Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

# Natural Language Toolkit: Feature Structures 

# 

# Copyright (C) 2001-2012 NLTK Project 

# Author: Edward Loper <edloper@gradient.cis.upenn.edu>, 

#         Rob Speer, 

#         Steven Bird <sb@csse.unimelb.edu.au> 

# URL: <http://nltk.sourceforge.net> 

# For license information, see LICENSE.TXT 

 

""" 

Basic data classes for representing feature structures, and for 

performing basic operations on those feature structures.  A feature 

structure is a mapping from feature identifiers to feature values, 

where each feature value is either a basic value (such as a string or 

an integer), or a nested feature structure.  There are two types of 

feature structure, implemented by two subclasses of ``FeatStruct``: 

 

    - feature dictionaries, implemented by ``FeatDict``, act like 

      Python dictionaries.  Feature identifiers may be strings or 

      instances of the ``Feature`` class. 

    - feature lists, implemented by ``FeatList``, act like Python 

      lists.  Feature identifiers are integers. 

 

Feature structures are typically used to represent partial information 

about objects.  A feature identifier that is not mapped to a value 

stands for a feature whose value is unknown (*not* a feature without 

a value).  Two feature structures that represent (potentially 

overlapping) information about the same object can be combined by 

unification.  When two inconsistent feature structures are unified, 

the unification fails and returns None. 

 

Features can be specified using "feature paths", or tuples of feature 

identifiers that specify path through the nested feature structures to 

a value.  Feature structures may contain reentrant feature values.  A 

"reentrant feature value" is a single feature value that can be 

accessed via multiple feature paths.  Unification preserves the 

reentrance relations imposed by both of the unified feature 

structures.  In the feature structure resulting from unification, any 

modifications to a reentrant feature value will be visible using any 

of its feature paths. 

 

Feature structure variables are encoded using the ``nltk.sem.Variable`` 

class.  The variables' values are tracked using a bindings 

dictionary, which maps variables to their values.  When two feature 

structures are unified, a fresh bindings dictionary is created to 

track their values; and before unification completes, all bound 

variables are replaced by their values.  Thus, the bindings 

dictionaries are usually strictly internal to the unification process. 

However, it is possible to track the bindings of variables if you 

choose to, by supplying your own initial bindings dictionary to the 

``unify()`` function. 

 

When unbound variables are unified with one another, they become 

aliased.  This is encoded by binding one variable to the other. 

 

Lightweight Feature Structures 

============================== 

Many of the functions defined by ``nltk.featstruct`` can be applied 

directly to simple Python dictionaries and lists, rather than to 

full-fledged ``FeatDict`` and ``FeatList`` objects.  In other words, 

Python ``dicts`` and ``lists`` can be used as "light-weight" feature 

structures. 

 

    >>> from nltk.featstruct import unify 

    >>> unify(dict(x=1, y=dict()), dict(a='a', y=dict(b='b'))) 

    {'y': {'b': 'b'}, 'x': 1, 'a': 'a'} 

 

However, you should keep in mind the following caveats: 

 

  - Python dictionaries & lists ignore reentrance when checking for 

    equality between values.  But two FeatStructs with different 

    reentrances are considered nonequal, even if all their base 

    values are equal. 

 

  - FeatStructs can be easily frozen, allowing them to be used as 

    keys in hash tables.  Python dictionaries and lists can not. 

 

  - FeatStructs display reentrance in their string representations; 

    Python dictionaries and lists do not. 

 

  - FeatStructs may *not* be mixed with Python dictionaries and lists 

    (e.g., when performing unification). 

 

  - FeatStructs provide a number of useful methods, such as ``walk()`` 

    and ``cyclic()``, which are not available for Python dicts and lists. 

 

In general, if your feature structures will contain any reentrances, 

or if you plan to use them as dictionary keys, it is strongly 

recommended that you use full-fledged ``FeatStruct`` objects. 

""" 

from __future__ import print_function 

from __future__ import division 

 

import re 

import copy 

 

import nltk.internals 

from nltk.sem.logic import (Variable, Expression, SubstituteBindingsI, 

                            LogicParser, ParseException) 

from nltk.compat import string_types, text_type, integer_types, total_ordering 

 

###################################################################### 

# Feature Structure 

###################################################################### 

 

@total_ordering 

class FeatStruct(SubstituteBindingsI): 

    """ 

    A mapping from feature identifiers to feature values, where each 

    feature value is either a basic value (such as a string or an 

    integer), or a nested feature structure.  There are two types of 

    feature structure: 

 

      - feature dictionaries, implemented by ``FeatDict``, act like 

        Python dictionaries.  Feature identifiers may be strings or 

        instances of the ``Feature`` class. 

      - feature lists, implemented by ``FeatList``, act like Python 

        lists.  Feature identifiers are integers. 

 

    Feature structures may be indexed using either simple feature 

    identifiers or 'feature paths.'  A feature path is a sequence 

    of feature identifiers that stand for a corresponding sequence of 

    indexing operations.  In particular, ``fstruct[(f1,f2,...,fn)]`` is 

    equivalent to ``fstruct[f1][f2]...[fn]``. 

 

    Feature structures may contain reentrant feature structures.  A 

    "reentrant feature structure" is a single feature structure 

    object that can be accessed via multiple feature paths.  Feature 

    structures may also be cyclic.  A feature structure is "cyclic" 

    if there is any feature path from the feature structure to itself. 

 

    Two feature structures are considered equal if they assign the 

    same values to all features, and have the same reentrancies. 

 

    By default, feature structures are mutable.  They may be made 

    immutable with the ``freeze()`` method.  Once they have been 

    frozen, they may be hashed, and thus used as dictionary keys. 

    """ 

 

    _frozen = False 

    """:ivar: A flag indicating whether this feature structure is 

       frozen or not.  Once this flag is set, it should never be 

       un-set; and no further modification should be made to this 

       feature structue.""" 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Constructor 

    ##//////////////////////////////////////////////////////////// 

 

    def __new__(cls, features=None, **morefeatures): 

        """ 

        Construct and return a new feature structure.  If this 

        constructor is called directly, then the returned feature 

        structure will be an instance of either the ``FeatDict`` class 

        or the ``FeatList`` class. 

 

        :param features: The initial feature values for this feature 

            structure: 

              - FeatStruct(string) -> FeatStructParser().parse(string) 

              - FeatStruct(mapping) -> FeatDict(mapping) 

              - FeatStruct(sequence) -> FeatList(sequence) 

              - FeatStruct() -> FeatDict() 

        :param morefeatures: If ``features`` is a mapping or None, 

            then ``morefeatures`` provides additional features for the 

            ``FeatDict`` constructor. 

        """ 

        # If the FeatStruct constructor is called directly, then decide 

        # whether to create a FeatDict or a FeatList, based on the 

        # contents of the `features` argument. 

        if cls is FeatStruct: 

            if features is None: 

                return FeatDict.__new__(FeatDict, **morefeatures) 

            elif _is_mapping(features): 

                return FeatDict.__new__(FeatDict, features, **morefeatures) 

            elif morefeatures: 

                raise TypeError('Keyword arguments may only be specified ' 

                                'if features is None or is a mapping.') 

            if isinstance(features, string_types): 

                if FeatStructParser._START_FDICT_RE.match(features): 

                    return FeatDict.__new__(FeatDict, features, **morefeatures) 

                else: 

                    return FeatList.__new__(FeatList, features, **morefeatures) 

            elif _is_sequence(features): 

                return FeatList.__new__(FeatList, features) 

            else: 

                raise TypeError('Expected string or mapping or sequence') 

 

        # Otherwise, construct the object as normal. 

        else: 

            return super(FeatStruct, cls).__new__(cls, features, 

                                                  **morefeatures) 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Uniform Accessor Methods 

    ##//////////////////////////////////////////////////////////// 

    # These helper functions allow the methods defined by FeatStruct 

    # to treat all feature structures as mappings, even if they're 

    # really lists.  (Lists are treated as mappings from ints to vals) 

 

    def _keys(self): 

        """Return an iterable of the feature identifiers used by this 

        FeatStruct.""" 

        raise NotImplementedError() # Implemented by subclasses. 

 

    def _values(self): 

        """Return an iterable of the feature values directly defined 

        by this FeatStruct.""" 

        raise NotImplementedError() # Implemented by subclasses. 

 

    def _items(self): 

        """Return an iterable of (fid,fval) pairs, where fid is a 

        feature identifier and fval is the corresponding feature 

        value, for all features defined by this FeatStruct.""" 

        raise NotImplementedError() # Implemented by subclasses. 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Equality & Hashing 

    ##//////////////////////////////////////////////////////////// 

 

    def equal_values(self, other, check_reentrance=False): 

        """ 

        Return True if ``self`` and ``other`` assign the same value to 

        to every feature.  In particular, return true if 

        ``self[p]==other[p]`` for every feature path *p* such 

        that ``self[p]`` or ``other[p]`` is a base value (i.e., 

        not a nested feature structure). 

 

        :param check_reentrance: If True, then also return False if 

            there is any difference between the reentrances of ``self`` 

            and ``other``. 

        :note: the ``==`` is equivalent to ``equal_values()`` with 

            ``check_reentrance=True``. 

        """ 

        return self._equal(other, check_reentrance, set(), set(), set()) 

 

    def __eq__(self, other): 

        """ 

        Return true if ``self`` and ``other`` are both feature structures, 

        assign the same values to all features, and contain the same 

        reentrances.  I.e., return 

        ``self.equal_values(other, check_reentrance=True)``. 

 

        :see: ``equal_values()`` 

        """ 

        return self._equal(other, True, set(), set(), set()) 

 

    def __ne__(self, other): 

        """ 

        Return true unless ``self`` and ``other`` are both feature 

        structures, assign the same values to all features, and 

        contain the same reentrances.  I.e., return 

        ``not self.equal_values(other, check_reentrance=True)``. 

        """ 

        return not self.__eq__(other) 

 

    def __lt__(self, other): 

        if not isinstance(other, self.__class__): 

            return True 

        return len(self) < len(other) 

 

    def __hash__(self): 

        """ 

        If this feature structure is frozen, return its hash value; 

        otherwise, raise ``TypeError``. 

        """ 

        if not self._frozen: 

            raise TypeError('FeatStructs must be frozen before they ' 

                            'can be hashed.') 

        try: return self.__hash 

        except AttributeError: 

            self.__hash = self._hash(set()) 

            return self.__hash 

 

    def _equal(self, other, check_reentrance, visited_self, 

               visited_other, visited_pairs): 

        """ 

        Return True iff self and other have equal values. 

 

        :param visited_self: A set containing the ids of all ``self`` 

            feature structures we've already visited. 

        :param visited_other: A set containing the ids of all ``other`` 

            feature structures we've already visited. 

        :param visited_pairs: A set containing ``(selfid, otherid)`` pairs 

            for all pairs of feature structures we've already visited. 

        """ 

        # If we're the same object, then we're equal. 

        if self is other: return True 

 

        # If we have different classes, we're definitely not equal. 

        if self.__class__ != other.__class__: return False 

 

        # If we define different features, we're definitely not equal. 

        # (Perform len test first because it's faster -- we should 

        # do profiling to see if this actually helps) 

        if len(self) != len(other): return False 

        if set(self._keys()) != set(other._keys()): return False 

 

        # If we're checking reentrance, then any time we revisit a 

        # structure, make sure that it was paired with the same 

        # feature structure that it is now.  Note: if check_reentrance, 

        # then visited_pairs will never contain two pairs whose first 

        # values are equal, or two pairs whose second values are equal. 

        if check_reentrance: 

            if id(self) in visited_self or id(other) in visited_other: 

                return (id(self), id(other)) in visited_pairs 

 

        # If we're not checking reentrance, then we still need to deal 

        # with cycles.  If we encounter the same (self, other) pair a 

        # second time, then we won't learn anything more by examining 

        # their children a second time, so just return true. 

        else: 

            if (id(self), id(other)) in visited_pairs: 

                return True 

 

        # Keep track of which nodes we've visited. 

        visited_self.add(id(self)) 

        visited_other.add(id(other)) 

        visited_pairs.add( (id(self), id(other)) ) 

 

        # Now we have to check all values.  If any of them don't match, 

        # then return false. 

        for (fname, self_fval) in self._items(): 

            other_fval = other[fname] 

            if isinstance(self_fval, FeatStruct): 

                if not self_fval._equal(other_fval, check_reentrance, 

                                        visited_self, visited_other, 

                                        visited_pairs): 

                    return False 

            else: 

                if self_fval != other_fval: return False 

 

        # Everything matched up; return true. 

        return True 

 

    def _hash(self, visited): 

        """ 

        Return a hash value for this feature structure. 

 

        :require: ``self`` must be frozen. 

        :param visited: A set containing the ids of all feature 

            structures we've already visited while hashing. 

        """ 

        if id(self) in visited: return 1 

        visited.add(id(self)) 

 

        hashval = 5831 

        for (fname, fval) in sorted(self._items()): 

            hashval *= 37 

            hashval += hash(fname) 

            hashval *= 37 

            if isinstance(fval, FeatStruct): 

                hashval += fval._hash(visited) 

            else: 

                hashval += hash(fval) 

            # Convert to a 32 bit int. 

            hashval = int(hashval & 0x7fffffff) 

        return hashval 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Freezing 

    ##//////////////////////////////////////////////////////////// 

 

    #: Error message used by mutating methods when called on a frozen 

    #: feature structure. 

    _FROZEN_ERROR = "Frozen FeatStructs may not be modified." 

 

    def freeze(self): 

        """ 

        Make this feature structure, and any feature structures it 

        contains, immutable.  Note: this method does not attempt to 

        'freeze' any feature value that is not a ``FeatStruct``; it 

        is recommended that you use only immutable feature values. 

        """ 

        if self._frozen: return 

        self._freeze(set()) 

 

    def frozen(self): 

        """ 

        Return True if this feature structure is immutable.  Feature 

        structures can be made immutable with the ``freeze()`` method. 

        Immutable feature structures may not be made mutable again, 

        but new mutable copies can be produced with the ``copy()`` method. 

        """ 

        return self._frozen 

 

    def _freeze(self, visited): 

        """ 

        Make this feature structure, and any feature structure it 

        contains, immutable. 

 

        :param visited: A set containing the ids of all feature 

            structures we've already visited while freezing. 

        """ 

        if id(self) in visited: return 

        visited.add(id(self)) 

        self._frozen = True 

        for (fname, fval) in sorted(self._items()): 

            if isinstance(fval, FeatStruct): 

                fval._freeze(visited) 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Copying 

    ##//////////////////////////////////////////////////////////// 

 

    def copy(self, deep=True): 

        """ 

        Return a new copy of ``self``.  The new copy will not be frozen. 

 

        :param deep: If true, create a deep copy; if false, create 

            a shallow copy. 

        """ 

        if deep: 

            return copy.deepcopy(self) 

        else: 

            return self.__class__(self) 

 

    # Subclasses should define __deepcopy__ to ensure that the new 

    # copy will not be frozen. 

    def __deepcopy__(self, memo): 

        raise NotImplementedError() # Implemented by subclasses. 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Structural Information 

    ##//////////////////////////////////////////////////////////// 

 

    def cyclic(self): 

        """ 

        Return True if this feature structure contains itself. 

        """ 

        return self._find_reentrances({})[id(self)] 

 

    def walk(self): 

        """ 

        Return an iterator that generates this feature structure, and 

        each feature structure it contains.  Each feature structure will 

        be generated exactly once. 

        """ 

        return self._walk(set()) 

 

    def _walk(self, visited): 

        """ 

        Return an iterator that generates this feature structure, and 

        each feature structure it contains. 

 

        :param visited: A set containing the ids of all feature 

            structures we've already visited while freezing. 

        """ 

        raise NotImplementedError() # Implemented by subclasses. 

 

    def _walk(self, visited): 

        if id(self) in visited: return 

        visited.add(id(self)) 

        yield self 

        for fval in self._values(): 

            if isinstance(fval, FeatStruct): 

                for elt in fval._walk(visited): 

                    yield elt 

 

    # Walk through the feature tree.  The first time we see a feature 

    # value, map it to False (not reentrant).  If we see a feature 

    # value more than once, then map it to True (reentrant). 

    def _find_reentrances(self, reentrances): 

        """ 

        Return a dictionary that maps from the ``id`` of each feature 

        structure contained in ``self`` (including ``self``) to a 

        boolean value, indicating whether it is reentrant or not. 

        """ 

        if id(self) in reentrances: 

            # We've seen it more than once. 

            reentrances[id(self)] = True 

        else: 

            # This is the first time we've seen it. 

            reentrances[id(self)] = False 

 

            # Recurse to contained feature structures. 

            for fval in self._values(): 

                if isinstance(fval, FeatStruct): 

                    fval._find_reentrances(reentrances) 

 

        return reentrances 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Variables & Bindings 

    ##//////////////////////////////////////////////////////////// 

 

    def substitute_bindings(self, bindings): 

        """:see: ``nltk.featstruct.substitute_bindings()``""" 

        return substitute_bindings(self, bindings) 

 

    def retract_bindings(self, bindings): 

        """:see: ``nltk.featstruct.retract_bindings()``""" 

        return retract_bindings(self, bindings) 

 

    def variables(self): 

        """:see: ``nltk.featstruct.find_variables()``""" 

        return find_variables(self) 

 

    def rename_variables(self, vars=None, used_vars=(), new_vars=None): 

        """:see: ``nltk.featstruct.rename_variables()``""" 

        return rename_variables(self, vars, used_vars, new_vars) 

 

    def remove_variables(self): 

        """ 

        Return the feature structure that is obtained by deleting 

        any feature whose value is a ``Variable``. 

 

        :rtype: FeatStruct 

        """ 

        return remove_variables(self) 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Unification 

    ##//////////////////////////////////////////////////////////// 

 

    def unify(self, other, bindings=None, trace=False, 

              fail=None, rename_vars=True): 

        return unify(self, other, bindings, trace, fail, rename_vars) 

 

    def subsumes(self, other): 

        """ 

        Return True if ``self`` subsumes ``other``.  I.e., return true 

        If unifying ``self`` with ``other`` would result in a feature 

        structure equal to ``other``. 

        """ 

        return subsumes(self, other) 

 

    ##//////////////////////////////////////////////////////////// 

    #{ String Representations 

    ##//////////////////////////////////////////////////////////// 

 

    def __repr__(self): 

        """ 

        Display a single-line representation of this feature structure, 

        suitable for embedding in other representations. 

        """ 

        return self._repr(self._find_reentrances({}), {}) 

 

    def _repr(self, reentrances, reentrance_ids): 

        """ 

        Return a string representation of this feature structure. 

 

        :param reentrances: A dictionary that maps from the ``id`` of 

            each feature value in self, indicating whether that value 

            is reentrant or not. 

        :param reentrance_ids: A dictionary mapping from each ``id`` 

            of a feature value to a unique identifier.  This is modified 

            by ``repr``: the first time a reentrant feature value is 

            displayed, an identifier is added to ``reentrance_ids`` for it. 

        """ 

        raise NotImplementedError() 

 

# Mutation: disable if frozen. 

_FROZEN_ERROR = "Frozen FeatStructs may not be modified." 

_FROZEN_NOTICE = "\n%sIf self is frozen, raise ValueError." 

def _check_frozen(method, indent=''): 

    """ 

    Given a method function, return a new method function that first 

    checks if ``self._frozen`` is true; and if so, raises ``ValueError`` 

    with an appropriate message.  Otherwise, call the method and return 

    its result. 

    """ 

    def wrapped(self, *args, **kwargs): 

        if self._frozen: raise ValueError(_FROZEN_ERROR) 

        else: return method(self, *args, **kwargs) 

    wrapped.__name__ = method.__name__ 

    wrapped.__doc__ = (method.__doc__ or '') + (_FROZEN_NOTICE % indent) 

    return wrapped 

 

 

###################################################################### 

# Feature Dictionary 

###################################################################### 

 

class FeatDict(FeatStruct, dict): 

    """ 

    A feature structure that acts like a Python dictionary.  I.e., a 

    mapping from feature identifiers to feature values, where a feature 

    identifier can be a string or a ``Feature``; and where a feature value 

    can be either a basic value (such as a string or an integer), or a nested 

    feature structure.  A feature identifiers for a ``FeatDict`` is 

    sometimes called a "feature name". 

 

    Two feature dicts are considered equal if they assign the same 

    values to all features, and have the same reentrances. 

 

    :see: ``FeatStruct`` for information about feature paths, reentrance, 

        cyclic feature structures, mutability, freezing, and hashing. 

    """ 

    def __init__(self, features=None, **morefeatures): 

        """ 

        Create a new feature dictionary, with the specified features. 

 

        :param features: The initial value for this feature 

            dictionary.  If ``features`` is a ``FeatStruct``, then its 

            features are copied (shallow copy).  If ``features`` is a 

            dict, then a feature is created for each item, mapping its 

            key to its value.  If ``features`` is a string, then it is 

            parsed using ``FeatStructParser``.  If ``features`` is a list of 

            tuples ``(name, val)``, then a feature is created for each tuple. 

        :param morefeatures: Additional features for the new feature 

            dictionary.  If a feature is listed under both ``features`` and 

            ``morefeatures``, then the value from ``morefeatures`` will be 

            used. 

        """ 

        if isinstance(features, string_types): 

            FeatStructParser().parse(features, self) 

            self.update(**morefeatures) 

        else: 

            # update() checks the types of features. 

            self.update(features, **morefeatures) 

 

    #//////////////////////////////////////////////////////////// 

    #{ Dict methods 

    #//////////////////////////////////////////////////////////// 

    _INDEX_ERROR = "Expected feature name or path.  Got %r." 

 

    def __getitem__(self, name_or_path): 

        """If the feature with the given name or path exists, return 

        its value; otherwise, raise ``KeyError``.""" 

        if isinstance(name_or_path, (string_types, Feature)): 

            return dict.__getitem__(self, name_or_path) 

        elif isinstance(name_or_path, tuple): 

            try: 

                val = self 

                for fid in name_or_path: 

                    if not isinstance(val, FeatStruct): 

                        raise KeyError # path contains base value 

                    val = val[fid] 

                return val 

            except (KeyError, IndexError): 

                raise KeyError(name_or_path) 

        else: 

            raise TypeError(self._INDEX_ERROR % name_or_path) 

 

    def get(self, name_or_path, default=None): 

        """If the feature with the given name or path exists, return its 

        value; otherwise, return ``default``.""" 

        try: return self[name_or_path] 

        except KeyError: return default 

 

    def __contains__(self, name_or_path): 

        """Return true if a feature with the given name or path exists.""" 

        try: self[name_or_path]; return True 

        except KeyError: return False 

 

    def has_key(self, name_or_path): 

        """Return true if a feature with the given name or path exists.""" 

        return name_or_path in self 

 

    def __delitem__(self, name_or_path): 

        """If the feature with the given name or path exists, delete 

        its value; otherwise, raise ``KeyError``.""" 

        if self._frozen: raise ValueError(_FROZEN_ERROR) 

        if isinstance(name_or_path, (string_types, Feature)): 

            return dict.__delitem__(self, name_or_path) 

        elif isinstance(name_or_path, tuple): 

            if len(name_or_path) == 0: 

                raise ValueError("The path () can not be set") 

            else: 

                parent = self[name_or_path[:-1]] 

                if not isinstance(parent, FeatStruct): 

                    raise KeyError(name_or_path) # path contains base value 

                del parent[name_or_path[-1]] 

        else: 

            raise TypeError(self._INDEX_ERROR % name_or_path) 

 

    def __setitem__(self, name_or_path, value): 

        """Set the value for the feature with the given name or path 

        to ``value``.  If ``name_or_path`` is an invalid path, raise 

        ``KeyError``.""" 

        if self._frozen: raise ValueError(_FROZEN_ERROR) 

        if isinstance(name_or_path, (string_types, Feature)): 

            return dict.__setitem__(self, name_or_path, value) 

        elif isinstance(name_or_path, tuple): 

            if len(name_or_path) == 0: 

                raise ValueError("The path () can not be set") 

            else: 

                parent = self[name_or_path[:-1]] 

                if not isinstance(parent, FeatStruct): 

                    raise KeyError(name_or_path) # path contains base value 

                parent[name_or_path[-1]] = value 

        else: 

            raise TypeError(self._INDEX_ERROR % name_or_path) 

 

    clear = _check_frozen(dict.clear) 

    pop = _check_frozen(dict.pop) 

    popitem = _check_frozen(dict.popitem) 

    setdefault = _check_frozen(dict.setdefault) 

 

    def update(self, features=None, **morefeatures): 

        if self._frozen: raise ValueError(_FROZEN_ERROR) 

        if features is None: 

            items = () 

        elif hasattr(features, 'has_key'): 

            items = features.items() 

        elif hasattr(features, '__iter__'): 

            items = features 

        else: 

            raise ValueError('Expected mapping or list of tuples') 

 

        for key, val in items: 

            if not isinstance(key, (string_types, Feature)): 

                raise TypeError('Feature names must be strings') 

            self[key] = val 

        for key, val in morefeatures.items(): 

            if not isinstance(key, (string_types, Feature)): 

                raise TypeError('Feature names must be strings') 

            self[key] = val 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Copying 

    ##//////////////////////////////////////////////////////////// 

 

    def __deepcopy__(self, memo): 

        memo[id(self)] = selfcopy = self.__class__() 

        for (key, val) in self._items(): 

            selfcopy[copy.deepcopy(key,memo)] = copy.deepcopy(val,memo) 

        return selfcopy 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Uniform Accessor Methods 

    ##//////////////////////////////////////////////////////////// 

 

    def _keys(self): return self.keys() 

    def _values(self): return self.values() 

    def _items(self): return self.items() 

 

    ##//////////////////////////////////////////////////////////// 

    #{ String Representations 

    ##//////////////////////////////////////////////////////////// 

 

    def __str__(self): 

        """ 

        Display a multi-line representation of this feature dictionary 

        as an FVM (feature value matrix). 

        """ 

        return '\n'.join(self._str(self._find_reentrances({}), {})) 

 

    def _repr(self, reentrances, reentrance_ids): 

        segments = [] 

        prefix = '' 

        suffix = '' 

 

        # If this is the first time we've seen a reentrant structure, 

        # then assign it a unique identifier. 

        if reentrances[id(self)]: 

            assert id(self) not in reentrance_ids 

            reentrance_ids[id(self)] = repr(len(reentrance_ids)+1) 

 

        # sorting note: keys are unique strings, so we'll never fall 

        # through to comparing values. 

        for (fname, fval) in sorted(self.items()): 

            display = getattr(fname, 'display', None) 

            if id(fval) in reentrance_ids: 

                segments.append('%s->(%s)' % 

                                (fname, reentrance_ids[id(fval)])) 

            elif (display == 'prefix' and not prefix and 

                  isinstance(fval, (Variable, string_types))): 

                    prefix = '%s' % fval 

            elif display == 'slash' and not suffix: 

                if isinstance(fval, Variable): 

                    suffix = '/%s' % fval.name 

                else: 

                    suffix = '/%r' % fval 

            elif isinstance(fval, Variable): 

                segments.append('%s=%s' % (fname, fval.name)) 

            elif fval is True: 

                segments.append('+%s' % fname) 

            elif fval is False: 

                segments.append('-%s' % fname) 

            elif isinstance(fval, Expression): 

                segments.append('%s=<%s>' % (fname, fval)) 

            elif not isinstance(fval, FeatStruct): 

                segments.append('%s=%r' % (fname, fval)) 

            else: 

                fval_repr = fval._repr(reentrances, reentrance_ids) 

                segments.append('%s=%s' % (fname, fval_repr)) 

        # If it's reentrant, then add on an identifier tag. 

        if reentrances[id(self)]: 

            prefix = '(%s)%s' % (reentrance_ids[id(self)], prefix) 

        return '%s[%s]%s' % (prefix, ', '.join(segments), suffix) 

 

    def _str(self, reentrances, reentrance_ids): 

        """ 

        :return: A list of lines composing a string representation of 

            this feature dictionary. 

        :param reentrances: A dictionary that maps from the ``id`` of 

            each feature value in self, indicating whether that value 

            is reentrant or not. 

        :param reentrance_ids: A dictionary mapping from each ``id`` 

            of a feature value to a unique identifier.  This is modified 

            by ``repr``: the first time a reentrant feature value is 

            displayed, an identifier is added to ``reentrance_ids`` for 

            it. 

        """ 

        # If this is the first time we've seen a reentrant structure, 

        # then tack on an id string. 

        if reentrances[id(self)]: 

            assert id(self) not in reentrance_ids 

            reentrance_ids[id(self)] = repr(len(reentrance_ids)+1) 

 

        # Special case: empty feature dict. 

        if len(self) == 0: 

            if reentrances[id(self)]: 

                return ['(%s) []' % reentrance_ids[id(self)]] 

            else: 

                return ['[]'] 

 

        # What's the longest feature name?  Use this to align names. 

        maxfnamelen = max(len(str(k)) for k in self.keys()) 

 

        lines = [] 

        # sorting note: keys are unique strings, so we'll never fall 

        # through to comparing values. 

        for (fname, fval) in sorted(self.items()): 

            fname = str(fname).ljust(maxfnamelen) 

            if isinstance(fval, Variable): 

                lines.append('%s = %s' % (fname,fval.name)) 

 

            elif isinstance(fval, Expression): 

                lines.append('%s = <%s>' % (fname, fval)) 

 

            elif isinstance(fval, FeatList): 

                fval_repr = fval._repr(reentrances, reentrance_ids) 

                lines.append('%s = %r' % (fname, fval_repr)) 

 

            elif not isinstance(fval, FeatDict): 

                # It's not a nested feature structure -- just print it. 

                lines.append('%s = %r' % (fname, fval)) 

 

            elif id(fval) in reentrance_ids: 

                # It's a feature structure we've seen before -- print 

                # the reentrance id. 

                lines.append('%s -> (%s)' % (fname, reentrance_ids[id(fval)])) 

 

            else: 

                # It's a new feature structure.  Separate it from 

                # other values by a blank line. 

                if lines and lines[-1] != '': lines.append('') 

 

                # Recursively print the feature's value (fval). 

                fval_lines = fval._str(reentrances, reentrance_ids) 

 

                # Indent each line to make room for fname. 

                fval_lines = [(' '*(maxfnamelen+3))+l for l in fval_lines] 

 

                # Pick which line we'll display fname on, & splice it in. 

                nameline = (len(fval_lines)-1) // 2 

                fval_lines[nameline] = ( 

                        fname+' ='+fval_lines[nameline][maxfnamelen+2:]) 

 

                # Add the feature structure to the output. 

                lines += fval_lines 

 

                # Separate FeatStructs by a blank line. 

                lines.append('') 

 

        # Get rid of any excess blank lines. 

        if lines[-1] == '': lines.pop() 

 

        # Add brackets around everything. 

        maxlen = max(len(line) for line in lines) 

        lines = ['[ %s%s ]' % (line, ' '*(maxlen-len(line))) for line in lines] 

 

        # If it's reentrant, then add on an identifier tag. 

        if reentrances[id(self)]: 

            idstr = '(%s) ' % reentrance_ids[id(self)] 

            lines = [(' '*len(idstr))+l for l in lines] 

            idline = (len(lines)-1) // 2 

            lines[idline] = idstr + lines[idline][len(idstr):] 

 

        return lines 

 

 

###################################################################### 

# Feature List 

###################################################################### 

 

class FeatList(FeatStruct, list): 

    """ 

    A list of feature values, where each feature value is either a 

    basic value (such as a string or an integer), or a nested feature 

    structure. 

 

    Feature lists may contain reentrant feature values.  A "reentrant 

    feature value" is a single feature value that can be accessed via 

    multiple feature paths.  Feature lists may also be cyclic. 

 

    Two feature lists are considered equal if they assign the same 

    values to all features, and have the same reentrances. 

 

    :see: ``FeatStruct`` for information about feature paths, reentrance, 

        cyclic feature structures, mutability, freezing, and hashing. 

    """ 

    def __init__(self, features=()): 

        """ 

        Create a new feature list, with the specified features. 

 

        :param features: The initial list of features for this feature 

            list.  If ``features`` is a string, then it is paresd using 

            ``FeatStructParser``.  Otherwise, it should be a sequence 

            of basic values and nested feature structures. 

        """ 

        if isinstance(features, string_types): 

            FeatStructParser().parse(features, self) 

        else: 

            list.__init__(self, features) 

 

    #//////////////////////////////////////////////////////////// 

    #{ List methods 

    #//////////////////////////////////////////////////////////// 

    _INDEX_ERROR = "Expected int or feature path.  Got %r." 

 

    def __getitem__(self, name_or_path): 

        if isinstance(name_or_path, integer_types): 

            return list.__getitem__(self, name_or_path) 

        elif isinstance(name_or_path, tuple): 

            try: 

                val = self 

                for fid in name_or_path: 

                    if not isinstance(val, FeatStruct): 

                        raise KeyError # path contains base value 

                    val = val[fid] 

                return val 

            except (KeyError, IndexError): 

                raise KeyError(name_or_path) 

        else: 

            raise TypeError(self._INDEX_ERROR % name_or_path) 

 

    def __delitem__(self, name_or_path): 

        """If the feature with the given name or path exists, delete 

        its value; otherwise, raise ``KeyError``.""" 

        if self._frozen: raise ValueError(_FROZEN_ERROR) 

        if isinstance(name_or_path, (integer_types, slice)): 

            return list.__delitem__(self, name_or_path) 

        elif isinstance(name_or_path, tuple): 

            if len(name_or_path) == 0: 

                raise ValueError("The path () can not be set") 

            else: 

                parent = self[name_or_path[:-1]] 

                if not isinstance(parent, FeatStruct): 

                    raise KeyError(name_or_path) # path contains base value 

                del parent[name_or_path[-1]] 

        else: 

            raise TypeError(self._INDEX_ERROR % name_or_path) 

 

    def __setitem__(self, name_or_path, value): 

        """Set the value for the feature with the given name or path 

        to ``value``.  If ``name_or_path`` is an invalid path, raise 

        ``KeyError``.""" 

        if self._frozen: raise ValueError(_FROZEN_ERROR) 

        if isinstance(name_or_path, (integer_types, slice)): 

            return list.__setitem__(self, name_or_path, value) 

        elif isinstance(name_or_path, tuple): 

            if len(name_or_path) == 0: 

                raise ValueError("The path () can not be set") 

            else: 

                parent = self[name_or_path[:-1]] 

                if not isinstance(parent, FeatStruct): 

                    raise KeyError(name_or_path) # path contains base value 

                parent[name_or_path[-1]] = value 

        else: 

            raise TypeError(self._INDEX_ERROR % name_or_path) 

 

#    __delslice__ = _check_frozen(list.__delslice__, '               ') 

#    __setslice__ = _check_frozen(list.__setslice__, '               ') 

    __iadd__ = _check_frozen(list.__iadd__) 

    __imul__ = _check_frozen(list.__imul__) 

    append = _check_frozen(list.append) 

    extend = _check_frozen(list.extend) 

    insert = _check_frozen(list.insert) 

    pop = _check_frozen(list.pop) 

    remove = _check_frozen(list.remove) 

    reverse = _check_frozen(list.reverse) 

    sort = _check_frozen(list.sort) 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Copying 

    ##//////////////////////////////////////////////////////////// 

 

    def __deepcopy__(self, memo): 

        memo[id(self)] = selfcopy = self.__class__() 

        selfcopy.extend([copy.deepcopy(fval,memo) for fval in self]) 

        return selfcopy 

 

    ##//////////////////////////////////////////////////////////// 

    #{ Uniform Accessor Methods 

    ##//////////////////////////////////////////////////////////// 

 

    def _keys(self): return list(range(len(self))) 

    def _values(self): return self 

    def _items(self): return enumerate(self) 

 

    ##//////////////////////////////////////////////////////////// 

    #{ String Representations 

    ##//////////////////////////////////////////////////////////// 

 

    # Special handling for: reentrances, variables, expressions. 

    def _repr(self, reentrances, reentrance_ids): 

        # If this is the first time we've seen a reentrant structure, 

        # then assign it a unique identifier. 

        if reentrances[id(self)]: 

            assert id(self) not in reentrance_ids 

            reentrance_ids[id(self)] = repr(len(reentrance_ids)+1) 

            prefix = '(%s)' % reentrance_ids[id(self)] 

        else: 

            prefix = '' 

 

        segments = [] 

        for fval in self: 

            if id(fval) in reentrance_ids: 

                segments.append('->(%s)' % reentrance_ids[id(fval)]) 

            elif isinstance(fval, Variable): 

                segments.append(fval.name) 

            elif isinstance(fval, Expression): 

                segments.append('%s' % fval) 

            elif isinstance(fval, FeatStruct): 

                segments.append(fval._repr(reentrances, reentrance_ids)) 

            else: 

                segments.append('%r' % fval) 

 

        return '%s[%s]' % (prefix, ', '.join(segments)) 

 

###################################################################### 

# Variables & Bindings 

###################################################################### 

 

def substitute_bindings(fstruct, bindings, fs_class='default'): 

    """ 

    Return the feature structure that is obtained by replacing each 

    variable bound by ``bindings`` with its binding.  If a variable is 

    aliased to a bound variable, then it will be replaced by that 

    variable's value.  If a variable is aliased to an unbound 

    variable, then it will be replaced by that variable. 

 

    :type bindings: dict(Variable -> any) 

    :param bindings: A dictionary mapping from variables to values. 

    """ 

    if fs_class == 'default': fs_class = _default_fs_class(fstruct) 

    fstruct = copy.deepcopy(fstruct) 

    _substitute_bindings(fstruct, bindings, fs_class, set()) 

    return fstruct 

 

def _substitute_bindings(fstruct, bindings, fs_class, visited): 

    # Visit each node only once: 

    if id(fstruct) in visited: return 

    visited.add(id(fstruct)) 

 

    if _is_mapping(fstruct): items = fstruct.items() 

    elif _is_sequence(fstruct): items = enumerate(fstruct) 

    else: raise ValueError('Expected mapping or sequence') 

    for (fname, fval) in items: 

        while (isinstance(fval, Variable) and fval in bindings): 

            fval = fstruct[fname] = bindings[fval] 

        if isinstance(fval, fs_class): 

            _substitute_bindings(fval, bindings, fs_class, visited) 

        elif isinstance(fval, SubstituteBindingsI): 

            fstruct[fname] = fval.substitute_bindings(bindings) 

 

def retract_bindings(fstruct, bindings, fs_class='default'): 

    """ 

    Return the feature structure that is obtained by replacing each 

    feature structure value that is bound by ``bindings`` with the 

    variable that binds it.  A feature structure value must be 

    identical to a bound value (i.e., have equal id) to be replaced. 

 

    ``bindings`` is modified to point to this new feature structure, 

    rather than the original feature structure.  Feature structure 

    values in ``bindings`` may be modified if they are contained in 

    ``fstruct``. 

    """ 

    if fs_class == 'default': fs_class = _default_fs_class(fstruct) 

    (fstruct, new_bindings) = copy.deepcopy((fstruct, bindings)) 

    bindings.update(new_bindings) 

    inv_bindings = dict((id(val),var) for (var,val) in bindings.items()) 

    _retract_bindings(fstruct, inv_bindings, fs_class, set()) 

    return fstruct 

 

def _retract_bindings(fstruct, inv_bindings, fs_class, visited): 

    # Visit each node only once: 

    if id(fstruct) in visited: return 

    visited.add(id(fstruct)) 

 

    if _is_mapping(fstruct): items = fstruct.items() 

    elif _is_sequence(fstruct): items = enumerate(fstruct) 

    else: raise ValueError('Expected mapping or sequence') 

    for (fname, fval) in items: 

        if isinstance(fval, fs_class): 

            if id(fval) in inv_bindings: 

                fstruct[fname] = inv_bindings[id(fval)] 

            _retract_bindings(fval, inv_bindings, fs_class, visited) 

 

 

def find_variables(fstruct, fs_class='default'): 

    """ 

    :return: The set of variables used by this feature structure. 

    :rtype: set(Variable) 

    """ 

    if fs_class == 'default': fs_class = _default_fs_class(fstruct) 

    return _variables(fstruct, set(), fs_class, set()) 

 

def _variables(fstruct, vars, fs_class, visited): 

    # Visit each node only once: 

    if id(fstruct) in visited: return 

    visited.add(id(fstruct)) 

    if _is_mapping(fstruct): items = fstruct.items() 

    elif _is_sequence(fstruct): items = enumerate(fstruct) 

    else: raise ValueError('Expected mapping or sequence') 

    for (fname, fval) in items: 

        if isinstance(fval, Variable): 

            vars.add(fval) 

        elif isinstance(fval, fs_class): 

            _variables(fval, vars, fs_class, visited) 

        elif isinstance(fval, SubstituteBindingsI): 

            vars.update(fval.variables()) 

    return vars 

 

def rename_variables(fstruct, vars=None, used_vars=(), new_vars=None, 

                     fs_class='default'): 

    """ 

    Return the feature structure that is obtained by replacing 

    any of this feature structure's variables that are in ``vars`` 

    with new variables.  The names for these new variables will be 

    names that are not used by any variable in ``vars``, or in 

    ``used_vars``, or in this feature structure. 

 

    :type vars: set 

    :param vars: The set of variables that should be renamed. 

        If not specified, ``find_variables(fstruct)`` is used; i.e., all 

        variables will be given new names. 

    :type used_vars: set 

    :param used_vars: A set of variables whose names should not be 

        used by the new variables. 

    :type new_vars: dict(Variable -> Variable) 

    :param new_vars: A dictionary that is used to hold the mapping 

        from old variables to new variables.  For each variable *v* 

        in this feature structure: 

 

        - If ``new_vars`` maps *v* to *v'*, then *v* will be 

          replaced by *v'*. 

        - If ``new_vars`` does not contain *v*, but ``vars`` 

          does contain *v*, then a new entry will be added to 

          ``new_vars``, mapping *v* to the new variable that is used 

          to replace it. 

 

    To consistently rename the variables in a set of feature 

    structures, simply apply rename_variables to each one, using 

    the same dictionary: 

 

        >>> from nltk.featstruct import FeatStruct 

        >>> fstruct1 = FeatStruct('[subj=[agr=[gender=?y]], obj=[agr=[gender=?y]]]') 

        >>> fstruct2 = FeatStruct('[subj=[agr=[number=?z,gender=?y]], obj=[agr=[number=?z,gender=?y]]]') 

        >>> new_vars = {}  # Maps old vars to alpha-renamed vars 

        >>> fstruct1.rename_variables(new_vars=new_vars) 

        [obj=[agr=[gender=?y2]], subj=[agr=[gender=?y2]]] 

        >>> fstruct2.rename_variables(new_vars=new_vars) 

        [obj=[agr=[gender=?y2, number=?z2]], subj=[agr=[gender=?y2, number=?z2]]] 

 

    If new_vars is not specified, then an empty dictionary is used. 

    """ 

    if fs_class == 'default': fs_class = _default_fs_class(fstruct) 

 

    # Default values: 

    if new_vars is None: new_vars = {} 

    if vars is None: vars = find_variables(fstruct, fs_class) 

    else: vars = set(vars) 

 

    # Add our own variables to used_vars. 

    used_vars = find_variables(fstruct, fs_class).union(used_vars) 

 

    # Copy ourselves, and rename variables in the copy. 

    return _rename_variables(copy.deepcopy(fstruct), vars, used_vars, 

                             new_vars, fs_class, set()) 

 

def _rename_variables(fstruct, vars, used_vars, new_vars, fs_class, visited): 

    if id(fstruct) in visited: return 

    visited.add(id(fstruct)) 

    if _is_mapping(fstruct): items = fstruct.items() 

    elif _is_sequence(fstruct): items = enumerate(fstruct) 

    else: raise ValueError('Expected mapping or sequence') 

    for (fname, fval) in items: 

        if isinstance(fval, Variable): 

            # If it's in new_vars, then rebind it. 

            if fval in new_vars: 

                fstruct[fname] = new_vars[fval] 

            # If it's in vars, pick a new name for it. 

            elif fval in vars: 

                new_vars[fval] = _rename_variable(fval, used_vars) 

                fstruct[fname] = new_vars[fval] 

                used_vars.add(new_vars[fval]) 

        elif isinstance(fval, fs_class): 

            _rename_variables(fval, vars, used_vars, new_vars, 

                              fs_class, visited) 

        elif isinstance(fval, SubstituteBindingsI): 

            # Pick new names for any variables in `vars` 

            for var in fval.variables(): 

                if var in vars and var not in new_vars: 

                    new_vars[var] = _rename_variable(var, used_vars) 

                    used_vars.add(new_vars[var]) 

            # Replace all variables in `new_vars`. 

            fstruct[fname] = fval.substitute_bindings(new_vars) 

    return fstruct 

 

def _rename_variable(var, used_vars): 

    name, n = re.sub('\d+$', '', var.name), 2 

    if not name: name = '?' 

    while Variable('%s%s' % (name, n)) in used_vars: n += 1 

    return Variable('%s%s' % (name, n)) 

 

def remove_variables(fstruct, fs_class='default'): 

    """ 

    :rtype: FeatStruct 

    :return: The feature structure that is obtained by deleting 

        all features whose values are ``Variables``. 

    """ 

    if fs_class == 'default': fs_class = _default_fs_class(fstruct) 

    return _remove_variables(copy.deepcopy(fstruct), fs_class, set()) 

 

def _remove_variables(fstruct, fs_class, visited): 

    if id(fstruct) in visited: 

        return 

    visited.add(id(fstruct)) 

 

    if _is_mapping(fstruct): 

        items = list(fstruct.items()) 

    elif _is_sequence(fstruct): 

        items = list(enumerate(fstruct)) 

    else: 

        raise ValueError('Expected mapping or sequence') 

 

    for (fname, fval) in items: 

        if isinstance(fval, Variable): 

            del fstruct[fname] 

        elif isinstance(fval, fs_class): 

            _remove_variables(fval, fs_class, visited) 

    return fstruct 

 

 

###################################################################### 

# Unification 

###################################################################### 

 

class _UnificationFailure(object): 

    def __repr__(self): return 'nltk.featstruct.UnificationFailure' 

UnificationFailure = _UnificationFailure() 

"""A unique value used to indicate unification failure.  It can be 

   returned by ``Feature.unify_base_values()`` or by custom ``fail()`` 

   functions to indicate that unificaiton should fail.""" 

 

# The basic unification algorithm: 

#   1. Make copies of self and other (preserving reentrance) 

#   2. Destructively unify self and other 

#   3. Apply forward pointers, to preserve reentrance. 

#   4. Replace bound variables with their values. 

def unify(fstruct1, fstruct2, bindings=None, trace=False, 

          fail=None, rename_vars=True, fs_class='default'): 

    """ 

    Unify ``fstruct1`` with ``fstruct2``, and return the resulting feature 

    structure.  This unified feature structure is the minimal 

    feature structure that contains all feature value assignments from both 

    ``fstruct1`` and ``fstruct2``, and that preserves all reentrancies. 

 

    If no such feature structure exists (because ``fstruct1`` and 

    ``fstruct2`` specify incompatible values for some feature), then 

    unification fails, and ``unify`` returns None. 

 

    Bound variables are replaced by their values.  Aliased 

    variables are replaced by their representative variable 

    (if unbound) or the value of their representative variable 

    (if bound).  I.e., if variable *v* is in ``bindings``, 

    then *v* is replaced by ``bindings[v]``.  This will 

    be repeated until the variable is replaced by an unbound 

    variable or a non-variable value. 

 

    Unbound variables are bound when they are unified with 

    values; and aliased when they are unified with variables. 

    I.e., if variable *v* is not in ``bindings``, and is 

    unified with a variable or value *x*, then 

    ``bindings[v]`` is set to *x*. 

 

    If ``bindings`` is unspecified, then all variables are 

    assumed to be unbound.  I.e., ``bindings`` defaults to an 

    empty dict. 

 

        >>> from nltk.featstruct import FeatStruct 

        >>> FeatStruct('[a=?x]').unify(FeatStruct('[b=?x]')) 

        [a=?x, b=?x2] 

 

    :type bindings: dict(Variable -> any) 

    :param bindings: A set of variable bindings to be used and 

        updated during unification. 

    :type trace: bool 

    :param trace: If true, generate trace output. 

    :type rename_vars: bool 

    :param rename_vars: If True, then rename any variables in 

        ``fstruct2`` that are also used in ``fstruct1``, in order to 

        avoid collisions on variable names. 

    """ 

    # Decide which class(es) will be treated as feature structures, 

    # for the purposes of unification. 

    if fs_class == 'default': 

        fs_class = _default_fs_class(fstruct1) 

        if _default_fs_class(fstruct2) != fs_class: 

            raise ValueError("Mixing FeatStruct objects with Python " 

                             "dicts and lists is not supported.") 

    assert isinstance(fstruct1, fs_class) 

    assert isinstance(fstruct2, fs_class) 

 

    # If bindings are unspecified, use an empty set of bindings. 

    user_bindings = (bindings is not None) 

    if bindings is None: bindings = {} 

 

    # Make copies of fstruct1 and fstruct2 (since the unification 

    # algorithm is destructive). Do it all at once, to preserve 

    # reentrance links between fstruct1 and fstruct2.  Copy bindings 

    # as well, in case there are any bound vars that contain parts 

    # of fstruct1 or fstruct2. 

    (fstruct1copy, fstruct2copy, bindings_copy) = ( 

        copy.deepcopy((fstruct1, fstruct2, bindings))) 

 

    # Copy the bindings back to the original bindings dict. 

    bindings.update(bindings_copy) 

 

    if rename_vars: 

        vars1 = find_variables(fstruct1copy, fs_class) 

        vars2 = find_variables(fstruct2copy, fs_class) 

        _rename_variables(fstruct2copy, vars1, vars2, {}, fs_class, set()) 

 

    # Do the actual unification.  If it fails, return None. 

    forward = {} 

    if trace: _trace_unify_start((), fstruct1copy, fstruct2copy) 

    try: result = _destructively_unify(fstruct1copy, fstruct2copy, bindings, 

                                       forward, trace, fail, fs_class, ()) 

    except _UnificationFailureError: return None 

 

    # _destructively_unify might return UnificationFailure, e.g. if we 

    # tried to unify a mapping with a sequence. 

    if result is UnificationFailure: 

        if fail is None: return None 

        else: return fail(fstruct1copy, fstruct2copy, ()) 

 

    # Replace any feature structure that has a forward pointer 

    # with the target of its forward pointer. 

    result = _apply_forwards(result, forward, fs_class, set()) 

    if user_bindings: _apply_forwards_to_bindings(forward, bindings) 

 

    # Replace bound vars with values. 

    _resolve_aliases(bindings) 

    _substitute_bindings(result, bindings, fs_class, set()) 

 

    # Return the result. 

    if trace: _trace_unify_succeed((), result) 

    if trace: _trace_bindings((), bindings) 

    return result 

 

class _UnificationFailureError(Exception): 

    """An exception that is used by ``_destructively_unify`` to abort 

    unification when a failure is encountered.""" 

 

def _destructively_unify(fstruct1, fstruct2, bindings, forward, 

                         trace, fail, fs_class, path): 

    """ 

    Attempt to unify ``fstruct1`` and ``fstruct2`` by modifying them 

    in-place.  If the unification succeeds, then ``fstruct1`` will 

    contain the unified value, the value of ``fstruct2`` is undefined, 

    and forward[id(fstruct2)] is set to fstruct1.  If the unification 

    fails, then a _UnificationFailureError is raised, and the 

    values of ``fstruct1`` and ``fstruct2`` are undefined. 

 

    :param bindings: A dictionary mapping variables to values. 

    :param forward: A dictionary mapping feature structures ids 

        to replacement structures.  When two feature structures 

        are merged, a mapping from one to the other will be added 

        to the forward dictionary; and changes will be made only 

        to the target of the forward dictionary. 

        ``_destructively_unify`` will always 'follow' any links 

        in the forward dictionary for fstruct1 and fstruct2 before 

        actually unifying them. 

    :param trace: If true, generate trace output 

    :param path: The feature path that led us to this unification 

        step.  Used for trace output. 

    """ 

    # If fstruct1 is already identical to fstruct2, we're done. 

    # Note: this, together with the forward pointers, ensures 

    # that unification will terminate even for cyclic structures. 

    if fstruct1 is fstruct2: 

        if trace: _trace_unify_identity(path, fstruct1) 

        return fstruct1 

 

    # Set fstruct2's forward pointer to point to fstruct1; this makes 

    # fstruct1 the canonical copy for fstruct2.  Note that we need to 

    # do this before we recurse into any child structures, in case 

    # they're cyclic. 

    forward[id(fstruct2)] = fstruct1 

 

    # Unifying two mappings: 

    if _is_mapping(fstruct1) and _is_mapping(fstruct2): 

        for fname in fstruct1: 

            if getattr(fname, 'default', None) is not None: 

                fstruct2.setdefault(fname, fname.default) 

        for fname in fstruct2: 

            if getattr(fname, 'default', None) is not None: 

                fstruct1.setdefault(fname, fname.default) 

 

        # Unify any values that are defined in both fstruct1 and 

        # fstruct2.  Copy any values that are defined in fstruct2 but 

        # not in fstruct1 to fstruct1.  Note: sorting fstruct2's 

        # features isn't actually necessary; but we do it to give 

        # deterministic behavior, e.g. for tracing. 

        for fname, fval2 in sorted(fstruct2.items()): 

            if fname in fstruct1: 

                fstruct1[fname] = _unify_feature_values( 

                    fname, fstruct1[fname], fval2, bindings, 

                    forward, trace, fail, fs_class, path+(fname,)) 

            else: 

                fstruct1[fname] = fval2 

 

        return fstruct1 # Contains the unified value. 

 

    # Unifying two sequences: 

    elif _is_sequence(fstruct1) and _is_sequence(fstruct2): 

        # If the lengths don't match, fail. 

        if len(fstruct1) != len(fstruct2): 

            return UnificationFailure 

 

        # Unify corresponding values in fstruct1 and fstruct2. 

        for findex in range(len(fstruct1)): 

            fstruct1[findex] = _unify_feature_values( 

                findex, fstruct1[findex], fstruct2[findex], bindings, 

                forward, trace, fail, fs_class, path+(findex,)) 

 

        return fstruct1 # Contains the unified value. 

 

    # Unifying sequence & mapping: fail.  The failure function 

    # doesn't get a chance to recover in this case. 

    elif ((_is_sequence(fstruct1) or _is_mapping(fstruct1)) and 

          (_is_sequence(fstruct2) or _is_mapping(fstruct2))): 

        return UnificationFailure 

 

    # Unifying anything else: not allowed! 

    raise TypeError('Expected mappings or sequences') 

 

def _unify_feature_values(fname, fval1, fval2, bindings, forward, 

                          trace, fail, fs_class, fpath): 

    """ 

    Attempt to unify ``fval1`` and and ``fval2``, and return the 

    resulting unified value.  The method of unification will depend on 

    the types of ``fval1`` and ``fval2``: 

 

      1. If they're both feature structures, then destructively 

         unify them (see ``_destructively_unify()``. 

      2. If they're both unbound variables, then alias one variable 

         to the other (by setting bindings[v2]=v1). 

      3. If one is an unbound variable, and the other is a value, 

         then bind the unbound variable to the value. 

      4. If one is a feature structure, and the other is a base value, 

         then fail. 

      5. If they're both base values, then unify them.  By default, 

         this will succeed if they are equal, and fail otherwise. 

    """ 

    if trace: _trace_unify_start(fpath, fval1, fval2) 

 

    # Look up the "canonical" copy of fval1 and fval2 

    while id(fval1) in forward: fval1 = forward[id(fval1)] 

    while id(fval2) in forward: fval2 = forward[id(fval2)] 

 

    # If fval1 or fval2 is a bound variable, then 

    # replace it by the variable's bound value.  This 

    # includes aliased variables, which are encoded as 

    # variables bound to other variables. 

    fvar1 = fvar2 = None 

    while isinstance(fval1, Variable) and fval1 in bindings: 

        fvar1 = fval1 

        fval1 = bindings[fval1] 

    while isinstance(fval2, Variable) and fval2 in bindings: 

        fvar2 = fval2 

        fval2 = bindings[fval2] 

 

    # Case 1: Two feature structures (recursive case) 

    if isinstance(fval1, fs_class) and isinstance(fval2, fs_class): 

        result = _destructively_unify(fval1, fval2, bindings, forward, 

                                      trace, fail, fs_class, fpath) 

 

    # Case 2: Two unbound variables (create alias) 

    elif (isinstance(fval1, Variable) and 

          isinstance(fval2, Variable)): 

        if fval1 != fval2: bindings[fval2] = fval1 

        result = fval1 

 

    # Case 3: An unbound variable and a value (bind) 

    elif isinstance(fval1, Variable): 

        bindings[fval1] = fval2 

        result = fval1 

    elif isinstance(fval2, Variable): 

        bindings[fval2] = fval1 

        result = fval2 

 

    # Case 4: A feature structure & a base value (fail) 

    elif isinstance(fval1, fs_class) or isinstance(fval2, fs_class): 

        result = UnificationFailure 

 

    # Case 5: Two base values 

    else: 

        # Case 5a: Feature defines a custom unification method for base values 

        if isinstance(fname, Feature): 

            result = fname.unify_base_values(fval1, fval2, bindings) 

        # Case 5b: Feature value defines custom unification method 

        elif isinstance(fval1, CustomFeatureValue): 

            result = fval1.unify(fval2) 

            # Sanity check: unify value should be symmetric 

            if (isinstance(fval2, CustomFeatureValue) and 

                result != fval2.unify(fval1)): 

                raise AssertionError( 

                    'CustomFeatureValue objects %r and %r disagree ' 

                    'about unification value: %r vs. %r' % 

                    (fval1, fval2, result, fval2.unify(fval1))) 

        elif isinstance(fval2, CustomFeatureValue): 

            result = fval2.unify(fval1) 

        # Case 5c: Simple values -- check if they're equal. 

        else: 

            if fval1 == fval2: 

                result = fval1 

            else: 

                result = UnificationFailure 

 

        # If either value was a bound variable, then update the 

        # bindings.  (This is really only necessary if fname is a 

        # Feature or if either value is a CustomFeatureValue.) 

        if result is not UnificationFailure: 

            if fvar1 is not None: 

                bindings[fvar1] = result 

                result = fvar1 

            if fvar2 is not None and fvar2 != fvar1: 

                bindings[fvar2] = result 

                result = fvar2 

 

    # If we unification failed, call the failure function; it 

    # might decide to continue anyway. 

    if result is UnificationFailure: 

        if fail is not None: result = fail(fval1, fval2, fpath) 

        if trace: _trace_unify_fail(fpath[:-1], result) 

        if result is UnificationFailure: 

            raise _UnificationFailureError 

 

    # Normalize the result. 

    if isinstance(result, fs_class): 

        result = _apply_forwards(result, forward, fs_class, set()) 

 

    if trace: _trace_unify_succeed(fpath, result) 

    if trace and isinstance(result, fs_class): 

        _trace_bindings(fpath, bindings) 

 

    return result 

 

def _apply_forwards_to_bindings(forward, bindings): 

    """ 

    Replace any feature structure that has a forward pointer with 

    the target of its forward pointer (to preserve reentrancy). 

    """ 

    for (var, value) in bindings.items(): 

        while id(value) in forward: 

            value = forward[id(value)] 

        bindings[var] = value 

 

def _apply_forwards(fstruct, forward, fs_class, visited): 

    """ 

    Replace any feature structure that has a forward pointer with 

    the target of its forward pointer (to preserve reentrancy). 

    """ 

    # Follow our own forwards pointers (if any) 

    while id(fstruct) in forward: fstruct = forward[id(fstruct)] 

 

    # Visit each node only once: 

    if id(fstruct) in visited: return 

    visited.add(id(fstruct)) 

 

    if _is_mapping(fstruct): items = fstruct.items() 

    elif _is_sequence(fstruct): items = enumerate(fstruct) 

    else: raise ValueError('Expected mapping or sequence') 

    for fname, fval in items: 

        if isinstance(fval, fs_class): 

            # Replace w/ forwarded value. 

            while id(fval) in forward: 

                fval = forward[id(fval)] 

            fstruct[fname] = fval 

            # Recurse to child. 

            _apply_forwards(fval, forward, fs_class, visited) 

 

    return fstruct 

 

def _resolve_aliases(bindings): 

    """ 

    Replace any bound aliased vars with their binding; and replace 

    any unbound aliased vars with their representative var. 

    """ 

    for (var, value) in bindings.items(): 

        while isinstance(value, Variable) and value in bindings: 

            value = bindings[var] = bindings[value] 

 

def _trace_unify_start(path, fval1, fval2): 

    if path == (): 

        print('\nUnification trace:') 

    else: 

        fullname = '.'.join(str(n) for n in path) 

        print('  '+'|   '*(len(path)-1)+'|') 

        print('  '+'|   '*(len(path)-1)+'| Unify feature: %s' % fullname) 

    print('  '+'|   '*len(path)+' / '+_trace_valrepr(fval1)) 

    print('  '+'|   '*len(path)+'|\\ '+_trace_valrepr(fval2)) 

def _trace_unify_identity(path, fval1): 

    print('  '+'|   '*len(path)+'|') 

    print('  '+'|   '*len(path)+'| (identical objects)') 

    print('  '+'|   '*len(path)+'|') 

    print('  '+'|   '*len(path)+'+-->'+repr(fval1)) 

def _trace_unify_fail(path, result): 

    if result is UnificationFailure: resume = '' 

    else: resume = ' (nonfatal)' 

    print('  '+'|   '*len(path)+'|   |') 

    print('  '+'X   '*len(path)+'X   X <-- FAIL'+resume) 

def _trace_unify_succeed(path, fval1): 

    # Print the result. 

    print('  '+'|   '*len(path)+'|') 

    print('  '+'|   '*len(path)+'+-->'+repr(fval1)) 

def _trace_bindings(path, bindings): 

    # Print the bindings (if any). 

    if len(bindings) > 0: 

        binditems = sorted(bindings.items(), key=lambda v:v[0].name) 

        bindstr = '{%s}' % ', '.join( 

            '%s: %s' % (var, _trace_valrepr(val)) 

            for (var, val) in binditems) 

        print('  '+'|   '*len(path)+'    Bindings: '+bindstr) 

def _trace_valrepr(val): 

    if isinstance(val, Variable): 

        return '%s' % val 

    else: 

        return '%r' % val 

 

def subsumes(fstruct1, fstruct2): 

    """ 

    Return True if ``fstruct1`` subsumes ``fstruct2``.  I.e., return 

    true if unifying ``fstruct1`` with ``fstruct2`` would result in a 

    feature structure equal to ``fstruct2.`` 

 

    :rtype: bool 

    """ 

    return fstruct2 == unify(fstruct1, fstruct2) 

 

def conflicts(fstruct1, fstruct2, trace=0): 

    """ 

    Return a list of the feature paths of all features which are 

    assigned incompatible values by ``fstruct1`` and ``fstruct2``. 

 

    :rtype: list(tuple) 

    """ 

    conflict_list = [] 

    def add_conflict(fval1, fval2, path): 

        conflict_list.append(path) 

        return fval1 

    unify(fstruct1, fstruct2, fail=add_conflict, trace=trace) 

    return conflict_list 

 

###################################################################### 

# Helper Functions 

###################################################################### 

 

def _is_mapping(v): 

    return hasattr(v, '__contains__') and hasattr(v, 'keys') 

 

def _is_sequence(v): 

    return (hasattr(v, '__iter__') and hasattr(v, '__len__') and 

            not isinstance(v, string_types)) 

 

def _default_fs_class(obj): 

    if isinstance(obj, FeatStruct): return FeatStruct 

    if isinstance(obj, (dict, list)): return (dict, list) 

    else: 

        raise ValueError('To unify objects of type %s, you must specify ' 

                         'fs_class explicitly.' % obj.__class__.__name__) 

###################################################################### 

# FeatureValueSet & FeatureValueTuple 

###################################################################### 

 

class SubstituteBindingsSequence(SubstituteBindingsI): 

    """ 

    A mixin class for sequence clases that distributes variables() and 

    substitute_bindings() over the object's elements. 

    """ 

    def variables(self): 

        return ([elt for elt in self if isinstance(elt, Variable)] + 

                sum([list(elt.variables()) for elt in self 

                     if isinstance(elt, SubstituteBindingsI)], [])) 

 

    def substitute_bindings(self, bindings): 

        return self.__class__([self.subst(v, bindings) for v in self]) 

 

    def subst(self, v, bindings): 

        if isinstance(v, SubstituteBindingsI): 

            return v.substitute_bindings(bindings) 

        else: 

            return bindings.get(v, v) 

 

class FeatureValueTuple(SubstituteBindingsSequence, tuple): 

    """ 

    A base feature value that is a tuple of other base feature values. 

    FeatureValueTuple implements ``SubstituteBindingsI``, so it any 

    variable substitutions will be propagated to the elements 

    contained by the set.  A ``FeatureValueTuple`` is immutable. 

    """ 

    def __repr__(self): # [xx] really use %s here? 

        if len(self) == 0: return '()' 

        return '(%s)' % ', '.join('%s' % (b,) for b in self) 

 

class FeatureValueSet(SubstituteBindingsSequence, frozenset): 

    """ 

    A base feature value that is a set of other base feature values. 

    FeatureValueSet implements ``SubstituteBindingsI``, so it any 

    variable substitutions will be propagated to the elements 

    contained by the set.  A ``FeatureValueSet`` is immutable. 

    """ 

    def __repr__(self): # [xx] really use %s here? 

        if len(self) == 0: return '{/}' # distinguish from dict. 

        # n.b., we sort the string reprs of our elements, to ensure 

        # that our own repr is deterministic. 

        return '{%s}' % ', '.join(sorted('%s' % (b,) for b in self)) 

    __str__ = __repr__ 

 

class FeatureValueUnion(SubstituteBindingsSequence, frozenset): 

    """ 

    A base feature value that represents the union of two or more 

    ``FeatureValueSet`` or ``Variable``. 

    """ 

    def __new__(cls, values): 

        # If values contains FeatureValueUnions, then collapse them. 

        values = _flatten(values, FeatureValueUnion) 

 

        # If the resulting list contains no variables, then 

        # use a simple FeatureValueSet instead. 

        if sum(isinstance(v, Variable) for v in values) == 0: 

            values = _flatten(values, FeatureValueSet) 

            return FeatureValueSet(values) 

 

        # If we contain a single variable, return that variable. 

        if len(values) == 1: 

            return list(values)[0] 

 

        # Otherwise, build the FeatureValueUnion. 

        return frozenset.__new__(cls, values) 

 

    def __repr__(self): 

        # n.b., we sort the string reprs of our elements, to ensure 

        # that our own repr is deterministic.  also, note that len(self) 

        # is guaranteed to be 2 or more. 

        return '{%s}' % '+'.join(sorted('%s' % (b,) for b in self)) 

 

class FeatureValueConcat(SubstituteBindingsSequence, tuple): 

    """ 

    A base feature value that represents the concatenation of two or 

    more ``FeatureValueTuple`` or ``Variable``. 

    """ 

    def __new__(cls, values): 

        # If values contains FeatureValueConcats, then collapse them. 

        values = _flatten(values, FeatureValueConcat) 

 

        # If the resulting list contains no variables, then 

        # use a simple FeatureValueTuple instead. 

        if sum(isinstance(v, Variable) for v in values) == 0: 

            values = _flatten(values, FeatureValueTuple) 

            return FeatureValueTuple(values) 

 

        # If we contain a single variable, return that variable. 

        if len(values) == 1: 

            return list(values)[0] 

 

        # Otherwise, build the FeatureValueConcat. 

        return tuple.__new__(cls, values) 

 

    def __repr__(self): 

        # n.b.: len(self) is guaranteed to be 2 or more. 

        return '(%s)' % '+'.join('%s' % (b,) for b in self) 

 

def _flatten(lst, cls): 

    """ 

    Helper function -- return a copy of list, with all elements of 

    type ``cls`` spliced in rather than appended in. 

    """ 

    result = [] 

    for elt in lst: 

        if isinstance(elt, cls): result.extend(elt) 

        else: result.append(elt) 

    return result 

 

###################################################################### 

# Specialized Features 

###################################################################### 

 

@total_ordering 

class Feature(object): 

    """ 

    A feature identifier that's specialized to put additional 

    constraints, default values, etc. 

    """ 

    def __init__(self, name, default=None, display=None): 

        assert display in (None, 'prefix', 'slash') 

 

        self._name = name # [xx] rename to .identifier? 

        self._default = default # [xx] not implemented yet. 

        self._display = display 

 

        if self._display == 'prefix': 

            self._sortkey = (-1, self._name) 

        elif self._display == 'slash': 

            self._sortkey = (1, self._name) 

        else: 

            self._sortkey = (0, self._name) 

 

    @property 

    def name(self): 

        """The name of this feature.""" 

        return self._name 

 

    @property 

    def default(self): 

        """Default value for this feature.""" 

        return self._default 

 

    @property 

    def display(self): 

        """Custom display location: can be prefix, or slash.""" 

        return self._display 

 

    def __repr__(self): 

        return '*%s*' % self.name 

 

    def __lt__(self, other): 

        if not isinstance(other, Feature): 

            return True 

        return self._sortkey < other._sortkey 

 

    def __eq__(self, other): 

        return isinstance(other, Feature) and self._name == other._name 

 

    def __ne__(self, other): 

        return not (self == other) 

 

    def __hash__(self): 

        return hash(self._name) 

 

    #//////////////////////////////////////////////////////////// 

    # These can be overridden by subclasses: 

    #//////////////////////////////////////////////////////////// 

 

    def parse_value(self, s, position, reentrances, parser): 

        return parser.parse_value(s, position, reentrances) 

 

    def unify_base_values(self, fval1, fval2, bindings): 

        """ 

        If possible, return a single value..  If not, return 

        the value ``UnificationFailure``. 

        """ 

        if fval1 == fval2: return fval1 

        else: return UnificationFailure 

 

 

class SlashFeature(Feature): 

    def parse_value(self, s, position, reentrances, parser): 

        return parser.partial_parse(s, position, reentrances) 

 

class RangeFeature(Feature): 

    RANGE_RE = re.compile('(-?\d+):(-?\d+)') 

    def parse_value(self, s, position, reentrances, parser): 

        m = self.RANGE_RE.match(s, position) 

        if not m: raise ValueError('range', position) 

        return (int(m.group(1)), int(m.group(2))), m.end() 

 

    def unify_base_values(self, fval1, fval2, bindings): 

        if fval1 is None: return fval2 

        if fval2 is None: return fval1 

        rng = max(fval1[0], fval2[0]), min(fval1[1], fval2[1]) 

        if rng[1] < rng[0]: return UnificationFailure 

        return rng 

 

SLASH = SlashFeature('slash', default=False, display='slash') 

TYPE = Feature('type', display='prefix') 

 

###################################################################### 

# Specialized Feature Values 

###################################################################### 

 

@total_ordering 

class CustomFeatureValue(object): 

    """ 

    An abstract base class for base values that define a custom 

    unification method.  The custom unification method of 

    ``CustomFeatureValue`` will be used during unification if: 

 

      - The ``CustomFeatureValue`` is unified with another base value. 

      - The ``CustomFeatureValue`` is not the value of a customized 

        ``Feature`` (which defines its own unification method). 

 

    If two ``CustomFeatureValue`` objects are unified with one another 

    during feature structure unification, then the unified base values 

    they return *must* be equal; otherwise, an ``AssertionError`` will 

    be raised. 

 

    Subclasses must define ``unify()``, ``__eq__()`` and ``__lt__()``. 

    Subclasses may also wish to define ``__hash__()``. 

    """ 

    def unify(self, other): 

        """ 

        If this base value unifies with ``other``, then return the 

        unified value.  Otherwise, return ``UnificationFailure``. 

        """ 

        raise NotImplementedError('abstract base class') 

 

    def __cmp__(self, other): 

        raise NotImplementedError('__cmp__ is deprecated') 

 

    def __eq__(self, other): 

        raise NotImplementedError('abstract base class') 

 

    def __ne__(self, other): 

        return not (self == other) 

 

    def __lt__(self, other): 

        raise NotImplementedError('abstract base class') 

 

    def __hash__(self): 

        raise TypeError('%s objects or unhashable' % self.__class__.__name__) 

 

###################################################################### 

# Feature Structure Parser 

###################################################################### 

 

class FeatStructParser(object): 

    def __init__(self, features=(SLASH, TYPE), fdict_class=FeatStruct, 

                 flist_class=FeatList, logic_parser=None): 

        self._features = dict((f.name,f) for f in features) 

        self._fdict_class = fdict_class 

        self._flist_class = flist_class 

        self._prefix_feature = None 

        self._slash_feature = None 

        for feature in features: 

            if feature.display == 'slash': 

                if self._slash_feature: 

                    raise ValueError('Multiple features w/ display=slash') 

                self._slash_feature = feature 

            if feature.display == 'prefix': 

                if self._prefix_feature: 

                    raise ValueError('Multiple features w/ display=prefix') 

                self._prefix_feature = feature 

        self._features_with_defaults = [feature for feature in features 

                                        if feature.default is not None] 

        if logic_parser is None: 

            logic_parser = LogicParser() 

        self._logic_parser = logic_parser 

 

    def parse(self, s, fstruct=None): 

        """ 

        Convert a string representation of a feature structure (as 

        displayed by repr) into a ``FeatStruct``.  This parse 

        imposes the following restrictions on the string 

        representation: 

 

        - Feature names cannot contain any of the following: 

          whitespace, parentheses, quote marks, equals signs, 

          dashes, commas, and square brackets.  Feature names may 

          not begin with plus signs or minus signs. 

        - Only the following basic feature value are supported: 

          strings, integers, variables, None, and unquoted 

          alphanumeric strings. 

        - For reentrant values, the first mention must specify 

          a reentrance identifier and a value; and any subsequent 

          mentions must use arrows (``'->'``) to reference the 

          reentrance identifier. 

        """ 

        s = s.strip() 

        value, position = self.partial_parse(s, 0, {}, fstruct) 

        if position != len(s): 

            self._error(s, 'end of string', position) 

        return value 

 

    _START_FSTRUCT_RE = re.compile(r'\s*(?:\((\d+)\)\s*)?(\??[\w-]+)?(\[)') 

    _END_FSTRUCT_RE = re.compile(r'\s*]\s*') 

    _SLASH_RE = re.compile(r'/') 

    _FEATURE_NAME_RE = re.compile(r'\s*([+-]?)([^\s\(\)<>"\'\-=\[\],]+)\s*') 

    _REENTRANCE_RE = re.compile(r'\s*->\s*') 

    _TARGET_RE = re.compile(r'\s*\((\d+)\)\s*') 

    _ASSIGN_RE = re.compile(r'\s*=\s*') 

    _COMMA_RE = re.compile(r'\s*,\s*') 

    _BARE_PREFIX_RE = re.compile(r'\s*(?:\((\d+)\)\s*)?(\??[\w-]+\s*)()') 

    # This one is used to distinguish fdicts from flists: 

    _START_FDICT_RE = re.compile(r'(%s)|(%s\s*(%s\s*(=|->)|[+-]%s|\]))' % ( 

        _BARE_PREFIX_RE.pattern, _START_FSTRUCT_RE.pattern, 

        _FEATURE_NAME_RE.pattern, _FEATURE_NAME_RE.pattern)) 

 

    def partial_parse(self, s, position=0, reentrances=None, fstruct=None): 

        """ 

        Helper function that parses a feature structure. 

 

        :param s: The string to parse. 

        :param position: The position in the string to start parsing. 

        :param reentrances: A dictionary from reentrance ids to values. 

            Defaults to an empty dictionary. 

        :return: A tuple (val, pos) of the feature structure created by 

            parsing and the position where the parsed feature structure ends. 

        :rtype: bool 

        """ 

        if reentrances is None: reentrances = {} 

        try: 

            return self._partial_parse(s, position, reentrances, fstruct) 

        except ValueError as e: 

            if len(e.args) != 2: raise 

            self._error(s, *e.args) 

 

    def _partial_parse(self, s, position, reentrances, fstruct=None): 

        # Create the new feature structure 

        if fstruct is None: 

            if self._START_FDICT_RE.match(s, position): 

                fstruct = self._fdict_class() 

            else: 

                fstruct = self._flist_class() 

 

        # Read up to the open bracket. 

        match = self._START_FSTRUCT_RE.match(s, position) 

        if not match: 

            match = self._BARE_PREFIX_RE.match(s, position) 

            if not match: 

                raise ValueError('open bracket or identifier', position) 

        position = match.end() 

 

        # If there as an identifier, record it. 

        if match.group(1): 

            identifier = match.group(1) 

            if identifier in reentrances: 

                raise ValueError('new identifier', match.start(1)) 

            reentrances[identifier] = fstruct 

 

        if isinstance(fstruct, FeatDict): 

            fstruct.clear() 

            return self._partial_parse_featdict(s, position, match, 

                                                reentrances, fstruct) 

        else: 

            del fstruct[:] 

            return self._partial_parse_featlist(s, position, match, 

                                                reentrances, fstruct) 

 

    def _partial_parse_featlist(self, s, position, match, 

                                reentrances, fstruct): 

        # Prefix features are not allowed: 

        if match.group(2): raise ValueError('open bracket') 

        # Bare prefixes are not allowed: 

        if not match.group(3): raise ValueError('open bracket') 

 

        # Build a list of the features defined by the structure. 

        while position < len(s): 

            # Check for the close bracket. 

            match = self._END_FSTRUCT_RE.match(s, position) 

            if match is not None: 

                return fstruct, match.end() 

 

            # Reentances have the form "-> (target)" 

            match = self._REENTRANCE_RE.match(s, position) 

            if match: 

                position = match.end() 

                match = _TARGET_RE.match(s, position) 

                if not match: raise ValueError('identifier', position) 

                target = match.group(1) 

                if target not in reentrances: 

                    raise ValueError('bound identifier', position) 

                position = match.end() 

                fstruct.append(reentrances[target]) 

 

            # Anything else is a value. 

            else: 

                value, position = ( 

                    self._parse_value(0, s, position, reentrances)) 

                fstruct.append(value) 

 

            # If there's a close bracket, handle it at the top of the loop. 

            if self._END_FSTRUCT_RE.match(s, position): 

                continue 

 

            # Otherwise, there should be a comma 

            match = self._COMMA_RE.match(s, position) 

            if match is None: raise ValueError('comma', position) 

            position = match.end() 

 

        # We never saw a close bracket. 

        raise ValueError('close bracket', position) 

 

    def _partial_parse_featdict(self, s, position, match, 

                                reentrances, fstruct): 

        # If there was a prefix feature, record it. 

        if match.group(2): 

            if self._prefix_feature is None: 

                raise ValueError('open bracket or identifier', match.start(2)) 

            prefixval = match.group(2).strip() 

            if prefixval.startswith('?'): 

                prefixval = Variable(prefixval) 

            fstruct[self._prefix_feature] = prefixval 

 

        # If group 3 is empty, then we just have a bare prefix, so 

        # we're done. 

        if not match.group(3): 

            return self._finalize(s, match.end(), reentrances, fstruct) 

 

        # Build a list of the features defined by the structure. 

        # Each feature has one of the three following forms: 

        #     name = value 

        #     name -> (target) 

        #     +name 

        #     -name 

        while position < len(s): 

            # Use these variables to hold info about each feature: 

            name = value = None 

 

            # Check for the close bracket. 

            match = self._END_FSTRUCT_RE.match(s, position) 

            if match is not None: 

                return self._finalize(s, match.end(), reentrances, fstruct) 

 

            # Get the feature name's name 

            match = self._FEATURE_NAME_RE.match(s, position) 

            if match is None: raise ValueError('feature name', position) 

            name = match.group(2) 

            position = match.end() 

 

            # Check if it's a special feature. 

            if name[0] == '*' and name[-1] == '*': 

                name = self._features.get(name[1:-1]) 

                if name is None: 

                    raise ValueError('known special feature', match.start(2)) 

 

            # Check if this feature has a value already. 

            if name in fstruct: 

                raise ValueError('new name', match.start(2)) 

 

            # Boolean value ("+name" or "-name") 

            if match.group(1) == '+': value = True 

            if match.group(1) == '-': value = False 

 

            # Reentrance link ("-> (target)") 

            if value is None: 

                match = self._REENTRANCE_RE.match(s, position) 

                if match is not None: 

                    position = match.end() 

                    match = self._TARGET_RE.match(s, position) 

                    if not match: 

                        raise ValueError('identifier', position) 

                    target = match.group(1) 

                    if target not in reentrances: 

                        raise ValueError('bound identifier', position) 

                    position = match.end() 

                    value = reentrances[target] 

 

            # Assignment ("= value"). 

            if value is None: 

                match = self._ASSIGN_RE.match(s, position) 

                if match: 

                    position = match.end() 

                    value, position = ( 

                        self._parse_value(name, s, position, reentrances)) 

                # None of the above: error. 

                else: 

                    raise ValueError('equals sign', position) 

 

            # Store the value. 

            fstruct[name] = value 

 

            # If there's a close bracket, handle it at the top of the loop. 

            if self._END_FSTRUCT_RE.match(s, position): 

                continue 

 

            # Otherwise, there should be a comma 

            match = self._COMMA_RE.match(s, position) 

            if match is None: raise ValueError('comma', position) 

            position = match.end() 

 

        # We never saw a close bracket. 

        raise ValueError('close bracket', position) 

 

    def _finalize(self, s, pos, reentrances, fstruct): 

        """ 

        Called when we see the close brace -- checks for a slash feature, 

        and adds in default values. 

        """ 

        # Add the slash feature (if any) 

        match = self._SLASH_RE.match(s, pos) 

        if match: 

            name = self._slash_feature 

            v, pos = self._parse_value(name, s, match.end(), reentrances) 

            fstruct[name] = v 

        ## Add any default features.  -- handle in unficiation instead? 

        #for feature in self._features_with_defaults: 

        #    fstruct.setdefault(feature, feature.default) 

        # Return the value. 

        return fstruct, pos 

 

    def _parse_value(self, name, s, position, reentrances): 

        if isinstance(name, Feature): 

            return name.parse_value(s, position, reentrances, self) 

        else: 

            return self.parse_value(s, position, reentrances) 

 

    def parse_value(self, s, position, reentrances): 

        for (handler, regexp) in self.VALUE_HANDLERS: 

            match = regexp.match(s, position) 

            if match: 

                handler_func = getattr(self, handler) 

                return handler_func(s, position, reentrances, match) 

        raise ValueError('value', position) 

 

    def _error(self, s, expected, position): 

        lines = s.split('\n') 

        while position > len(lines[0]): 

            position -= len(lines.pop(0))+1 # +1 for the newline. 

        estr = ('Error parsing feature structure\n    ' + 

                lines[0] + '\n    ' + ' '*position + '^ ' + 

                'Expected %s' % expected) 

        raise ValueError(estr) 

 

    #//////////////////////////////////////////////////////////// 

    #{ Value Parsers 

    #//////////////////////////////////////////////////////////// 

 

    #: A table indicating how feature values should be parsed.  Each 

    #: entry in the table is a pair (handler, regexp).  The first entry 

    #: with a matching regexp will have its handler called.  Handlers 

    #: should have the following signature:: 

    #: 

    #:    def handler(s, position, reentrances, match): ... 

    #: 

    #: and should return a tuple (value, position), where position is 

    #: the string position where the value ended.  (n.b.: order is 

    #: important here!) 

    VALUE_HANDLERS = [ 

        ('parse_fstruct_value', _START_FSTRUCT_RE), 

        ('parse_var_value', re.compile(r'\?[a-zA-Z_][a-zA-Z0-9_]*')), 

        ('parse_str_value', re.compile("[uU]?[rR]?(['\"])")), 

        ('parse_int_value', re.compile(r'-?\d+')), 

        ('parse_sym_value', re.compile(r'[a-zA-Z_][a-zA-Z0-9_]*')), 

        ('parse_app_value', re.compile(r'<(app)\((\?[a-z][a-z]*)\s*,' 

                                       r'\s*(\?[a-z][a-z]*)\)>')), 

#       ('parse_logic_value', re.compile(r'<([^>]*)>')), 

        #lazily match any character after '<' until we hit a '>' not preceded by '-' 

        ('parse_logic_value', re.compile(r'<(.*?)(?<!-)>')), 

        ('parse_set_value', re.compile(r'{')), 

        ('parse_tuple_value', re.compile(r'\(')), 

        ] 

 

    def parse_fstruct_value(self, s, position, reentrances, match): 

        return self.partial_parse(s, position, reentrances) 

 

    def parse_str_value(self, s, position, reentrances, match): 

        return nltk.internals.parse_str(s, position) 

 

    def parse_int_value(self, s, position, reentrances, match): 

        return int(match.group()), match.end() 

 

    # Note: the '?' is included in the variable name. 

    def parse_var_value(self, s, position, reentrances, match): 

        return Variable(match.group()), match.end() 

 

    _SYM_CONSTS = {'None':None, 'True':True, 'False':False} 

    def parse_sym_value(self, s, position, reentrances, match): 

        val, end = match.group(), match.end() 

        return self._SYM_CONSTS.get(val, val), end 

 

    def parse_app_value(self, s, position, reentrances, match): 

        """Mainly included for backwards compat.""" 

        return self._logic_parser.parse('%s(%s)' % match.group(2,3)), match.end() 

 

    def parse_logic_value(self, s, position, reentrances, match): 

        try: 

            try: 

                expr = self._logic_parser.parse(match.group(1)) 

            except ParseException: 

                raise ValueError() 

            return expr, match.end() 

        except ValueError: 

            raise ValueError('logic expression', match.start(1)) 

 

    def parse_tuple_value(self, s, position, reentrances, match): 

        return self._parse_seq_value(s, position, reentrances, match, ')', 

                                     FeatureValueTuple, FeatureValueConcat) 

 

    def parse_set_value(self, s, position, reentrances, match): 

        return self._parse_seq_value(s, position, reentrances, match, '}', 

                                     FeatureValueSet, FeatureValueUnion) 

 

    def _parse_seq_value(self, s, position, reentrances, match, 

                         close_paren, seq_class, plus_class): 

        """ 

        Helper function used by parse_tuple_value and parse_set_value. 

        """ 

        cp = re.escape(close_paren) 

        position = match.end() 

        # Special syntax fo empty tuples: 

        m = re.compile(r'\s*/?\s*%s' % cp).match(s, position) 

        if m: return seq_class(), m.end() 

        # Read values: 

        values = [] 

        seen_plus = False 

        while True: 

            # Close paren: return value. 

            m = re.compile(r'\s*%s' % cp).match(s, position) 

            if m: 

                if seen_plus: return plus_class(values), m.end() 

                else: return seq_class(values), m.end() 

 

            # Read the next value. 

            val, position = self.parse_value(s, position, reentrances) 

            values.append(val) 

 

            # Comma or looking at close paren 

            m = re.compile(r'\s*(,|\+|(?=%s))\s*' % cp).match(s, position) 

            if m.group(1) == '+': seen_plus = True 

            if not m: raise ValueError("',' or '+' or '%s'" % cp, position) 

            position = m.end() 

 

###################################################################### 

#{ Demo 

###################################################################### 

 

def display_unification(fs1, fs2, indent='  '): 

    # Print the two input feature structures, side by side. 

    fs1_lines = str(fs1).split('\n') 

    fs2_lines = str(fs2).split('\n') 

    if len(fs1_lines) > len(fs2_lines): 

        blankline = '['+' '*(len(fs2_lines[0])-2)+']' 

        fs2_lines += [blankline]*len(fs1_lines) 

    else: 

        blankline = '['+' '*(len(fs1_lines[0])-2)+']' 

        fs1_lines += [blankline]*len(fs2_lines) 

    for (fs1_line, fs2_line) in zip(fs1_lines, fs2_lines): 

        print(indent + fs1_line + '   ' + fs2_line) 

    print(indent+'-'*len(fs1_lines[0])+'   '+'-'*len(fs2_lines[0])) 

 

    linelen = len(fs1_lines[0])*2+3 

    print(indent+'|               |'.center(linelen)) 

    print(indent+'+-----UNIFY-----+'.center(linelen)) 

    print(indent+'|'.center(linelen)) 

    print(indent+'V'.center(linelen)) 

 

    bindings = {} 

 

    result = fs1.unify(fs2, bindings) 

    if result is None: 

        print(indent+'(FAILED)'.center(linelen)) 

    else: 

        print('\n'.join(indent+l.center(linelen) 

                         for l in str(result).split('\n'))) 

        if bindings and len(bindings.bound_variables()) > 0: 

            print(repr(bindings).center(linelen)) 

    return result 

 

def interactive_demo(trace=False): 

    import random, sys 

 

    HELP = ''' 

    1-%d: Select the corresponding feature structure 

    q: Quit 

    t: Turn tracing on or off 

    l: List all feature structures 

    ?: Help 

    ''' 

 

    print(''' 

    This demo will repeatedly present you with a list of feature 

    structures, and ask you to choose two for unification.  Whenever a 

    new feature structure is generated, it is added to the list of 

    choices that you can pick from.  However, since this can be a 

    large number of feature structures, the demo will only print out a 

    random subset for you to choose between at a given time.  If you 

    want to see the complete lists, type "l".  For a list of valid 

    commands, type "?". 

    ''') 

    print('Press "Enter" to continue...') 

    sys.stdin.readline() 

 

    fstruct_strings = [ 

        '[agr=[number=sing, gender=masc]]', 

        '[agr=[gender=masc, person=3]]', 

        '[agr=[gender=fem, person=3]]', 

        '[subj=[agr=(1)[]], agr->(1)]', 

        '[obj=?x]', '[subj=?x]', 

        '[/=None]', '[/=NP]', 

        '[cat=NP]', '[cat=VP]', '[cat=PP]', 

        '[subj=[agr=[gender=?y]], obj=[agr=[gender=?y]]]', 

        '[gender=masc, agr=?C]', 

        '[gender=?S, agr=[gender=?S,person=3]]' 

        ] 

 

    all_fstructs = [(i, FeatStruct(fstruct_strings[i])) 

                    for i in range(len(fstruct_strings))] 

 

    def list_fstructs(fstructs): 

        for i, fstruct in fstructs: 

            print() 

            lines = str(fstruct).split('\n') 

            print('%3d: %s' % (i+1, lines[0])) 

            for line in lines[1:]: print('     '+line) 

        print() 

 

 

    while True: 

        # Pick 5 feature structures at random from the master list. 

        MAX_CHOICES = 5 

        if len(all_fstructs) > MAX_CHOICES: 

            fstructs = sorted(random.sample(all_fstructs, MAX_CHOICES)) 

        else: 

            fstructs = all_fstructs 

 

        print('_'*75) 

 

        print('Choose two feature structures to unify:') 

        list_fstructs(fstructs) 

 

        selected = [None,None] 

        for (nth,i) in (('First',0), ('Second',1)): 

            while selected[i] is None: 

                print(('%s feature structure (1-%d,q,t,l,?): ' 

                       % (nth, len(all_fstructs))), end=' ') 

                try: 

                    input = sys.stdin.readline().strip() 

                    if input in ('q', 'Q', 'x', 'X'): return 

                    if input in ('t', 'T'): 

                        trace = not trace 

                        print('   Trace = %s' % trace) 

                        continue 

                    if input in ('h', 'H', '?'): 

                        print(HELP % len(fstructs)); continue 

                    if input in ('l', 'L'): 

                        list_fstructs(all_fstructs); continue 

                    num = int(input)-1 

                    selected[i] = all_fstructs[num][1] 

                    print() 

                except: 

                    print('Bad sentence number') 

                    continue 

 

        if trace: 

            result = selected[0].unify(selected[1], trace=1) 

        else: 

            result = display_unification(selected[0], selected[1]) 

        if result is not None: 

            for i, fstruct in all_fstructs: 

                if repr(result) == repr(fstruct): break 

            else: 

                all_fstructs.append((len(all_fstructs), result)) 

 

        print('\nType "Enter" to continue unifying; or "q" to quit.') 

        input = sys.stdin.readline().strip() 

        if input in ('q', 'Q', 'x', 'X'): return 

 

def demo(trace=False): 

    """ 

    Just for testing 

    """ 

    #import random 

 

    # parser breaks with values like '3rd' 

    fstruct_strings = [ 

        '[agr=[number=sing, gender=masc]]', 

        '[agr=[gender=masc, person=3]]', 

        '[agr=[gender=fem, person=3]]', 

        '[subj=[agr=(1)[]], agr->(1)]', 

        '[obj=?x]', '[subj=?x]', 

        '[/=None]', '[/=NP]', 

        '[cat=NP]', '[cat=VP]', '[cat=PP]', 

        '[subj=[agr=[gender=?y]], obj=[agr=[gender=?y]]]', 

        '[gender=masc, agr=?C]', 

        '[gender=?S, agr=[gender=?S,person=3]]' 

        ] 

    all_fstructs = [FeatStruct(fss) for fss in fstruct_strings] 

    #MAX_CHOICES = 5 

    #if len(all_fstructs) > MAX_CHOICES: 

        #fstructs = random.sample(all_fstructs, MAX_CHOICES) 

        #fstructs.sort() 

    #else: 

        #fstructs = all_fstructs 

 

    for fs1 in all_fstructs: 

        for fs2 in all_fstructs: 

            print("\n*******************\nfs1 is:\n%s\n\nfs2 is:\n%s\n\nresult is:\n%s" % (fs1, fs2, unify(fs1, fs2))) 

 

 

if __name__ == '__main__': 

    demo() 

 

__all__ = ['FeatStruct', 'FeatDict', 'FeatList', 'unify', 'subsumes', 'conflicts', 

           'Feature', 'SlashFeature', 'RangeFeature', 'SLASH', 'TYPE', 

           'FeatStructParser']