Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

# -*- coding: utf-8 -*- 

# Natural Language Toolkit: Chart Parser for Feature-Based Grammars 

# 

# Copyright (C) 2001-2012 NLTK Project 

# Author: Rob Speer <rspeer@mit.edu> 

#         Peter Ljunglöf <peter.ljunglof@heatherleaf.se> 

# URL: <http://www.nltk.org/> 

# For license information, see LICENSE.TXT 

 

""" 

Extension of chart parsing implementation to handle grammars with 

feature structures as nodes. 

""" 

from __future__ import print_function 

 

from nltk.compat import xrange 

from nltk.featstruct import FeatStruct, unify, FeatStructParser, TYPE, find_variables 

from nltk.sem import logic 

from nltk.tree import Tree 

from nltk.grammar import (Nonterminal, Production, ContextFreeGrammar, 

                          FeatStructNonterminal, is_nonterminal, 

                          is_terminal) 

from nltk.parse.chart import (TreeEdge, Chart, ChartParser, EdgeI, 

                              FundamentalRule, LeafInitRule, 

                              EmptyPredictRule, BottomUpPredictRule, 

                              SingleEdgeFundamentalRule, 

                              BottomUpPredictCombineRule, 

                              CachedTopDownPredictRule, 

                              TopDownInitRule) 

 

#//////////////////////////////////////////////////////////// 

# Tree Edge 

#//////////////////////////////////////////////////////////// 

 

class FeatureTreeEdge(TreeEdge): 

    """ 

    A specialized tree edge that allows shared variable bindings 

    between nonterminals on the left-hand side and right-hand side. 

 

    Each ``FeatureTreeEdge`` contains a set of ``bindings``, i.e., a 

    dictionary mapping from variables to values.  If the edge is not 

    complete, then these bindings are simply stored.  However, if the 

    edge is complete, then the constructor applies these bindings to 

    every nonterminal in the edge whose symbol implements the 

    interface ``SubstituteBindingsI``. 

    """ 

    def __init__(self, span, lhs, rhs, dot=0, bindings=None): 

        """ 

        Construct a new edge.  If the edge is incomplete (i.e., if 

        ``dot<len(rhs)``), then store the bindings as-is.  If the edge 

        is complete (i.e., if ``dot==len(rhs)``), then apply the 

        bindings to all nonterminals in ``lhs`` and ``rhs``, and then 

        clear the bindings.  See ``TreeEdge`` for a description of 

        the other arguments. 

        """ 

        if bindings is None: bindings = {} 

 

        # If the edge is complete, then substitute in the bindings, 

        # and then throw them away.  (If we didn't throw them away, we 

        # might think that 2 complete edges are different just because 

        # they have different bindings, even though all bindings have 

        # already been applied.) 

        if dot == len(rhs) and bindings: 

            lhs = self._bind(lhs, bindings) 

            rhs = [self._bind(elt, bindings) for elt in rhs] 

            bindings = {} 

 

        # Initialize the edge. 

        TreeEdge.__init__(self, span, lhs, rhs, dot) 

        self._bindings = bindings 

 

    @staticmethod 

    def from_production(production, index): 

        """ 

        :return: A new ``TreeEdge`` formed from the given production. 

            The new edge's left-hand side and right-hand side will 

            be taken from ``production``; its span will be 

            ``(index,index)``; and its dot position will be ``0``. 

        :rtype: TreeEdge 

        """ 

        return FeatureTreeEdge(span=(index, index), lhs=production.lhs(), 

                               rhs=production.rhs(), dot=0) 

 

    def move_dot_forward(self, new_end, bindings=None): 

        """ 

        :return: A new ``FeatureTreeEdge`` formed from this edge. 

            The new edge's dot position is increased by ``1``, 

            and its end index will be replaced by ``new_end``. 

        :rtype: FeatureTreeEdge 

        :param new_end: The new end index. 

        :type new_end: int 

        :param bindings: Bindings for the new edge. 

        :type bindings: dict 

        """ 

        return FeatureTreeEdge(span=(self._span[0], new_end), 

                               lhs=self._lhs, rhs=self._rhs, 

                               dot=self._dot+1, bindings=bindings) 

 

    def _bind(self, nt, bindings): 

        if not isinstance(nt, FeatStructNonterminal): return nt 

        return nt.substitute_bindings(bindings) 

 

    def next_with_bindings(self): 

        return self._bind(next(self), self._bindings) 

 

    def bindings(self): 

        """ 

        Return a copy of this edge's bindings dictionary. 

        """ 

        return self._bindings.copy() 

 

    def variables(self): 

        """ 

        :return: The set of variables used by this edge. 

        :rtype: set(Variable) 

        """ 

        return find_variables([self._lhs] + list(self._rhs) + 

                              self._bindings.keys() + self._bindings.values(), 

                              fs_class=FeatStruct) 

 

    def __str__(self): 

        if self.is_complete(): 

            return TreeEdge.__str__(self) 

        else: 

            bindings = '{%s}' % ', '.join('%s: %r' % item for item in 

                                           sorted(self._bindings.items())) 

            return '%s %s' % (TreeEdge.__str__(self), bindings) 

 

    # two edges with different bindings are not equal. 

    def __cmp__(self, other): 

        if self.__class__ != other.__class__: return -1 

        return cmp((self._span, self._lhs, self._rhs, 

                    self._dot, self._bindings), 

                   (other._span, other._lhs, other._rhs, 

                    other._dot, other._bindings)) 

 

    def __hash__(self): 

        # cache this:? 

        return hash((self._lhs, self._rhs, self._span, self._dot, 

                     tuple(sorted(self._bindings)))) 

 

 

#//////////////////////////////////////////////////////////// 

# A specialized Chart for feature grammars 

#//////////////////////////////////////////////////////////// 

 

# TODO: subsumes check when adding new edges 

 

class FeatureChart(Chart): 

    """ 

    A Chart for feature grammars. 

    :see: ``Chart`` for more information. 

    """ 

 

    def select(self, **restrictions): 

        """ 

        Returns an iterator over the edges in this chart. 

        See ``Chart.select`` for more information about the 

        ``restrictions`` on the edges. 

        """ 

        # If there are no restrictions, then return all edges. 

        if restrictions=={}: return iter(self._edges) 

 

        # Find the index corresponding to the given restrictions. 

        restr_keys = sorted(restrictions.keys()) 

        restr_keys = tuple(restr_keys) 

 

        # If it doesn't exist, then create it. 

        if restr_keys not in self._indexes: 

            self._add_index(restr_keys) 

 

        vals = tuple(self._get_type_if_possible(restrictions[key]) 

                     for key in restr_keys) 

        return iter(self._indexes[restr_keys].get(vals, [])) 

 

    def _add_index(self, restr_keys): 

        """ 

        A helper function for ``select``, which creates a new index for 

        a given set of attributes (aka restriction keys). 

        """ 

        # Make sure it's a valid index. 

        for key in restr_keys: 

            if not hasattr(EdgeI, key): 

                raise ValueError('Bad restriction: %s' % key) 

 

        # Create the index. 

        index = self._indexes[restr_keys] = {} 

 

        # Add all existing edges to the index. 

        for edge in self._edges: 

            vals = tuple(self._get_type_if_possible(getattr(edge, key)()) 

                         for key in restr_keys) 

            index.setdefault(vals, []).append(edge) 

 

    def _register_with_indexes(self, edge): 

        """ 

        A helper function for ``insert``, which registers the new 

        edge with all existing indexes. 

        """ 

        for (restr_keys, index) in self._indexes.items(): 

            vals = tuple(self._get_type_if_possible(getattr(edge, key)()) 

                         for key in restr_keys) 

            index.setdefault(vals, []).append(edge) 

 

    def _get_type_if_possible(self, item): 

        """ 

        Helper function which returns the ``TYPE`` feature of the ``item``, 

        if it exists, otherwise it returns the ``item`` itself 

        """ 

        if isinstance(item, dict) and TYPE in item: 

            return item[TYPE] 

        else: 

            return item 

 

    def parses(self, start, tree_class=Tree): 

        trees = [] 

        for edge in self.select(start=0, end=self._num_leaves): 

            if ( (isinstance(edge, FeatureTreeEdge)) and 

                 (edge.lhs()[TYPE] == start[TYPE]) and 

                 (unify(edge.lhs(), start, rename_vars=True)) ): 

                trees += self.trees(edge, complete=True, tree_class=tree_class) 

        return trees 

 

 

#//////////////////////////////////////////////////////////// 

# Fundamental Rule 

#//////////////////////////////////////////////////////////// 

 

class FeatureFundamentalRule(FundamentalRule): 

    """ 

    A specialized version of the fundamental rule that operates on 

    nonterminals whose symbols are ``FeatStructNonterminal``s.  Rather 

    tha simply comparing the nonterminals for equality, they are 

    unified.  Variable bindings from these unifications are collected 

    and stored in the chart using a ``FeatureTreeEdge``.  When a 

    complete edge is generated, these bindings are applied to all 

    nonterminals in the edge. 

 

    The fundamental rule states that: 

 

    - ``[A -> alpha \* B1 beta][i:j]`` 

    - ``[B2 -> gamma \*][j:k]`` 

 

    licenses the edge: 

 

    - ``[A -> alpha B3 \* beta][i:j]`` 

 

    assuming that B1 and B2 can be unified to generate B3. 

    """ 

    def apply_iter(self, chart, grammar, left_edge, right_edge): 

        # Make sure the rule is applicable. 

        if not (left_edge.end() == right_edge.start() and 

                left_edge.is_incomplete() and 

                right_edge.is_complete() and 

                isinstance(left_edge, FeatureTreeEdge)): 

            return 

        found = right_edge.lhs() 

        next_edge = next(left_edge) 

        if isinstance(right_edge, FeatureTreeEdge): 

            if not is_nonterminal(next_edge): return 

            if left_edge.next()[TYPE] != right_edge.lhs()[TYPE]: return 

            # Create a copy of the bindings. 

            bindings = left_edge.bindings() 

            # We rename vars here, because we don't want variables 

            # from the two different productions to match. 

            found = found.rename_variables(used_vars=left_edge.variables()) 

            # Unify B1 (left_edge.next) with B2 (right_edge.lhs) to 

            # generate B3 (result). 

            result = unify(next_edge, found, bindings, rename_vars=False) 

            if result is None: return 

        else: 

            if next_edge != found: return 

            # Create a copy of the bindings. 

            bindings = left_edge.bindings() 

 

        # Construct the new edge. 

        new_edge = left_edge.move_dot_forward(right_edge.end(), bindings) 

 

        # Add it to the chart, with appropriate child pointers. 

        if chart.insert_with_backpointer(new_edge, left_edge, right_edge): 

            yield new_edge 

 

class FeatureSingleEdgeFundamentalRule(SingleEdgeFundamentalRule): 

    """ 

    A specialized version of the completer / single edge fundamental rule 

    that operates on nonterminals whose symbols are ``FeatStructNonterminal``s. 

    Rather than simply comparing the nonterminals for equality, they are 

    unified. 

    """ 

    _fundamental_rule = FeatureFundamentalRule() 

 

    def _apply_complete(self, chart, grammar, right_edge): 

        fr = self._fundamental_rule 

        for left_edge in chart.select(end=right_edge.start(), 

                                      is_complete=False, 

                                      next=right_edge.lhs()): 

            for new_edge in fr.apply_iter(chart, grammar, left_edge, right_edge): 

                yield new_edge 

 

    def _apply_incomplete(self, chart, grammar, left_edge): 

        fr = self._fundamental_rule 

        for right_edge in chart.select(start=left_edge.end(), 

                                       is_complete=True, 

                                       lhs=next(left_edge)): 

            for new_edge in fr.apply_iter(chart, grammar, left_edge, right_edge): 

                yield new_edge 

 

 

#//////////////////////////////////////////////////////////// 

# Top-Down Prediction 

#//////////////////////////////////////////////////////////// 

 

class FeatureTopDownInitRule(TopDownInitRule): 

    def apply_iter(self, chart, grammar): 

        for prod in grammar.productions(lhs=grammar.start()): 

            new_edge = FeatureTreeEdge.from_production(prod, 0) 

            if chart.insert(new_edge, ()): 

                yield new_edge 

 

class FeatureTopDownPredictRule(CachedTopDownPredictRule): 

    """ 

    A specialized version of the (cached) top down predict rule that operates 

    on nonterminals whose symbols are ``FeatStructNonterminal``s.  Rather 

    than simply comparing the nonterminals for equality, they are 

    unified. 

 

    The top down expand rule states that: 

 

    - ``[A -> alpha \* B1 beta][i:j]`` 

 

    licenses the edge: 

 

    - ``[B2 -> \* gamma][j:j]`` 

 

    for each grammar production ``B2 -> gamma``, assuming that B1 

    and B2 can be unified. 

    """ 

    def apply_iter(self, chart, grammar, edge): 

        if edge.is_complete(): return 

        next_edge, index = next(edge), edge.end() 

        if not is_nonterminal(next_edge): return 

 

        # If we've already applied this rule to an edge with the same 

        # next & end, and the chart & grammar have not changed, then 

        # just return (no new edges to add). 

        done = self._done.get((next_edge, index), (None,None)) 

        if done[0] is chart and done[1] is grammar: return 

 

        for prod in grammar.productions(lhs=next(edge)): 

            # If the left corner in the predicted production is 

            # leaf, it must match with the input. 

            if prod.rhs(): 

                first = prod.rhs()[0] 

                if is_terminal(first): 

                    if index >= chart.num_leaves(): continue 

                    if first != chart.leaf(index): continue 

 

            # We rename vars here, because we don't want variables 

            # from the two different productions to match. 

            if unify(prod.lhs(), edge.next_with_bindings(), rename_vars=True): 

                new_edge = FeatureTreeEdge.from_production(prod, edge.end()) 

                if chart.insert(new_edge, ()): 

                    yield new_edge 

 

        # Record the fact that we've applied this rule. 

        self._done[next_edge, index] = (chart, grammar) 

 

 

#//////////////////////////////////////////////////////////// 

# Bottom-Up Prediction 

#//////////////////////////////////////////////////////////// 

 

class FeatureBottomUpPredictRule(BottomUpPredictRule): 

    def apply_iter(self, chart, grammar, edge): 

        if edge.is_incomplete(): return 

        for prod in grammar.productions(rhs=edge.lhs()): 

            if isinstance(edge, FeatureTreeEdge): 

                _next = prod.rhs()[0] 

                if not is_nonterminal(_next): continue 

 

            new_edge = FeatureTreeEdge.from_production(prod, edge.start()) 

            if chart.insert(new_edge, ()): 

                yield new_edge 

 

class FeatureBottomUpPredictCombineRule(BottomUpPredictCombineRule): 

    def apply_iter(self, chart, grammar, edge): 

        if edge.is_incomplete(): return 

        found = edge.lhs() 

        for prod in grammar.productions(rhs=found): 

            bindings = {} 

            if isinstance(edge, FeatureTreeEdge): 

                _next = prod.rhs()[0] 

                if not is_nonterminal(_next): continue 

 

                # We rename vars here, because we don't want variables 

                # from the two different productions to match. 

                used_vars = find_variables((prod.lhs(),) + prod.rhs(), 

                                           fs_class=FeatStruct) 

                found = found.rename_variables(used_vars=used_vars) 

 

                result = unify(_next, found, bindings, rename_vars=False) 

                if result is None: continue 

 

            new_edge = (FeatureTreeEdge.from_production(prod, edge.start()) 

                        .move_dot_forward(edge.end(), bindings)) 

            if chart.insert(new_edge, (edge,)): 

                yield new_edge 

 

class FeatureEmptyPredictRule(EmptyPredictRule): 

    def apply_iter(self, chart, grammar): 

        for prod in grammar.productions(empty=True): 

            for index in xrange(chart.num_leaves() + 1): 

                new_edge = FeatureTreeEdge.from_production(prod, index) 

                if chart.insert(new_edge, ()): 

                    yield new_edge 

 

 

#//////////////////////////////////////////////////////////// 

# Feature Chart Parser 

#//////////////////////////////////////////////////////////// 

 

TD_FEATURE_STRATEGY = [LeafInitRule(), 

                       FeatureTopDownInitRule(), 

                       FeatureTopDownPredictRule(), 

                       FeatureSingleEdgeFundamentalRule()] 

BU_FEATURE_STRATEGY = [LeafInitRule(), 

                       FeatureEmptyPredictRule(), 

                       FeatureBottomUpPredictRule(), 

                       FeatureSingleEdgeFundamentalRule()] 

BU_LC_FEATURE_STRATEGY = [LeafInitRule(), 

                          FeatureEmptyPredictRule(), 

                          FeatureBottomUpPredictCombineRule(), 

                          FeatureSingleEdgeFundamentalRule()] 

 

class FeatureChartParser(ChartParser): 

    def __init__(self, grammar, 

                 strategy=BU_LC_FEATURE_STRATEGY, 

                 trace_chart_width=20, 

                 chart_class=FeatureChart, 

                 **parser_args): 

        ChartParser.__init__(self, grammar, 

                             strategy=strategy, 

                             trace_chart_width=trace_chart_width, 

                             chart_class=chart_class, 

                             **parser_args) 

 

class FeatureTopDownChartParser(FeatureChartParser): 

    def __init__(self, grammar, **parser_args): 

        FeatureChartParser.__init__(self, grammar, TD_FEATURE_STRATEGY, **parser_args) 

 

class FeatureBottomUpChartParser(FeatureChartParser): 

    def __init__(self, grammar, **parser_args): 

        FeatureChartParser.__init__(self, grammar, BU_FEATURE_STRATEGY, **parser_args) 

 

class FeatureBottomUpLeftCornerChartParser(FeatureChartParser): 

    def __init__(self, grammar, **parser_args): 

        FeatureChartParser.__init__(self, grammar, BU_LC_FEATURE_STRATEGY, **parser_args) 

 

 

#//////////////////////////////////////////////////////////// 

# Instantiate Variable Chart 

#//////////////////////////////////////////////////////////// 

 

class InstantiateVarsChart(FeatureChart): 

    """ 

    A specialized chart that 'instantiates' variables whose names 

    start with '@', by replacing them with unique new variables. 

    In particular, whenever a complete edge is added to the chart, any 

    variables in the edge's ``lhs`` whose names start with '@' will be 

    replaced by unique new ``Variable``s. 

    """ 

    def __init__(self, tokens): 

        FeatureChart.__init__(self, tokens) 

 

    def initialize(self): 

        self._instantiated = set() 

        FeatureChart.initialize(self) 

 

    def insert(self, edge, child_pointer_list): 

        if edge in self._instantiated: return False 

        self.instantiate_edge(edge) 

        return FeatureChart.insert(self, edge, child_pointer_list) 

 

    def instantiate_edge(self, edge): 

        """ 

        If the edge is a ``FeatureTreeEdge``, and it is complete, 

        then instantiate all variables whose names start with '@', 

        by replacing them with unique new variables. 

 

        Note that instantiation is done in-place, since the 

        parsing algorithms might already hold a reference to 

        the edge for future use. 

        """ 

        # If the edge is a leaf, or is not complete, or is 

        # already in the chart, then just return it as-is. 

        if not isinstance(edge, FeatureTreeEdge): return 

        if not edge.is_complete(): return 

        if edge in self._edge_to_cpls: return 

 

        # Get a list of variables that need to be instantiated. 

        # If there are none, then return as-is. 

        inst_vars = self.inst_vars(edge) 

        if not inst_vars: return 

 

        # Instantiate the edge! 

        self._instantiated.add(edge) 

        edge._lhs = edge.lhs().substitute_bindings(inst_vars) 

 

    def inst_vars(self, edge): 

        return dict((var, logic.unique_variable()) 

                    for var in edge.lhs().variables() 

                    if var.name.startswith('@')) 

 

 

#//////////////////////////////////////////////////////////// 

# Demo 

#//////////////////////////////////////////////////////////// 

 

def demo_grammar(): 

    from nltk.grammar import parse_fcfg 

    return parse_fcfg(""" 

S  -> NP VP 

PP -> Prep NP 

NP -> NP PP 

VP -> VP PP 

VP -> Verb NP 

VP -> Verb 

NP -> Det[pl=?x] Noun[pl=?x] 

NP -> "John" 

NP -> "I" 

Det -> "the" 

Det -> "my" 

Det[-pl] -> "a" 

Noun[-pl] -> "dog" 

Noun[-pl] -> "cookie" 

Verb -> "ate" 

Verb -> "saw" 

Prep -> "with" 

Prep -> "under" 

""") 

 

def demo(should_print_times=True, should_print_grammar=True, 

         should_print_trees=True, should_print_sentence=True, 

         trace=1, 

         parser=FeatureChartParser, 

         sent='I saw John with a dog with my cookie'): 

    import sys, time 

    print() 

    grammar = demo_grammar() 

    if should_print_grammar: 

        print(grammar) 

        print() 

    print("*", parser.__name__) 

    if should_print_sentence: 

        print("Sentence:", sent) 

    tokens = sent.split() 

    t = time.clock() 

    cp = parser(grammar, trace=trace) 

    chart = cp.chart_parse(tokens) 

    trees = chart.parses(grammar.start()) 

    if should_print_times: 

        print("Time: %s" % (time.clock() - t)) 

    if should_print_trees: 

        for tree in trees: print(tree) 

    else: 

        print("Nr trees:", len(trees)) 

 

def run_profile(): 

    import profile 

    profile.run('for i in range(1): demo()', '/tmp/profile.out') 

    import pstats 

    p = pstats.Stats('/tmp/profile.out') 

    p.strip_dirs().sort_stats('time', 'cum').print_stats(60) 

    p.strip_dirs().sort_stats('cum', 'time').print_stats(60) 

 

if __name__ == '__main__': 

    from nltk.data import load 

    demo() 

    print() 

    grammar = load('grammars/book_grammars/feat0.fcfg') 

    cp = FeatureChartParser(grammar, trace=2) 

    sent = 'Kim likes children' 

    tokens = sent.split() 

    trees = cp.nbest_parse(tokens) 

    for tree in trees: 

        print(tree)