Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

# Natural Language Toolkit: Chunk format conversions 

# 

# Copyright (C) 2001-2012 NLTK Project 

# Author: Edward Loper <edloper@gradient.cis.upenn.edu> 

#         Steven Bird <sb@csse.unimelb.edu.au> (minor additions) 

# URL: <http://www.nltk.org/> 

# For license information, see LICENSE.TXT 

from __future__ import print_function 

 

import re 

 

from nltk.tree import Tree 

from nltk.tag.util import str2tuple 

 

##////////////////////////////////////////////////////// 

## EVALUATION 

##////////////////////////////////////////////////////// 

 

from nltk.metrics import accuracy as _accuracy 

def accuracy(chunker, gold): 

    """ 

    Score the accuracy of the chunker against the gold standard. 

    Strip the chunk information from the gold standard and rechunk it using 

    the chunker, then compute the accuracy score. 

 

    :type chunker: ChunkParserI 

    :param chunker: The chunker being evaluated. 

    :type gold: tree 

    :param gold: The chunk structures to score the chunker on. 

    :rtype: float 

    """ 

 

    gold_tags = [] 

    test_tags = [] 

    for gold_tree in gold: 

        test_tree = chunker.parse(gold_tree.flatten()) 

        gold_tags += tree2conlltags(gold_tree) 

        test_tags += tree2conlltags(test_tree) 

 

#    print 'GOLD:', gold_tags[:50] 

#    print 'TEST:', test_tags[:50] 

    return _accuracy(gold_tags, test_tags) 

 

 

# Patched for increased performance by Yoav Goldberg <yoavg@cs.bgu.ac.il>, 2006-01-13 

#  -- statistics are evaluated only on demand, instead of at every sentence evaluation 

# 

# SB: use nltk.metrics for precision/recall scoring? 

# 

class ChunkScore(object): 

    """ 

    A utility class for scoring chunk parsers.  ``ChunkScore`` can 

    evaluate a chunk parser's output, based on a number of statistics 

    (precision, recall, f-measure, misssed chunks, incorrect chunks). 

    It can also combine the scores from the parsing of multiple texts; 

    this makes it significantly easier to evaluate a chunk parser that 

    operates one sentence at a time. 

 

    Texts are evaluated with the ``score`` method.  The results of 

    evaluation can be accessed via a number of accessor methods, such 

    as ``precision`` and ``f_measure``.  A typical use of the 

    ``ChunkScore`` class is:: 

 

        >>> chunkscore = ChunkScore() 

        >>> for correct in correct_sentences: 

        ...     guess = chunkparser.parse(correct.leaves()) 

        ...     chunkscore.score(correct, guess) 

        >>> print('F Measure:', chunkscore.f_measure()) 

        F Measure: 0.823 

 

    :ivar kwargs: Keyword arguments: 

 

        - max_tp_examples: The maximum number actual examples of true 

          positives to record.  This affects the ``correct`` member 

          function: ``correct`` will not return more than this number 

          of true positive examples.  This does *not* affect any of 

          the numerical metrics (precision, recall, or f-measure) 

 

        - max_fp_examples: The maximum number actual examples of false 

          positives to record.  This affects the ``incorrect`` member 

          function and the ``guessed`` member function: ``incorrect`` 

          will not return more than this number of examples, and 

          ``guessed`` will not return more than this number of true 

          positive examples.  This does *not* affect any of the 

          numerical metrics (precision, recall, or f-measure) 

 

        - max_fn_examples: The maximum number actual examples of false 

          negatives to record.  This affects the ``missed`` member 

          function and the ``correct`` member function: ``missed`` 

          will not return more than this number of examples, and 

          ``correct`` will not return more than this number of true 

          negative examples.  This does *not* affect any of the 

          numerical metrics (precision, recall, or f-measure) 

 

        - chunk_node: A regular expression indicating which chunks 

          should be compared.  Defaults to ``'.*'`` (i.e., all chunks). 

 

    :type _tp: list(Token) 

    :ivar _tp: List of true positives 

    :type _fp: list(Token) 

    :ivar _fp: List of false positives 

    :type _fn: list(Token) 

    :ivar _fn: List of false negatives 

 

    :type _tp_num: int 

    :ivar _tp_num: Number of true positives 

    :type _fp_num: int 

    :ivar _fp_num: Number of false positives 

    :type _fn_num: int 

    :ivar _fn_num: Number of false negatives. 

    """ 

    def __init__(self, **kwargs): 

        self._correct = set() 

        self._guessed = set() 

        self._tp = set() 

        self._fp = set() 

        self._fn = set() 

        self._max_tp = kwargs.get('max_tp_examples', 100) 

        self._max_fp = kwargs.get('max_fp_examples', 100) 

        self._max_fn = kwargs.get('max_fn_examples', 100) 

        self._chunk_node = kwargs.get('chunk_node', '.*') 

        self._tp_num = 0 

        self._fp_num = 0 

        self._fn_num = 0 

        self._count = 0 

        self._tags_correct = 0.0 

        self._tags_total = 0.0 

 

        self._measuresNeedUpdate = False 

 

    def _updateMeasures(self): 

        if (self._measuresNeedUpdate): 

           self._tp = self._guessed & self._correct 

           self._fn = self._correct - self._guessed 

           self._fp = self._guessed - self._correct 

           self._tp_num = len(self._tp) 

           self._fp_num = len(self._fp) 

           self._fn_num = len(self._fn) 

           self._measuresNeedUpdate = False 

 

    def score(self, correct, guessed): 

        """ 

        Given a correctly chunked sentence, score another chunked 

        version of the same sentence. 

 

        :type correct: chunk structure 

        :param correct: The known-correct ("gold standard") chunked 

            sentence. 

        :type guessed: chunk structure 

        :param guessed: The chunked sentence to be scored. 

        """ 

        self._correct |= _chunksets(correct, self._count, self._chunk_node) 

        self._guessed |= _chunksets(guessed, self._count, self._chunk_node) 

        self._count += 1 

        self._measuresNeedUpdate = True 

        # Keep track of per-tag accuracy (if possible) 

        try: 

            correct_tags = tree2conlltags(correct) 

            guessed_tags = tree2conlltags(guessed) 

        except ValueError: 

            # This exception case is for nested chunk structures, 

            # where tree2conlltags will fail with a ValueError: "Tree 

            # is too deeply nested to be printed in CoNLL format." 

            correct_tags = guessed_tags = () 

        self._tags_total += len(correct_tags) 

        self._tags_correct += sum(1 for (t,g) in zip(guessed_tags, 

                                                     correct_tags) 

                                  if t==g) 

 

    def accuracy(self): 

        """ 

        Return the overall tag-based accuracy for all text that have 

        been scored by this ``ChunkScore``, using the IOB (conll2000) 

        tag encoding. 

 

        :rtype: float 

        """ 

        if self._tags_total == 0: return 1 

        return self._tags_correct/self._tags_total 

 

    def precision(self): 

        """ 

        Return the overall precision for all texts that have been 

        scored by this ``ChunkScore``. 

 

        :rtype: float 

        """ 

        self._updateMeasures() 

        div = self._tp_num + self._fp_num 

        if div == 0: return 0 

        else: return float(self._tp_num) / div 

 

    def recall(self): 

        """ 

        Return the overall recall for all texts that have been 

        scored by this ``ChunkScore``. 

 

        :rtype: float 

        """ 

        self._updateMeasures() 

        div = self._tp_num + self._fn_num 

        if div == 0: return 0 

        else: return float(self._tp_num) / div 

 

    def f_measure(self, alpha=0.5): 

        """ 

        Return the overall F measure for all texts that have been 

        scored by this ``ChunkScore``. 

 

        :param alpha: the relative weighting of precision and recall. 

            Larger alpha biases the score towards the precision value, 

            while smaller alpha biases the score towards the recall 

            value.  ``alpha`` should have a value in the range [0,1]. 

        :type alpha: float 

        :rtype: float 

        """ 

        self._updateMeasures() 

        p = self.precision() 

        r = self.recall() 

        if p == 0 or r == 0:    # what if alpha is 0 or 1? 

            return 0 

        return 1/(alpha/p + (1-alpha)/r) 

 

    def missed(self): 

        """ 

        Return the chunks which were included in the 

        correct chunk structures, but not in the guessed chunk 

        structures, listed in input order. 

 

        :rtype: list of chunks 

        """ 

        self._updateMeasures() 

        chunks = list(self._fn) 

        return [c[1] for c in chunks]  # discard position information 

 

    def incorrect(self): 

        """ 

        Return the chunks which were included in the guessed chunk structures, 

        but not in the correct chunk structures, listed in input order. 

 

        :rtype: list of chunks 

        """ 

        self._updateMeasures() 

        chunks = list(self._fp) 

        return [c[1] for c in chunks]  # discard position information 

 

    def correct(self): 

        """ 

        Return the chunks which were included in the correct 

        chunk structures, listed in input order. 

 

        :rtype: list of chunks 

        """ 

        chunks = list(self._correct) 

        return [c[1] for c in chunks]  # discard position information 

 

    def guessed(self): 

        """ 

        Return the chunks which were included in the guessed 

        chunk structures, listed in input order. 

 

        :rtype: list of chunks 

        """ 

        chunks = list(self._guessed) 

        return [c[1] for c in chunks]  # discard position information 

 

    def __len__(self): 

        self._updateMeasures() 

        return self._tp_num + self._fn_num 

 

    def __repr__(self): 

        """ 

        Return a concise representation of this ``ChunkScoring``. 

 

        :rtype: str 

        """ 

        return '<ChunkScoring of '+repr(len(self))+' chunks>' 

 

    def __str__(self): 

        """ 

        Return a verbose representation of this ``ChunkScoring``. 

        This representation includes the precision, recall, and 

        f-measure scores.  For other information about the score, 

        use the accessor methods (e.g., ``missed()`` and ``incorrect()``). 

 

        :rtype: str 

        """ 

        return ("ChunkParse score:\n" + 

                ("    IOB Accuracy: %5.1f%%\n" % (self.accuracy()*100)) + 

                ("    Precision:    %5.1f%%\n" % (self.precision()*100)) + 

                ("    Recall:       %5.1f%%\n" % (self.recall()*100))+ 

                ("    F-Measure:    %5.1f%%" % (self.f_measure()*100))) 

 

# extract chunks, and assign unique id, the absolute position of 

# the first word of the chunk 

def _chunksets(t, count, chunk_node): 

    pos = 0 

    chunks = [] 

    for child in t: 

        if isinstance(child, Tree): 

            if re.match(chunk_node, child.node): 

                chunks.append(((count, pos), child.freeze())) 

            pos += len(child.leaves()) 

        else: 

            pos += 1 

    return set(chunks) 

 

 

def tagstr2tree(s, chunk_node="NP", top_node="S", sep='/'): 

    """ 

    Divide a string of bracketted tagged text into 

    chunks and unchunked tokens, and produce a Tree. 

    Chunks are marked by square brackets (``[...]``).  Words are 

    delimited by whitespace, and each word should have the form 

    ``text/tag``.  Words that do not contain a slash are 

    assigned a ``tag`` of None. 

 

    :param s: The string to be converted 

    :type s: str 

    :param chunk_node: The label to use for chunk nodes 

    :type chunk_node: str 

    :param top_node: The label to use for the root of the tree 

    :type top_node: str 

    :rtype: Tree 

    """ 

 

    WORD_OR_BRACKET = re.compile(r'\[|\]|[^\[\]\s]+') 

 

    stack = [Tree(top_node, [])] 

    for match in WORD_OR_BRACKET.finditer(s): 

        text = match.group() 

        if text[0] == '[': 

            if len(stack) != 1: 

                raise ValueError('Unexpected [ at char %d' % match.start()) 

            chunk = Tree(chunk_node, []) 

            stack[-1].append(chunk) 

            stack.append(chunk) 

        elif text[0] == ']': 

            if len(stack) != 2: 

                raise ValueError('Unexpected ] at char %d' % match.start()) 

            stack.pop() 

        else: 

            if sep is None: 

                stack[-1].append(text) 

            else: 

                stack[-1].append(str2tuple(text, sep)) 

 

    if len(stack) != 1: 

        raise ValueError('Expected ] at char %d' % len(s)) 

    return stack[0] 

 

### CONLL 

 

_LINE_RE = re.compile('(\S+)\s+(\S+)\s+([IOB])-?(\S+)?') 

def conllstr2tree(s, chunk_types=('NP', 'PP', 'VP'), top_node="S"): 

    """ 

    Return a chunk structure for a single sentence 

    encoded in the given CONLL 2000 style string. 

    This function converts a CoNLL IOB string into a tree. 

    It uses the specified chunk types 

    (defaults to NP, PP and VP), and creates a tree rooted at a node 

    labeled S (by default). 

 

    :param s: The CoNLL string to be converted. 

    :type s: str 

    :param chunk_types: The chunk types to be converted. 

    :type chunk_types: tuple 

    :param top_node: The node label to use for the root. 

    :type top_node: str 

    :rtype: Tree 

    """ 

 

    stack = [Tree(top_node, [])] 

 

    for lineno, line in enumerate(s.split('\n')): 

        if not line.strip(): continue 

 

        # Decode the line. 

        match = _LINE_RE.match(line) 

        if match is None: 

            raise ValueError('Error on line %d' % lineno) 

        (word, tag, state, chunk_type) = match.groups() 

 

        # If it's a chunk type we don't care about, treat it as O. 

        if (chunk_types is not None and 

            chunk_type not in chunk_types): 

            state = 'O' 

 

        # For "Begin"/"Outside", finish any completed chunks - 

        # also do so for "Inside" which don't match the previous token. 

        mismatch_I = state == 'I' and chunk_type != stack[-1].node 

        if state in 'BO' or mismatch_I: 

            if len(stack) == 2: stack.pop() 

 

        # For "Begin", start a new chunk. 

        if state == 'B' or mismatch_I: 

            chunk = Tree(chunk_type, []) 

            stack[-1].append(chunk) 

            stack.append(chunk) 

 

        # Add the new word token. 

        stack[-1].append((word, tag)) 

 

    return stack[0] 

 

def tree2conlltags(t): 

    """ 

    Return a list of 3-tuples containing ``(word, tag, IOB-tag)``. 

    Convert a tree to the CoNLL IOB tag format. 

 

    :param t: The tree to be converted. 

    :type t: Tree 

    :rtype: list(tuple) 

    """ 

 

    tags = [] 

    for child in t: 

        try: 

            category = child.node 

            prefix = "B-" 

            for contents in child: 

                if isinstance(contents, Tree): 

                    raise ValueError("Tree is too deeply nested to be printed in CoNLL format") 

                tags.append((contents[0], contents[1], prefix+category)) 

                prefix = "I-" 

        except AttributeError: 

            tags.append((child[0], child[1], "O")) 

    return tags 

 

def conlltags2tree(sentence, chunk_types=('NP','PP','VP'), 

                   top_node='S', strict=False): 

    """ 

    Convert the CoNLL IOB format to a tree. 

    """ 

    tree = Tree(top_node, []) 

    for (word, postag, chunktag) in sentence: 

        if chunktag is None: 

            if strict: 

                raise ValueError("Bad conll tag sequence") 

            else: 

                # Treat as O 

                tree.append((word,postag)) 

        elif chunktag.startswith('B-'): 

            tree.append(Tree(chunktag[2:], [(word,postag)])) 

        elif chunktag.startswith('I-'): 

            if (len(tree)==0 or not isinstance(tree[-1], Tree) or 

                tree[-1].node != chunktag[2:]): 

                if strict: 

                    raise ValueError("Bad conll tag sequence") 

                else: 

                    # Treat as B-* 

                    tree.append(Tree(chunktag[2:], [(word,postag)])) 

            else: 

                tree[-1].append((word,postag)) 

        elif chunktag == 'O': 

            tree.append((word,postag)) 

        else: 

            raise ValueError("Bad conll tag %r" % chunktag) 

    return tree 

 

def tree2conllstr(t): 

    """ 

    Return a multiline string where each line contains a word, tag and IOB tag. 

    Convert a tree to the CoNLL IOB string format 

 

    :param t: The tree to be converted. 

    :type t: Tree 

    :rtype: str 

    """ 

    lines = [" ".join(token) for token in tree2conlltags(t)] 

    return '\n'.join(lines) 

 

### IEER 

 

_IEER_DOC_RE = re.compile(r'<DOC>\s*' 

                          r'(<DOCNO>\s*(?P<docno>.+?)\s*</DOCNO>\s*)?' 

                          r'(<DOCTYPE>\s*(?P<doctype>.+?)\s*</DOCTYPE>\s*)?' 

                          r'(<DATE_TIME>\s*(?P<date_time>.+?)\s*</DATE_TIME>\s*)?' 

                          r'<BODY>\s*' 

                          r'(<HEADLINE>\s*(?P<headline>.+?)\s*</HEADLINE>\s*)?' 

                          r'<TEXT>(?P<text>.*?)</TEXT>\s*' 

                          r'</BODY>\s*</DOC>\s*', re.DOTALL) 

 

_IEER_TYPE_RE = re.compile('<b_\w+\s+[^>]*?type="(?P<type>\w+)"') 

 

def _ieer_read_text(s, top_node): 

    stack = [Tree(top_node, [])] 

    # s will be None if there is no headline in the text 

    # return the empty list in place of a Tree 

    if s is None: 

        return [] 

    for piece_m in re.finditer('<[^>]+>|[^\s<]+', s): 

        piece = piece_m.group() 

        try: 

            if piece.startswith('<b_'): 

                m = _IEER_TYPE_RE.match(piece) 

                if m is None: print('XXXX', piece) 

                chunk = Tree(m.group('type'), []) 

                stack[-1].append(chunk) 

                stack.append(chunk) 

            elif piece.startswith('<e_'): 

                stack.pop() 

#           elif piece.startswith('<'): 

#               print "ERROR:", piece 

#               raise ValueError # Unexpected HTML 

            else: 

                stack[-1].append(piece) 

        except (IndexError, ValueError): 

            raise ValueError('Bad IEER string (error at character %d)' % 

                             piece_m.start()) 

    if len(stack) != 1: 

        raise ValueError('Bad IEER string') 

    return stack[0] 

 

def ieerstr2tree(s, chunk_types = ['LOCATION', 'ORGANIZATION', 'PERSON', 'DURATION', 

               'DATE', 'CARDINAL', 'PERCENT', 'MONEY', 'MEASURE'], top_node="S"): 

    """ 

    Return a chunk structure containing the chunked tagged text that is 

    encoded in the given IEER style string. 

    Convert a string of chunked tagged text in the IEER named 

    entity format into a chunk structure.  Chunks are of several 

    types, LOCATION, ORGANIZATION, PERSON, DURATION, DATE, CARDINAL, 

    PERCENT, MONEY, and MEASURE. 

 

    :rtype: Tree 

    """ 

 

    # Try looking for a single document.  If that doesn't work, then just 

    # treat everything as if it was within the <TEXT>...</TEXT>. 

    m = _IEER_DOC_RE.match(s) 

    if m: 

        return { 

            'text': _ieer_read_text(m.group('text'), top_node), 

            'docno': m.group('docno'), 

            'doctype': m.group('doctype'), 

            'date_time': m.group('date_time'), 

            #'headline': m.group('headline') 

            # we want to capture NEs in the headline too! 

            'headline': _ieer_read_text(m.group('headline'), top_node), 

            } 

    else: 

        return _ieer_read_text(s, top_node) 

 

 

def demo(): 

 

    s = "[ Pierre/NNP Vinken/NNP ] ,/, [ 61/CD years/NNS ] old/JJ ,/, will/MD join/VB [ the/DT board/NN ] ./." 

    import nltk 

    t = nltk.chunk.tagstr2tree(s, chunk_node='NP') 

    print(t.pprint()) 

    print() 

 

    s = """ 

These DT B-NP 

research NN I-NP 

protocols NNS I-NP 

offer VBP B-VP 

to TO B-PP 

the DT B-NP 

patient NN I-NP 

not RB O 

only RB O 

the DT B-NP 

very RB I-NP 

best JJS I-NP 

therapy NN I-NP 

which WDT B-NP 

we PRP B-NP 

have VBP B-VP 

established VBN I-VP 

today NN B-NP 

but CC B-NP 

also RB I-NP 

the DT B-NP 

hope NN I-NP 

of IN B-PP 

something NN B-NP 

still RB B-ADJP 

better JJR I-ADJP 

. . O 

""" 

 

    conll_tree = conllstr2tree(s, chunk_types=('NP', 'PP')) 

    print(conll_tree.pprint()) 

 

    # Demonstrate CoNLL output 

    print("CoNLL output:") 

    print(nltk.chunk.tree2conllstr(conll_tree)) 

    print() 

 

 

if __name__ == '__main__': 

    demo()