Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

# -*- coding: utf-8 -*- 

# Natural Language Toolkit: Probability and Statistics 

# 

# Copyright (C) 2001-2012 NLTK Project 

# Author: Edward Loper <edloper@gradient.cis.upenn.edu> 

#         Steven Bird <sb@csse.unimelb.edu.au> (additions) 

#         Trevor Cohn <tacohn@cs.mu.oz.au> (additions) 

#         Peter Ljunglöf <peter.ljunglof@heatherleaf.se> (additions) 

#         Liang Dong <ldong@clemson.edu> (additions) 

#         Geoffrey Sampson <sampson@cantab.net> (additions) 

# 

# URL: <http://www.nltk.org/> 

# For license information, see LICENSE.TXT 

 

""" 

Classes for representing and processing probabilistic information. 

 

The ``FreqDist`` class is used to encode "frequency distributions", 

which count the number of times that each outcome of an experiment 

occurs. 

 

The ``ProbDistI`` class defines a standard interface for "probability 

distributions", which encode the probability of each outcome for an 

experiment.  There are two types of probability distribution: 

 

  - "derived probability distributions" are created from frequency 

    distributions.  They attempt to model the probability distribution 

    that generated the frequency distribution. 

  - "analytic probability distributions" are created directly from 

    parameters (such as variance). 

 

The ``ConditionalFreqDist`` class and ``ConditionalProbDistI`` interface 

are used to encode conditional distributions.  Conditional probability 

distributions can be derived or analytic; but currently the only 

implementation of the ``ConditionalProbDistI`` interface is 

``ConditionalProbDist``, a derived distribution. 

 

""" 

from __future__ import print_function 

 

import math 

import random 

import warnings 

from operator import itemgetter 

from itertools import islice 

from collections import defaultdict 

from functools import reduce 

from nltk import compat 

 

_NINF = float('-1e300') 

 

##////////////////////////////////////////////////////// 

##  Frequency Distributions 

##////////////////////////////////////////////////////// 

 

# [SB] inherit from defaultdict? 

# [SB] for NLTK 3.0, inherit from collections.Counter? 

 

class FreqDist(dict): 

    """ 

    A frequency distribution for the outcomes of an experiment.  A 

    frequency distribution records the number of times each outcome of 

    an experiment has occurred.  For example, a frequency distribution 

    could be used to record the frequency of each word type in a 

    document.  Formally, a frequency distribution can be defined as a 

    function mapping from each sample to the number of times that 

    sample occurred as an outcome. 

 

    Frequency distributions are generally constructed by running a 

    number of experiments, and incrementing the count for a sample 

    every time it is an outcome of an experiment.  For example, the 

    following code will produce a frequency distribution that encodes 

    how often each word occurs in a text: 

 

        >>> from nltk.tokenize import word_tokenize 

        >>> from nltk.probability import FreqDist 

        >>> sent = 'This is an example sentence' 

        >>> fdist = FreqDist() 

        >>> for word in word_tokenize(sent): 

        ...    fdist.inc(word.lower()) 

 

    An equivalent way to do this is with the initializer: 

 

        >>> fdist = FreqDist(word.lower() for word in word_tokenize(sent)) 

 

    """ 

    def __init__(self, samples=None): 

        """ 

        Construct a new frequency distribution.  If ``samples`` is 

        given, then the frequency distribution will be initialized 

        with the count of each object in ``samples``; otherwise, it 

        will be initialized to be empty. 

 

        In particular, ``FreqDist()`` returns an empty frequency 

        distribution; and ``FreqDist(samples)`` first creates an empty 

        frequency distribution, and then calls ``update`` with the 

        list ``samples``. 

 

        :param samples: The samples to initialize the frequency 

            distribution with. 

        :type samples: Sequence 

        """ 

        dict.__init__(self) 

        self._N = 0 

        self._reset_caches() 

        if samples: 

            self.update(samples) 

 

    def inc(self, sample, count=1): 

        """ 

        Increment this FreqDist's count for the given sample. 

 

        :param sample: The sample whose count should be incremented. 

        :type sample: any 

        :param count: The amount to increment the sample's count by. 

        :type count: int 

        :rtype: None 

        :raise NotImplementedError: If ``sample`` is not a 

               supported sample type. 

        """ 

        if count == 0: return 

        self[sample] = self.get(sample,0) + count 

 

    def __setitem__(self, sample, value): 

        """ 

        Set this FreqDist's count for the given sample. 

 

        :param sample: The sample whose count should be incremented. 

        :type sample: any hashable object 

        :param count: The new value for the sample's count 

        :type count: int 

        :rtype: None 

        :raise TypeError: If ``sample`` is not a supported sample type. 

        """ 

 

        self._N += (value - self.get(sample, 0)) 

        dict.__setitem__(self, sample, value) 

 

        # Invalidate the caches 

        self._reset_caches() 

 

    def N(self): 

        """ 

        Return the total number of sample outcomes that have been 

        recorded by this FreqDist.  For the number of unique 

        sample values (or bins) with counts greater than zero, use 

        ``FreqDist.B()``. 

 

        :rtype: int 

        """ 

        return self._N 

 

    def B(self): 

        """ 

        Return the total number of sample values (or "bins") that 

        have counts greater than zero.  For the total 

        number of sample outcomes recorded, use ``FreqDist.N()``. 

        (FreqDist.B() is the same as len(FreqDist).) 

 

        :rtype: int 

        """ 

        return len(self) 

 

    def samples(self): 

        """ 

        Return a list of all samples that have been recorded as 

        outcomes by this frequency distribution.  Use ``fd[sample]`` 

        to determine the count for each sample. 

 

        :rtype: list 

        """ 

        return self.keys() 

 

    def hapaxes(self): 

        """ 

        Return a list of all samples that occur once (hapax legomena) 

 

        :rtype: list 

        """ 

        return [item for item in self if self[item] == 1] 

 

    def Nr(self, r, bins=None): 

        """ 

        Return the number of samples with count r. 

 

        :type r: int 

        :param r: A sample count. 

        :type bins: int 

        :param bins: The number of possible sample outcomes.  ``bins`` 

            is used to calculate Nr(0).  In particular, Nr(0) is 

            ``bins-self.B()``.  If ``bins`` is not specified, it 

            defaults to ``self.B()`` (so Nr(0) will be 0). 

        :rtype: int 

        """ 

        if r < 0: raise IndexError('FreqDist.Nr(): r must be non-negative') 

 

        # Special case for Nr(0): 

        if r == 0: 

            if bins is None: return 0 

            else: return bins-self.B() 

 

        # We have to search the entire distribution to find Nr.  Since 

        # this is an expensive operation, and is likely to be used 

        # repeatedly, cache the results. 

        if self._Nr_cache is None: 

            self._cache_Nr_values() 

 

        if r >= len(self._Nr_cache): return 0 

        return self._Nr_cache[r] 

 

    def _cache_Nr_values(self): 

        Nr = [0] 

        for sample in self: 

            c = self.get(sample, 0) 

            if c >= len(Nr): 

                Nr += [0]*(c+1-len(Nr)) 

            Nr[c] += 1 

        self._Nr_cache = Nr 

 

    def _cumulative_frequencies(self, samples=None): 

        """ 

        Return the cumulative frequencies of the specified samples. 

        If no samples are specified, all counts are returned, starting 

        with the largest. 

 

        :param samples: the samples whose frequencies should be returned. 

        :type sample: any 

        :rtype: list(float) 

        """ 

        cf = 0.0 

        if not samples: 

            samples = self.keys() 

        for sample in samples: 

            cf += self[sample] 

            yield cf 

 

    # slightly odd nomenclature freq() if FreqDist does counts and ProbDist does probs, 

    # here, freq() does probs 

    def freq(self, sample): 

        """ 

        Return the frequency of a given sample.  The frequency of a 

        sample is defined as the count of that sample divided by the 

        total number of sample outcomes that have been recorded by 

        this FreqDist.  The count of a sample is defined as the 

        number of times that sample outcome was recorded by this 

        FreqDist.  Frequencies are always real numbers in the range 

        [0, 1]. 

 

        :param sample: the sample whose frequency 

               should be returned. 

        :type sample: any 

        :rtype: float 

        """ 

        if self._N is 0: 

            return 0 

        return float(self[sample]) / self._N 

 

    def max(self): 

        """ 

        Return the sample with the greatest number of outcomes in this 

        frequency distribution.  If two or more samples have the same 

        number of outcomes, return one of them; which sample is 

        returned is undefined.  If no outcomes have occurred in this 

        frequency distribution, return None. 

 

        :return: The sample with the maximum number of outcomes in this 

                frequency distribution. 

        :rtype: any or None 

        """ 

        if self._max_cache is None: 

            if len(self) == 0: 

                raise ValueError('A FreqDist must have at least one sample before max is defined.') 

            self._max_cache = max([(a,b) for (b,a) in self.items()])[1] 

        return self._max_cache 

 

    def plot(self, *args, **kwargs): 

        """ 

        Plot samples from the frequency distribution 

        displaying the most frequent sample first.  If an integer 

        parameter is supplied, stop after this many samples have been 

        plotted.  If two integer parameters m, n are supplied, plot a 

        subset of the samples, beginning with m and stopping at n-1. 

        For a cumulative plot, specify cumulative=True. 

        (Requires Matplotlib to be installed.) 

 

        :param title: The title for the graph 

        :type title: str 

        :param cumulative: A flag to specify whether the plot is cumulative (default = False) 

        :type title: bool 

        """ 

        try: 

            import pylab 

        except ImportError: 

            raise ValueError('The plot function requires the matplotlib package (aka pylab). ' 

                         'See http://matplotlib.sourceforge.net/') 

 

        if len(args) == 0: 

            args = [len(self)] 

        samples = list(islice(self, *args)) 

 

        cumulative = _get_kwarg(kwargs, 'cumulative', False) 

        if cumulative: 

            freqs = list(self._cumulative_frequencies(samples)) 

            ylabel = "Cumulative Counts" 

        else: 

            freqs = [self[sample] for sample in samples] 

            ylabel = "Counts" 

        # percents = [f * 100 for f in freqs]  only in ProbDist? 

 

        pylab.grid(True, color="silver") 

        if not "linewidth" in kwargs: 

            kwargs["linewidth"] = 2 

        if "title" in kwargs: 

            pylab.title(kwargs["title"]) 

            del kwargs["title"] 

        pylab.plot(freqs, **kwargs) 

        pylab.xticks(range(len(samples)), [unicode(s) for s in samples], rotation=90) 

        pylab.xlabel("Samples") 

        pylab.ylabel(ylabel) 

        pylab.show() 

 

    def tabulate(self, *args, **kwargs): 

        """ 

        Tabulate the given samples from the frequency distribution (cumulative), 

        displaying the most frequent sample first.  If an integer 

        parameter is supplied, stop after this many samples have been 

        plotted.  If two integer parameters m, n are supplied, plot a 

        subset of the samples, beginning with m and stopping at n-1. 

        (Requires Matplotlib to be installed.) 

 

        :param samples: The samples to plot (default is all samples) 

        :type samples: list 

        """ 

        if len(args) == 0: 

            args = [len(self)] 

        samples = list(islice(self, *args)) 

 

        cumulative = _get_kwarg(kwargs, 'cumulative', False) 

        if cumulative: 

            freqs = list(self._cumulative_frequencies(samples)) 

        else: 

            freqs = [self[sample] for sample in samples] 

        # percents = [f * 100 for f in freqs]  only in ProbDist? 

 

        for i in range(len(samples)): 

            print("%4s" % str(samples[i]), end=' ') 

        print() 

        for i in range(len(samples)): 

            print("%4d" % freqs[i], end=' ') 

        print() 

 

    def _sort_keys_by_value(self): 

        if not self._item_cache: 

            self._item_cache = sorted(dict.items(self), key=lambda x:(-x[1], x[0])) 

 

    def keys(self): 

        """ 

        Return the samples sorted in decreasing order of frequency. 

 

        :rtype: list(any) 

        """ 

        self._sort_keys_by_value() 

        # this will return iterator under python 3 

        return map(itemgetter(0), self._item_cache) 

 

    def values(self): 

        """ 

        Return the samples sorted in decreasing order of frequency. 

 

        :rtype: list(any) 

        """ 

        self._sort_keys_by_value() 

        # this will return iterator under python 3 

        return map(itemgetter(1), self._item_cache) 

 

    def items(self): 

        """ 

        Return the items sorted in decreasing order of frequency. 

 

        :rtype: list(tuple) 

        """ 

        self._sort_keys_by_value() 

        return self._item_cache[:] 

 

    def __iter__(self): 

        """ 

        Return the samples sorted in decreasing order of frequency. 

 

        :rtype: iter 

        """ 

        return iter(self.keys()) 

 

    def iterkeys(self): 

        """ 

        Return the samples sorted in decreasing order of frequency. 

 

        :rtype: iter 

        """ 

        return iter(self.keys()) 

 

    def itervalues(self): 

        """ 

        Return the values sorted in decreasing order. 

 

        :rtype: iter 

        """ 

        return iter(self.values()) 

 

    def iteritems(self): 

        """ 

        Return the items sorted in decreasing order of frequency. 

 

        :rtype: iter of any 

        """ 

        self._sort_keys_by_value() 

        return iter(self._item_cache) 

 

    def copy(self): 

        """ 

        Create a copy of this frequency distribution. 

 

        :rtype: FreqDist 

        """ 

        return self.__class__(self) 

 

    def update(self, samples): 

        """ 

        Update the frequency distribution with the provided list of samples. 

        This is a faster way to add multiple samples to the distribution. 

 

        :param samples: The samples to add. 

        :type samples: list 

        """ 

        try: 

            sample_iter = compat.iteritems(samples) 

        except: 

            sample_iter = ((x, 1) for x in samples) 

        for sample, count in sample_iter: 

            self.inc(sample, count=count) 

 

    def pop(self, other): 

        self._N -= 1 

        self._reset_caches() 

        return dict.pop(self, other) 

 

    def popitem(self): 

        self._N -= 1 

        self._reset_caches() 

        return dict.popitem(self) 

 

    def clear(self): 

        self._N = 0 

        self._reset_caches() 

        dict.clear(self) 

 

    def _reset_caches(self): 

        self._Nr_cache = None 

        self._max_cache = None 

        self._item_cache = None 

 

    def __add__(self, other): 

        clone = self.copy() 

        clone.update(other) 

        return clone 

 

    def __le__(self, other): 

        if not isinstance(other, FreqDist): return False 

        return set(self).issubset(other) and all(self[key] <= other[key] for key in self) 

    def __lt__(self, other): 

        if not isinstance(other, FreqDist): return False 

        return self <= other and self != other 

    def __ge__(self, other): 

        if not isinstance(other, FreqDist): return False 

        return other <= self 

    def __gt__(self, other): 

        if not isinstance(other, FreqDist): return False 

        return other < self 

 

    def __repr__(self): 

        """ 

        Return a string representation of this FreqDist. 

 

        :rtype: string 

        """ 

        return '<FreqDist with %d samples and %d outcomes>' % (len(self), self.N()) 

 

    def __str__(self): 

        """ 

        Return a string representation of this FreqDist. 

 

        :rtype: string 

        """ 

        items = ['%r: %r' % (s, self[s]) for s in self.keys()[:10]] 

        if len(self) > 10: 

            items.append('...') 

        return '<FreqDist: %s>' % ', '.join(items) 

 

    def __getitem__(self, sample): 

        return self.get(sample, 0) 

 

##////////////////////////////////////////////////////// 

##  Probability Distributions 

##////////////////////////////////////////////////////// 

 

class ProbDistI(object): 

    """ 

    A probability distribution for the outcomes of an experiment.  A 

    probability distribution specifies how likely it is that an 

    experiment will have any given outcome.  For example, a 

    probability distribution could be used to predict the probability 

    that a token in a document will have a given type.  Formally, a 

    probability distribution can be defined as a function mapping from 

    samples to nonnegative real numbers, such that the sum of every 

    number in the function's range is 1.0.  A ``ProbDist`` is often 

    used to model the probability distribution of the experiment used 

    to generate a frequency distribution. 

    """ 

    SUM_TO_ONE = True 

    """True if the probabilities of the samples in this probability 

       distribution will always sum to one.""" 

 

    def __init__(self): 

        if self.__class__ == ProbDistI: 

            raise NotImplementedError("Interfaces can't be instantiated") 

 

    def prob(self, sample): 

        """ 

        Return the probability for a given sample.  Probabilities 

        are always real numbers in the range [0, 1]. 

 

        :param sample: The sample whose probability 

               should be returned. 

        :type sample: any 

        :rtype: float 

        """ 

        raise NotImplementedError() 

 

    def logprob(self, sample): 

        """ 

        Return the base 2 logarithm of the probability for a given sample. 

 

        :param sample: The sample whose probability 

               should be returned. 

        :type sample: any 

        :rtype: float 

        """ 

        # Default definition, in terms of prob() 

        p = self.prob(sample) 

        if p == 0: 

            # Use some approximation to infinity.  What this does 

            # depends on your system's float implementation. 

            return _NINF 

        else: 

            return math.log(p, 2) 

 

    def max(self): 

        """ 

        Return the sample with the greatest probability.  If two or 

        more samples have the same probability, return one of them; 

        which sample is returned is undefined. 

 

        :rtype: any 

        """ 

        raise NotImplementedError() 

 

    def samples(self): 

        """ 

        Return a list of all samples that have nonzero probabilities. 

        Use ``prob`` to find the probability of each sample. 

 

        :rtype: list 

        """ 

        raise NotImplementedError() 

 

    # cf self.SUM_TO_ONE 

    def discount(self): 

        """ 

        Return the ratio by which counts are discounted on average: c*/c 

 

        :rtype: float 

        """ 

        return 0.0 

 

    # Subclasses should define more efficient implementations of this, 

    # where possible. 

    def generate(self): 

        """ 

        Return a randomly selected sample from this probability distribution. 

        The probability of returning each sample ``samp`` is equal to 

        ``self.prob(samp)``. 

        """ 

        p = random.random() 

        for sample in self.samples(): 

            p -= self.prob(sample) 

            if p <= 0: return sample 

        # allow for some rounding error: 

        if p < .0001: 

            return sample 

        # we *should* never get here 

        if self.SUM_TO_ONE: 

            warnings.warn("Probability distribution %r sums to %r; generate()" 

                          " is returning an arbitrary sample." % (self, 1-p)) 

        return random.choice(list(self.samples())) 

 

class UniformProbDist(ProbDistI): 

    """ 

    A probability distribution that assigns equal probability to each 

    sample in a given set; and a zero probability to all other 

    samples. 

    """ 

    def __init__(self, samples): 

        """ 

        Construct a new uniform probability distribution, that assigns 

        equal probability to each sample in ``samples``. 

 

        :param samples: The samples that should be given uniform 

            probability. 

        :type samples: list 

        :raise ValueError: If ``samples`` is empty. 

        """ 

        if len(samples) == 0: 

            raise ValueError('A Uniform probability distribution must '+ 

                             'have at least one sample.') 

        self._sampleset = set(samples) 

        self._prob = 1.0/len(self._sampleset) 

        self._samples = list(self._sampleset) 

 

    def prob(self, sample): 

        if sample in self._sampleset: return self._prob 

        else: return 0 

    def max(self): return self._samples[0] 

    def samples(self): return self._samples 

    def __repr__(self): 

        return '<UniformProbDist with %d samples>' % len(self._sampleset) 

 

class DictionaryProbDist(ProbDistI): 

    """ 

    A probability distribution whose probabilities are directly 

    specified by a given dictionary.  The given dictionary maps 

    samples to probabilities. 

    """ 

    def __init__(self, prob_dict=None, log=False, normalize=False): 

        """ 

        Construct a new probability distribution from the given 

        dictionary, which maps values to probabilities (or to log 

        probabilities, if ``log`` is true).  If ``normalize`` is 

        true, then the probability values are scaled by a constant 

        factor such that they sum to 1. 

 

        If called without arguments, the resulting probability 

        distribution assigns zero probabiliy to all values. 

        """ 

        if prob_dict is None: 

            self._prob_dict = {} 

        else: 

            self._prob_dict = prob_dict.copy() 

        self._log = log 

 

        # Normalize the distribution, if requested. 

        if normalize: 

            if log: 

                value_sum = sum_logs(list(self._prob_dict.values())) 

                if value_sum <= _NINF: 

                    logp = math.log(1.0/len(prob_dict), 2) 

                    for x in prob_dict: 

                        self._prob_dict[x] = logp 

                else: 

                    for (x, p) in self._prob_dict.items(): 

                        self._prob_dict[x] -= value_sum 

            else: 

                value_sum = sum(self._prob_dict.values()) 

                if value_sum == 0: 

                    p = 1.0/len(prob_dict) 

                    for x in prob_dict: 

                        self._prob_dict[x] = p 

                else: 

                    norm_factor = 1.0/value_sum 

                    for (x, p) in self._prob_dict.items(): 

                        self._prob_dict[x] *= norm_factor 

 

    def prob(self, sample): 

        if self._log: 

            if sample not in self._prob_dict: return 0 

            else: return 2**(self._prob_dict[sample]) 

        else: 

            return self._prob_dict.get(sample, 0) 

 

    def logprob(self, sample): 

        if self._log: 

            return self._prob_dict.get(sample, _NINF) 

        else: 

            if sample not in self._prob_dict: return _NINF 

            elif self._prob_dict[sample] == 0: return _NINF 

            else: return math.log(self._prob_dict[sample], 2) 

 

    def max(self): 

        if not hasattr(self, '_max'): 

            self._max = max((p,v) for (v,p) in self._prob_dict.items())[1] 

        return self._max 

    def samples(self): 

        return self._prob_dict.keys() 

    def __repr__(self): 

        return '<ProbDist with %d samples>' % len(self._prob_dict) 

 

class MLEProbDist(ProbDistI): 

    """ 

    The maximum likelihood estimate for the probability distribution 

    of the experiment used to generate a frequency distribution.  The 

    "maximum likelihood estimate" approximates the probability of 

    each sample as the frequency of that sample in the frequency 

    distribution. 

    """ 

    def __init__(self, freqdist, bins=None): 

        """ 

        Use the maximum likelihood estimate to create a probability 

        distribution for the experiment used to generate ``freqdist``. 

 

        :type freqdist: FreqDist 

        :param freqdist: The frequency distribution that the 

            probability estimates should be based on. 

        """ 

        self._freqdist = freqdist 

 

    def freqdist(self): 

        """ 

        Return the frequency distribution that this probability 

        distribution is based on. 

 

        :rtype: FreqDist 

        """ 

        return self._freqdist 

 

    def prob(self, sample): 

        return self._freqdist.freq(sample) 

 

    def max(self): 

        return self._freqdist.max() 

 

    def samples(self): 

        return self._freqdist.keys() 

 

    def __repr__(self): 

        """ 

        :rtype: str 

        :return: A string representation of this ``ProbDist``. 

        """ 

        return '<MLEProbDist based on %d samples>' % self._freqdist.N() 

 

class LidstoneProbDist(ProbDistI): 

    """ 

    The Lidstone estimate for the probability distribution of the 

    experiment used to generate a frequency distribution.  The 

    "Lidstone estimate" is paramaterized by a real number *gamma*, 

    which typically ranges from 0 to 1.  The Lidstone estimate 

    approximates the probability of a sample with count *c* from an 

    experiment with *N* outcomes and *B* bins as 

    ``c+gamma)/(N+B*gamma)``.  This is equivalant to adding 

    *gamma* to the count for each bin, and taking the maximum 

    likelihood estimate of the resulting frequency distribution. 

    """ 

    SUM_TO_ONE = False 

    def __init__(self, freqdist, gamma, bins=None): 

        """ 

        Use the Lidstone estimate to create a probability distribution 

        for the experiment used to generate ``freqdist``. 

 

        :type freqdist: FreqDist 

        :param freqdist: The frequency distribution that the 

            probability estimates should be based on. 

        :type gamma: float 

        :param gamma: A real number used to paramaterize the 

            estimate.  The Lidstone estimate is equivalant to adding 

            *gamma* to the count for each bin, and taking the 

            maximum likelihood estimate of the resulting frequency 

            distribution. 

        :type bins: int 

        :param bins: The number of sample values that can be generated 

            by the experiment that is described by the probability 

            distribution.  This value must be correctly set for the 

            probabilities of the sample values to sum to one.  If 

            ``bins`` is not specified, it defaults to ``freqdist.B()``. 

        """ 

        if (bins == 0) or (bins is None and freqdist.N() == 0): 

            name = self.__class__.__name__[:-8] 

            raise ValueError('A %s probability distribution ' % name + 

                             'must have at least one bin.') 

        if (bins is not None) and (bins < freqdist.B()): 

            name = self.__class__.__name__[:-8] 

            raise ValueError('\nThe number of bins in a %s distribution ' % name + 

                             '(%d) must be greater than or equal to\n' % bins + 

                             'the number of bins in the FreqDist used ' + 

                             'to create it (%d).' % freqdist.N()) 

 

        self._freqdist = freqdist 

        self._gamma = float(gamma) 

        self._N = self._freqdist.N() 

 

        if bins is None: bins = freqdist.B() 

        self._bins = bins 

 

        self._divisor = self._N + bins * gamma 

        if self._divisor == 0.0: 

            # In extreme cases we force the probability to be 0, 

            # which it will be, since the count will be 0: 

            self._gamma = 0 

            self._divisor = 1 

 

    def freqdist(self): 

        """ 

        Return the frequency distribution that this probability 

        distribution is based on. 

 

        :rtype: FreqDist 

        """ 

        return self._freqdist 

 

    def prob(self, sample): 

        c = self._freqdist[sample] 

        return (c + self._gamma) / self._divisor 

 

    def max(self): 

        # For Lidstone distributions, probability is monotonic with 

        # frequency, so the most probable sample is the one that 

        # occurs most frequently. 

        return self._freqdist.max() 

 

    def samples(self): 

        return self._freqdist.keys() 

 

    def discount(self): 

        gb = self._gamma * self._bins 

        return gb / (self._N + gb) 

 

    def __repr__(self): 

        """ 

        Return a string representation of this ``ProbDist``. 

 

        :rtype: str 

        """ 

        return '<LidstoneProbDist based on %d samples>' % self._freqdist.N() 

 

 

class LaplaceProbDist(LidstoneProbDist): 

    """ 

    The Laplace estimate for the probability distribution of the 

    experiment used to generate a frequency distribution.  The 

    "Laplace estimate" approximates the probability of a sample with 

    count *c* from an experiment with *N* outcomes and *B* bins as 

    *(c+1)/(N+B)*.  This is equivalant to adding one to the count for 

    each bin, and taking the maximum likelihood estimate of the 

    resulting frequency distribution. 

    """ 

    def __init__(self, freqdist, bins=None): 

        """ 

        Use the Laplace estimate to create a probability distribution 

        for the experiment used to generate ``freqdist``. 

 

        :type freqdist: FreqDist 

        :param freqdist: The frequency distribution that the 

            probability estimates should be based on. 

        :type bins: int 

        :param bins: The number of sample values that can be generated 

            by the experiment that is described by the probability 

            distribution.  This value must be correctly set for the 

            probabilities of the sample values to sum to one.  If 

            ``bins`` is not specified, it defaults to ``freqdist.B()``. 

        """ 

        LidstoneProbDist.__init__(self, freqdist, 1, bins) 

 

    def __repr__(self): 

        """ 

        :rtype: str 

        :return: A string representation of this ``ProbDist``. 

        """ 

        return '<LaplaceProbDist based on %d samples>' % self._freqdist.N() 

 

class ELEProbDist(LidstoneProbDist): 

    """ 

    The expected likelihood estimate for the probability distribution 

    of the experiment used to generate a frequency distribution.  The 

    "expected likelihood estimate" approximates the probability of a 

    sample with count *c* from an experiment with *N* outcomes and 

    *B* bins as *(c+0.5)/(N+B/2)*.  This is equivalant to adding 0.5 

    to the count for each bin, and taking the maximum likelihood 

    estimate of the resulting frequency distribution. 

    """ 

    def __init__(self, freqdist, bins=None): 

        """ 

        Use the expected likelihood estimate to create a probability 

        distribution for the experiment used to generate ``freqdist``. 

 

        :type freqdist: FreqDist 

        :param freqdist: The frequency distribution that the 

            probability estimates should be based on. 

        :type bins: int 

        :param bins: The number of sample values that can be generated 

            by the experiment that is described by the probability 

            distribution.  This value must be correctly set for the 

            probabilities of the sample values to sum to one.  If 

            ``bins`` is not specified, it defaults to ``freqdist.B()``. 

        """ 

        LidstoneProbDist.__init__(self, freqdist, 0.5, bins) 

 

    def __repr__(self): 

        """ 

        Return a string representation of this ``ProbDist``. 

 

        :rtype: str 

        """ 

        return '<ELEProbDist based on %d samples>' % self._freqdist.N() 

 

class HeldoutProbDist(ProbDistI): 

    """ 

    The heldout estimate for the probability distribution of the 

    experiment used to generate two frequency distributions.  These 

    two frequency distributions are called the "heldout frequency 

    distribution" and the "base frequency distribution."  The 

    "heldout estimate" uses uses the "heldout frequency 

    distribution" to predict the probability of each sample, given its 

    frequency in the "base frequency distribution". 

 

    In particular, the heldout estimate approximates the probability 

    for a sample that occurs *r* times in the base distribution as 

    the average frequency in the heldout distribution of all samples 

    that occur *r* times in the base distribution. 

 

    This average frequency is *Tr[r]/(Nr[r].N)*, where: 

 

    - *Tr[r]* is the total count in the heldout distribution for 

      all samples that occur *r* times in the base distribution. 

    - *Nr[r]* is the number of samples that occur *r* times in 

      the base distribution. 

    - *N* is the number of outcomes recorded by the heldout 

      frequency distribution. 

 

    In order to increase the efficiency of the ``prob`` member 

    function, *Tr[r]/(Nr[r].N)* is precomputed for each value of *r* 

    when the ``HeldoutProbDist`` is created. 

 

    :type _estimate: list(float) 

    :ivar _estimate: A list mapping from *r*, the number of 

        times that a sample occurs in the base distribution, to the 

        probability estimate for that sample.  ``_estimate[r]`` is 

        calculated by finding the average frequency in the heldout 

        distribution of all samples that occur *r* times in the base 

        distribution.  In particular, ``_estimate[r]`` = 

        *Tr[r]/(Nr[r].N)*. 

    :type _max_r: int 

    :ivar _max_r: The maximum number of times that any sample occurs 

        in the base distribution.  ``_max_r`` is used to decide how 

        large ``_estimate`` must be. 

    """ 

    SUM_TO_ONE = False 

    def __init__(self, base_fdist, heldout_fdist, bins=None): 

        """ 

        Use the heldout estimate to create a probability distribution 

        for the experiment used to generate ``base_fdist`` and 

        ``heldout_fdist``. 

 

        :type base_fdist: FreqDist 

        :param base_fdist: The base frequency distribution. 

        :type heldout_fdist: FreqDist 

        :param heldout_fdist: The heldout frequency distribution. 

        :type bins: int 

        :param bins: The number of sample values that can be generated 

            by the experiment that is described by the probability 

            distribution.  This value must be correctly set for the 

            probabilities of the sample values to sum to one.  If 

            ``bins`` is not specified, it defaults to ``freqdist.B()``. 

        """ 

 

        self._base_fdist = base_fdist 

        self._heldout_fdist = heldout_fdist 

 

        # The max number of times any sample occurs in base_fdist. 

        self._max_r = base_fdist[base_fdist.max()] 

 

        # Calculate Tr, Nr, and N. 

        Tr = self._calculate_Tr() 

        Nr = [base_fdist.Nr(r, bins) for r in range(self._max_r+1)] 

        N = heldout_fdist.N() 

 

        # Use Tr, Nr, and N to compute the probability estimate for 

        # each value of r. 

        self._estimate = self._calculate_estimate(Tr, Nr, N) 

 

    def _calculate_Tr(self): 

        """ 

        Return the list *Tr*, where *Tr[r]* is the total count in 

        ``heldout_fdist`` for all samples that occur *r* 

        times in ``base_fdist``. 

 

        :rtype: list(float) 

        """ 

        Tr = [0.0] * (self._max_r+1) 

        for sample in self._heldout_fdist: 

            r = self._base_fdist[sample] 

            Tr[r] += self._heldout_fdist[sample] 

        return Tr 

 

    def _calculate_estimate(self, Tr, Nr, N): 

        """ 

        Return the list *estimate*, where *estimate[r]* is the probability 

        estimate for any sample that occurs *r* times in the base frequency 

        distribution.  In particular, *estimate[r]* is *Tr[r]/(N[r].N)*. 

        In the special case that *N[r]=0*, *estimate[r]* will never be used; 

        so we define *estimate[r]=None* for those cases. 

 

        :rtype: list(float) 

        :type Tr: list(float) 

        :param Tr: the list *Tr*, where *Tr[r]* is the total count in 

            the heldout distribution for all samples that occur *r* 

            times in base distribution. 

        :type Nr: list(float) 

        :param Nr: The list *Nr*, where *Nr[r]* is the number of 

            samples that occur *r* times in the base distribution. 

        :type N: int 

        :param N: The total number of outcomes recorded by the heldout 

            frequency distribution. 

        """ 

        estimate = [] 

        for r in range(self._max_r+1): 

            if Nr[r] == 0: estimate.append(None) 

            else: estimate.append(Tr[r]/(Nr[r]*N)) 

        return estimate 

 

    def base_fdist(self): 

        """ 

        Return the base frequency distribution that this probability 

        distribution is based on. 

 

        :rtype: FreqDist 

        """ 

        return self._base_fdist 

 

    def heldout_fdist(self): 

        """ 

        Return the heldout frequency distribution that this 

        probability distribution is based on. 

 

        :rtype: FreqDist 

        """ 

        return self._heldout_fdist 

 

    def samples(self): 

        return self._base_fdist.keys() 

 

    def prob(self, sample): 

        # Use our precomputed probability estimate. 

        r = self._base_fdist[sample] 

        return self._estimate[r] 

 

    def max(self): 

        # Note: the Heldout estimation is *not* necessarily monotonic; 

        # so this implementation is currently broken.  However, it 

        # should give the right answer *most* of the time. :) 

        return self._base_fdist.max() 

 

    def discount(self): 

        raise NotImplementedError() 

 

    def __repr__(self): 

        """ 

        :rtype: str 

        :return: A string representation of this ``ProbDist``. 

        """ 

        s = '<HeldoutProbDist: %d base samples; %d heldout samples>' 

        return s % (self._base_fdist.N(), self._heldout_fdist.N()) 

 

class CrossValidationProbDist(ProbDistI): 

    """ 

    The cross-validation estimate for the probability distribution of 

    the experiment used to generate a set of frequency distribution. 

    The "cross-validation estimate" for the probability of a sample 

    is found by averaging the held-out estimates for the sample in 

    each pair of frequency distributions. 

    """ 

    SUM_TO_ONE = False 

    def __init__(self, freqdists, bins): 

        """ 

        Use the cross-validation estimate to create a probability 

        distribution for the experiment used to generate 

        ``freqdists``. 

 

        :type freqdists: list(FreqDist) 

        :param freqdists: A list of the frequency distributions 

            generated by the experiment. 

        :type bins: int 

        :param bins: The number of sample values that can be generated 

            by the experiment that is described by the probability 

            distribution.  This value must be correctly set for the 

            probabilities of the sample values to sum to one.  If 

            ``bins`` is not specified, it defaults to ``freqdist.B()``. 

        """ 

        self._freqdists = freqdists 

 

        # Create a heldout probability distribution for each pair of 

        # frequency distributions in freqdists. 

        self._heldout_probdists = [] 

        for fdist1 in freqdists: 

            for fdist2 in freqdists: 

                if fdist1 is not fdist2: 

                    probdist = HeldoutProbDist(fdist1, fdist2, bins) 

                    self._heldout_probdists.append(probdist) 

 

    def freqdists(self): 

        """ 

        Return the list of frequency distributions that this ``ProbDist`` is based on. 

 

        :rtype: list(FreqDist) 

        """ 

        return self._freqdists 

 

    def samples(self): 

        # [xx] nb: this is not too efficient 

        return set(sum([fd.keys() for fd in self._freqdists], [])) 

 

    def prob(self, sample): 

        # Find the average probability estimate returned by each 

        # heldout distribution. 

        prob = 0.0 

        for heldout_probdist in self._heldout_probdists: 

            prob += heldout_probdist.prob(sample) 

        return prob/len(self._heldout_probdists) 

 

    def discount(self): 

        raise NotImplementedError() 

 

    def __repr__(self): 

        """ 

        Return a string representation of this ``ProbDist``. 

 

        :rtype: str 

        """ 

        return '<CrossValidationProbDist: %d-way>' % len(self._freqdists) 

 

class WittenBellProbDist(ProbDistI): 

    """ 

    The Witten-Bell estimate of a probability distribution. This distribution 

    allocates uniform probability mass to as yet unseen events by using the 

    number of events that have only been seen once. The probability mass 

    reserved for unseen events is equal to *T / (N + T)* 

    where *T* is the number of observed event types and *N* is the total 

    number of observed events. This equates to the maximum likelihood estimate 

    of a new type event occurring. The remaining probability mass is discounted 

    such that all probability estimates sum to one, yielding: 

 

        - *p = T / Z (N + T)*, if count = 0 

        - *p = c / (N + T)*, otherwise 

    """ 

 

    def __init__(self, freqdist, bins=None): 

        """ 

        Creates a distribution of Witten-Bell probability estimates.  This 

        distribution allocates uniform probability mass to as yet unseen 

        events by using the number of events that have only been seen once. The 

        probability mass reserved for unseen events is equal to *T / (N + T)* 

        where *T* is the number of observed event types and *N* is the total 

        number of observed events. This equates to the maximum likelihood 

        estimate of a new type event occurring. The remaining probability mass 

        is discounted such that all probability estimates sum to one, 

        yielding: 

 

            - *p = T / Z (N + T)*, if count = 0 

            - *p = c / (N + T)*, otherwise 

 

        The parameters *T* and *N* are taken from the ``freqdist`` parameter 

        (the ``B()`` and ``N()`` values). The normalising factor *Z* is 

        calculated using these values along with the ``bins`` parameter. 

 

        :param freqdist: The frequency counts upon which to base the 

            estimation. 

        :type freqdist: FreqDist 

        :param bins: The number of possible event types. This must be at least 

            as large as the number of bins in the ``freqdist``. If None, then 

            it's assumed to be equal to that of the ``freqdist`` 

        :type bins: int 

        """ 

        assert bins is None or bins >= freqdist.B(),\ 

               'Bins parameter must not be less than freqdist.B()' 

        if bins is None: 

            bins = freqdist.B() 

        self._freqdist = freqdist 

        self._T = self._freqdist.B() 

        self._Z = bins - self._freqdist.B() 

        self._N = self._freqdist.N() 

        # self._P0 is P(0), precalculated for efficiency: 

        if self._N==0: 

            # if freqdist is empty, we approximate P(0) by a UniformProbDist: 

            self._P0 = 1.0 / self._Z 

        else: 

            self._P0 = self._T / float(self._Z * (self._N + self._T)) 

 

    def prob(self, sample): 

        # inherit docs from ProbDistI 

        c = self._freqdist[sample] 

        if c == 0: 

            return self._P0 

        else: 

            return c / float(self._N + self._T) 

 

    def max(self): 

        return self._freqdist.max() 

 

    def samples(self): 

        return self._freqdist.keys() 

 

    def freqdist(self): 

        return self._freqdist 

 

    def discount(self): 

        raise NotImplementedError() 

 

    def __repr__(self): 

        """ 

        Return a string representation of this ``ProbDist``. 

 

        :rtype: str 

        """ 

        return '<WittenBellProbDist based on %d samples>' % self._freqdist.N() 

 

 

##////////////////////////////////////////////////////// 

##  Good-Turing Probablity Distributions 

##////////////////////////////////////////////////////// 

 

# Good-Turing frequency estimation was contributed by Alan Turing and 

# his statistical assistant I.J. Good, during their collaboration in 

# the WWII.  It is a statistical technique for predicting the 

# probability of occurrence of objects belonging to an unknown number 

# of species, given past observations of such objects and their 

# species. (In drawing balls from an urn, the 'objects' would be balls 

# and the 'species' would be the distinct colors of the balls (finite 

# but unknown in number). 

# 

# The situation frequency zero is quite common in the original 

# Good-Turing estimation.  Bill Gale and Geoffrey Sampson present a 

# simple and effective approach, Simple Good-Turing.  As a smoothing 

# curve they simply use a power curve: 

# 

#     Nr = a*r^b (with b < -1 to give the appropriate hyperbolic 

#     relationsihp) 

# 

# They estimate a and b by simple linear regression technique on the 

# logarithmic form of the equation: 

# 

#     log Nr = a + b*log(r) 

# 

# However, they suggest that such a simple curve is probably only 

# appropriate for high values of r. For low values of r, they use the 

# measured Nr directly.  (see M&S, p.213) 

# 

# Gale and Sampson propose to use r while the difference between r and 

# r* is 1.96 greather than the standar deviation, and switch to r* if 

# it is less or equal: 

# 

#     |r - r*| > 1.96 * sqrt((r + 1)^2 (Nr+1 / Nr^2) (1 + Nr+1 / Nr)) 

# 

# The 1.96 coefficient correspond to a 0.05 significance criterion, 

# some implementations can use a coefficient of 1.65 for a 0.1 

# significance criterion. 

# 

 

class GoodTuringProbDist(ProbDistI): 

    """ 

    The Good-Turing estimate of a probability distribution. This method 

    calculates the probability mass to assign to events with zero or low 

    counts based on the number of events with higher counts. It does so by 

    using the smoothed count *c\**: 

 

        - *c\* = (c + 1) N(c + 1) / N(c)*   for c >= 1 

        - *things with frequency zero in training* = N(1)  for c == 0 

 

    where *c* is the original count, *N(i)* is the number of event types 

    observed with count *i*. We can think the count of unseen as the count 

    of frequency one (see Jurafsky & Martin 2nd Edition, p101). 

    """ 

 

    def __init__(self, freqdist, bins=None): 

        """ 

        :param freqdist: The frequency counts upon which to base the 

            estimation. 

        :type freqdist: FreqDist 

        :param bins: The number of possible event types. This must be at least 

            as large as the number of bins in the ``freqdist``. If None, then 

            it's assumed to be equal to that of the ``freqdist`` 

        :type bins: int 

        """ 

        assert bins is None or bins >= freqdist.B(),\ 

               'Bins parameter must not be less than freqdist.B()' 

        if bins is None: 

            bins = freqdist.B() 

        self._freqdist = freqdist 

        self._bins = bins 

 

    def prob(self, sample): 

        count = self._freqdist[sample] 

 

        # unseen sample's frequency (count zero) uses frequency one's 

        if count == 0 and self._freqdist.N() != 0: 

            p0 = 1.0 * self._freqdist.Nr(1) / self._freqdist.N() 

            if self._bins == self._freqdist.B(): 

                p0 = 0.0 

            else: 

                p0 = p0 / (1.0 * self._bins - self._freqdist.B()) 

 

        nc = self._freqdist.Nr(count) 

        ncn = self._freqdist.Nr(count + 1) 

 

        # avoid divide-by-zero errors for sparse datasets 

        if nc == 0 or self._freqdist.N() == 0: 

            return 0 

 

        return 1.0 * (count + 1) * ncn / (nc * self._freqdist.N()) 

 

    def max(self): 

        return self._freqdist.max() 

 

    def samples(self): 

        return self._freqdist.keys() 

 

    def discount(self): 

        """ 

        :return: The probability mass transferred from the 

            seen samples to the unseen samples. 

        :rtype: float 

        """ 

        return 1.0 * self._freqdist.Nr(1) / self._freqdist.N() 

 

    def freqdist(self): 

        return self._freqdist 

 

    def __repr__(self): 

        """ 

        Return a string representation of this ``ProbDist``. 

 

        :rtype: str 

        """ 

        return '<GoodTuringProbDist based on %d samples>' % self._freqdist.N() 

 

 

##////////////////////////////////////////////////////// 

##  Simple Good-Turing Probablity Distributions 

##////////////////////////////////////////////////////// 

 

class SimpleGoodTuringProbDist(ProbDistI): 

    """ 

    SimpleGoodTuring ProbDist approximates from frequency to freqency of 

    frequency into a linear line under log space by linear regression. 

    Details of Simple Good-Turing algorithm can be found in: 

 

    - Good Turing smoothing without tears" (Gale & Sampson 1995), 

      Journal of Quantitative Linguistics, vol. 2 pp. 217-237. 

    - "Speech and Language Processing (Jurafsky & Martin), 

      2nd Edition, Chapter 4.5 p103 (log(Nc) =  a + b*log(c)) 

    - http://www.grsampson.net/RGoodTur.html 

 

    Given a set of pair (xi, yi),  where the xi denotes the freqency and 

    yi denotes the freqency of freqency, we want to minimize their 

    square variation. E(x) and E(y) represent the mean of xi and yi. 

 

    - slope: b = sigma ((xi-E(x)(yi-E(y))) / sigma ((xi-E(x))(xi-E(x))) 

    - intercept: a = E(y) - b.E(x) 

    """ 

    def __init__(self, freqdist, bins=None): 

        """ 

        :param freqdist: The frequency counts upon which to base the 

            estimation. 

        :type freqdist: FreqDist 

        :param bins: The number of possible event types. This must be 

            larger than the number of bins in the ``freqdist``. If None, 

            then it's assumed to be equal to ``freqdist``.B() + 1 

        :type bins: int 

        """ 

        assert bins is None or bins > freqdist.B(),\ 

               'Bins parameter must not be less than freqdist.B() + 1' 

        if bins is None: 

            bins = freqdist.B() + 1 

        self._freqdist = freqdist 

        self._bins = bins 

        r, nr = self._r_Nr() 

        self.find_best_fit(r, nr) 

        self._switch(r, nr) 

        self._renormalize(r, nr) 

 

    def _r_Nr(self): 

        """ 

        Split the frequency distribution in two list (r, Nr), where Nr(r) > 0 

        """ 

        r, nr = [], [] 

        b, i = 0, 0 

        while b != self._freqdist.B(): 

            nr_i = self._freqdist.Nr(i) 

            if nr_i > 0: 

                b += nr_i 

                r.append(i) 

                nr.append(nr_i) 

            i += 1 

        return (r, nr) 

 

    def find_best_fit(self, r, nr): 

        """ 

        Use simple linear regression to tune parameters self._slope and 

        self._intercept in the log-log space based on count and Nr(count) 

        (Work in log space to avoid floating point underflow.) 

        """ 

        # For higher sample frequencies the data points becomes horizontal 

        # along line Nr=1. To create a more evident linear model in log-log 

        # space, we average positive Nr values with the surrounding zero 

        # values. (Church and Gale, 1991) 

 

        if not r or not nr: 

            # Empty r or nr? 

            return 

 

        zr = [] 

        for j in range(len(r)): 

            if j > 0: 

                i = r[j-1] 

            else: 

                i = 0 

            if j != len(r) - 1: 

                k = r[j+1] 

            else: 

                k = 2 * r[j] - i 

            zr_ = 2.0 * nr[j] / (k - i) 

            zr.append(zr_) 

 

        log_r = [math.log(i) for i in r] 

        log_zr = [math.log(i) for i in zr] 

 

        xy_cov = x_var = 0.0 

        x_mean = 1.0 * sum(log_r) / len(log_r) 

        y_mean = 1.0 * sum(log_zr) / len(log_zr) 

        for (x, y) in zip(log_r, log_zr): 

            xy_cov += (x - x_mean) * (y - y_mean) 

            x_var += (x - x_mean)**2 

        if x_var != 0: 

            self._slope = xy_cov / x_var 

        else: 

            self._slope = 0.0 

        self._intercept = y_mean - self._slope * x_mean 

 

    def _switch(self, r, nr): 

        """ 

        Calculate the r frontier where we must switch from Nr to Sr 

        when estimating E[Nr]. 

        """ 

        for i, r_ in enumerate(r): 

            if len(r) == i + 1 or r[i+1] != r_ + 1: 

                # We are at the end of r, or there is a gap in r 

                self._switch_at = r_ 

                break 

 

            Sr = self.smoothedNr 

            smooth_r_star = (r_ + 1) * Sr(r_+1) / Sr(r_) 

            unsmooth_r_star = 1.0 * (r_ + 1) * nr[i+1] / nr[i] 

 

            std = math.sqrt(self._variance(r_, nr[i], nr[i+1])) 

            if abs(unsmooth_r_star-smooth_r_star) <= 1.96 * std: 

                self._switch_at = r_ 

                break 

 

    def _variance(self, r, nr, nr_1): 

        r = float(r) 

        nr = float(nr) 

        nr_1 = float(nr_1) 

        return (r + 1.0)**2 * (nr_1 / nr**2) * (1.0 + nr_1 / nr) 

 

    def _renormalize(self, r, nr): 

        """ 

        It is necessary to renormalize all the probability estimates to 

        ensure a proper probability distribution results. This can be done 

        by keeping the estimate of the probability mass for unseen items as 

        N(1)/N and renormalizing all the estimates for previously seen items 

        (as Gale and Sampson (1995) propose). (See M&S P.213, 1999) 

        """ 

        prob_cov = 0.0 

        for r_, nr_ in zip(r, nr): 

            prob_cov  += nr_ * self._prob_measure(r_) 

        if prob_cov: 

            self._renormal = (1 - self._prob_measure(0)) / prob_cov 

 

    def smoothedNr(self, r): 

        """ 

        Return the number of samples with count r. 

 

        :param r: The amount of freqency. 

        :type r: int 

        :rtype: float 

        """ 

 

        # Nr = a*r^b (with b < -1 to give the appropriate hyperbolic 

        # relationship) 

        # Estimate a and b by simple linear regression technique on 

        # the logarithmic form of the equation: log Nr = a + b*log(r) 

 

        return math.exp(self._intercept + self._slope * math.log(r)) 

 

    def prob(self, sample): 

        """ 

        Return the sample's probability. 

 

        :param sample: sample of the event 

        :type sample: str 

        :rtype: float 

        """ 

        count = self._freqdist[sample] 

        p = self._prob_measure(count) 

        if count == 0: 

            if self._bins == self._freqdist.B(): 

                p = 0.0 

            else: 

                p = p / (1.0 * self._bins - self._freqdist.B()) 

        else: 

            p = p * self._renormal 

        return p 

 

    def _prob_measure(self, count): 

        if count == 0 and self._freqdist.N() == 0 : 

            return 1.0 

        elif count == 0 and self._freqdist.N() != 0: 

            return 1.0 * self._freqdist.Nr(1) / self._freqdist.N() 

 

        if self._switch_at > count: 

            Er_1 = 1.0 * self._freqdist.Nr(count+1) 

            Er = 1.0 * self._freqdist.Nr(count) 

        else: 

            Er_1 = self.smoothedNr(count+1) 

            Er = self.smoothedNr(count) 

 

        r_star = (count + 1) * Er_1 / Er 

        return r_star / self._freqdist.N() 

 

    def check(self): 

        prob_sum = 0.0 

        for i in  range(0, len(self._Nr)): 

            prob_sum += self._Nr[i] * self._prob_measure(i) / self._renormal 

        print("Probability Sum:", prob_sum) 

        #assert prob_sum != 1.0, "probability sum should be one!" 

 

    def discount(self): 

        """ 

        This function returns the total mass of probability transfers from the 

        seen samples to the unseen samples. 

        """ 

        return  1.0 * self.smoothedNr(1) / self._freqdist.N() 

 

    def max(self): 

        return self._freqdist.max() 

 

    def samples(self): 

        return self._freqdist.keys() 

 

    def freqdist(self): 

        return self._freqdist 

 

    def __repr__(self): 

        """ 

        Return a string representation of this ``ProbDist``. 

 

        :rtype: str 

        """ 

        return '<SimpleGoodTuringProbDist based on %d samples>'\ 

                % self._freqdist.N() 

 

 

class MutableProbDist(ProbDistI): 

    """ 

    An mutable probdist where the probabilities may be easily modified. This 

    simply copies an existing probdist, storing the probability values in a 

    mutable dictionary and providing an update method. 

    """ 

 

    def __init__(self, prob_dist, samples, store_logs=True): 

        """ 

        Creates the mutable probdist based on the given prob_dist and using 

        the list of samples given. These values are stored as log 

        probabilities if the store_logs flag is set. 

 

        :param prob_dist: the distribution from which to garner the 

            probabilities 

        :type prob_dist: ProbDist 

        :param samples: the complete set of samples 

        :type samples: sequence of any 

        :param store_logs: whether to store the probabilities as logarithms 

        :type store_logs: bool 

        """ 

        try: 

            import numpy 

        except ImportError: 

            print("Error: Please install numpy; for instructions see http://www.nltk.org/") 

            exit() 

        self._samples = samples 

        self._sample_dict = dict((samples[i], i) for i in range(len(samples))) 

        self._data = numpy.zeros(len(samples), numpy.float64) 

        for i in range(len(samples)): 

            if store_logs: 

                self._data[i] = prob_dist.logprob(samples[i]) 

            else: 

                self._data[i] = prob_dist.prob(samples[i]) 

        self._logs = store_logs 

 

    def samples(self): 

        # inherit documentation 

        return self._samples 

 

    def prob(self, sample): 

        # inherit documentation 

        i = self._sample_dict.get(sample) 

        if i is not None: 

            if self._logs: 

                return 2**(self._data[i]) 

            else: 

                return self._data[i] 

        else: 

            return 0.0 

 

    def logprob(self, sample): 

        # inherit documentation 

        i = self._sample_dict.get(sample) 

        if i is not None: 

            if self._logs: 

                return self._data[i] 

            else: 

                return math.log(self._data[i], 2) 

        else: 

            return float('-inf') 

 

    def update(self, sample, prob, log=True): 

        """ 

        Update the probability for the given sample. This may cause the object 

        to stop being the valid probability distribution - the user must 

        ensure that they update the sample probabilities such that all samples 

        have probabilities between 0 and 1 and that all probabilities sum to 

        one. 

 

        :param sample: the sample for which to update the probability 

        :type sample: any 

        :param prob: the new probability 

        :type prob: float 

        :param log: is the probability already logged 

        :type log: bool 

        """ 

        i = self._sample_dict.get(sample) 

        assert i is not None 

        if self._logs: 

            if log: self._data[i] = prob 

            else:   self._data[i] = math.log(prob, 2) 

        else: 

            if log: self._data[i] = 2**(prob) 

            else:   self._data[i] = prob 

 

##////////////////////////////////////////////////////// 

##  Probability Distribution Operations 

##////////////////////////////////////////////////////// 

 

def log_likelihood(test_pdist, actual_pdist): 

    if (not isinstance(test_pdist, ProbDistI) or 

        not isinstance(actual_pdist, ProbDistI)): 

        raise ValueError('expected a ProbDist.') 

    # Is this right? 

    return sum(actual_pdist.prob(s) * math.log(test_pdist.prob(s), 2) 

               for s in actual_pdist) 

 

def entropy(pdist): 

    probs = [pdist.prob(s) for s in pdist.samples()] 

    return -sum([p * math.log(p,2) for p in probs]) 

 

##////////////////////////////////////////////////////// 

##  Conditional Distributions 

##////////////////////////////////////////////////////// 

 

class ConditionalFreqDist(defaultdict): 

    """ 

    A collection of frequency distributions for a single experiment 

    run under different conditions.  Conditional frequency 

    distributions are used to record the number of times each sample 

    occurred, given the condition under which the experiment was run. 

    For example, a conditional frequency distribution could be used to 

    record the frequency of each word (type) in a document, given its 

    length.  Formally, a conditional frequency distribution can be 

    defined as a function that maps from each condition to the 

    FreqDist for the experiment under that condition. 

 

    Conditional frequency distributions are typically constructed by 

    repeatedly running an experiment under a variety of conditions, 

    and incrementing the sample outcome counts for the appropriate 

    conditions.  For example, the following code will produce a 

    conditional frequency distribution that encodes how often each 

    word type occurs, given the length of that word type: 

 

        >>> from nltk.probability import ConditionalFreqDist 

        >>> from nltk.tokenize import word_tokenize 

        >>> sent = "the the the dog dog some other words that we do not care about" 

        >>> cfdist = ConditionalFreqDist() 

        >>> for word in word_tokenize(sent): 

        ...     condition = len(word) 

        ...     cfdist[condition].inc(word) 

 

    An equivalent way to do this is with the initializer: 

 

        >>> cfdist = ConditionalFreqDist((len(word), word) for word in word_tokenize(sent)) 

 

    The frequency distribution for each condition is accessed using 

    the indexing operator: 

 

        >>> cfdist[3] 

        <FreqDist with 6 outcomes> 

        >>> cfdist[3].freq('the') 

        0.5 

        >>> cfdist[3]['dog'] 

        2 

 

    When the indexing operator is used to access the frequency 

    distribution for a condition that has not been accessed before, 

    ``ConditionalFreqDist`` creates a new empty FreqDist for that 

    condition. 

 

    """ 

    def __init__(self, cond_samples=None): 

        """ 

        Construct a new empty conditional frequency distribution.  In 

        particular, the count for every sample, under every condition, 

        is zero. 

 

        :param cond_samples: The samples to initialize the conditional 

            frequency distribution with 

        :type cond_samples: Sequence of (condition, sample) tuples 

        """ 

        defaultdict.__init__(self, FreqDist) 

        if cond_samples: 

            for (cond, sample) in cond_samples: 

                self[cond].inc(sample) 

 

    def conditions(self): 

        """ 

        Return a list of the conditions that have been accessed for 

        this ``ConditionalFreqDist``.  Use the indexing operator to 

        access the frequency distribution for a given condition. 

        Note that the frequency distributions for some conditions 

        may contain zero sample outcomes. 

 

        :rtype: list 

        """ 

        return sorted(self.keys()) 

 

    def N(self): 

        """ 

        Return the total number of sample outcomes that have been 

        recorded by this ``ConditionalFreqDist``. 

 

        :rtype: int 

        """ 

        return sum(fdist.N() for fdist in compat.itervalues(self)) 

 

    def plot(self, *args, **kwargs): 

        """ 

        Plot the given samples from the conditional frequency distribution. 

        For a cumulative plot, specify cumulative=True. 

        (Requires Matplotlib to be installed.) 

 

        :param samples: The samples to plot 

        :type samples: list 

        :param title: The title for the graph 

        :type title: str 

        :param conditions: The conditions to plot (default is all) 

        :type conditions: list 

        """ 

        try: 

            import pylab 

        except ImportError: 

            raise ValueError('The plot function requires the matplotlib package (aka pylab).' 

                             'See http://matplotlib.sourceforge.net/') 

 

        cumulative = _get_kwarg(kwargs, 'cumulative', False) 

        conditions = _get_kwarg(kwargs, 'conditions', self.conditions()) 

        title = _get_kwarg(kwargs, 'title', '') 

        samples = _get_kwarg(kwargs, 'samples', 

                             sorted(set(v for c in conditions for v in self[c])))  # this computation could be wasted 

        if not "linewidth" in kwargs: 

            kwargs["linewidth"] = 2 

 

        for condition in conditions: 

            if cumulative: 

                freqs = list(self[condition]._cumulative_frequencies(samples)) 

                ylabel = "Cumulative Counts" 

                legend_loc = 'lower right' 

            else: 

                freqs = [self[condition][sample] for sample in samples] 

                ylabel = "Counts" 

                legend_loc = 'upper right' 

            # percents = [f * 100 for f in freqs] only in ConditionalProbDist? 

            kwargs['label'] = str(condition) 

            pylab.plot(freqs, *args, **kwargs) 

 

        pylab.legend(loc=legend_loc) 

        pylab.grid(True, color="silver") 

        pylab.xticks(range(len(samples)), [unicode(s) for s in samples], rotation=90) 

        if title: 

            pylab.title(title) 

        pylab.xlabel("Samples") 

        pylab.ylabel(ylabel) 

        pylab.show() 

 

    def tabulate(self, *args, **kwargs): 

        """ 

        Tabulate the given samples from the conditional frequency distribution. 

 

        :param samples: The samples to plot 

        :type samples: list 

        :param title: The title for the graph 

        :type title: str 

        :param conditions: The conditions to plot (default is all) 

        :type conditions: list 

        """ 

 

        cumulative = _get_kwarg(kwargs, 'cumulative', False) 

        conditions = _get_kwarg(kwargs, 'conditions', self.conditions()) 

        samples = _get_kwarg(kwargs, 'samples', 

                             sorted(set(v for c in conditions for v in self[c])))  # this computation could be wasted 

 

        condition_size = max(len(str(c)) for c in conditions) 

        print(' ' * condition_size, end=' ') 

        for s in samples: 

            print("%4s" % str(s), end=' ') 

        print() 

        for c in conditions: 

            print("%*s" % (condition_size, str(c)), end=' ') 

            if cumulative: 

                freqs = list(self[c]._cumulative_frequencies(samples)) 

            else: 

                freqs = [self[c][sample] for sample in samples] 

 

            for f in freqs: 

                print("%4d" % f, end=' ') 

            print() 

 

    def __le__(self, other): 

        if not isinstance(other, ConditionalFreqDist): return False 

        return set(self.conditions()).issubset(other.conditions()) \ 

               and all(self[c] <= other[c] for c in self.conditions()) 

    def __lt__(self, other): 

        if not isinstance(other, ConditionalFreqDist): return False 

        return self <= other and self != other 

    def __ge__(self, other): 

        if not isinstance(other, ConditionalFreqDist): return False 

        return other <= self 

    def __gt__(self, other): 

        if not isinstance(other, ConditionalFreqDist): return False 

        return other < self 

 

    def __repr__(self): 

        """ 

        Return a string representation of this ``ConditionalFreqDist``. 

 

        :rtype: str 

        """ 

        return '<ConditionalFreqDist with %d conditions>' % len(self) 

 

 

class ConditionalProbDistI(defaultdict): 

    """ 

    A collection of probability distributions for a single experiment 

    run under different conditions.  Conditional probability 

    distributions are used to estimate the likelihood of each sample, 

    given the condition under which the experiment was run.  For 

    example, a conditional probability distribution could be used to 

    estimate the probability of each word type in a document, given 

    the length of the word type.  Formally, a conditional probability 

    distribution can be defined as a function that maps from each 

    condition to the ``ProbDist`` for the experiment under that 

    condition. 

    """ 

    def __init__(self): 

        raise NotImplementedError("Interfaces can't be instantiated") 

 

    def conditions(self): 

        """ 

        Return a list of the conditions that are represented by 

        this ``ConditionalProbDist``.  Use the indexing operator to 

        access the probability distribution for a given condition. 

 

        :rtype: list 

        """ 

        return self.keys() 

 

    def __repr__(self): 

        """ 

        Return a string representation of this ``ConditionalProbDist``. 

 

        :rtype: str 

        """ 

        return '<%s with %d conditions>' % (type(self).__name__, len(self)) 

 

 

class ConditionalProbDist(ConditionalProbDistI): 

    """ 

    A conditional probability distribution modelling the experiments 

    that were used to generate a conditional frequency distribution. 

    A ConditionalProbDist is constructed from a 

    ``ConditionalFreqDist`` and a ``ProbDist`` factory: 

 

    - The ``ConditionalFreqDist`` specifies the frequency 

      distribution for each condition. 

    - The ``ProbDist`` factory is a function that takes a 

      condition's frequency distribution, and returns its 

      probability distribution.  A ``ProbDist`` class's name (such as 

      ``MLEProbDist`` or ``HeldoutProbDist``) can be used to specify 

      that class's constructor. 

 

    The first argument to the ``ProbDist`` factory is the frequency 

    distribution that it should model; and the remaining arguments are 

    specified by the ``factory_args`` parameter to the 

    ``ConditionalProbDist`` constructor.  For example, the following 

    code constructs a ``ConditionalProbDist``, where the probability 

    distribution for each condition is an ``ELEProbDist`` with 10 bins: 

 

        >>> from nltk.probability import ConditionalProbDist, ELEProbDist 

        >>> cpdist = ConditionalProbDist(cfdist, ELEProbDist, 10) 

        >>> print(cpdist['run'].max()) 

        'NN' 

        >>> print(cpdist['run'].prob('NN')) 

        0.0813 

    """ 

    def __init__(self, cfdist, probdist_factory, 

                 *factory_args, **factory_kw_args): 

        """ 

        Construct a new conditional probability distribution, based on 

        the given conditional frequency distribution and ``ProbDist`` 

        factory. 

 

        :type cfdist: ConditionalFreqDist 

        :param cfdist: The ``ConditionalFreqDist`` specifying the 

            frequency distribution for each condition. 

        :type probdist_factory: class or function 

        :param probdist_factory: The function or class that maps 

            a condition's frequency distribution to its probability 

            distribution.  The function is called with the frequency 

            distribution as its first argument, 

            ``factory_args`` as its remaining arguments, and 

            ``factory_kw_args`` as keyword arguments. 

        :type factory_args: (any) 

        :param factory_args: Extra arguments for ``probdist_factory``. 

            These arguments are usually used to specify extra 

            properties for the probability distributions of individual 

            conditions, such as the number of bins they contain. 

        :type factory_kw_args: (any) 

        :param factory_kw_args: Extra keyword arguments for ``probdist_factory``. 

        """ 

        # self._probdist_factory = probdist_factory 

        # self._cfdist = cfdist 

        # self._factory_args = factory_args 

        # self._factory_kw_args = factory_kw_args 

 

        factory = lambda: probdist_factory(FreqDist(), 

                                           *factory_args, **factory_kw_args) 

        defaultdict.__init__(self, factory) 

        for condition in cfdist: 

            self[condition] = probdist_factory(cfdist[condition], 

                                               *factory_args, **factory_kw_args) 

 

 

class DictionaryConditionalProbDist(ConditionalProbDistI): 

    """ 

    An alternative ConditionalProbDist that simply wraps a dictionary of 

    ProbDists rather than creating these from FreqDists. 

    """ 

 

    def __init__(self, probdist_dict): 

        """ 

        :param probdist_dict: a dictionary containing the probdists indexed 

            by the conditions 

        :type probdist_dict: dict any -> probdist 

        """ 

        defaultdict.__init__(self, DictionaryProbDist) 

        self.update(probdist_dict) 

 

##////////////////////////////////////////////////////// 

## Adding in log-space. 

##////////////////////////////////////////////////////// 

 

# If the difference is bigger than this, then just take the bigger one: 

_ADD_LOGS_MAX_DIFF = math.log(1e-30, 2) 

 

def add_logs(logx, logy): 

    """ 

    Given two numbers ``logx`` = *log(x)* and ``logy`` = *log(y)*, return 

    *log(x+y)*.  Conceptually, this is the same as returning 

    ``log(2**(logx)+2**(logy))``, but the actual implementation 

    avoids overflow errors that could result from direct computation. 

    """ 

    if (logx < logy + _ADD_LOGS_MAX_DIFF): 

        return logy 

    if (logy < logx + _ADD_LOGS_MAX_DIFF): 

        return logx 

    base = min(logx, logy) 

    return base + math.log(2**(logx-base) + 2**(logy-base), 2) 

 

def sum_logs(logs): 

    if len(logs) == 0: 

        # Use some approximation to infinity.  What this does 

        # depends on your system's float implementation. 

        return _NINF 

    else: 

        return reduce(add_logs, logs[1:], logs[0]) 

 

##////////////////////////////////////////////////////// 

##  Probabilistic Mix-in 

##////////////////////////////////////////////////////// 

 

class ProbabilisticMixIn(object): 

    """ 

    A mix-in class to associate probabilities with other classes 

    (trees, rules, etc.).  To use the ``ProbabilisticMixIn`` class, 

    define a new class that derives from an existing class and from 

    ProbabilisticMixIn.  You will need to define a new constructor for 

    the new class, which explicitly calls the constructors of both its 

    parent classes.  For example: 

 

        >>> from nltk.probability import ProbabilisticMixIn 

        >>> class A: 

        ...     def __init__(self, x, y): self.data = (x,y) 

        ... 

        >>> class ProbabilisticA(A, ProbabilisticMixIn): 

        ...     def __init__(self, x, y, **prob_kwarg): 

        ...         A.__init__(self, x, y) 

        ...         ProbabilisticMixIn.__init__(self, **prob_kwarg) 

 

    See the documentation for the ProbabilisticMixIn 

    ``constructor<__init__>`` for information about the arguments it 

    expects. 

 

    You should generally also redefine the string representation 

    methods, the comparison methods, and the hashing method. 

    """ 

    def __init__(self, **kwargs): 

        """ 

        Initialize this object's probability.  This initializer should 

        be called by subclass constructors.  ``prob`` should generally be 

        the first argument for those constructors. 

 

        :param prob: The probability associated with the object. 

        :type prob: float 

        :param logprob: The log of the probability associated with 

            the object. 

        :type logprob: float 

        """ 

        if 'prob' in kwargs: 

            if 'logprob' in kwargs: 

                raise TypeError('Must specify either prob or logprob ' 

                                '(not both)') 

            else: 

                ProbabilisticMixIn.set_prob(self, kwargs['prob']) 

        elif 'logprob' in kwargs: 

            ProbabilisticMixIn.set_logprob(self, kwargs['logprob']) 

        else: 

            self.__prob = self.__logprob = None 

 

    def set_prob(self, prob): 

        """ 

        Set the probability associated with this object to ``prob``. 

 

        :param prob: The new probability 

        :type prob: float 

        """ 

        self.__prob = prob 

        self.__logprob = None 

 

    def set_logprob(self, logprob): 

        """ 

        Set the log probability associated with this object to 

        ``logprob``.  I.e., set the probability associated with this 

        object to ``2**(logprob)``. 

 

        :param logprob: The new log probability 

        :type logprob: float 

        """ 

        self.__logprob = logprob 

        self.__prob = None 

 

    def prob(self): 

        """ 

        Return the probability associated with this object. 

 

        :rtype: float 

        """ 

        if self.__prob is None: 

            if self.__logprob is None: return None 

            self.__prob = 2**(self.__logprob) 

        return self.__prob 

 

    def logprob(self): 

        """ 

        Return ``log(p)``, where ``p`` is the probability associated 

        with this object. 

 

        :rtype: float 

        """ 

        if self.__logprob is None: 

            if self.__prob is None: return None 

            self.__logprob = math.log(self.__prob, 2) 

        return self.__logprob 

 

class ImmutableProbabilisticMixIn(ProbabilisticMixIn): 

    def set_prob(self, prob): 

        raise ValueError('%s is immutable' % self.__class__.__name__) 

    def set_logprob(self, prob): 

        raise ValueError('%s is immutable' % self.__class__.__name__) 

 

## Helper function for processing keyword arguments 

 

def _get_kwarg(kwargs, key, default): 

    if key in kwargs: 

        arg = kwargs[key] 

        del kwargs[key] 

    else: 

        arg = default 

    return arg 

 

##////////////////////////////////////////////////////// 

##  Demonstration 

##////////////////////////////////////////////////////// 

 

def _create_rand_fdist(numsamples, numoutcomes): 

    """ 

    Create a new frequency distribution, with random samples.  The 

    samples are numbers from 1 to ``numsamples``, and are generated by 

    summing two numbers, each of which has a uniform distribution. 

    """ 

    import random 

    fdist = FreqDist() 

    for x in range(numoutcomes): 

        y = (random.randint(1, (1+numsamples)/2) + 

             random.randint(0, numsamples/2)) 

        fdist.inc(y) 

    return fdist 

 

def _create_sum_pdist(numsamples): 

    """ 

    Return the true probability distribution for the experiment 

    ``_create_rand_fdist(numsamples, x)``. 

    """ 

    fdist = FreqDist() 

    for x in range(1, (1+numsamples)/2+1): 

        for y in range(0, numsamples/2+1): 

            fdist.inc(x+y) 

    return MLEProbDist(fdist) 

 

def demo(numsamples=6, numoutcomes=500): 

    """ 

    A demonstration of frequency distributions and probability 

    distributions.  This demonstration creates three frequency 

    distributions with, and uses them to sample a random process with 

    ``numsamples`` samples.  Each frequency distribution is sampled 

    ``numoutcomes`` times.  These three frequency distributions are 

    then used to build six probability distributions.  Finally, the 

    probability estimates of these distributions are compared to the 

    actual probability of each sample. 

 

    :type numsamples: int 

    :param numsamples: The number of samples to use in each demo 

        frequency distributions. 

    :type numoutcomes: int 

    :param numoutcomes: The total number of outcomes for each 

        demo frequency distribution.  These outcomes are divided into 

        ``numsamples`` bins. 

    :rtype: None 

    """ 

 

    # Randomly sample a stochastic process three times. 

    fdist1 = _create_rand_fdist(numsamples, numoutcomes) 

    fdist2 = _create_rand_fdist(numsamples, numoutcomes) 

    fdist3 = _create_rand_fdist(numsamples, numoutcomes) 

 

    # Use our samples to create probability distributions. 

    pdists = [ 

        MLEProbDist(fdist1), 

        LidstoneProbDist(fdist1, 0.5, numsamples), 

        HeldoutProbDist(fdist1, fdist2, numsamples), 

        HeldoutProbDist(fdist2, fdist1, numsamples), 

        CrossValidationProbDist([fdist1, fdist2, fdist3], numsamples), 

        GoodTuringProbDist(fdist1), 

        SimpleGoodTuringProbDist(fdist1), 

        SimpleGoodTuringProbDist(fdist1, 7), 

        _create_sum_pdist(numsamples), 

    ] 

 

    # Find the probability of each sample. 

    vals = [] 

    for n in range(1,numsamples+1): 

        vals.append(tuple([n, fdist1.freq(n)] + 

                          [pdist.prob(n) for pdist in pdists])) 

 

    # Print the results in a formatted table. 

    print(('%d samples (1-%d); %d outcomes were sampled for each FreqDist' % 

           (numsamples, numsamples, numoutcomes))) 

    print('='*9*(len(pdists)+2)) 

    FORMATSTR = '      FreqDist '+ '%8s '*(len(pdists)-1) + '|  Actual' 

    print(FORMATSTR % tuple(repr(pdist)[1:9] for pdist in pdists[:-1])) 

    print('-'*9*(len(pdists)+2)) 

    FORMATSTR = '%3d   %8.6f ' + '%8.6f '*(len(pdists)-1) + '| %8.6f' 

    for val in vals: 

        print(FORMATSTR % val) 

 

    # Print the totals for each column (should all be 1.0) 

    zvals = list(zip(*vals)) 

    sums = [sum(val) for val in zvals[1:]] 

    print('-'*9*(len(pdists)+2)) 

    FORMATSTR = 'Total ' + '%8.6f '*(len(pdists)) + '| %8.6f' 

    print(FORMATSTR % tuple(sums)) 

    print('='*9*(len(pdists)+2)) 

 

    # Display the distributions themselves, if they're short enough. 

    if len(repr(str(fdist1))) < 70: 

        print('  fdist1:', str(fdist1)) 

        print('  fdist2:', str(fdist2)) 

        print('  fdist3:', str(fdist3)) 

    print() 

 

    print('Generating:') 

    for pdist in pdists: 

        fdist = FreqDist(pdist.generate() for i in range(5000)) 

        print('%20s %s' % (pdist.__class__.__name__[:20], str(fdist)[:55])) 

    print() 

 

def gt_demo(): 

    from nltk import corpus 

    emma_words = corpus.gutenberg.words('austen-emma.txt') 

    fd = FreqDist(emma_words) 

    gt = GoodTuringProbDist(fd) 

    sgt = SimpleGoodTuringProbDist(fd) 

    katz = SimpleGoodTuringProbDist(fd, 7) 

    print('%18s %8s  %12s %14s  %12s' \ 

        % ("word", "freqency", "GoodTuring", "SimpleGoodTuring", "Katz-cutoff" )) 

    for key in fd: 

        print('%18s %8d  %12e   %14e   %12e' \ 

            % (key, fd[key], gt.prob(key), sgt.prob(key), katz.prob(key))) 

 

if __name__ == '__main__': 

    demo(6, 10) 

    demo(5, 5000) 

    gt_demo() 

 

__all__ = ['ConditionalFreqDist', 'ConditionalProbDist', 

           'ConditionalProbDistI', 'CrossValidationProbDist', 

           'DictionaryConditionalProbDist', 'DictionaryProbDist', 'ELEProbDist', 

           'FreqDist', 'GoodTuringProbDist', 'SimpleGoodTuringProbDist', 'HeldoutProbDist', 

           'ImmutableProbabilisticMixIn', 'LaplaceProbDist', 'LidstoneProbDist', 

           'MLEProbDist', 'MutableProbDist', 'ProbDistI', 'ProbabilisticMixIn', 

           'UniformProbDist', 'WittenBellProbDist', 'add_logs', 

           'log_likelihood', 'sum_logs', 'entropy']