Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

# Natural Language Toolkit: First-order Resolution-based Theorem Prover 

# 

# Author: Dan Garrette <dhgarrette@gmail.com> 

# 

# Copyright (C) 2001-2012 NLTK Project 

# URL: <http://www.nltk.org> 

# For license information, see LICENSE.TXT 

 

""" 

Module for a resolution-based First Order theorem prover. 

""" 

from __future__ import print_function 

 

import operator 

from collections import defaultdict 

from functools import reduce 

 

from nltk.sem import skolemize 

from nltk.sem.logic import (VariableExpression, EqualityExpression, 

                            ApplicationExpression, LogicParser, 

                            NegatedExpression, Variable, 

                            AndExpression, unique_variable, OrExpression, 

                            is_indvar, IndividualVariableExpression, Expression) 

 

from nltk.inference.api import Prover, BaseProverCommand 

 

class ProverParseError(Exception): pass 

 

class ResolutionProver(Prover): 

    ANSWER_KEY = 'ANSWER' 

    _assume_false=True 

 

    def _prove(self, goal=None, assumptions=None, verbose=False): 

        """ 

        :param goal: Input expression to prove 

        :type goal: sem.Expression 

        :param assumptions: Input expressions to use as assumptions in the proof 

        :type assumptions: list(sem.Expression) 

        """ 

        if not assumptions: 

            assumptions = [] 

 

        result = None 

        try: 

            clauses = [] 

            if goal: 

                clauses.extend(clausify(-goal)) 

            for a in assumptions: 

                clauses.extend(clausify(a)) 

            result, clauses = self._attempt_proof(clauses) 

            if verbose: 

                print(ResolutionProverCommand._decorate_clauses(clauses)) 

        except RuntimeError as e: 

            if self._assume_false and str(e).startswith('maximum recursion depth exceeded'): 

                result = False 

                clauses = [] 

            else: 

                if verbose: 

                    print(e) 

                else: 

                    raise e 

        return (result, clauses) 

 

    def _attempt_proof(self, clauses): 

        #map indices to lists of indices, to store attempted unifications 

        tried = defaultdict(list) 

 

        i = 0 

        while i < len(clauses): 

            if not clauses[i].is_tautology(): 

                #since we try clauses in order, we should start after the last 

                #index tried 

                if tried[i]: 

                    j = tried[i][-1] + 1 

                else: 

                    j = i + 1 #nothing tried yet for 'i', so start with the next 

 

                while j < len(clauses): 

                    #don't: 1) unify a clause with itself, 

                    #       2) use tautologies 

                    if i != j and j and not clauses[j].is_tautology(): 

                        tried[i].append(j) 

                        newclauses = clauses[i].unify(clauses[j]) 

                        if newclauses: 

                            for newclause in newclauses: 

                                newclause._parents = (i+1, j+1) 

                                clauses.append(newclause) 

                                if not len(newclause): #if there's an empty clause 

                                    return (True, clauses) 

                            i=-1 #since we added a new clause, restart from the top 

                            break 

                    j += 1 

            i += 1 

        return (False, clauses) 

 

class ResolutionProverCommand(BaseProverCommand): 

    def __init__(self, goal=None, assumptions=None, prover=None): 

        """ 

        :param goal: Input expression to prove 

        :type goal: sem.Expression 

        :param assumptions: Input expressions to use as assumptions in 

            the proof. 

        :type assumptions: list(sem.Expression) 

        """ 

        if prover is not None: 

            assert isinstance(prover, ResolutionProver) 

        else: 

            prover = ResolutionProver() 

 

        BaseProverCommand.__init__(self, prover, goal, assumptions) 

        self._clauses = None 

 

    def prove(self, verbose=False): 

        """ 

        Perform the actual proof.  Store the result to prevent unnecessary 

        re-proving. 

        """ 

        if self._result is None: 

            self._result, clauses = self._prover._prove(self.goal(), 

                                                        self.assumptions(), 

                                                        verbose) 

            self._clauses = clauses 

            self._proof = ResolutionProverCommand._decorate_clauses(clauses) 

        return self._result 

 

    def find_answers(self, verbose=False): 

        self.prove(verbose) 

 

        answers = set() 

        answer_ex = VariableExpression(Variable(ResolutionProver.ANSWER_KEY)) 

        for clause in self._clauses: 

            for term in clause: 

                if isinstance(term, ApplicationExpression) and\ 

                   term.function == answer_ex and\ 

                   not isinstance(term.argument, IndividualVariableExpression): 

                    answers.add(term.argument) 

        return answers 

 

    @staticmethod 

    def _decorate_clauses(clauses): 

        """ 

        Decorate the proof output. 

        """ 

        out = '' 

        max_clause_len = max([len(str(clause)) for clause in clauses]) 

        max_seq_len = len(str(len(clauses))) 

        for i in range(len(clauses)): 

            parents = 'A' 

            taut = '' 

            if clauses[i].is_tautology(): 

                taut = 'Tautology' 

            if clauses[i]._parents: 

                parents = str(clauses[i]._parents) 

            parents = ' '*(max_clause_len-len(str(clauses[i]))+1) + parents 

            seq = ' '*(max_seq_len-len(str(i+1))) + str(i+1) 

            out += '[%s] %s %s %s\n' % (seq, clauses[i], parents, taut) 

        return out 

 

class Clause(list): 

    def __init__(self, data): 

        list.__init__(self, data) 

        self._is_tautology = None 

        self._parents = None 

 

    def unify(self, other, bindings=None, used=None, skipped=None, debug=False): 

        """ 

        Attempt to unify this Clause with the other, returning a list of 

        resulting, unified, Clauses. 

 

        :param other: ``Clause`` with which to unify 

        :param bindings: ``BindingDict`` containing bindings that should be used 

        during the unification 

        :param used: tuple of two lists of atoms.  The first lists the 

        atoms from 'self' that were successfully unified with atoms from 

        'other'.  The second lists the atoms from 'other' that were successfully 

        unified with atoms from 'self'. 

        :param skipped: tuple of two ``Clause`` objects.  The first is a list of all 

        the atoms from the 'self' Clause that have not been unified with 

        anything on the path.  The second is same thing for the 'other' Clause. 

        :param debug: bool indicating whether debug statements should print 

        :return: list containing all the resulting ``Clause`` objects that could be 

        obtained by unification 

        """ 

        if bindings is None: bindings = BindingDict() 

        if used is None: used = ([],[]) 

        if skipped is None: skipped = ([],[]) 

        if isinstance(debug, bool): debug = DebugObject(debug) 

 

        newclauses = _iterate_first(self, other, bindings, used, skipped, _complete_unify_path, debug) 

 

        #remove subsumed clauses.  make a list of all indices of subsumed 

        #clauses, and then remove them from the list 

        subsumed = [] 

        for i, c1 in enumerate(newclauses): 

            if i not in subsumed: 

                for j, c2 in enumerate(newclauses): 

                    if i!=j and j not in subsumed and c1.subsumes(c2): 

                        subsumed.append(j) 

        result = [] 

        for i in range(len(newclauses)): 

            if i not in subsumed: 

                result.append(newclauses[i]) 

 

        return result 

 

    def isSubsetOf(self, other): 

        """ 

        Return True iff every term in 'self' is a term in 'other'. 

 

        :param other: ``Clause`` 

        :return: bool 

        """ 

        for a in self: 

            if a not in other: 

                return False 

        return True 

 

    def subsumes(self, other): 

        """ 

        Return True iff 'self' subsumes 'other', this is, if there is a 

        substitution such that every term in 'self' can be unified with a term 

        in 'other'. 

 

        :param other: ``Clause`` 

        :return: bool 

        """ 

        negatedother = [] 

        for atom in other: 

            if isinstance(atom, NegatedExpression): 

                negatedother.append(atom.term) 

            else: 

                negatedother.append(-atom) 

 

        negatedotherClause = Clause(negatedother) 

 

        bindings = BindingDict() 

        used = ([],[]) 

        skipped = ([],[]) 

        debug = DebugObject(False) 

 

        return len(_iterate_first(self, negatedotherClause, bindings, used, 

                                      skipped, _subsumes_finalize, 

                                      debug)) > 0 

 

    def __getslice__(self, start, end): 

        return Clause(list.__getslice__(self, start, end)) 

 

    def __sub__(self, other): 

        return Clause([a for a in self if a not in other]) 

 

    def __add__(self, other): 

        return Clause(list.__add__(self, other)) 

 

    def is_tautology(self): 

        """ 

        Self is a tautology if it contains ground terms P and -P.  The ground 

        term, P, must be an exact match, ie, not using unification. 

        """ 

        if self._is_tautology is not None: 

            return self._is_tautology 

        for i,a in enumerate(self): 

            if not isinstance(a, EqualityExpression): 

                j = len(self)-1 

                while j > i: 

                    b = self[j] 

                    if isinstance(a, NegatedExpression): 

                        if a.term == b: 

                            self._is_tautology = True 

                            return True 

                    elif isinstance(b, NegatedExpression): 

                        if a == b.term: 

                            self._is_tautology = True 

                            return True 

                    j -= 1 

        self._is_tautology = False 

        return False 

 

    def free(self): 

        return reduce(operator.or_, ((atom.free() | atom.constants()) for atom in self)) 

 

    def replace(self, variable, expression): 

        """ 

        Replace every instance of variable with expression across every atom 

        in the clause 

 

        :param variable: ``Variable`` 

        :param expression: ``Expression`` 

        """ 

        return Clause([atom.replace(variable, expression) for atom in self]) 

 

    def substitute_bindings(self, bindings): 

        """ 

        Replace every binding 

 

        :param bindings: A list of tuples mapping Variable Expressions to the 

        Expressions to which they are bound 

        :return: ``Clause`` 

        """ 

        return Clause([atom.substitute_bindings(bindings) for atom in self]) 

 

    def __str__(self): 

        return '{' + ', '.join([str(item) for item in self]) + '}' 

 

    def __repr__(self): 

        return str(self) 

 

def _iterate_first(first, second, bindings, used, skipped, finalize_method, debug): 

    """ 

    This method facilitates movement through the terms of 'self' 

    """ 

    debug.line('unify(%s,%s) %s'%(first, second, bindings)) 

 

    if not len(first) or not len(second): #if no more recursions can be performed 

        return finalize_method(first, second, bindings, used, skipped, debug) 

    else: 

        #explore this 'self' atom 

        result = _iterate_second(first, second, bindings, used, skipped, finalize_method, debug+1) 

 

        #skip this possible 'self' atom 

        newskipped = (skipped[0]+[first[0]], skipped[1]) 

        result += _iterate_first(first[1:], second, bindings, used, newskipped, finalize_method, debug+1) 

 

        try: 

            newbindings, newused, unused = _unify_terms(first[0], second[0], bindings, used) 

            #Unification found, so progress with this line of unification 

            #put skipped and unused terms back into play for later unification. 

            newfirst = first[1:] + skipped[0] + unused[0] 

            newsecond = second[1:] + skipped[1] + unused[1] 

            result += _iterate_first(newfirst, newsecond, newbindings, newused, ([],[]), finalize_method, debug+1) 

        except BindingException: 

            #the atoms could not be unified, 

            pass 

 

        return result 

 

def _iterate_second(first, second, bindings, used, skipped, finalize_method, debug): 

    """ 

    This method facilitates movement through the terms of 'other' 

    """ 

    debug.line('unify(%s,%s) %s'%(first, second, bindings)) 

 

    if not len(first) or not len(second): #if no more recursions can be performed 

        return finalize_method(first, second, bindings, used, skipped, debug) 

    else: 

        #skip this possible pairing and move to the next 

        newskipped = (skipped[0], skipped[1]+[second[0]]) 

        result = _iterate_second(first, second[1:], bindings, used, newskipped, finalize_method, debug+1) 

 

        try: 

            newbindings, newused, unused = _unify_terms(first[0], second[0], bindings, used) 

            #Unification found, so progress with this line of unification 

            #put skipped and unused terms back into play for later unification. 

            newfirst = first[1:] + skipped[0] + unused[0] 

            newsecond = second[1:] + skipped[1] + unused[1] 

            result += _iterate_second(newfirst, newsecond, newbindings, newused, ([],[]), finalize_method, debug+1) 

        except BindingException: 

            #the atoms could not be unified, 

            pass 

 

        return result 

 

def _unify_terms(a, b, bindings=None, used=None): 

    """ 

    This method attempts to unify two terms.  Two expressions are unifiable 

    if there exists a substitution function S such that S(a) == S(-b). 

 

    :param a: ``Expression`` 

    :param b: ``Expression`` 

    :param bindings: ``BindingDict`` a starting set of bindings with which 

    the unification must be consistent 

    :return: ``BindingDict`` A dictionary of the bindings required to unify 

    :raise ``BindingException``: If the terms cannot be unified 

    """ 

    assert isinstance(a, Expression) 

    assert isinstance(b, Expression) 

 

    if bindings is None: bindings = BindingDict() 

    if used is None: used = ([],[]) 

 

    # Use resolution 

    if isinstance(a, NegatedExpression) and isinstance(b, ApplicationExpression): 

        newbindings = most_general_unification(a.term, b, bindings) 

        newused = (used[0]+[a], used[1]+[b]) 

        unused = ([],[]) 

    elif isinstance(a, ApplicationExpression) and isinstance(b, NegatedExpression): 

        newbindings = most_general_unification(a, b.term, bindings) 

        newused = (used[0]+[a], used[1]+[b]) 

        unused = ([],[]) 

 

    # Use demodulation 

    elif isinstance(a, EqualityExpression): 

        newbindings = BindingDict([(a.first.variable, a.second)]) 

        newused = (used[0]+[a], used[1]) 

        unused = ([],[b]) 

    elif isinstance(b, EqualityExpression): 

        newbindings = BindingDict([(b.first.variable, b.second)]) 

        newused = (used[0], used[1]+[b]) 

        unused = ([a],[]) 

 

    else: 

        raise BindingException((a, b)) 

 

    return newbindings, newused, unused 

 

def _complete_unify_path(first, second, bindings, used, skipped, debug): 

    if used[0] or used[1]: #if bindings were made along the path 

        newclause = Clause(skipped[0] + skipped[1] + first + second) 

        debug.line('  -> New Clause: %s' % newclause) 

        return [newclause.substitute_bindings(bindings)] 

    else: #no bindings made means no unification occurred.  so no result 

        debug.line('  -> End') 

        return [] 

 

def _subsumes_finalize(first, second, bindings, used, skipped, debug): 

    if not len(skipped[0]) and not len(first): 

        #If there are no skipped terms and no terms left in 'first', then 

        #all of the terms in the original 'self' were unified with terms 

        #in 'other'.  Therefore, there exists a binding (this one) such that 

        #every term in self can be unified with a term in other, which 

        #is the definition of subsumption. 

        return [True] 

    else: 

        return [] 

 

def clausify(expression): 

    """ 

    Skolemize, clausify, and standardize the variables apart. 

    """ 

    clause_list = [] 

    for clause in _clausify(skolemize(expression)): 

        for free in clause.free(): 

            if is_indvar(free.name): 

                newvar = VariableExpression(unique_variable()) 

                clause = clause.replace(free, newvar) 

        clause_list.append(clause) 

    return clause_list 

 

def _clausify(expression): 

    """ 

    :param expression: a skolemized expression in CNF 

    """ 

    if isinstance(expression, AndExpression): 

        return _clausify(expression.first) + _clausify(expression.second) 

    elif isinstance(expression, OrExpression): 

        first = _clausify(expression.first) 

        second = _clausify(expression.second) 

        assert len(first) == 1 

        assert len(second) == 1 

        return [first[0] + second[0]] 

    elif isinstance(expression, EqualityExpression): 

        return [Clause([expression])] 

    elif isinstance(expression, ApplicationExpression): 

        return [Clause([expression])] 

    elif isinstance(expression, NegatedExpression): 

        if isinstance(expression.term, ApplicationExpression): 

            return [Clause([expression])] 

        elif isinstance(expression.term, EqualityExpression): 

            return [Clause([expression])] 

    raise ProverParseError() 

 

 

class BindingDict(object): 

    def __init__(self, binding_list=None): 

        """ 

        :param binding_list: list of (``AbstractVariableExpression``, ``AtomicExpression``) to initialize the dictionary 

        """ 

        self.d = {} 

 

        if binding_list: 

            for (v, b) in binding_list: 

                self[v] = b 

 

    def __setitem__(self, variable, binding): 

        """ 

        A binding is consistent with the dict if its variable is not already bound, OR if its 

        variable is already bound to its argument. 

 

        :param variable: ``Variable`` The variable to bind 

        :param binding: ``Expression`` The atomic to which 'variable' should be bound 

        :raise BindingException: If the variable cannot be bound in this dictionary 

        """ 

        assert isinstance(variable, Variable) 

        assert isinstance(binding, Expression) 

 

        try: 

            existing = self[variable] 

        except KeyError: 

            existing = None 

 

        if not existing or binding == existing: 

            self.d[variable] = binding 

        elif isinstance(binding, IndividualVariableExpression): 

            # Since variable is already bound, try to bind binding to variable 

            try: 

                existing = self[binding.variable] 

            except KeyError: 

                existing = None 

 

            binding2 = VariableExpression(variable) 

 

            if not existing or binding2 == existing: 

                self.d[binding.variable] = binding2 

            else: 

                raise BindingException('Variable %s already bound to another ' 

                                       'value' % (variable)) 

        else: 

            raise BindingException('Variable %s already bound to another ' 

                                   'value' % (variable)) 

 

    def __getitem__(self, variable): 

        """ 

        Return the expression to which 'variable' is bound 

        """ 

        assert isinstance(variable, Variable) 

 

        intermediate = self.d[variable] 

        while intermediate: 

            try: 

                intermediate = self.d[intermediate] 

            except KeyError: 

                return intermediate 

 

    def __contains__(self, item): 

        return item in self.d 

 

    def __add__(self, other): 

        """ 

        :param other: ``BindingDict`` The dict with which to combine self 

        :return: ``BindingDict`` A new dict containing all the elements of both parameters 

        :raise BindingException: If the parameter dictionaries are not consistent with each other 

        """ 

        try: 

            combined = BindingDict() 

            for v in self.d: 

                combined[v] = self.d[v] 

            for v in other.d: 

                combined[v] = other.d[v] 

            return combined 

        except BindingException: 

            raise BindingException("Attempting to add two contradicting " 

                                   "BindingDicts: '%s' and '%s'" 

                                   % (self, other)) 

 

    def __len__(self): 

        return len(self.d) 

 

    def __str__(self): 

        return '{' + ', '.join(['%s: %s' % (v, self.d[v]) for v in self.d]) + '}' 

 

    def __repr__(self): 

        return str(self) 

 

 

def most_general_unification(a, b, bindings=None): 

    """ 

    Find the most general unification of the two given expressions 

 

    :param a: ``Expression`` 

    :param b: ``Expression`` 

    :param bindings: ``BindingDict`` a starting set of bindings with which the 

                     unification must be consistent 

    :return: a list of bindings 

    :raise BindingException: if the Expressions cannot be unified 

    """ 

    if bindings is None: 

        bindings = BindingDict() 

 

    if a == b: 

        return bindings 

    elif isinstance(a, IndividualVariableExpression): 

        return _mgu_var(a, b, bindings) 

    elif isinstance(b, IndividualVariableExpression): 

        return _mgu_var(b, a, bindings) 

    elif isinstance(a, ApplicationExpression) and\ 

         isinstance(b, ApplicationExpression): 

        return most_general_unification(a.function, b.function, bindings) +\ 

               most_general_unification(a.argument, b.argument, bindings) 

    raise BindingException((a, b)) 

 

def _mgu_var(var, expression, bindings): 

    if var.variable in expression.free()|expression.constants(): 

        raise BindingException((var, expression)) 

    else: 

        return BindingDict([(var.variable, expression)]) + bindings 

 

 

class BindingException(Exception): 

    def __init__(self, arg): 

        if isinstance(arg, tuple): 

            Exception.__init__(self, "'%s' cannot be bound to '%s'" % arg) 

        else: 

            Exception.__init__(self, arg) 

 

class UnificationException(Exception): 

    def __init__(self, a, b): 

        Exception.__init__(self, "'%s' cannot unify with '%s'" % (a,b)) 

 

 

class DebugObject(object): 

    def __init__(self, enabled=True, indent=0): 

        self.enabled = enabled 

        self.indent = indent 

 

    def __add__(self, i): 

        return DebugObject(self.enabled, self.indent+i) 

 

    def line(self, line): 

        if self.enabled: 

            print('    '*self.indent + line) 

 

 

def testResolutionProver(): 

    resolution_test(r'man(x)') 

    resolution_test(r'(man(x) -> man(x))') 

    resolution_test(r'(man(x) -> --man(x))') 

    resolution_test(r'-(man(x) and -man(x))') 

    resolution_test(r'(man(x) or -man(x))') 

    resolution_test(r'(man(x) -> man(x))') 

    resolution_test(r'-(man(x) and -man(x))') 

    resolution_test(r'(man(x) or -man(x))') 

    resolution_test(r'(man(x) -> man(x))') 

    resolution_test(r'(man(x) iff man(x))') 

    resolution_test(r'-(man(x) iff -man(x))') 

    resolution_test('all x.man(x)') 

    resolution_test('-all x.some y.F(x,y) & some x.all y.(-F(x,y))') 

    resolution_test('some x.all y.sees(x,y)') 

 

    p1 = LogicParser().parse(r'all x.(man(x) -> mortal(x))') 

    p2 = LogicParser().parse(r'man(Socrates)') 

    c = LogicParser().parse(r'mortal(Socrates)') 

    print('%s, %s |- %s: %s' % (p1, p2, c, ResolutionProver().prove(c, [p1,p2]))) 

 

    p1 = LogicParser().parse(r'all x.(man(x) -> walks(x))') 

    p2 = LogicParser().parse(r'man(John)') 

    c = LogicParser().parse(r'some y.walks(y)') 

    print('%s, %s |- %s: %s' % (p1, p2, c, ResolutionProver().prove(c, [p1,p2]))) 

 

    p = LogicParser().parse(r'some e1.some e2.(believe(e1,john,e2) & walk(e2,mary))') 

    c = LogicParser().parse(r'some e0.walk(e0,mary)') 

    print('%s |- %s: %s' % (p, c, ResolutionProver().prove(c, [p]))) 

 

def resolution_test(e): 

    f = LogicParser().parse(e) 

    t = ResolutionProver().prove(f) 

    print('|- %s: %s' % (f, t)) 

 

def test_clausify(): 

    lp = LogicParser() 

 

    print(clausify(lp.parse('P(x) | Q(x)'))) 

    print(clausify(lp.parse('(P(x) & Q(x)) | R(x)'))) 

    print(clausify(lp.parse('P(x) | (Q(x) & R(x))'))) 

    print(clausify(lp.parse('(P(x) & Q(x)) | (R(x) & S(x))'))) 

 

    print(clausify(lp.parse('P(x) | Q(x) | R(x)'))) 

    print(clausify(lp.parse('P(x) | (Q(x) & R(x)) | S(x)'))) 

 

    print(clausify(lp.parse('exists x.P(x) | Q(x)'))) 

 

    print(clausify(lp.parse('-(-P(x) & Q(x))'))) 

    print(clausify(lp.parse('P(x) <-> Q(x)'))) 

    print(clausify(lp.parse('-(P(x) <-> Q(x))'))) 

    print(clausify(lp.parse('-(all x.P(x))'))) 

    print(clausify(lp.parse('-(some x.P(x))'))) 

 

    print(clausify(lp.parse('some x.P(x)'))) 

    print(clausify(lp.parse('some x.all y.P(x,y)'))) 

    print(clausify(lp.parse('all y.some x.P(x,y)'))) 

    print(clausify(lp.parse('all z.all y.some x.P(x,y,z)'))) 

    print(clausify(lp.parse('all x.(all y.P(x,y) -> -all y.(Q(x,y) -> R(x,y)))'))) 

 

 

def demo(): 

    test_clausify() 

    print() 

    testResolutionProver() 

    print() 

 

    p = LogicParser().parse('man(x)') 

    print(ResolutionProverCommand(p, [p]).prove()) 

 

if __name__ == '__main__': 

    demo()