Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

# -*- coding: utf-8 -*- 

# Natural Language Toolkit: Context Free Grammars 

# 

# Copyright (C) 2001-2012 NLTK Project 

# Author: Steven Bird <sb@csse.unimelb.edu.au> 

#         Edward Loper <edloper@seas.upenn.edu> 

#         Jason Narad <jason.narad@gmail.com> 

#         Peter Ljunglöf <peter.ljunglof@heatherleaf.se> 

# URL: <http://www.nltk.org/> 

# For license information, see LICENSE.TXT 

# 

 

""" 

Basic data classes for representing context free grammars.  A 

"grammar" specifies which trees can represent the structure of a 

given text.  Each of these trees is called a "parse tree" for the 

text (or simply a "parse").  In a "context free" grammar, the set of 

parse trees for any piece of a text can depend only on that piece, and 

not on the rest of the text (i.e., the piece's context).  Context free 

grammars are often used to find possible syntactic structures for 

sentences.  In this context, the leaves of a parse tree are word 

tokens; and the node values are phrasal categories, such as ``NP`` 

and ``VP``. 

 

The ``ContextFreeGrammar`` class is used to encode context free grammars.  Each 

``ContextFreeGrammar`` consists of a start symbol and a set of productions. 

The "start symbol" specifies the root node value for parse trees.  For example, 

the start symbol for syntactic parsing is usually ``S``.  Start 

symbols are encoded using the ``Nonterminal`` class, which is discussed 

below. 

 

A Grammar's "productions" specify what parent-child relationships a parse 

tree can contain.  Each production specifies that a particular 

node can be the parent of a particular set of children.  For example, 

the production ``<S> -> <NP> <VP>`` specifies that an ``S`` node can 

be the parent of an ``NP`` node and a ``VP`` node. 

 

Grammar productions are implemented by the ``Production`` class. 

Each ``Production`` consists of a left hand side and a right hand 

side.  The "left hand side" is a ``Nonterminal`` that specifies the 

node type for a potential parent; and the "right hand side" is a list 

that specifies allowable children for that parent.  This lists 

consists of ``Nonterminals`` and text types: each ``Nonterminal`` 

indicates that the corresponding child may be a ``TreeToken`` with the 

specified node type; and each text type indicates that the 

corresponding child may be a ``Token`` with the with that type. 

 

The ``Nonterminal`` class is used to distinguish node values from leaf 

values.  This prevents the grammar from accidentally using a leaf 

value (such as the English word "A") as the node of a subtree.  Within 

a ``ContextFreeGrammar``, all node values are wrapped in the ``Nonterminal`` class. 

Note, however, that the trees that are specified by the grammar do 

*not* include these ``Nonterminal`` wrappers. 

 

Grammars can also be given a more procedural interpretation.  According to 

this interpretation, a Grammar specifies any tree structure *tree* that 

can be produced by the following procedure: 

 

| Set tree to the start symbol 

| Repeat until tree contains no more nonterminal leaves: 

|   Choose a production prod with whose left hand side 

|     lhs is a nonterminal leaf of tree. 

|   Replace the nonterminal leaf with a subtree, whose node 

|     value is the value wrapped by the nonterminal lhs, and 

|     whose children are the right hand side of prod. 

 

The operation of replacing the left hand side (*lhs*) of a production 

with the right hand side (*rhs*) in a tree (*tree*) is known as 

"expanding" *lhs* to *rhs* in *tree*. 

""" 

from __future__ import print_function 

 

import re 

 

from nltk.util import transitive_closure, invert_graph 

from nltk.compat import string_types, total_ordering 

 

from nltk.probability import ImmutableProbabilisticMixIn 

from nltk.featstruct import FeatStruct, FeatDict, FeatStructParser, SLASH, TYPE 

 

################################################################# 

# Nonterminal 

################################################################# 

 

@total_ordering 

class Nonterminal(object): 

    """ 

    A non-terminal symbol for a context free grammar.  ``Nonterminal`` 

    is a wrapper class for node values; it is used by ``Production`` 

    objects to distinguish node values from leaf values. 

    The node value that is wrapped by a ``Nonterminal`` is known as its 

    "symbol".  Symbols are typically strings representing phrasal 

    categories (such as ``"NP"`` or ``"VP"``).  However, more complex 

    symbol types are sometimes used (e.g., for lexicalized grammars). 

    Since symbols are node values, they must be immutable and 

    hashable.  Two ``Nonterminals`` are considered equal if their 

    symbols are equal. 

 

    :see: ``ContextFreeGrammar``, ``Production`` 

    :type _symbol: any 

    :ivar _symbol: The node value corresponding to this 

        ``Nonterminal``.  This value must be immutable and hashable. 

    """ 

    def __init__(self, symbol): 

        """ 

        Construct a new non-terminal from the given symbol. 

 

        :type symbol: any 

        :param symbol: The node value corresponding to this 

            ``Nonterminal``.  This value must be immutable and 

            hashable. 

        """ 

        self._symbol = symbol 

        self._hash = hash(symbol) 

 

    def symbol(self): 

        """ 

        Return the node value corresponding to this ``Nonterminal``. 

 

        :rtype: (any) 

        """ 

        return self._symbol 

 

    def __eq__(self, other): 

        """ 

        Return True if this non-terminal is equal to ``other``.  In 

        particular, return True if ``other`` is a ``Nonterminal`` 

        and this non-terminal's symbol is equal to ``other`` 's symbol. 

 

        :rtype: bool 

        """ 

        try: 

            return ((self._symbol == other._symbol) 

                    and isinstance(other, self.__class__)) 

        except AttributeError: 

            return False 

 

    def __ne__(self, other): 

        return not (self == other) 

 

    def __lt__(self, other): 

        if not isinstance(other, self.__class__): 

            # XXX: self.__class__ vs Nonterminal? 

            return False 

        return self._symbol < other._symbol 

 

    def __hash__(self): 

        return self._hash 

 

    def __repr__(self): 

        """ 

        Return a string representation for this ``Nonterminal``. 

 

        :rtype: str 

        """ 

        if isinstance(self._symbol, string_types): 

            return '%s' % (self._symbol,) 

        else: 

            return '%r' % (self._symbol,) 

 

    def __str__(self): 

        """ 

        Return a string representation for this ``Nonterminal``. 

 

        :rtype: str 

        """ 

        if isinstance(self._symbol, string_types): 

            return '%s' % (self._symbol,) 

        else: 

            return '%r' % (self._symbol,) 

 

    def __div__(self, rhs): 

        """ 

        Return a new nonterminal whose symbol is ``A/B``, where ``A`` is 

        the symbol for this nonterminal, and ``B`` is the symbol for rhs. 

 

        :param rhs: The nonterminal used to form the right hand side 

            of the new nonterminal. 

        :type rhs: Nonterminal 

        :rtype: Nonterminal 

        """ 

        return Nonterminal('%s/%s' % (self._symbol, rhs._symbol)) 

 

def nonterminals(symbols): 

    """ 

    Given a string containing a list of symbol names, return a list of 

    ``Nonterminals`` constructed from those symbols. 

 

    :param symbols: The symbol name string.  This string can be 

        delimited by either spaces or commas. 

    :type symbols: str 

    :return: A list of ``Nonterminals`` constructed from the symbol 

        names given in ``symbols``.  The ``Nonterminals`` are sorted 

        in the same order as the symbols names. 

    :rtype: list(Nonterminal) 

    """ 

    if ',' in symbols: symbol_list = symbols.split(',') 

    else: symbol_list = symbols.split() 

    return [Nonterminal(s.strip()) for s in symbol_list] 

 

class FeatStructNonterminal(FeatDict, Nonterminal): 

    """A feature structure that's also a nonterminal.  It acts as its 

    own symbol, and automatically freezes itself when hashed.""" 

    def __hash__(self): 

        self.freeze() 

        return FeatStruct.__hash__(self) 

    def symbol(self): 

        return self 

 

def is_nonterminal(item): 

    """ 

    :return: True if the item is a ``Nonterminal``. 

    :rtype: bool 

    """ 

    return isinstance(item, Nonterminal) 

 

 

################################################################# 

# Terminals 

################################################################# 

 

def is_terminal(item): 

    """ 

    Return True if the item is a terminal, which currently is 

    if it is hashable and not a ``Nonterminal``. 

 

    :rtype: bool 

    """ 

    return hasattr(item, '__hash__') and not isinstance(item, Nonterminal) 

 

 

################################################################# 

# Productions 

################################################################# 

 

@total_ordering 

class Production(object): 

    """ 

    A grammar production.  Each production maps a single symbol 

    on the "left-hand side" to a sequence of symbols on the 

    "right-hand side".  (In the case of context-free productions, 

    the left-hand side must be a ``Nonterminal``, and the right-hand 

    side is a sequence of terminals and ``Nonterminals``.) 

    "terminals" can be any immutable hashable object that is 

    not a ``Nonterminal``.  Typically, terminals are strings 

    representing words, such as ``"dog"`` or ``"under"``. 

 

    :see: ``ContextFreeGrammar`` 

    :see: ``DependencyGrammar`` 

    :see: ``Nonterminal`` 

    :type _lhs: Nonterminal 

    :ivar _lhs: The left-hand side of the production. 

    :type _rhs: tuple(Nonterminal, terminal) 

    :ivar _rhs: The right-hand side of the production. 

    """ 

 

    def __init__(self, lhs, rhs): 

        """ 

        Construct a new ``Production``. 

 

        :param lhs: The left-hand side of the new ``Production``. 

        :type lhs: Nonterminal 

        :param rhs: The right-hand side of the new ``Production``. 

        :type rhs: sequence(Nonterminal and terminal) 

        """ 

        if isinstance(rhs, string_types): 

            raise TypeError('production right hand side should be a list, ' 

                            'not a string') 

        self._lhs = lhs 

        self._rhs = tuple(rhs) 

        self._hash = hash((self._lhs, self._rhs)) 

 

    def lhs(self): 

        """ 

        Return the left-hand side of this ``Production``. 

 

        :rtype: Nonterminal 

        """ 

        return self._lhs 

 

    def rhs(self): 

        """ 

        Return the right-hand side of this ``Production``. 

 

        :rtype: sequence(Nonterminal and terminal) 

        """ 

        return self._rhs 

 

    def __len__(self): 

        """ 

        Return the length of the right-hand side. 

 

        :rtype: int 

        """ 

        return len(self._rhs) 

 

    def is_nonlexical(self): 

        """ 

        Return True if the right-hand side only contains ``Nonterminals`` 

 

        :rtype: bool 

        """ 

        return all([is_nonterminal(n) for n in self._rhs]) 

 

    def is_lexical(self): 

        """ 

        Return True if the right-hand contain at least one terminal token. 

 

        :rtype: bool 

        """ 

        return not self.is_nonlexical() 

 

    def __str__(self): 

        """ 

        Return a verbose string representation of the ``Production``. 

 

        :rtype: str 

        """ 

        str = '%r ->' % (self._lhs,) 

        for elt in self._rhs: 

            str += ' %r' % (elt,) 

        return str 

 

    def __repr__(self): 

        """ 

        Return a concise string representation of the ``Production``. 

 

        :rtype: str 

        """ 

        return '%s' % self 

 

    def __eq__(self, other): 

        """ 

        Return True if this ``Production`` is equal to ``other``. 

 

        :rtype: bool 

        """ 

        return (isinstance(other, self.__class__) and 

                self._lhs == other._lhs and 

                self._rhs == other._rhs) 

 

    def __ne__(self, other): 

        return not (self == other) 

 

    def __lt__(self, other): 

        if not isinstance(other, self.__class__): 

            return False 

        return (self._lhs, self._rhs) < (other._lhs, other._rhs) 

 

    def __hash__(self): 

        """ 

        Return a hash value for the ``Production``. 

 

        :rtype: int 

        """ 

        return self._hash 

 

 

class DependencyProduction(Production): 

    """ 

    A dependency grammar production.  Each production maps a single 

    head word to an unordered list of one or more modifier words. 

    """ 

    def __str__(self): 

        """ 

        Return a verbose string representation of the ``DependencyProduction``. 

 

        :rtype: str 

        """ 

        str = '\'%s\' ->' % (self._lhs,) 

        for elt in self._rhs: 

                str += ' \'%s\'' % (elt,) 

        return str 

 

 

class WeightedProduction(Production, ImmutableProbabilisticMixIn): 

    """ 

    A probabilistic context free grammar production. 

    A PCFG ``WeightedProduction`` is essentially just a ``Production`` that 

    has an associated probability, which represents how likely it is that 

    this production will be used.  In particular, the probability of a 

    ``WeightedProduction`` records the likelihood that its right-hand side is 

    the correct instantiation for any given occurrence of its left-hand side. 

 

    :see: ``Production`` 

    """ 

    def __init__(self, lhs, rhs, **prob): 

        """ 

        Construct a new ``WeightedProduction``. 

 

        :param lhs: The left-hand side of the new ``WeightedProduction``. 

        :type lhs: Nonterminal 

        :param rhs: The right-hand side of the new ``WeightedProduction``. 

        :type rhs: sequence(Nonterminal and terminal) 

        :param prob: Probability parameters of the new ``WeightedProduction``. 

        """ 

        ImmutableProbabilisticMixIn.__init__(self, **prob) 

        Production.__init__(self, lhs, rhs) 

 

    def __str__(self): 

        return Production.__str__(self) + ' [%s]' % self.prob() 

 

    def __eq__(self, other): 

        return (isinstance(other, self.__class__) and 

                self._lhs == other._lhs and 

                self._rhs == other._rhs and 

                self.prob() == other.prob()) 

 

    def __ne__(self, other): 

        return not (self == other) 

 

    def __hash__(self): 

        return hash((self._lhs, self._rhs, self.prob())) 

 

################################################################# 

# Grammars 

################################################################# 

 

class ContextFreeGrammar(object): 

    """ 

    A context-free grammar.  A grammar consists of a start state and 

    a set of productions.  The set of terminals and nonterminals is 

    implicitly specified by the productions. 

 

    If you need efficient key-based access to productions, you 

    can use a subclass to implement it. 

    """ 

    def __init__(self, start, productions, calculate_leftcorners=True): 

        """ 

        Create a new context-free grammar, from the given start state 

        and set of ``Production``s. 

 

        :param start: The start symbol 

        :type start: Nonterminal 

        :param productions: The list of productions that defines the grammar 

        :type productions: list(Production) 

        :param calculate_leftcorners: False if we don't want to calculate the 

            leftcorner relation. In that case, some optimized chart parsers won't work. 

        :type calculate_leftcorners: bool 

        """ 

        self._start = start 

        self._productions = productions 

        self._categories = set(prod.lhs() for prod in productions) 

        self._calculate_indexes() 

        self._calculate_grammar_forms() 

        if calculate_leftcorners: 

            self._calculate_leftcorners() 

 

    def _calculate_indexes(self): 

        self._lhs_index = {} 

        self._rhs_index = {} 

        self._empty_index = {} 

        self._lexical_index = {} 

        for prod in self._productions: 

            # Left hand side. 

            lhs = prod._lhs 

            if lhs not in self._lhs_index: 

                self._lhs_index[lhs] = [] 

            self._lhs_index[lhs].append(prod) 

            if prod._rhs: 

                # First item in right hand side. 

                rhs0 = prod._rhs[0] 

                if rhs0 not in self._rhs_index: 

                    self._rhs_index[rhs0] = [] 

                self._rhs_index[rhs0].append(prod) 

            else: 

                # The right hand side is empty. 

                self._empty_index[prod.lhs()] = prod 

            # Lexical tokens in the right hand side. 

            for token in prod._rhs: 

                if is_terminal(token): 

                    self._lexical_index.setdefault(token, set()).add(prod) 

 

    def _calculate_leftcorners(self): 

        # Calculate leftcorner relations, for use in optimized parsing. 

        self._immediate_leftcorner_categories = dict((cat, set([cat])) for cat in self._categories) 

        self._immediate_leftcorner_words = dict((cat, set()) for cat in self._categories) 

        for prod in self.productions(): 

            if len(prod) > 0: 

                cat, left = prod.lhs(), prod.rhs()[0] 

                if is_nonterminal(left): 

                    self._immediate_leftcorner_categories[cat].add(left) 

                else: 

                    self._immediate_leftcorner_words[cat].add(left) 

 

        lc = transitive_closure(self._immediate_leftcorner_categories, reflexive=True) 

        self._leftcorners = lc 

        self._leftcorner_parents = invert_graph(lc) 

 

        nr_leftcorner_categories = sum(map(len, self._immediate_leftcorner_categories.values())) 

        nr_leftcorner_words = sum(map(len, self._immediate_leftcorner_words.values())) 

        if nr_leftcorner_words > nr_leftcorner_categories > 10000: 

            # If the grammar is big, the leftcorner-word dictionary will be too large. 

            # In that case it is better to calculate the relation on demand. 

            self._leftcorner_words = None 

            return 

 

        self._leftcorner_words = {} 

        for cat in self._leftcorners: 

            lefts = self._leftcorners[cat] 

            lc = self._leftcorner_words[cat] = set() 

            for left in lefts: 

                lc.update(self._immediate_leftcorner_words.get(left, set())) 

 

 

    def start(self): 

        """ 

        Return the start symbol of the grammar 

 

        :rtype: Nonterminal 

        """ 

        return self._start 

 

    # tricky to balance readability and efficiency here! 

    # can't use set operations as they don't preserve ordering 

    def productions(self, lhs=None, rhs=None, empty=False): 

        """ 

        Return the grammar productions, filtered by the left-hand side 

        or the first item in the right-hand side. 

 

        :param lhs: Only return productions with the given left-hand side. 

        :param rhs: Only return productions with the given first item 

            in the right-hand side. 

        :param empty: Only return productions with an empty right-hand side. 

        :return: A list of productions matching the given constraints. 

        :rtype: list(Production) 

        """ 

        if rhs and empty: 

            raise ValueError("You cannot select empty and non-empty " 

                             "productions at the same time.") 

 

        # no constraints so return everything 

        if not lhs and not rhs: 

            if not empty: 

                return self._productions 

            else: 

                return self._empty_index.values() 

 

        # only lhs specified so look up its index 

        elif lhs and not rhs: 

            if not empty: 

                return self._lhs_index.get(lhs, []) 

            elif lhs in self._empty_index: 

                return [self._empty_index[lhs]] 

            else: 

                return [] 

 

        # only rhs specified so look up its index 

        elif rhs and not lhs: 

            return self._rhs_index.get(rhs, []) 

 

        # intersect 

        else: 

            return [prod for prod in self._lhs_index.get(lhs, []) 

                    if prod in self._rhs_index.get(rhs, [])] 

 

    def leftcorners(self, cat): 

        """ 

        Return the set of all nonterminals that the given nonterminal 

        can start with, including itself. 

 

        This is the reflexive, transitive closure of the immediate 

        leftcorner relation:  (A > B)  iff  (A -> B beta) 

 

        :param cat: the parent of the leftcorners 

        :type cat: Nonterminal 

        :return: the set of all leftcorners 

        :rtype: set(Nonterminal) 

        """ 

        return self._leftcorners.get(cat, set([cat])) 

 

    def is_leftcorner(self, cat, left): 

        """ 

        True if left is a leftcorner of cat, where left can be a 

        terminal or a nonterminal. 

 

        :param cat: the parent of the leftcorner 

        :type cat: Nonterminal 

        :param left: the suggested leftcorner 

        :type left: Terminal or Nonterminal 

        :rtype: bool 

        """ 

        if is_nonterminal(left): 

            return left in self.leftcorners(cat) 

        elif self._leftcorner_words: 

            return left in self._leftcorner_words.get(cat, set()) 

        else: 

            return any([left in _immediate_leftcorner_words.get(parent, set()) 

                        for parent in self.leftcorners(cat)]) 

 

    def leftcorner_parents(self, cat): 

        """ 

        Return the set of all nonterminals for which the given category 

        is a left corner. This is the inverse of the leftcorner relation. 

 

        :param cat: the suggested leftcorner 

        :type cat: Nonterminal 

        :return: the set of all parents to the leftcorner 

        :rtype: set(Nonterminal) 

        """ 

        return self._leftcorner_parents.get(cat, set([cat])) 

 

    def check_coverage(self, tokens): 

        """ 

        Check whether the grammar rules cover the given list of tokens. 

        If not, then raise an exception. 

 

        :type tokens: list(str) 

        """ 

        missing = [tok for tok in tokens 

                   if not self._lexical_index.get(tok)] 

        if missing: 

            missing = ', '.join('%r' % (w,) for w in missing) 

            raise ValueError("Grammar does not cover some of the " 

                             "input words: %r." % missing) 

 

    def _calculate_grammar_forms(self): 

        """ 

        Pre-calculate of which form(s) the grammar is. 

        """ 

        prods = self._productions 

        self._is_lexical = all([p.is_lexical() for p in prods]) 

        self._is_nonlexical = all([p.is_nonlexical() for p in prods 

                                  if len(p) != 1]) 

        self._min_len = min(len(p) for p in prods) 

        self._max_len = max(len(p) for p in prods) 

        self._all_unary_are_lexical = all([p.is_lexical() for p in prods 

                                          if len(p) == 1]) 

 

    def is_lexical(self): 

        """ 

        Return True if all productions are lexicalised. 

        """ 

        return self._is_lexical 

 

    def is_nonlexical(self): 

        """ 

        Return True if all lexical rules are "preterminals", that is, 

        unary rules which can be separated in a preprocessing step. 

 

        This means that all productions are of the forms 

        A -> B1 ... Bn (n>=0), or A -> "s". 

 

        Note: is_lexical() and is_nonlexical() are not opposites. 

        There are grammars which are neither, and grammars which are both. 

        """ 

        return self._is_nonlexical 

 

    def min_len(self): 

        """ 

        Return the right-hand side length of the shortest grammar production. 

        """ 

        return self._min_len 

 

    def max_len(self): 

        """ 

        Return the right-hand side length of the longest grammar production. 

        """ 

        return self._max_len 

 

    def is_nonempty(self): 

        """ 

        Return True if there are no empty productions. 

        """ 

        return self._min_len > 0 

 

    def is_binarised(self): 

        """ 

        Return True if all productions are at most binary. 

        Note that there can still be empty and unary productions. 

        """ 

        return self._max_len <= 2 

 

    def is_flexible_chomsky_normal_form(self): 

        """ 

        Return True if all productions are of the forms 

        A -> B C, A -> B, or A -> "s". 

        """ 

        return self.is_nonempty() and self.is_nonlexical() and self.is_binarised() 

 

    def is_chomsky_normal_form(self): 

        """ 

        Return True if the grammar is of Chomsky Normal Form, i.e. all productions 

        are of the form A -> B C, or A -> "s". 

        """ 

        return (self.is_flexible_chomsky_normal_form() and 

                self._all_unary_are_lexical) 

 

    def __repr__(self): 

        return '<Grammar with %d productions>' % len(self._productions) 

 

    def __str__(self): 

        str = 'Grammar with %d productions' % len(self._productions) 

        str += ' (start state = %r)' % self._start 

        for production in self._productions: 

            str += '\n    %s' % production 

        return str 

 

 

class FeatureGrammar(ContextFreeGrammar): 

    """ 

    A feature-based grammar.  This is equivalent to a 

    ``ContextFreeGrammar`` whose nonterminals are all 

    ``FeatStructNonterminal``. 

 

    A grammar consists of a start state and a set of 

    productions.  The set of terminals and nonterminals 

    is implicitly specified by the productions. 

    """ 

    def __init__(self, start, productions): 

        """ 

        Create a new feature-based grammar, from the given start 

        state and set of ``Productions``. 

 

        :param start: The start symbol 

        :type start: FeatStructNonterminal 

        :param productions: The list of productions that defines the grammar 

        :type productions: list(Production) 

        """ 

        ContextFreeGrammar.__init__(self, start, productions) 

 

    # The difference with CFG is that the productions are 

    # indexed on the TYPE feature of the nonterminals. 

    # This is calculated by the method _get_type_if_possible(). 

 

    def _calculate_indexes(self): 

        self._lhs_index = {} 

        self._rhs_index = {} 

        self._empty_index = {} 

        self._empty_productions = [] 

        self._lexical_index = {} 

        for prod in self._productions: 

            # Left hand side. 

            lhs = self._get_type_if_possible(prod._lhs) 

            if lhs not in self._lhs_index: 

                self._lhs_index[lhs] = [] 

            self._lhs_index[lhs].append(prod) 

            if prod._rhs: 

                # First item in right hand side. 

                rhs0 = self._get_type_if_possible(prod._rhs[0]) 

                if rhs0 not in self._rhs_index: 

                    self._rhs_index[rhs0] = [] 

                self._rhs_index[rhs0].append(prod) 

            else: 

                # The right hand side is empty. 

                if lhs not in self._empty_index: 

                    self._empty_index[lhs] = [] 

                self._empty_index[lhs].append(prod) 

                self._empty_productions.append(prod) 

            # Lexical tokens in the right hand side. 

            for token in prod._rhs: 

                if is_terminal(token): 

                    self._lexical_index.setdefault(token, set()).add(prod) 

 

    def productions(self, lhs=None, rhs=None, empty=False): 

        """ 

        Return the grammar productions, filtered by the left-hand side 

        or the first item in the right-hand side. 

 

        :param lhs: Only return productions with the given left-hand side. 

        :param rhs: Only return productions with the given first item 

            in the right-hand side. 

        :param empty: Only return productions with an empty right-hand side. 

        :rtype: list(Production) 

        """ 

        if rhs and empty: 

            raise ValueError("You cannot select empty and non-empty " 

                             "productions at the same time.") 

 

        # no constraints so return everything 

        if not lhs and not rhs: 

            if empty: 

                return self._empty_productions 

            else: 

                return self._productions 

 

        # only lhs specified so look up its index 

        elif lhs and not rhs: 

            if empty: 

                return self._empty_index.get(self._get_type_if_possible(lhs), []) 

            else: 

                return self._lhs_index.get(self._get_type_if_possible(lhs), []) 

 

        # only rhs specified so look up its index 

        elif rhs and not lhs: 

            return self._rhs_index.get(self._get_type_if_possible(rhs), []) 

 

        # intersect 

        else: 

            return [prod for prod in self._lhs_index.get(self._get_type_if_possible(lhs), []) 

                    if prod in self._rhs_index.get(self._get_type_if_possible(rhs), [])] 

 

    def leftcorners(self, cat): 

        """ 

        Return the set of all words that the given category can start with. 

        Also called the "first set" in compiler construction. 

        """ 

        raise NotImplementedError("Not implemented yet") 

 

    def leftcorner_parents(self, cat): 

        """ 

        Return the set of all categories for which the given category 

        is a left corner. 

        """ 

        raise NotImplementedError("Not implemented yet") 

 

    def _get_type_if_possible(self, item): 

        """ 

        Helper function which returns the ``TYPE`` feature of the ``item``, 

        if it exists, otherwise it returns the ``item`` itself 

        """ 

        if isinstance(item, dict) and TYPE in item: 

            return FeatureValueType(item[TYPE]) 

        else: 

            return item 

 

@total_ordering 

class FeatureValueType(object): 

    """ 

    A helper class for ``FeatureGrammars``, designed to be different 

    from ordinary strings.  This is to stop the ``FeatStruct`` 

    ``FOO[]`` from being compare equal to the terminal "FOO". 

    """ 

    def __init__(self, value): 

        self._value = value 

        self._hash = hash(value) 

 

    def __repr__(self): 

        return '<%s>' % self._value 

 

    def __eq__(self, other): 

        if other.__class__ != FeatureValueType: 

            return False 

        return self._value == other._value 

 

    def __ne__(self, other): 

        return not (self == other) 

 

    def __lt__(self, other): 

        if other.__class__ != FeatureValueType: 

            return True 

        return self._value < other._value 

 

    def __hash__(self): 

        return self._hash 

 

class DependencyGrammar(object): 

    """ 

    A dependency grammar.  A DependencyGrammar consists of a set of 

    productions.  Each production specifies a head/modifier relationship 

    between a pair of words. 

    """ 

    def __init__(self, productions): 

        """ 

        Create a new dependency grammar, from the set of ``Productions``. 

 

        :param productions: The list of productions that defines the grammar 

        :type productions: list(Production) 

        """ 

        self._productions = productions 

 

    def contains(self, head, mod): 

        """ 

        :param head: A head word. 

        :type head: str 

        :param mod: A mod word, to test as a modifier of 'head'. 

        :type mod: str 

 

        :return: true if this ``DependencyGrammar`` contains a 

            ``DependencyProduction`` mapping 'head' to 'mod'. 

        :rtype: bool 

        """ 

        for production in self._productions: 

            for possibleMod in production._rhs: 

                if(production._lhs == head and possibleMod == mod): 

                    return True 

        return False 

 

    def __contains__(self, head, mod): 

        """ 

        Return True if this ``DependencyGrammar`` contains a 

        ``DependencyProduction`` mapping 'head' to 'mod'. 

 

        :param head: A head word. 

        :type head: str 

        :param mod: A mod word, to test as a modifier of 'head'. 

        :type mod: str 

        :rtype: bool 

        """ 

        for production in self._productions: 

            for possibleMod in production._rhs: 

                if(production._lhs == head and possibleMod == mod): 

                    return True 

        return False 

 

    #   # should be rewritten, the set comp won't work in all comparisons 

    # def contains_exactly(self, head, modlist): 

    #   for production in self._productions: 

    #       if(len(production._rhs) == len(modlist)): 

    #           if(production._lhs == head): 

    #               set1 = Set(production._rhs) 

    #               set2 = Set(modlist) 

    #               if(set1 == set2): 

    #                   return True 

    #   return False 

 

 

    def __str__(self): 

        """ 

        Return a verbose string representation of the ``DependencyGrammar`` 

 

        :rtype: str 

        """ 

        str = 'Dependency grammar with %d productions' % len(self._productions) 

        for production in self._productions: 

            str += '\n  %s' % production 

        return str 

 

    def __repr__(self): 

        """ 

        Return a concise string representation of the ``DependencyGrammar`` 

        """ 

        return 'Dependency grammar with %d productions' % len(self._productions) 

 

 

class StatisticalDependencyGrammar(object): 

    """ 

 

    """ 

 

    def __init__(self, productions, events, tags): 

        self._productions = productions 

        self._events = events 

        self._tags = tags 

 

    def contains(self, head, mod): 

        """ 

        Return True if this ``DependencyGrammar`` contains a 

        ``DependencyProduction`` mapping 'head' to 'mod'. 

 

        :param head: A head word. 

        :type head: str 

        :param mod: A mod word, to test as a modifier of 'head'. 

        :type mod: str 

        :rtype: bool 

        """ 

        for production in self._productions: 

            for possibleMod in production._rhs: 

                if(production._lhs == head and possibleMod == mod): 

                    return True 

        return False 

 

    def __str__(self): 

        """ 

        Return a verbose string representation of the ``StatisticalDependencyGrammar`` 

 

        :rtype: str 

        """ 

        str = 'Statistical dependency grammar with %d productions' % len(self._productions) 

        for production in self._productions: 

            str += '\n  %s' % production 

        str += '\nEvents:' 

        for event in self._events: 

            str += '\n  %d:%s' % (self._events[event], event) 

        str += '\nTags:' 

        for tag_word in self._tags: 

            str += '\n %s:\t(%s)' % (tag_word, self._tags[tag_word]) 

        return str 

 

    def __repr__(self): 

        """ 

        Return a concise string representation of the ``StatisticalDependencyGrammar`` 

        """ 

        return 'Statistical Dependency grammar with %d productions' % len(self._productions) 

 

 

class WeightedGrammar(ContextFreeGrammar): 

    """ 

    A probabilistic context-free grammar.  A Weighted Grammar consists 

    of a start state and a set of weighted productions.  The set of 

    terminals and nonterminals is implicitly specified by the productions. 

 

    PCFG productions should be ``WeightedProductions``. 

    ``WeightedGrammars`` impose the constraint that the set of 

    productions with any given left-hand-side must have probabilities 

    that sum to 1. 

 

    If you need efficient key-based access to productions, you can use 

    a subclass to implement it. 

 

    :type EPSILON: float 

    :cvar EPSILON: The acceptable margin of error for checking that 

        productions with a given left-hand side have probabilities 

        that sum to 1. 

    """ 

    EPSILON = 0.01 

 

    def __init__(self, start, productions, calculate_leftcorners=True): 

        """ 

        Create a new context-free grammar, from the given start state 

        and set of ``WeightedProductions``. 

 

        :param start: The start symbol 

        :type start: Nonterminal 

        :param productions: The list of productions that defines the grammar 

        :type productions: list(Production) 

        :raise ValueError: if the set of productions with any left-hand-side 

            do not have probabilities that sum to a value within 

            EPSILON of 1. 

        :param calculate_leftcorners: False if we don't want to calculate the 

            leftcorner relation. In that case, some optimized chart parsers won't work. 

        :type calculate_leftcorners: bool 

        """ 

        ContextFreeGrammar.__init__(self, start, productions, calculate_leftcorners) 

 

        # Make sure that the probabilities sum to one. 

        probs = {} 

        for production in productions: 

            probs[production.lhs()] = (probs.get(production.lhs(), 0) + 

                                       production.prob()) 

        for (lhs, p) in probs.items(): 

            if not ((1-WeightedGrammar.EPSILON) < p < 

                    (1+WeightedGrammar.EPSILON)): 

                raise ValueError("Productions for %r do not sum to 1" % lhs) 

 

 

################################################################# 

# Inducing Grammars 

################################################################# 

 

# Contributed by Nathan Bodenstab <bodenstab@cslu.ogi.edu> 

 

def induce_pcfg(start, productions): 

    """ 

    Induce a PCFG grammar from a list of productions. 

 

    The probability of a production A -> B C in a PCFG is: 

 

    |                count(A -> B C) 

    |  P(B, C | A) = ---------------       where \* is any right hand side 

    |                 count(A -> \*) 

 

    :param start: The start symbol 

    :type start: Nonterminal 

    :param productions: The list of productions that defines the grammar 

    :type productions: list(Production) 

    """ 

 

    # Production count: the number of times a given production occurs 

    pcount = {} 

 

    # LHS-count: counts the number of times a given lhs occurs 

    lcount = {} 

 

    for prod in productions: 

        lcount[prod.lhs()] = lcount.get(prod.lhs(), 0) + 1 

        pcount[prod]       = pcount.get(prod,       0) + 1 

 

    prods = [WeightedProduction(p.lhs(), p.rhs(), 

                                prob=float(pcount[p]) / lcount[p.lhs()]) 

             for p in pcount] 

    return WeightedGrammar(start, prods) 

 

 

################################################################# 

# Parsing Grammars 

################################################################# 

 

# Parsing CFGs 

 

def parse_cfg_production(input): 

    """ 

    Return a list of context-free ``Productions``. 

    """ 

    return parse_production(input, standard_nonterm_parser) 

 

def parse_cfg(input): 

    """ 

    Return the ``ContextFreeGrammar`` corresponding to the input string(s). 

 

    :param input: a grammar, either in the form of a string or 

        as a list of strings. 

    """ 

    start, productions = parse_grammar(input, standard_nonterm_parser) 

    return ContextFreeGrammar(start, productions) 

 

# Parsing Probabilistic CFGs 

 

def parse_pcfg_production(input): 

    """ 

    Return a list of PCFG ``WeightedProductions``. 

    """ 

    return parse_production(input, standard_nonterm_parser, probabilistic=True) 

 

def parse_pcfg(input): 

    """ 

    Return a probabilistic ``WeightedGrammar`` corresponding to the 

    input string(s). 

 

    :param input: a grammar, either in the form of a string or else 

        as a list of strings. 

    """ 

    start, productions = parse_grammar(input, standard_nonterm_parser, 

                                       probabilistic=True) 

    return WeightedGrammar(start, productions) 

 

# Parsing Feature-based CFGs 

 

def parse_fcfg_production(input, fstruct_parser): 

    """ 

    Return a list of feature-based ``Productions``. 

    """ 

    return parse_production(input, fstruct_parser) 

 

def parse_fcfg(input, features=None, logic_parser=None, fstruct_parser=None): 

    """ 

    Return a feature structure based ``FeatureGrammar``. 

 

    :param input: a grammar, either in the form of a string or else 

        as a list of strings. 

    :param features: a tuple of features (default: SLASH, TYPE) 

    :param logic_parser: a parser for lambda-expressions, 

        by default, ``LogicParser()`` 

    :param fstruct_parser: a feature structure parser 

        (only if features and logic_parser is None) 

    """ 

    if features is None: 

        features = (SLASH, TYPE) 

 

    if fstruct_parser is None: 

        fstruct_parser = FeatStructParser(features, FeatStructNonterminal, 

                                          logic_parser=logic_parser) 

    elif logic_parser is not None: 

        raise Exception('\'logic_parser\' and \'fstruct_parser\' must ' 

                        'not both be set') 

 

    start, productions = parse_grammar(input, fstruct_parser.partial_parse) 

    return FeatureGrammar(start, productions) 

 

# Parsing generic grammars 

 

_ARROW_RE = re.compile(r'\s* -> \s*', re.VERBOSE) 

_PROBABILITY_RE = re.compile(r'( \[ [\d\.]+ \] ) \s*', re.VERBOSE) 

_TERMINAL_RE = re.compile(r'( "[^"]+" | \'[^\']+\' ) \s*', re.VERBOSE) 

_DISJUNCTION_RE = re.compile(r'\| \s*', re.VERBOSE) 

 

def parse_production(line, nonterm_parser, probabilistic=False): 

    """ 

    Parse a grammar rule, given as a string, and return 

    a list of productions. 

    """ 

    pos = 0 

 

    # Parse the left-hand side. 

    lhs, pos = nonterm_parser(line, pos) 

 

    # Skip over the arrow. 

    m = _ARROW_RE.match(line, pos) 

    if not m: raise ValueError('Expected an arrow') 

    pos = m.end() 

 

    # Parse the right hand side. 

    probabilities = [0.0] 

    rhsides = [[]] 

    while pos < len(line): 

        # Probability. 

        m = _PROBABILITY_RE.match(line, pos) 

        if probabilistic and m: 

            pos = m.end() 

            probabilities[-1] = float(m.group(1)[1:-1]) 

            if probabilities[-1] > 1.0: 

                raise ValueError('Production probability %f, ' 

                                 'should not be greater than 1.0' % 

                                 (probabilities[-1],)) 

 

        # String -- add terminal. 

        elif line[pos] in "\'\"": 

            m = _TERMINAL_RE.match(line, pos) 

            if not m: raise ValueError('Unterminated string') 

            rhsides[-1].append(m.group(1)[1:-1]) 

            pos = m.end() 

 

        # Vertical bar -- start new rhside. 

        elif line[pos] == '|': 

            m = _DISJUNCTION_RE.match(line, pos) 

            probabilities.append(0.0) 

            rhsides.append([]) 

            pos = m.end() 

 

        # Anything else -- nonterminal. 

        else: 

            nonterm, pos = nonterm_parser(line, pos) 

            rhsides[-1].append(nonterm) 

 

    if probabilistic: 

        return [WeightedProduction(lhs, rhs, prob=probability) 

                for (rhs, probability) in zip(rhsides, probabilities)] 

    else: 

        return [Production(lhs, rhs) for rhs in rhsides] 

 

 

def parse_grammar(input, nonterm_parser, probabilistic=False): 

    """ 

    Return a pair consisting of a starting category and a list of 

    ``Productions``. 

 

    :param input: a grammar, either in the form of a string or else 

        as a list of strings. 

    :param nonterm_parser: a function for parsing nonterminals. 

        It should take a ``(string, position)`` as argument and 

        return a ``(nonterminal, position)`` as result. 

    :param probabilistic: are the grammar rules probabilistic? 

    :type probabilistic: bool 

    """ 

    if isinstance(input, string_types): 

        lines = input.split('\n') 

    else: 

        lines = input 

 

    start = None 

    productions = [] 

    continue_line = '' 

    for linenum, line in enumerate(lines): 

        line = continue_line + line.strip() 

        if line.startswith('#') or line=='': continue 

        if line.endswith('\\'): 

            continue_line = line[:-1].rstrip()+' ' 

            continue 

        continue_line = '' 

        try: 

            if line[0] == '%': 

                directive, args = line[1:].split(None, 1) 

                if directive == 'start': 

                    start, pos = nonterm_parser(args, 0) 

                    if pos != len(args): 

                        raise ValueError('Bad argument to start directive') 

                else: 

                    raise ValueError('Bad directive') 

            else: 

                # expand out the disjunctions on the RHS 

                productions += parse_production(line, nonterm_parser, probabilistic) 

        except ValueError as e: 

            raise ValueError('Unable to parse line %s: %s\n%s' % 

                             (linenum+1, line, e)) 

 

    if not productions: 

        raise ValueError('No productions found!') 

    if not start: 

        start = productions[0].lhs() 

    return (start, productions) 

 

_STANDARD_NONTERM_RE = re.compile('( [\w/][\w/^<>-]* ) \s*', re.VERBOSE) 

 

def standard_nonterm_parser(string, pos): 

    m = _STANDARD_NONTERM_RE.match(string, pos) 

    if not m: raise ValueError('Expected a nonterminal, found: ' 

                               + string[pos:]) 

    return (Nonterminal(m.group(1)), m.end()) 

 

 

################################################################# 

# Parsing Dependency Grammars 

################################################################# 

 

_PARSE_DG_RE = re.compile(r'''^\s*                # leading whitespace 

                              ('[^']+')\s*        # single-quoted lhs 

                              (?:[-=]+>)\s*        # arrow 

                              (?:(                 # rhs: 

                                   "[^"]+"         # doubled-quoted terminal 

                                 | '[^']+'         # single-quoted terminal 

                                 | \|              # disjunction 

                                 ) 

                                 \s*)              # trailing space 

                                 *$''',            # zero or more copies 

                             re.VERBOSE) 

_SPLIT_DG_RE = re.compile(r'''('[^']'|[-=]+>|"[^"]+"|'[^']+'|\|)''') 

 

def parse_dependency_grammar(s): 

    productions = [] 

    for linenum, line in enumerate(s.split('\n')): 

        line = line.strip() 

        if line.startswith('#') or line=='': continue 

        try: productions += parse_dependency_production(line) 

        except ValueError: 

            raise ValueError('Unable to parse line %s: %s' % (linenum, line)) 

    if len(productions) == 0: 

        raise ValueError('No productions found!') 

    return DependencyGrammar(productions) 

 

def parse_dependency_production(s): 

    if not _PARSE_DG_RE.match(s): 

        raise ValueError('Bad production string') 

    pieces = _SPLIT_DG_RE.split(s) 

    pieces = [p for i,p in enumerate(pieces) if i%2==1] 

    lhside = pieces[0].strip('\'\"') 

    rhsides = [[]] 

    for piece in pieces[2:]: 

        if piece == '|': 

            rhsides.append([]) 

        else: 

            rhsides[-1].append(piece.strip('\'\"')) 

    return [DependencyProduction(lhside, rhside) for rhside in rhsides] 

 

 

################################################################# 

# Demonstration 

################################################################# 

 

def cfg_demo(): 

    """ 

    A demonstration showing how ``ContextFreeGrammars`` can be created and used. 

    """ 

 

    from nltk import nonterminals, Production, parse_cfg 

 

    # Create some nonterminals 

    S, NP, VP, PP = nonterminals('S, NP, VP, PP') 

    N, V, P, Det = nonterminals('N, V, P, Det') 

    VP_slash_NP = VP/NP 

 

    print('Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP]) 

    print('    S.symbol() =>', repr(S.symbol())) 

    print() 

 

    print(Production(S, [NP])) 

 

    # Create some Grammar Productions 

    grammar = parse_cfg(""" 

      S -> NP VP 

      PP -> P NP 

      NP -> Det N | NP PP 

      VP -> V NP | VP PP 

      Det -> 'a' | 'the' 

      N -> 'dog' | 'cat' 

      V -> 'chased' | 'sat' 

      P -> 'on' | 'in' 

    """) 

 

    print('A Grammar:', repr(grammar)) 

    print('    grammar.start()       =>', repr(grammar.start())) 

    print('    grammar.productions() =>', end=' ') 

    # Use string.replace(...) is to line-wrap the output. 

    print(repr(grammar.productions()).replace(',', ',\n'+' '*25)) 

    print() 

 

toy_pcfg1 = parse_pcfg(""" 

    S -> NP VP [1.0] 

    NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15] 

    Det -> 'the' [0.8] | 'my' [0.2] 

    N -> 'man' [0.5] | 'telescope' [0.5] 

    VP -> VP PP [0.1] | V NP [0.7] | V [0.2] 

    V -> 'ate' [0.35] | 'saw' [0.65] 

    PP -> P NP [1.0] 

    P -> 'with' [0.61] | 'under' [0.39] 

    """) 

 

toy_pcfg2 = parse_pcfg(""" 

    S    -> NP VP         [1.0] 

    VP   -> V NP          [.59] 

    VP   -> V             [.40] 

    VP   -> VP PP         [.01] 

    NP   -> Det N         [.41] 

    NP   -> Name          [.28] 

    NP   -> NP PP         [.31] 

    PP   -> P NP          [1.0] 

    V    -> 'saw'         [.21] 

    V    -> 'ate'         [.51] 

    V    -> 'ran'         [.28] 

    N    -> 'boy'         [.11] 

    N    -> 'cookie'      [.12] 

    N    -> 'table'       [.13] 

    N    -> 'telescope'   [.14] 

    N    -> 'hill'        [.5] 

    Name -> 'Jack'        [.52] 

    Name -> 'Bob'         [.48] 

    P    -> 'with'        [.61] 

    P    -> 'under'       [.39] 

    Det  -> 'the'         [.41] 

    Det  -> 'a'           [.31] 

    Det  -> 'my'          [.28] 

    """) 

 

def pcfg_demo(): 

    """ 

    A demonstration showing how a ``WeightedGrammar`` can be created and used. 

    """ 

 

    from nltk.corpus import treebank 

    from nltk import treetransforms 

    from nltk import induce_pcfg 

    from nltk.parse import pchart 

 

    pcfg_prods = toy_pcfg1.productions() 

 

    pcfg_prod = pcfg_prods[2] 

    print('A PCFG production:', repr(pcfg_prod)) 

    print('    pcfg_prod.lhs()  =>', repr(pcfg_prod.lhs())) 

    print('    pcfg_prod.rhs()  =>', repr(pcfg_prod.rhs())) 

    print('    pcfg_prod.prob() =>', repr(pcfg_prod.prob())) 

    print() 

 

    grammar = toy_pcfg2 

    print('A PCFG grammar:', repr(grammar)) 

    print('    grammar.start()       =>', repr(grammar.start())) 

    print('    grammar.productions() =>', end=' ') 

    # Use string.replace(...) is to line-wrap the output. 

    print(repr(grammar.productions()).replace(',', ',\n'+' '*26)) 

    print() 

 

    # extract productions from three trees and induce the PCFG 

    print("Induce PCFG grammar from treebank data:") 

 

    productions = [] 

    for item in treebank.items[:2]: 

        for tree in treebank.parsed_sents(item): 

            # perform optional tree transformations, e.g.: 

            tree.collapse_unary(collapsePOS = False) 

            tree.chomsky_normal_form(horzMarkov = 2) 

 

            productions += tree.productions() 

 

    S = Nonterminal('S') 

    grammar = induce_pcfg(S, productions) 

    print(grammar) 

    print() 

 

    print("Parse sentence using induced grammar:") 

 

    parser = pchart.InsideChartParser(grammar) 

    parser.trace(3) 

 

    # doesn't work as tokens are different: 

    #sent = treebank.tokenized('wsj_0001.mrg')[0] 

 

    sent = treebank.parsed_sents('wsj_0001.mrg')[0].leaves() 

    print(sent) 

    for parse in parser.nbest_parse(sent): 

        print(parse) 

 

def fcfg_demo(): 

    import nltk.data 

    g = nltk.data.load('grammars/book_grammars/feat0.fcfg') 

    print(g) 

    print() 

 

def dg_demo(): 

    """ 

    A demonstration showing the creation and inspection of a 

    ``DependencyGrammar``. 

    """ 

    grammar = parse_dependency_grammar(""" 

    'scratch' -> 'cats' | 'walls' 

    'walls' -> 'the' 

    'cats' -> 'the' 

    """) 

    print(grammar) 

 

def sdg_demo(): 

    """ 

    A demonstration of how to read a string representation of 

    a CoNLL format dependency tree. 

    """ 

    dg = DependencyGraph(""" 

    1   Ze                ze                Pron  Pron  per|3|evofmv|nom                 2   su      _  _ 

    2   had               heb               V     V     trans|ovt|1of2of3|ev             0   ROOT    _  _ 

    3   met               met               Prep  Prep  voor                             8   mod     _  _ 

    4   haar              haar              Pron  Pron  bez|3|ev|neut|attr               5   det     _  _ 

    5   moeder            moeder            N     N     soort|ev|neut                    3   obj1    _  _ 

    6   kunnen            kan               V     V     hulp|ott|1of2of3|mv              2   vc      _  _ 

    7   gaan              ga                V     V     hulp|inf                         6   vc      _  _ 

    8   winkelen          winkel            V     V     intrans|inf                      11  cnj     _  _ 

    9   ,                 ,                 Punc  Punc  komma                            8   punct   _  _ 

    10  zwemmen           zwem              V     V     intrans|inf                      11  cnj     _  _ 

    11  of                of                Conj  Conj  neven                            7   vc      _  _ 

    12  terrassen         terras            N     N     soort|mv|neut                    11  cnj     _  _ 

    13  .                 .                 Punc  Punc  punt                             12  punct   _  _ 

    """) 

    tree = dg.tree() 

    print(tree.pprint()) 

 

def demo(): 

    cfg_demo() 

    pcfg_demo() 

    fcfg_demo() 

    dg_demo() 

    sdg_demo() 

 

if __name__ == '__main__': 

    demo() 

 

__all__ = ['Nonterminal', 'nonterminals', 

           'Production', 'DependencyProduction', 'WeightedProduction', 

           'ContextFreeGrammar', 'WeightedGrammar', 'DependencyGrammar', 

           'StatisticalDependencyGrammar', 

           'induce_pcfg', 'parse_cfg', 'parse_cfg_production', 

           'parse_pcfg', 'parse_pcfg_production', 

           'parse_fcfg', 'parse_fcfg_production', 

           'parse_grammar', 'parse_production', 

           'parse_dependency_grammar', 'parse_dependency_production', 

           'demo', 'cfg_demo', 'pcfg_demo', 'dg_demo', 'sdg_demo', 

           'toy_pcfg1', 'toy_pcfg2']