYGCgKKWkUaNGafYbv1nUq1cvzbxARn/99ZcopcTd3V37JmF8Q/7222+yceNGk+Pm9dtAIoy7nubOnSsODg7i5+cnO3bsMNmXkJAg7dq1E6WUdOvWTURMby80bdpU25fe7OhHjx4VDw8P8fX1lVu3bonIv9/EJ02aJJUrV5bVq1dr5fNL7Bl3/TD2+QcTpufIeLXivffe065gGN8sxhf0H3/8IS4uLuLn5ydhYWEmZaKjo6VkyZKilJJ3331X+3aRlJSkfUifPn1aihUrJlWqVJGYmJh0+5KfLssy7vo4f/682NraSsWKFU0emjcYDNof+MOHD4tSSmxtbbUPCONVvL///lv7tjxr1iy5e/euiJgmuo8fPxY/Pz9RSklwcLDJ/idjnV9iz7jrh7HPX/LmGOYcIDk5GS+88AKWLl2K0aNHa/PwGIdxGoePP3z4EI8ePUKhQoXg6+urlUlKSkKRIkUwc+ZMuLq6YuXKlZg2bRoeP34MGxsbbdHFzZs3Izo6GnXr1s1wkVdj+byOcddPxYoV0ahRI7z55pt44YUXtCHVdnZ22pBpJycneHl5wcfHBwkJCQBSFipOTk5GjRo1MGrUKADAwoULsXr1agApvzPj1A/BwcH4559/4O3tjdKlS2v7gX9/x8a5ZfJL7Bl3/TD2+YzOCVue9eS94/R+3rt3rzg4OEjdunUlPj5e++aQuvzkyZPFy8tLlFLy+uuvy3fffScnT57URmN5eXlJUFDQcz6j3IFx14fxm+39+/czLBceHi42Njbi7Oxs8uyXMf4xMTHSqVMncXBwEDc3N/n222+14dRhYWHaA/VTp059TmeSuzDu+mHs8x8mTDqbM2eOKKWkd+/eafalfkOtW7dOihQpIjY2NiYjMDw9PfPdvD5ZgXF/vtJ72HTnzp1ia2srdevWFRHTWw/G/z916pS89957opQSOzs7qVSpknTp0kVLXgMCAjJcZDQ/Y9z1w9jnfbx+pxMRgVIKx48fBwC0bds2TRnjZdeCBQuic+fOqFChArZv346///4bBoMBderUwQcffKDddjIek9LHuGePJ+ORlJQEW1tbhIeHIzk5GZUqVUpTzhj3F154AfPnz0fhwoXx22+/ISgoCDdu3ICDgwNGjx6NyZMnw97ePvtOJhdh3PXD2Od9TJh0kpSUBBHB1atXoZTSltAA0n4AG3+uVq0aqlWrBiBl7SHjB3ZiYqLJPXNKH+OuD+MHw9GjRwEA9erVA5D2QwZIeQ7NxsYGU6ZMwccff4yrV6/i1q1bqFSpEkqWLAng3w8jyhjjrh/GPu9hwqQTOzs7hIaGIjg4GKVKlYKXlxcA0zeF8f/NvcEcHBxMHjCkzGHc9aGUQkJCAk6cOAEAaNKkCYCUpPTJdfuMHzQiAkdHR1SsWFFb5y8/Lk5sDcZdP4x93sNRcs+ZpLP4IgD89ddfiI6ORv369VGkSBEAKW8Kg8GARYsWYd68eekumgikvCF5dcM8xj3nCQ8PR3h4OPz9/VG6dGkkJSVBKaXF/uzZsyYLEpuLs42NTZ5doPh5Ydz1w9jnLfwtZJJx2GZmGb8VpHf5FQDOnDkD4N9vHgCwY8cOvPHGGxg6dCjGjh2LmzdvPmOP8wbGXT/GeFlb3rj9woULuH37NqpVq4YCBQpo35h37tyJ1157DW3atNF+N/kZ464fxp4ywoTJAhExuV1z5coV3Lp1CzExMdpVjNRXM4yXW43fCE6fPo0lS5YgMjJSK6OUQnJyMo4dOwalFBo0aICQkBAMGTIEr7/+OjZt2oRmzZrh6NGj2oOC+Q3jrh9j7DP7rfbJ2EdERGjzzQBpn+Vo27Yt7OzscPr0aQwdOhQdO3bEnj17ULx4cXh6embx2eQejLt+GHvKlOc9DC+vuH79uvTp00c8PDzE09NTatasKRMmTDCZ5Tn1cNGoqCiZPn26lC5dWpRSsmHDBpPjhYeHi4eHh7i5ucmIESO0dc98fX1l3bp1Zo+ZHzHu2Sv10OgbN27Ip59+KlOnTpXFixfLmTNn0pR/MvaTJ0+WF154QX777TeTcgaDQTp27CgODg6yYcMGmTlzpvj6+mqxz+9TNDDu+mHsKbOYMJnx5PTye/fu1ebDKFq0qJQvX14cHBy01ep3795tUn7lypXy8ssvi1JKnJ2dZcKECWnaOHDggDg7O4uTk5M298bnn39uUib1mkP5AeOunyfP+YsvvtBibfzn6OgoCxYskOvXr5vUSU5OlpUrV8orr7yilX3yw+DOnTva77JixYqilBJ7e/s0sc9vSzsw7vph7OlpMWHKwP79+8VgMEj37t3F3t5evvjiC3n06JHcvXtXVqxYIdWqVROllNSsWVMePHggIiI7duwQb29vUUpJnz595M6dO9rxUn+T2bt3r/ZGe7Jcfn8DMe7Z68kJ99atWye2trZSpkwZGTNmjMybN086deokSikpWLCg9O/fXyt79epV6devX7oxNTp69KjJB1Hv3r3zfewZd/0w9vQsmDCZYTAYpH379qKUkrlz50rFihVl2rRpacr9+eef8tJLL4lSSoYPHy4iIv/8849MmjRJjhw5opVLTEw0Owvs6NGj5eDBgxbL5ReMu36OHj0qDRo0kH379kmrVq3Ez89PLl26ZFJmzpw52qLE33zzjYiIhISESP369eWll16SP//8UyubevFRo0KFCkm1atXk6NGj2rb8HnvGXT+MPT0tJkxPML6Qp0+fLkopKVKkiBQoUEBbJTr1t4Lk5GTZtm2b9g3i3LlzJsdKSkoye3vnyW3plctPGHd9DRo0SJRSUr9+falataosXbpURFJilJCQICIisbGxMmvWLFFKSeHChbU1tC5cuKAdJzk5OU1MjSuz37p1S9vG2Kdg3PXD2NPTyrcJU3ovXOP2pKQkqVu3riilpECBAnLgwAGz5RMSEqR79+6ilJLAwEBte2YfGs5v3zQYd/2YW2DYuO3mzZvaA/BKKdm+fXuasiIiDx48kCZNmohSSj799FOTfZZuMRiPld9uRTDu+mHsKSvlu2kFkpOTTWZZDQ0NxY0bN/DPP/8ASJnAMDExETY2Nhg/fjyAlCGid+7cMTsZoq2tLdq0aQN7e3tcunQJ9+/f1+pkRn6ZAJFx148x9sbYpD53GxsbJCUlwdPTE++//z4AwMXFBbdu3UJycnKaOLm4uKBPnz4AgF27diEqKkrbZ2nmc+Ox8ssM6Yy7fhh7eh7y3W/R+AY6e/YsJk6ciMOHD8NgMMDd3R2dOnXC0KFDUbp0aQBAx44d8cYbb2Dt2rXYuHEj2rdvn+aFb2trCzc3NxgMBoSHh6NQoULZfk65AeOuj9QfGhcuXMCPP/4IGxsbFC5cGAEBAahVq5aWxI4YMQI//vgjjh07htOnTyMxMVFbNy81Pz8/FCxYEA8ePOByDelg3PXD2NNzo/clruz2+PFjmTlzpnYZ1s/PT1q1aiWFCxcWpZTUq1fP5EG+U6dOiYuLiyilZOvWrdrl3NT3ubdt2ya2trbSqFEjbdQWmWLc9fPw4UMZPny4yYgd45DpKVOmSEREhFZ206ZNopQSDw8P7fkxI+PthcuXL0uBAgXExcXF5BkNMsW464exp+chTyVMwcHBcuzYMYmOjk63zO+//y4uLi7i7OwsCxcu1J6dCQoKkpEjR2oPAaY2duxYbfsff/yR5phDhgwRpZSMHz8+a08ol2Dc9fPo0aMM99+6dUvatWsnSimpVKmSTJ06Vfbt2ycfffSRVK1aVZRSMnjwYJM63bp1E6WUvPXWW9r8M6mfwdiyZYsopeTll1/Ot4kq464fxp70kicSpv3798ubb74pVapUEWdnZ5k+fbrJTNBGsbGx8sorr4iTk5PZD+A///xTG0L6ySefaNujo6PF399flFJStmxZmTNnjoSGhsqxY8fkzTffFKVSZm49e/bs8zzNHIdx18+JEydk1qxZMnToUNm0aZM2KudJixcvFqWUtG7dWm7evGmy7/Lly9oVvtSznJ86dUpcXV1FKSXvvvuuhIWFmbRrfCh/4cKFz+fkcjDGXT+MPektVydMV65ckQ4dOmiXW8uVKyft2rWTmTNnmv3gPnv2rCilpEGDBhIbG6ttv337tnzyySfi4+Oj3S7atm2biPw7emvRokVaOyVKlNBuFymlpHr16rJ3797sOekcgHHXz6VLl+TNN980iUPXrl1N/sAbxcTESO3atcXFxSXN1As3btyQL774QooUKSJKKWnatKmI/HsLYsyYMdrxS5cuLW+//bZ06dJFSpQoIUopadmypYSHhz//E84hGHf9MPaUU+S6hMn44l63bp12VaJJkyayZs0aEcl4WYugoCBRSsnQoUNFRCQuLk6WLVsmtWvXFqVSltOYPXu22fZERBo0aCBKKRk0aJD8+uuv8vXXX8uPP/6Y1aeYIzHu+kpMTNTmqDImi7Nnz5Z9+/bJ4cOHzda5du2a2Nvby0svvSQPHz4UkZTbDE/Gft68eVod47NiUVFRUrZsWVFKSUBAgLRu3VrKlSsn1atXly+//PL5n3AOwbjrh7GnnCbXJUwiIpGRkdKwYUNRSsno0aNN7mkbP2jNzcezY8cO7T70gQMHpGPHjtqbccCAAXL37t00dYwPGIuIbN++XZRKmVTxypUrJuXywzwbjLt+Jk+erP2xnzNnjsmVuvScO3dO3N3d5bXXXhORlOfIUl8ZTC/2xt/lV199JUopqVq1qty8eVPu3r0rcXFxWrn8MAkf464fxp5ymlyZMBkvnXbp0kXbltkJC423f4z3qxs2bCh///23tj8hIUEMBoMkJibKqlWr5LvvvjOp//bbb4tSSt555x0RSXmj5ZdJEBl3fZw4cUL8/PykRIkSJt+sLS2xcPfuXSlWrJgopaR79+5a7Bs1apQm9iIpt0hTbxcRady4sSilTJaoyS9LOzDu+mHsKSfKVQmT8cPZuPDhlClTTLZnlP0br0R8/vnn2reWVatWmexPfVXjyJEjUqpUKenbt6/ExsZq9UNCQrR74Lt27craE8yhGHd9TZ06VZRS0q5dOxFJiXvqaRZS//fJmYVHjBihfbv28fGRtWvXasdNTEyU+Ph47eeRI0fK22+/LVFRUdq2nTt3ilJKChUqZLIcRH7AuOuHsaecKFfN9G2cjOzGjRsAgMTERJPtxgnFjhw5gj///BPLli3D77//jhs3bmgTH3bp0gUvvPAC4uPjERkZqR3bzs4ODg4OEBF8/fXXaN68ORISEvDmm2/C1dUVdnZ2SE5ORrly5fDhhx8CAL744gskJCRkz8nriHHXT3JyMq5cuQIAqFGjBoCUuMv/Zj83/g6Msxc/evQIwL8zC/fs2RPu7u4AgPnz56NLly5ITk7Go0ePYGtrC0dHRwDAhAkTMHv2bLi4uMDNzU1rv1mzZujTpw9iYmIwY8aMbDjjnIFx1w9jTzmWrunaUzJeyVi+fLkopaRYsWLy008/yenTp+XSpUuycuVKadasmVSuXFkKFiwoSimxtbWVKlWqyC+//KIdZ+PGjdo3kP/7v/+TnTt3ys2bN2Xr1q3SqVMnUSplErNFixaZDF01fqOJjY2VatWqiVJKvv766+wNgg4Yd30YvzkbJ/ysWbNmmme4du/eLePGjZP+/ftLpUqVpFWrVjJ16lS5evWqiKSsg2V8FsTLy0sOHDhg8tzX3r17pW3bttooxpMnT2r7jL/3ixcviru7uyil5Pfff3/OZ60/xl0/jD3lZLkqYTKKi4uTevXqiVJK3NzcxNPTU5uvx3gp1d7eXvz9/aVAgQKilJLixYvLkSNHtDfkF198YVLHw8ND+/8GDRpIUFCQ2baNb6jFixdLlSpV5MSJE9l12rpj3LOXMWYRERHi6ekpSil57bXXZOjQofLZZ5/JK6+8osXuyX+vvPKK/PPPP9qxjBP5FStWTNq1aydjxoyRpk2biqOjoyil5PXXXzd7+8GYrI4fP16UUjJkyJDsOXkdMe76YewpJ8t1CZPxDfX3339rw82dnJxEKSWlSpWSMWPGyIoVK+TIkSMSFxcnGzdulJo1a4pSSgYOHGgymissLEymT58urVu3lu7du0vfvn1lw4YNJm09+VBzXnrwLy4uLtOjPhh3fRjPe8WKFWY/JIoUKSJt2rSRXr16ycyZM6V9+/baxHyTJk3SRjLevHlT/vOf/4iXl5dW19HRUV544QX54Ycf0rRnZPw9PHz4UDZu3JhNZ60/xl0/jD3lVErEzFLw2ejEiRNwdnZGpUqVTBZNzIiIQCmFuLg4HD16FLa2trh79y5at25tdlXoffv2oUmTJlBK4erVqyhdurRJW8bjpZaYmJjhCtPm6uQmn3/+OQ4cOICFCxeiTJkymarDuGeNZz2HDRs2YPXq1Xj06BESExMREBCADh06oGjRovDy8tKe8/j2228xcOBAeHh44OzZs9rzHABw584dXLp0CQ4ODoiNjUXjxo2130dSUpLZhUXzQswBxj03YuwpR8n+HC3F5s2bpXnz5uLh4SG1a9c2uZRqjSdHToikDDWtWrWqODs7y549e8zWy2geobxk/fr12uRsSik5ffq0iFh/3oz785M6Nqm//T4p9dXC6tWri1LK5Jt0evL63DLmYpUZjLv1bt68KQ8ePDA7Z1tGGHvKidL/Kv+cXL9+HSNHjsRPP/0EAKhVqxZ69eqFmJgYFCtWzOrjG785KKVgMBhgb2+Po0eP4ty5c3B1dUXlypXN1jN+m8jMFa7c6OzZsxg2bBj27NkDJycneHt749q1a9i5cyeqVatm9Xkz7ukLDQ3Fjz/+iMePH+PRo0d49dVX8dJLL6FYsWKZuqqaer/xG3WBAgWQnJwMpVSaGN64cQNJSUlwcnKCr6+vxf6Z+4adF1y8eBHffPMNrl27hsjISDRu3BitWrVCvXr1GPfnLDg4GDNnzsSJEydw//59lC1bFj169MCAAQMydeWGsaccKTuzs3v37knPnj1FqZSJCzdt2vRU9TP7rSB1ubi4OOnSpYvY2NjIuHHjRCR/PQ/z4MEDGTp0qHZFqW3btrJu3ToZPHiw2NjYyOTJk0Uk45gw7s/m4cOHMmzYMLGxsTF5BqNAgQLSqVMniYiIEJGM4/sssTeurF6iRAkJDQ3Nd3F/9OiRfPjhh1q87e3tRSklNjY2UqxYMQkJCRGRrH/N5/e4i4jEx8fLuHHjtNgXLlxYe75IKSWLFy82udpkDmNPOVW2JEzGS6rLli0TpZT06NHDZLp544s7vRf5k7drNm/eLOvXrzeZgMycX3/9VWrVqiVKKWnevHm+W9V++vTp2mSPNWvWlMWLF2sxmzhxoiilpFOnTunWZ9yf3YEDB+Tll18WpZRUqFBBPvroI1m8eLHJYp59+vQREfOv+ydjf/v2bZNy6b1XfvrpJ3F3d5cCBQrI0qVLs/CMcoc9e/Zoca9cubJMmzZNzp8/L0uXLpXXXntNlFLSuXPndOsz7s8uNjZWBgwYIEqlTBj55ZdfSmxsrAQHB8t7770nSimpU6eOXLt2zWx9xp5yumy9wtS6dWuxtbWVQ4cOmWyPjIwUEZH79+9r28w9E3Pq1CkZPHiwKKXE3d1dQkNDTY5z+PBhOXz4sKxcuVKaNGkidnZ2WoKW3ps0rwoLC9OG7X/yySdy48YNk/27d+8WGxsbKV++vNkVuBn3Z3f58mVp3ry5lhSlju/Dhw/lv//9rxajo0ePioj5ZzZERE6fPi29evWS5s2bp4m7iGjzVR06dEjeeust7Zv8uHHj5N69e8/rFHOkP//8U1tg9a233krzur569ao2pPzixYtp6jPu1tm2bZsUK1ZMqlWrJpcuXTLZ9+DBA+13s3v37jR1GXvKDbI8YUrvW8D169fFy8tLypcvr227c+eOzJo1S9q1ayc1a9aU8uXLyzvvvCNhYWEml1ujoqJk0qRJ4u3tLUopKV++vKxbt87k+OfOnTMZ6q7+N6/P1q1bLfYtL0h9bsbYrV69Wv78809te+rlBfbt2yfFixeXihUryvnz580ek3F/NsbbQR999JG2LSkpSfu9hIeHaxPnTZ061ewxIiIiZMqUKVrsS5UqJZcvXxaRlHhGRkZKt27dpF+/ftrcWMarKr/99tvzP8kcaMWKFeLv7y8zZszQthlf88bXYIsWLcTNzU2L5ZMY92dnvPX/4Ycfisi/sTf+zRk2bJgopUz+NqTG2FNOl6UJU3rzWYiIREdHi7e3t1SrVk0iIiIkJCREW0Xa3t5eXF1dxdnZWZuA7Ntvv9WOOXv2bO0ZhJkzZ6bb7uDBg6Vr164yadIk2bJli0mZvDwq4sm4p57V1ujJy90xMTHaIpX79u0zW2bOnDmM+zNYu3at+Pr6yqlTp0QkbQwSExO1mc3nzZsnIqax379/v/aB4OzsLLNmzTLbjq+vryilxN/fX1q0aJFmweL8MvLQ+DqMioqS9evXa1cZjHE3vh/Onj0rXl5eMmDAAJP3iDFOjPuzS0hIkB49epi8pkX+jX10dLS88sor0qVLF3nw4IG2n7Gn3CTLEqaffvpJ3nnnHRk6dKgMHz5czp07Z/Kc0uXLl6VcuXJSqlQpefjwofYMzdtvvy1hYWFy7tw52bx5s/j4+IiNjY34+PjIwYMHRSTlasiUKVMkOjpaO17qP3hPPgOV+k2T1z+wM4p7eitsG2PSu3dvUUppD34bGescPnyYcc+AccHOJ2OcmJio3WZ+kjFGQ4YMMRt7kZQlZPz8/KRPnz5mY288RmhoqBw6dEhOnTpl8l4zlzDnJenF3dy21D+PHTtWSpUqJf369ZOvv/5a9u3bZ7J//fr1jLsF5mJv/P9p06ZpX3ifvB06a9YsKVSokNSrV08CAwNl6dKlJrfPfvnlF8aecjyrE6YzZ87Iq6++mmY2Vi8vLxk+fLhJ2UaNGolSSgIDA+XFF1+UZs2aafuMb7rt27dLkyZNtBFdTzIYDJm6xZPXbwM9TdzNefz4sfahPWHCBBHJ+NsZ4/6v/fv3S/369WXMmDHaiJ/MPLidertxiYfUI0VTJ57Xr1/XtqeX+Jo7bl6Of2bj/qQ9e/ZI3bp1TUYpGkfO9evXTxs1l5SUZPLMHeP+r4xib/xvfHy8VKhQQZRSUq9ePRk7dqx8+eWX2gAQ4zOQxmWTGjZsKCtXrhQRxp5yB6sSpsjISGnRooUopaR9+/ayZcsW+eOPP+Sdd97Rnmn56KOPtD9IS5cuFaWUFC1aVJT6dwHVx48fay/6xMREWbp0qfbG2rZtm4ikvCn5xkiR2biHhYWJSNoPbmMcFyxYIEopqV+/fobtMe4pHjx4IJ9//rn2x79evXpmH2DNiMFgkLi4OKlYsaIUK1ZMgoOD041vcnJyvrhSZ4k1cT9y5IhWr1WrVrJu3TrZvXu3LFy4ULslPWzYMLl165ZWh3H/V2Zjb4zX3r17pWfPnuLs7KwlT8Yvv7t375awsDD5+eefpVKlSmJjYyO1a9eWv//+WzsOY0852TMlTMY/8CtXrhSllHTv3j1NmYULF4pSKYu0jh07VhISEiQ0NFRbX0wpZfJwZurjXrhwQV599VVxcnJK9152fvSscU9dN/X/Hzt2TIoUKSJly5aV4ODgbDiD3OvOnTsyceJEcXFxEVtbWylfvrwopeS9997Tbr9lNrEMDQ0VBwcH8fPzszgnTX5nbdxv3bols2bNMrt22Jo1a8TX11e8vb1l165dz/dEcqFnjX18fLyEh4fL9OnTxc3NTcaPH6/tM5bfvHmz1KpVS2xtbWXMmDHZc0JEVnqm6ZWNs6zu3LkTAPDqq68CAOLj4yH/W5puyJAhGDlyJJKTk7Fs2TKsXbtWm+3V6P79+4iNjU1z3AoVKqBAgQJISEhATEzMs3QxT3rauH/33XdYs2ZNusdJTk6Gvb094uLiMly/jVJiPmvWLBQsWBBLly7F+PHjUaJECWzatAm7d+8GgEyvPbVjxw4YDAYEBATA2dkZQMrvQvRd1jFHsjbuJUuWxIgRI9C7d28AKWuHGePcsWNHVKlSBdevX0dISAiAlN8DpXjW2Ds6OsLb2xvnz5+HnZ0d3n77bQAp60QaY9+8eXPUqFEDycnJCA8PR3x8fPadGNEzeqaEyfiif/K/Tk5OUEppf3QGDx6M1q1b486dO/jyyy8RERGB3r17o23btgCAX375BZcuXdKOm5ycrL1xjMuklChR4lm6mCc9bdxv376Nr776CtevXzfZb2RcnuP27ds4ceKEyTHJVMmSJVGlShV88MEH6NGjB7p37442bdrg2rVr+PnnnxEaGgog4/glJSUBAI4cOQIAaNWqFQDAYDDAxsYGSincuHFDK8/fRdbE3bgMhojA1tYWNjY22jIaNWvWBADtOHl5iZ6nZU3sL1y4gC1btqB06dIoV64cRAR2dnawsbFBYmIiHB0dUaNGDQApsXdwcMjWcyN6FlZdYXr48CGAlCtFwL8fCMY/OmXLlkXv3r1RqVIlHDt2DN999x1Kly6NDz/8EEWLFsX58+fx7bff4sKFC1o9JycnREVF4dChQ7CxsUGdOnWsO8M85Fni/tdff+H777832Q/8+026adOmAIC///6bK3RnoHHjxli+fDk++ugjODo6wsnJCb1790bFihWxY8cO/PbbbxbjZ/xguXjxIgCgYsWKAAB7e3s8fPgQCxcuRI0aNTB16lQAmb9ilZdlRdyNjGWMK9TfvXsX27ZtAwA0adLkeZ5GrmRN7F1cXPDPP//g9OnTOHnyJJRSSEpKQmJionY1+/jx4wCAF154gVdYKXew5n7et99+K0opKVeunLbtyZETMTExMnz4cLGzs5P69etrD4Ab6zo7O0vDhg1l165dEhUVJevWrZMXX3xRlFKZGu2VHz1t3Bs0aKDNbPzkMwfGyeSMk83xgUvLUg9h/uijj8Te3l4aNWokf/31l4hk/EzNlStXxMXFRdzd3bVtGzdulGbNmpnMWExpPWvcUw8oSW3y5MnawAkOS8/Y08Q+OTlZ4uPjpWvXrqKUkpYtW6Y53vLly8XZ2VnKlCkjx44de/4nQJQFrEqYQkNDtZEQxjV8Uo/IMr6Jfv/9dylbtqy4u7vLzz//rO2fPXu2VK9eXZRSYmtrK8WLF9c+NPr16yd37tyxpnt51tPG3cPDwyTuqctv2rRJlFLi5+enLTlAlhnjd/bsWalfv77Y29vLxx9/rE3Kl96H9w8//CBKKRk0aJCcO3dO+vTpoy2T0r59+3RnoKYUzxr31I4cOaJNHOrv728yEpfS9zSxT0xMlJUrV2prWfbs2VP++9//ytq1a6Vdu3ba3/np06drA1OIcjqrEqb4+Hh5//33tcnKjJOaPbkO3OPHj6VNmzailJLPP//c5BjXrl2Tzz77TBo2bCgtWrSQN954w2TYKv+IpWVN3J/8ln3w4EFRSsmrr76a7mSLlLEFCxaIm5ubVKlSJd0lGoxx/+ijj7RlZkqWLKkt7fD777+blOWMxZZlJu4iIo8ePZINGzbI77//Lt26dZPChQuLUkrq1q0rR44cycYe5x2ZiX1MTIzMmDEjzVxxSimpXr267NmzJ3s7TWQlqyeu3Lt3r5QrV05sbGxk2rRpafYbPyiMt5Hq1aun7XvyqsiTQ6x5eyh91sQ9tYsXL6a5+kSZY3z93r59W7tiMXDgQG1On9TraBl16dJF+9BwdXU1WUZChK/5zHjauN+7d08CAgJM1h5btGiRyTH5xSxzMhP7J1/DGzZskD59+sibb74pffr0kTVr1pg9JlFOZ3XCZDAY5MMPPxQbGxvx9vaWkydPikjaP/w7d+4UJycnadOmjTx8+DDDNwk/NCx7HnHncxxPz/hBu3btWvHy8hJPT0+TOX9SS0xM1J6bef/99yU2Nlbbx9g/naeJu0jKF4zJkyfL2rVruaSGlZ429qml/vvE2FNukyVryYWEhGgPrb766qsm+4z3p7///vt0lzuhZ8O46y/1shCDBw/WnkUyLm2yb98+6datm1y9elVEUlZkN87ALpL5JWfI1NPGXcT0AzqzS29QWs8S+9T1eEWJcqssW3x327Zt4unpKUopGTFihJw+fVrbd/v2bXnttdfE3t5eVq1aJSK8BJ5VGHf9GT8A9u7dK9WrV5eCBQvKJ598IgMGDNBuA02ZMiVNHX5wWCczcX/ymUkRvgeywrPGnig3y7KESURk9erV2oi3ChUqyNSpU+XTTz+VatWqiVJK2rVrZ7KoKGUNxl1fqUcXTpo0SZydnbWRb87OzvLFF1/o2Lu8i3HXD2NP+VGWJkwiIj/99JPJnDLGf++++67cv38/q5uj/2Hc9bdt2zZtvS2llPTv318bwSjCWxHPC+OuH8ae8hMlkvXTq8bExGDfvn34559/8PDhQzRp0gRVq1YFkDLDNJcfeD4Yd31ERUWhV69e2LFjBwCgfv36+M9//oPatWsDSJlZ2rj0CWUdxl0/jD3lR1m+4qqIwM3NDe3atUuzXUT4of2cMO76SU5Oxo0bN1CgQAEsW7YMXbt21bbL/9Yvo6zHuOuHsaf86LlcYTKS/60zJFyjLFsx7tnv4sWLqFChgvZz6jWz6Plh3PXD2FN+81wTJqL8hh8a+mDc9cPYU37BhImIiIjIAj7YQkRERGQBEyYiIiIiC5gwEREREVnAhImIiIjIAiZMRERERBYwYSIiIiKygAkTERERkQVMmIiIiIgsYMJEREREZAETJiIiIiILmDARERERWcCEiYiIiMiC/wdrKt1h3P9VSQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "add_metadata(Floodpy_app_objs, Floodpy_app)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Select a single datetime for Interactive plotting" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Select a singe datetime for the following list:\n", "2023-09-06 04:39:47.095652\n", "2023-09-07 16:24:12.139701\n", "2023-09-12 16:32:24.059385\n", "2023-09-13 04:31:57.827516\n", "2023-09-18 04:39:47.608904\n" ] } ], "source": [ "print(\"Select a singe datetime for the following list:\")\n", "print(*list(Floodpy_app_objs.keys()),sep='\\n')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Example: plot_interactive_map(Floodpy_app_objs[pd.Timestamp('This should be replaced')])\n", "plot_interactive_map(Floodpy_app_objs[pd.Timestamp('2023-09-07 16:24:12.139701')])" ] } ], "metadata": { "kernelspec": { "display_name": "floodpy_gpu", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.17" } }, "nbformat": 4, "nbformat_minor": 2 }