########################## # SpikeDetekt parameters # ########################## experiment_name = 'fivemin' #raw_data_files = experiment_name + '.raw.kwd' raw_data_files = experiment_name + '.dat' prb_file = '32chan1shankbuzsaki.prb' nbits = 16 voltage_gain = 10. sample_rate = 20000 nchannels = 32 # Filtering # --------- filter_low = 500. # Low pass frequency (Hz) filter_high = 0.95 * .5 * sample_rate filter_butter_order = 3 # Order of Butterworth filter. filter_lfp_low = 0 # LFP filter low-pass frequency filter_lfp_high = 300 # LFP filter high-pass frequency # Chunks # ------ chunk_size = int(1. * sample_rate) # 1 second chunk_overlap = int(.015 * sample_rate) # 15 ms # Spike detection # --------------- # Uniformly scattered chunks, for computing the threshold from the std of the # signal across the whole recording. nexcerpts = 50 excerpt_size = int(1. * sample_rate) threshold_strong_std_factor = 4.5 threshold_weak_std_factor = 2. detect_spikes = 'negative' #precomputed_threshold = None # Connected component # ------------------- connected_component_join_size = int(.00005 * sample_rate) # Spike extraction # ---------------- extract_s_before = 16 extract_s_after = 16 waveforms_nsamples = extract_s_before + extract_s_after # Features # -------- nfeatures_per_channel = 3 # Number of features per channel. pca_nwaveforms_max = 10000 #Diagnostic options #------------------- diagnostics_path = '/home/skadir/testdiag/example/diagnostics.py' # path to the diagnostics module diagnostics_time_samples = [300, 4000, 20900, 49892] #Time samples where you want to observe spikes show_plots_as_they_arise = True #modify scale of plots using matplotlib save_graph_data = True # save data in plots as a pickle file ######################### # KlustaKwik parameters # ######################### MaskStarts = 100 #MinClusters = 100 #MaxClusters = 110 MaxPossibleClusters = 500 FullStepEvery = 10 MaxIter = 10000 RandomSeed = 654 Debug = 0 SplitFirst = 20 SplitEvery = 100 PenaltyK = 0 PenaltyKLogN = 1 Subset = 1 PriorPoint = 1 SaveSorted = 0 SaveCovarianceMeans = 0 UseMaskedInitialConditions = 1 AssignToFirstClosestMask = 1 UseDistributional = 1