Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

# Natural Language Toolkit: Discourse Representation Theory (DRT) 

# 

# Author: Dan Garrette <dhgarrette@gmail.com> 

# 

# Copyright (C) 2001-2012 NLTK Project 

# URL: <http://www.nltk.org/> 

# For license information, see LICENSE.TXT 

from __future__ import print_function 

 

import operator 

from functools import reduce 

 

from nltk.sem.logic import (APP, AbstractVariableExpression, AllExpression, 

                            AndExpression, ApplicationExpression, BinaryExpression, 

                            BooleanExpression, ConstantExpression, EqualityExpression, 

                            EventVariableExpression, ExistsExpression, Expression, 

                            FunctionVariableExpression, ImpExpression, 

                            IndividualVariableExpression, LambdaExpression, Tokens, 

                            LogicParser, NegatedExpression, OrExpression, Variable, 

                            is_eventvar, is_funcvar, is_indvar) 

 

# Import Tkinter-based modules if they are available 

try: 

    from Tkinter import Canvas 

    from Tkinter import Tk 

    from tkFont import Font 

    from nltk.util import in_idle 

 

except ImportError: 

    # No need to print a warning here, nltk.draw has already printed one. 

    pass 

 

class DrtTokens(Tokens): 

    DRS = 'DRS' 

    DRS_CONC = '+' 

    PRONOUN = 'PRO' 

    OPEN_BRACKET = '[' 

    CLOSE_BRACKET = ']' 

    COLON = ':' 

 

    PUNCT = [DRS_CONC, OPEN_BRACKET, CLOSE_BRACKET, COLON] 

 

    SYMBOLS = Tokens.SYMBOLS + PUNCT 

 

    TOKENS = Tokens.TOKENS + [DRS] + PUNCT 

 

 

class AbstractDrs(object): 

    """ 

    This is the base abstract DRT Expression from which every DRT 

    Expression extends. 

    """ 

 

    def applyto(self, other): 

        return DrtApplicationExpression(self, other) 

 

    def __neg__(self): 

        return DrtNegatedExpression(self) 

 

    def __and__(self, other): 

        raise NotImplementedError() 

 

    def __or__(self, other): 

        assert isinstance(other, AbstractDrs) 

        return DrtOrExpression(self, other) 

 

    def __gt__(self, other): 

        assert isinstance(other, AbstractDrs) 

        if isinstance(self, DRS): 

            return DRS(self.refs, self.conds, other) 

        if isinstance(self, DrtConcatenation): 

            return DrtConcatenation(self.first, self.second, other) 

        raise Exception('Antecedent of implication must be a DRS') 

 

    def equiv(self, other, prover=None): 

        """ 

        Check for logical equivalence. 

        Pass the expression (self <-> other) to the theorem prover. 

        If the prover says it is valid, then the self and other are equal. 

 

        :param other: an ``AbstractDrs`` to check equality against 

        :param prover: a ``nltk.inference.api.Prover`` 

        """ 

        assert isinstance(other, AbstractDrs) 

 

        f1 = self.simplify().fol(); 

        f2 = other.simplify().fol(); 

        return f1.equiv(f2, prover) 

 

    @property 

    def type(self): 

        raise AttributeError("'%s' object has no attribute 'type'" % 

                             self.__class__.__name__) 

 

    def typecheck(self, signature=None): 

        raise NotImplementedError() 

 

    def __add__(self, other): 

        return DrtConcatenation(self, other, None) 

 

    def get_refs(self, recursive=False): 

        """ 

        Return the set of discourse referents in this DRS. 

        :param recursive: bool Also find discourse referents in subterms? 

        :return: list of ``Variable`` objects 

        """ 

        raise NotImplementedError() 

 

    def is_pronoun_function(self): 

        """ Is self of the form "PRO(x)"? """ 

        return isinstance(self, DrtApplicationExpression) and \ 

               isinstance(self.function, DrtAbstractVariableExpression) and \ 

               self.function.variable.name == DrtTokens.PRONOUN and \ 

               isinstance(self.argument, DrtIndividualVariableExpression) 

 

    def make_EqualityExpression(self, first, second): 

        return DrtEqualityExpression(first, second) 

 

    def make_VariableExpression(self, variable): 

        return DrtVariableExpression(variable) 

 

    def resolve_anaphora(self): 

        return resolve_anaphora(self) 

 

    def eliminate_equality(self): 

        return self.visit_structured(lambda e: e.eliminate_equality(), 

                                     self.__class__) 

 

    def pprint(self): 

        """ 

        Draw the DRS 

        """ 

        print(self.pretty()) 

 

    def pretty(self): 

        """ 

        Draw the DRS 

        :return: the pretty print string 

        """ 

        return '\n'.join(self._pretty()) 

 

    def draw(self): 

        DrsDrawer(self).draw() 

 

 

class DRS(AbstractDrs, Expression): 

    """A Discourse Representation Structure.""" 

    def __init__(self, refs, conds, consequent=None): 

        """ 

        :param refs: list of ``DrtIndividualVariableExpression`` for the 

        discourse referents 

        :param conds: list of ``Expression`` for the conditions 

        """ 

        self.refs = refs 

        self.conds = conds 

        self.consequent = consequent 

 

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True): 

        """Replace all instances of variable v with expression E in self, 

        where v is free in self.""" 

        if variable in self.refs: 

            #if a bound variable is the thing being replaced 

            if not replace_bound: 

                return self 

            else: 

                i = self.refs.index(variable) 

                if self.consequent: 

                    consequent = self.consequent.replace(variable, expression, True, alpha_convert) 

                else: 

                    consequent = None 

                return DRS(self.refs[:i]+[expression.variable]+self.refs[i+1:], 

                           [cond.replace(variable, expression, True, alpha_convert) 

                            for cond in self.conds], 

                           consequent) 

        else: 

            if alpha_convert: 

                # any bound variable that appears in the expression must 

                # be alpha converted to avoid a conflict 

                for ref in (set(self.refs) & expression.free()): 

                    newvar = unique_variable(ref) 

                    newvarex = DrtVariableExpression(newvar) 

                    i = self.refs.index(ref) 

                    if self.consequent: 

                        consequent = self.consequent.replace(ref, newvarex, True, alpha_convert) 

                    else: 

                        consequent = None 

                    self = DRS(self.refs[:i]+[newvar]+self.refs[i+1:], 

                               [cond.replace(ref, newvarex, True, alpha_convert) 

                                for cond in self.conds], 

                               consequent) 

 

            #replace in the conditions 

            if self.consequent: 

                consequent = self.consequent.replace(variable, expression, replace_bound, alpha_convert) 

            else: 

                consequent = None 

            return DRS(self.refs, 

                       [cond.replace(variable, expression, replace_bound, alpha_convert) 

                        for cond in self.conds], 

                       consequent) 

 

    def free(self): 

        """:see: Expression.free()""" 

        conds_free = reduce(operator.or_, [c.free() for c in self.conds], set()) 

        if self.consequent: 

            conds_free.update(self.consequent.free()) 

        return conds_free - set(self.refs) 

 

    def get_refs(self, recursive=False): 

        """:see: AbstractExpression.get_refs()""" 

        if recursive: 

            conds_refs = self.refs + sum((c.get_refs(True) for c in self.conds), []) 

            if self.consequent: 

                conds_refs.extend(self.consequent.get_refs(True)) 

            return conds_refs 

        else: 

            return self.refs 

 

    def visit(self, function, combinator): 

        """:see: Expression.visit()""" 

        parts = list(map(function, self.conds)) 

        if self.consequent: 

            parts.append(function(self.consequent)) 

        return combinator(parts) 

 

    def visit_structured(self, function, combinator): 

        """:see: Expression.visit_structured()""" 

        if self.consequent: 

            consequent = function(self.consequent) 

        else: 

            consequent = None 

        return combinator(self.refs, list(map(function, self.conds)), consequent) 

 

    def eliminate_equality(self): 

        drs = self 

        i = 0 

        while i < len(drs.conds): 

            cond = drs.conds[i] 

            if isinstance(cond, EqualityExpression) and \ 

               isinstance(cond.first, AbstractVariableExpression) and \ 

               isinstance(cond.second, AbstractVariableExpression): 

                drs = DRS(list(set(drs.refs)-set([cond.second.variable])), 

                          drs.conds[:i]+drs.conds[i+1:], 

                          drs.consequent) 

                if cond.second.variable != cond.first.variable: 

                    drs = drs.replace(cond.second.variable, cond.first, False, False) 

                    i = 0 

                i -= 1 

            i += 1 

 

        conds = [] 

        for cond in drs.conds: 

            new_cond = cond.eliminate_equality() 

            new_cond_simp = new_cond.simplify() 

            if not isinstance(new_cond_simp, DRS) or \ 

               new_cond_simp.refs or new_cond_simp.conds or \ 

               new_cond_simp.consequent: 

                conds.append(new_cond) 

        if drs.consequent: 

            consequent = drs.consequent.eliminate_equality() 

        else: 

            consequent = None 

        return DRS(drs.refs, conds, consequent) 

 

    def fol(self): 

        if self.consequent: 

            accum = None 

            if self.conds: 

                accum = reduce(AndExpression, [c.fol() for c in self.conds]) 

 

            if accum: 

                accum = ImpExpression(accum, self.consequent.fol()) 

            else: 

                accum = self.consequent.fol() 

 

            for ref in self.refs[::-1]: 

                accum = AllExpression(ref, accum) 

 

            return accum 

 

        else: 

            if not self.conds: 

                raise Exception("Cannot convert DRS with no conditions to FOL.") 

            accum = reduce(AndExpression, [c.fol() for c in self.conds]) 

            for ref in map(Variable, self._order_ref_strings(self.refs)[::-1]): 

                accum = ExistsExpression(ref, accum) 

            return accum 

 

    def _pretty(self): 

        refs_line = ' '.join(self._order_ref_strings(self.refs)) 

        cond_lines = sum([filter(str.strip, cond._pretty()) for cond in self.conds], []) 

        length = max([len(refs_line)] + list(map(len, cond_lines))) 

        drs = [' _' + '_'*length + '_ ', 

               '| ' + refs_line + ' '*(length-len(refs_line))  + ' |', 

               '|-' + '-'*length + '-|'] + \ 

              ['| ' + line + ' '*(length-len(line)) + ' |' for line in cond_lines] + \ 

              ['|_' + '_'*length + '_|'] 

        if self.consequent: 

            return DrtBinaryExpression._assemble_pretty(drs, DrtTokens.IMP, 

                                                        self.consequent._pretty()) 

        return drs 

 

    def _order_ref_strings(self, refs): 

        strings = map(str, refs) 

        ind_vars = [] 

        func_vars = [] 

        event_vars = [] 

        other_vars = [] 

        for s in strings: 

            if is_indvar(s): 

                ind_vars.append(s) 

            elif is_funcvar(s): 

                func_vars.append(s) 

            elif is_eventvar(s): 

                event_vars.append(s) 

            else: 

                other_vars.append(s) 

        return sorted(other_vars) + \ 

               sorted(event_vars, key=lambda v: int([v[2:],-1][len(v[2:]) == 0])) + \ 

               sorted(func_vars, key=lambda v: (v[0], int([v[1:],-1][len(v[1:])==0]))) + \ 

               sorted(ind_vars, key=lambda v: (v[0], int([v[1:],-1][len(v[1:])==0]))) 

 

    def __eq__(self, other): 

        r"""Defines equality modulo alphabetic variance. 

        If we are comparing \x.M  and \y.N, then check equality of M and N[x/y].""" 

        if isinstance(other, DRS): 

            if len(self.refs) == len(other.refs): 

                converted_other = other 

                for (r1, r2) in zip(self.refs, converted_other.refs): 

                    varex = self.make_VariableExpression(r1) 

                    converted_other = converted_other.replace(r2, varex, True) 

                if self.consequent == converted_other.consequent and \ 

                   len(self.conds) == len(converted_other.conds): 

                    for c1, c2 in zip(self.conds, converted_other.conds): 

                        if not (c1 == c2): 

                            return False 

                    return True 

        return False 

 

    def __str__(self): 

        drs = '([%s],[%s])' % (','.join(self._order_ref_strings(self.refs)), 

                               ', '.join(map(str, self.conds))) 

        if self.consequent: 

            return DrtTokens.OPEN + drs + ' ' + DrtTokens.IMP + ' ' + \ 

                   str(self.consequent) + DrtTokens.CLOSE 

        return drs 

 

 

def DrtVariableExpression(variable): 

    """ 

    This is a factory method that instantiates and returns a subtype of 

    ``DrtAbstractVariableExpression`` appropriate for the given variable. 

    """ 

    if is_indvar(variable.name): 

        return DrtIndividualVariableExpression(variable) 

    elif is_funcvar(variable.name): 

        return DrtFunctionVariableExpression(variable) 

    elif is_eventvar(variable.name): 

        return DrtEventVariableExpression(variable) 

    else: 

        return DrtConstantExpression(variable) 

 

 

class DrtAbstractVariableExpression(AbstractDrs, AbstractVariableExpression): 

    def fol(self): 

        return self 

 

    def get_refs(self, recursive=False): 

        """:see: AbstractExpression.get_refs()""" 

        return [] 

 

    def _pretty(self): 

        s = str(self) 

        blank = ' '*len(s) 

        return [blank, blank, s, blank] 

 

    def eliminate_equality(self): 

        return self 

 

class DrtIndividualVariableExpression(DrtAbstractVariableExpression, IndividualVariableExpression): 

    pass 

 

class DrtFunctionVariableExpression(DrtAbstractVariableExpression, FunctionVariableExpression): 

    pass 

 

class DrtEventVariableExpression(DrtIndividualVariableExpression, EventVariableExpression): 

    pass 

 

class DrtConstantExpression(DrtAbstractVariableExpression, ConstantExpression): 

    pass 

 

 

class DrtProposition(AbstractDrs, Expression): 

    def __init__(self, variable, drs): 

        self.variable = variable 

        self.drs = drs 

 

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True): 

        if self.variable == variable: 

            assert isinstance(expression, DrtAbstractVariableExpression), "Can only replace a proposition label with a variable" 

            return DrtProposition(expression.variable, self.drs.replace(variable, expression, replace_bound, alpha_convert)) 

        else: 

            return DrtProposition(self.variable, self.drs.replace(variable, expression, replace_bound, alpha_convert)) 

 

    def eliminate_equality(self): 

        return DrtProposition(self.variable, self.drs.eliminate_equality()) 

 

    def get_refs(self, recursive=False): 

        if recursive: 

            return self.drs.get_refs(True) 

        else: 

            return [] 

 

    def __eq__(self, other): 

        return self.__class__ == other.__class__ and \ 

               self.variable == other.variable and \ 

               self.drs == other.drs 

 

    def fol(self): 

        return self.drs.fol() 

 

    def _pretty(self): 

        drs_s = self.drs._pretty() 

        blank = ' '*(len(str(self.variable))+1) 

        return [blank + drs_s[0], 

                str(self.variable) + ':' + drs_s[1]] + \ 

                list(map(lambda l: blank+l, drs_s[2:])) 

 

    def visit(self, function, combinator): 

        """:see: Expression.visit()""" 

        return combinator([function(self.drs)]) 

 

    def visit_structured(self, function, combinator): 

        """:see: Expression.visit_structured()""" 

        return combinator(self.variable, function(self.drs)) 

 

    def __str__(self): 

        return 'prop(%s, %s)' % (self.variable, self.drs) 

 

 

class DrtNegatedExpression(AbstractDrs, NegatedExpression): 

    def fol(self): 

        return NegatedExpression(self.term.fol()) 

 

    def get_refs(self, recursive=False): 

        """:see: AbstractExpression.get_refs()""" 

        return self.term.get_refs(recursive) 

 

    def _pretty(self): 

        term_lines = self.term._pretty() 

        return ['    ' + line for line in term_lines[:2]] + \ 

               ['__  ' + term_lines[2]] + \ 

               ['  | ' + term_lines[3]] + \ 

               ['    ' + line for line in term_lines[4:]] 

 

class DrtLambdaExpression(AbstractDrs, LambdaExpression): 

    def alpha_convert(self, newvar): 

        """Rename all occurrences of the variable introduced by this variable 

        binder in the expression to ``newvar``. 

        :param newvar: ``Variable``, for the new variable 

        """ 

        return self.__class__(newvar, self.term.replace(self.variable, 

                          DrtVariableExpression(newvar), True)) 

 

    def fol(self): 

        return LambdaExpression(self.variable, self.term.fol()) 

 

    def _pretty(self): 

        variables = [self.variable] 

        term = self.term 

        while term.__class__ == self.__class__: 

            variables.append(term.variable) 

            term = term.term 

        var_string = ' '.join(map(str, variables)) + DrtTokens.DOT 

        term_lines = term._pretty() 

        return ['    ' + ' '*len(var_string) + line for line in term_lines[:1]] + \ 

               [' \  ' + ' '*len(var_string) + term_lines[1]] + \ 

               [' /\ ' + var_string          + term_lines[2]] + \ 

               ['    ' + ' '*len(var_string) + line for line in term_lines[3:]] 

 

class DrtBinaryExpression(AbstractDrs, BinaryExpression): 

    def get_refs(self, recursive=False): 

        """:see: AbstractExpression.get_refs()""" 

        if recursive: 

            return self.first.get_refs(True) + self.second.get_refs(True) 

        else: 

            return [] 

 

    def _pretty(self): 

        return DrtBinaryExpression._assemble_pretty(self._pretty_subex(self.first), self.getOp(), self._pretty_subex(self.second)) 

 

    @staticmethod 

    def _assemble_pretty(first_lines, op, second_lines): 

        max_lines = max(len(first_lines), len(second_lines)) 

        first_lines = first_lines + [' '*len(first_lines[0])]*(max_lines-len(first_lines)) 

        second_lines = second_lines + [' '*len(second_lines[0])]*(max_lines-len(second_lines)) 

        return [' ' + first_line + ' ' + ' '*len(op) + ' ' + second_line     + ' ' for first_line, second_line in zip(first_lines, second_lines)[:2]] + \ 

               ['(' + first_lines[2]   + ' ' + op    + ' ' + second_lines[2] + ')'] + \ 

               [' ' + first_line + ' ' + ' '*len(op) + ' ' + second_line     + ' ' for first_line, second_line in zip(first_lines, second_lines)[3:]] 

 

    def _pretty_subex(self, subex): 

        return subex._pretty() 

 

class DrtBooleanExpression(DrtBinaryExpression, BooleanExpression): 

    pass 

 

class DrtOrExpression(DrtBooleanExpression, OrExpression): 

    def fol(self): 

        return OrExpression(self.first.fol(), self.second.fol()) 

 

    def _pretty_subex(self, subex): 

        if isinstance(subex, DrtOrExpression): 

            return [line[1:-1] for line in subex._pretty()] 

        return DrtBooleanExpression._pretty_subex(self, subex) 

 

class DrtEqualityExpression(DrtBinaryExpression, EqualityExpression): 

    def fol(self): 

        return EqualityExpression(self.first.fol(), self.second.fol()) 

 

class DrtConcatenation(DrtBooleanExpression): 

    """DRS of the form '(DRS + DRS)'""" 

    def __init__(self, first, second, consequent=None): 

        DrtBooleanExpression.__init__(self, first, second) 

        self.consequent = consequent 

 

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True): 

        """Replace all instances of variable v with expression E in self, 

        where v is free in self.""" 

        first = self.first 

        second = self.second 

        consequent = self.consequent 

 

        # If variable is bound 

        if variable in self.get_refs(): 

            if replace_bound: 

                first  = first.replace(variable, expression, replace_bound, alpha_convert) 

                second = second.replace(variable, expression, replace_bound, alpha_convert) 

                if consequent: 

                    consequent = consequent.replace(variable, expression, replace_bound, alpha_convert) 

        else: 

            if alpha_convert: 

                # alpha convert every ref that is free in 'expression' 

                for ref in (set(self.get_refs(True)) & expression.free()): 

                    v = DrtVariableExpression(unique_variable(ref)) 

                    first  = first.replace(ref, v, True, alpha_convert) 

                    second = second.replace(ref, v, True, alpha_convert) 

                    if consequent: 

                        consequent = consequent.replace(ref, v, True, alpha_convert) 

 

            first  = first.replace(variable, expression, replace_bound, alpha_convert) 

            second = second.replace(variable, expression, replace_bound, alpha_convert) 

            if consequent: 

                consequent = consequent.replace(variable, expression, replace_bound, alpha_convert) 

 

        return self.__class__(first, second, consequent) 

 

    def eliminate_equality(self): 

        #TODO: at some point.  for now, simplify. 

        drs = self.simplify() 

        assert not isinstance(drs, DrtConcatenation) 

        return drs.eliminate_equality() 

 

    def simplify(self): 

        first = self.first.simplify() 

        second = self.second.simplify() 

        if self.consequent: 

            consequent = self.consequent.simplify() 

        else: 

            consequent = None 

 

        if isinstance(first, DRS) and isinstance(second, DRS): 

            # For any ref that is in both 'first' and 'second' 

            for ref in (set(first.get_refs(True)) & set(second.get_refs(True))): 

                # alpha convert the ref in 'second' to prevent collision 

                newvar = DrtVariableExpression(unique_variable(ref)) 

                second = second.replace(ref, newvar, True) 

 

            return DRS(first.refs + second.refs, first.conds + second.conds, consequent) 

        else: 

            return self.__class__(first, second, consequent) 

 

    def get_refs(self, recursive=False): 

        """:see: AbstractExpression.get_refs()""" 

        refs = self.first.get_refs(recursive) + self.second.get_refs(recursive) 

        if self.consequent and recursive: 

            refs.extend(self.consequent.get_refs(True)) 

        return refs 

 

    def getOp(self): 

        return DrtTokens.DRS_CONC 

 

    def __eq__(self, other): 

        r"""Defines equality modulo alphabetic variance. 

        If we are comparing \x.M  and \y.N, then check equality of M and N[x/y].""" 

        if isinstance(other, DrtConcatenation): 

            self_refs = self.get_refs() 

            other_refs = other.get_refs() 

            if len(self_refs) == len(other_refs): 

                converted_other = other 

                for (r1,r2) in zip(self_refs, other_refs): 

                    varex = self.make_VariableExpression(r1) 

                    converted_other = converted_other.replace(r2, varex, True) 

                return self.first == converted_other.first and \ 

                        self.second == converted_other.second and \ 

                        self.consequent == converted_other.consequent 

        return False 

 

    def fol(self): 

        e = AndExpression(self.first.fol(), self.second.fol()) 

        if self.consequent: 

            e = ImpExpression(e, self.consequent.fol()) 

        return e 

 

    def _pretty(self): 

        drs = DrtBinaryExpression._assemble_pretty(self._pretty_subex(self.first), 

                                                   self.getOp(), 

                                                   self._pretty_subex(self.second)) 

        if self.consequent: 

            drs = DrtBinaryExpression._assemble_pretty(drs, DrtTokens.IMP, 

                                                       self._pretty(self.consequent)) 

        return drs 

 

    def _pretty_subex(self, subex): 

        if isinstance(subex, DrtConcatenation): 

            return [line[1:-1] for line in subex._pretty()] 

        return DrtBooleanExpression._pretty_subex(self, subex) 

 

 

    def visit(self, function, combinator): 

        """:see: Expression.visit()""" 

        if self.consequent: 

            return combinator([function(self.first), function(self.second), function(self.consequent)]) 

        else: 

            return combinator([function(self.first), function(self.second)]) 

 

    def __str__(self): 

        first = self._str_subex(self.first) 

        second = self._str_subex(self.second) 

        drs = Tokens.OPEN + first + ' ' + self.getOp() \ 

                + ' ' + second + Tokens.CLOSE 

        if self.consequent: 

            return DrtTokens.OPEN + drs + ' ' + DrtTokens.IMP + ' ' + \ 

                   str(self.consequent) + DrtTokens.CLOSE 

        return drs 

 

    def _str_subex(self, subex): 

        s = str(subex) 

        if isinstance(subex, DrtConcatenation) and subex.consequent is None: 

            return s[1:-1] 

        return s 

 

 

class DrtApplicationExpression(AbstractDrs, ApplicationExpression): 

    def fol(self): 

        return ApplicationExpression(self.function.fol(), self.argument.fol()) 

 

    def get_refs(self, recursive=False): 

        """:see: AbstractExpression.get_refs()""" 

        if recursive: 

            return self.function.get_refs(True) + self.argument.get_refs(True) 

        else: 

            return [] 

 

    def _pretty(self): 

        function, args = self.uncurry() 

        function_lines = function._pretty() 

        args_lines = [arg._pretty() for arg in args] 

        max_lines = max(map(len, [function_lines] + args_lines)) 

        function_lines = function_lines + [' '*len(function_lines[0])]*(max_lines-len(function_lines)) 

        args_lines = [arg_lines + [' '*len(arg_lines[0])]*(max_lines-len(arg_lines)) for arg_lines in args_lines] 

        return [func_line         + ' ' + ' '.join(args_line) + ' ' for func_line, args_line in zip(function_lines, zip(*args_lines))[:2]] + \ 

               [function_lines[2] + '(' + ','.join(zip(*args_lines)[2]) + ')'] + \ 

               [func_line         + ' ' + ' '.join(args_line) + ' ' for func_line, args_line in zip(function_lines, zip(*args_lines))[3:]] 

 

class PossibleAntecedents(list, AbstractDrs, Expression): 

    def free(self): 

        """Set of free variables.""" 

        return set(self) 

 

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True): 

        """Replace all instances of variable v with expression E in self, 

        where v is free in self.""" 

        result = PossibleAntecedents() 

        for item in self: 

            if item == variable: 

                self.append(expression) 

            else: 

                self.append(item) 

        return result 

 

    def _pretty(self): 

        s = str(self) 

        blank = ' '*len(s) 

        return [blank,blank,s] 

 

    def __str__(self): 

        return '[' + ','.join(map(str, self)) + ']' 

 

 

class AnaphoraResolutionException(Exception): 

    pass 

 

 

def resolve_anaphora(expression, trail=[]): 

    if isinstance(expression, ApplicationExpression): 

        if expression.is_pronoun_function(): 

            possible_antecedents = PossibleAntecedents() 

            for ancestor in trail: 

                for ref in ancestor.get_refs(): 

                    refex = expression.make_VariableExpression(ref) 

 

                    #========================================================== 

                    # Don't allow resolution to itself or other types 

                    #========================================================== 

                    if refex.__class__ == expression.argument.__class__ and \ 

                       not (refex == expression.argument): 

                        possible_antecedents.append(refex) 

 

            if len(possible_antecedents) == 1: 

                resolution = possible_antecedents[0] 

            else: 

                resolution = possible_antecedents 

            return expression.make_EqualityExpression(expression.argument, resolution) 

        else: 

            r_function = resolve_anaphora(expression.function, trail + [expression]) 

            r_argument = resolve_anaphora(expression.argument, trail + [expression]) 

            return expression.__class__(r_function, r_argument) 

 

    elif isinstance(expression, DRS): 

        r_conds = [] 

        for cond in expression.conds: 

            r_cond = resolve_anaphora(cond, trail + [expression]) 

 

            # if the condition is of the form '(x = [])' then raise exception 

            if isinstance(r_cond, EqualityExpression): 

                if isinstance(r_cond.first, PossibleAntecedents): 

                    #Reverse the order so that the variable is on the left 

                    temp = r_cond.first 

                    r_cond.first = r_cond.second 

                    r_cond.second = temp 

                if isinstance(r_cond.second, PossibleAntecedents): 

                    if not r_cond.second: 

                        raise AnaphoraResolutionException("Variable '%s' does not " 

                                "resolve to anything." % r_cond.first) 

 

            r_conds.append(r_cond) 

        if expression.consequent: 

            consequent = resolve_anaphora(expression.consequent, trail + [expression]) 

        else: 

            consequent = None 

        return expression.__class__(expression.refs, r_conds, consequent) 

 

    elif isinstance(expression, AbstractVariableExpression): 

        return expression 

 

    elif isinstance(expression, NegatedExpression): 

        return expression.__class__(resolve_anaphora(expression.term, trail + [expression])) 

 

    elif isinstance(expression, DrtConcatenation): 

        if expression.consequent: 

            consequent = resolve_anaphora(expression.consequent, trail + [expression]) 

        else: 

            consequent = None 

        return expression.__class__(resolve_anaphora(expression.first, trail + [expression]), 

                                    resolve_anaphora(expression.second, trail + [expression]), 

                                    consequent) 

 

    elif isinstance(expression, BinaryExpression): 

        return expression.__class__(resolve_anaphora(expression.first, trail + [expression]), 

                                    resolve_anaphora(expression.second, trail + [expression])) 

 

    elif isinstance(expression, LambdaExpression): 

        return expression.__class__(expression.variable, resolve_anaphora(expression.term, trail + [expression])) 

 

 

class DrsDrawer(object): 

    BUFFER = 3     #Space between elements 

    TOPSPACE = 10  #Space above whole DRS 

    OUTERSPACE = 6 #Space to the left, right, and bottom of the whle DRS 

 

    def __init__(self, drs, size_canvas=True, canvas=None): 

        """ 

        :param drs: ``AbstractDrs``, The DRS to be drawn 

        :param size_canvas: bool, True if the canvas size should be the exact size of the DRS 

        :param canvas: ``Canvas`` The canvas on which to draw the DRS.  If none is given, create a new canvas. 

        """ 

        master = None 

        if not canvas: 

            master = Tk() 

            master.title("DRT") 

 

            font = Font(family='helvetica', size=12) 

 

            if size_canvas: 

                canvas = Canvas(master, width=0, height=0) 

                canvas.font = font 

                self.canvas = canvas 

                (right, bottom) = self._visit(drs, self.OUTERSPACE, self.TOPSPACE) 

 

                width = max(right+self.OUTERSPACE, 100) 

                height = bottom+self.OUTERSPACE 

                canvas = Canvas(master, width=width, height=height)#, bg='white') 

            else: 

                canvas = Canvas(master, width=300, height=300) 

 

            canvas.pack() 

            canvas.font = font 

 

        self.canvas = canvas 

        self.drs = drs 

        self.master = master 

 

    def _get_text_height(self): 

        """Get the height of a line of text""" 

        return self.canvas.font.metrics("linespace") 

 

    def draw(self, x=OUTERSPACE, y=TOPSPACE): 

        """Draw the DRS""" 

        self._handle(self.drs, self._draw_command, x, y) 

 

        if self.master and not in_idle(): 

            self.master.mainloop() 

        else: 

            return self._visit(self.drs, x, y) 

 

    def _visit(self, expression, x, y): 

        """ 

        Return the bottom-rightmost point without actually drawing the item 

 

        :param expression: the item to visit 

        :param x: the top of the current drawing area 

        :param y: the left side of the current drawing area 

        :return: the bottom-rightmost point 

        """ 

        return self._handle(expression, self._visit_command, x, y) 

 

    def _draw_command(self, item, x, y): 

        """ 

        Draw the given item at the given location 

 

        :param item: the item to draw 

        :param x: the top of the current drawing area 

        :param y: the left side of the current drawing area 

        :return: the bottom-rightmost point 

        """ 

        if isinstance(item, str): 

            self.canvas.create_text(x, y, anchor='nw', font=self.canvas.font, text=item) 

        elif isinstance(item, tuple): 

            # item is the lower-right of a box 

            (right, bottom) = item 

            self.canvas.create_rectangle(x, y, right, bottom) 

            horiz_line_y = y + self._get_text_height() + (self.BUFFER * 2) #the line separating refs from conds 

            self.canvas.create_line(x, horiz_line_y, right, horiz_line_y) 

 

        return self._visit_command(item, x, y) 

 

    def _visit_command(self, item, x, y): 

        """ 

        Return the bottom-rightmost point without actually drawing the item 

 

        :param item: the item to visit 

        :param x: the top of the current drawing area 

        :param y: the left side of the current drawing area 

        :return: the bottom-rightmost point 

        """ 

        if isinstance(item, str): 

            return (x + self.canvas.font.measure(item), y + self._get_text_height()) 

        elif isinstance(item, tuple): 

            return item 

 

    def _handle(self, expression, command, x=0, y=0): 

        """ 

        :param expression: the expression to handle 

        :param command: the function to apply, either _draw_command or _visit_command 

        :param x: the top of the current drawing area 

        :param y: the left side of the current drawing area 

        :return: the bottom-rightmost point 

        """ 

        if command == self._visit_command: 

            #if we don't need to draw the item, then we can use the cached values 

            try: 

                #attempt to retrieve cached values 

                right = expression._drawing_width + x 

                bottom = expression._drawing_height + y 

                return (right, bottom) 

            except AttributeError: 

                #the values have not been cached yet, so compute them 

                pass 

 

        if isinstance(expression, DrtAbstractVariableExpression): 

            factory = self._handle_VariableExpression 

        elif isinstance(expression, DRS): 

            factory = self._handle_DRS 

        elif isinstance(expression, DrtNegatedExpression): 

            factory = self._handle_NegatedExpression 

        elif isinstance(expression, DrtLambdaExpression): 

            factory = self._handle_LambdaExpression 

        elif isinstance(expression, BinaryExpression): 

            factory = self._handle_BinaryExpression 

        elif isinstance(expression, DrtApplicationExpression): 

            factory = self._handle_ApplicationExpression 

        elif isinstance(expression, PossibleAntecedents): 

            factory = self._handle_VariableExpression 

        elif isinstance(expression, DrtProposition): 

            factory = self._handle_DrtProposition 

        else: 

            raise Exception(expression.__class__.__name__) 

 

        (right, bottom) = factory(expression, command, x, y) 

 

        #cache the values 

        expression._drawing_width = right - x 

        expression._drawing_height = bottom - y 

 

        return (right, bottom) 

 

    def _handle_VariableExpression(self, expression, command, x, y): 

        return command(str(expression), x, y) 

 

    def _handle_NegatedExpression(self, expression, command, x, y): 

        # Find the width of the negation symbol 

        right = self._visit_command(DrtTokens.NOT, x, y)[0] 

 

        # Handle term 

        (right, bottom) = self._handle(expression.term, command, right, y) 

 

        # Handle variables now that we know the y-coordinate 

        command(DrtTokens.NOT, x, self._get_centered_top(y, bottom - y, self._get_text_height())) 

 

        return (right, bottom) 

 

    def _handle_DRS(self, expression, command, x, y): 

        left = x + self.BUFFER #indent the left side 

        bottom = y + self.BUFFER #indent the top 

 

        # Handle Discourse Referents 

        if expression.refs: 

            refs = ' '.join(map(str, expression.refs)) 

        else: 

            refs = '     ' 

        (max_right, bottom) = command(refs, left, bottom) 

        bottom += (self.BUFFER * 2) 

 

        # Handle Conditions 

        if expression.conds: 

            for cond in expression.conds: 

                (right, bottom) = self._handle(cond, command, left, bottom) 

                max_right = max(max_right, right) 

                bottom += self.BUFFER 

        else: 

            bottom += self._get_text_height() + self.BUFFER 

 

        # Handle Box 

        max_right += self.BUFFER 

        return command((max_right, bottom), x, y) 

 

    def _handle_ApplicationExpression(self, expression, command, x, y): 

        function, args = expression.uncurry() 

        if not isinstance(function, DrtAbstractVariableExpression): 

            #It's not a predicate expression ("P(x,y)"), so leave arguments curried 

            function = expression.function 

            args = [expression.argument] 

 

        # Get the max bottom of any element on the line 

        function_bottom = self._visit(function, x, y)[1] 

        max_bottom = max([function_bottom] + [self._visit(arg, x, y)[1] for arg in args]) 

 

        line_height = max_bottom - y 

 

        # Handle 'function' 

        function_drawing_top = self._get_centered_top(y, line_height, function._drawing_height) 

        right = self._handle(function, command, x, function_drawing_top)[0] 

 

        # Handle open paren 

        centred_string_top = self._get_centered_top(y, line_height, self._get_text_height()) 

        right = command(DrtTokens.OPEN, right, centred_string_top)[0] 

 

        # Handle each arg 

        for (i,arg) in enumerate(args): 

            arg_drawing_top = self._get_centered_top(y, line_height, arg._drawing_height) 

            right = self._handle(arg, command, right, arg_drawing_top)[0] 

 

            if i+1 < len(args): 

                #since it's not the last arg, add a comma 

                right = command(DrtTokens.COMMA + ' ', right, centred_string_top)[0] 

 

        # Handle close paren 

        right = command(DrtTokens.CLOSE, right, centred_string_top)[0] 

 

        return (right, max_bottom) 

 

    def _handle_LambdaExpression(self, expression, command, x, y): 

        # Find the width of the lambda symbol and abstracted variables 

        variables = DrtTokens.LAMBDA + str(expression.variable) + DrtTokens.DOT 

        right = self._visit_command(variables, x, y)[0] 

 

        # Handle term 

        (right, bottom) = self._handle(expression.term, command, right, y) 

 

        # Handle variables now that we know the y-coordinate 

        command(variables, x, self._get_centered_top(y, bottom - y, self._get_text_height())) 

 

        return (right, bottom) 

 

    def _handle_BinaryExpression(self, expression, command, x, y): 

        # Get the full height of the line, based on the operands 

        first_height = self._visit(expression.first, 0, 0)[1] 

        second_height = self._visit(expression.second, 0, 0)[1] 

        line_height = max(first_height, second_height) 

 

        # Handle open paren 

        centred_string_top = self._get_centered_top(y, line_height, self._get_text_height()) 

        right = command(DrtTokens.OPEN, x, centred_string_top)[0] 

 

        # Handle the first operand 

        first_height = expression.first._drawing_height 

        (right, first_bottom) = self._handle(expression.first, command, right, self._get_centered_top(y, line_height, first_height)) 

 

        # Handle the operator 

        right = command(' %s ' % expression.getOp(), right, centred_string_top)[0] 

 

        # Handle the second operand 

        second_height = expression.second._drawing_height 

        (right, second_bottom) = self._handle(expression.second, command, right, self._get_centered_top(y, line_height, second_height)) 

 

        # Handle close paren 

        right = command(DrtTokens.CLOSE, right, centred_string_top)[0] 

 

        return (right, max(first_bottom, second_bottom)) 

 

    def _handle_DrtProposition(self, expression, command, x, y): 

        # Find the width of the negation symbol 

        right = command(expression.variable, x, y)[0] 

 

        # Handle term 

        (right, bottom) = self._handle(expression.term, command, right, y) 

 

        return (right, bottom) 

 

    def _get_centered_top(self, top, full_height, item_height): 

        """Get the y-coordinate of the point that a figure should start at if 

        its height is 'item_height' and it needs to be centered in an area that 

        starts at 'top' and is 'full_height' tall.""" 

        return top + (full_height - item_height) / 2 

 

 

class DrtParser(LogicParser): 

    """A lambda calculus expression parser.""" 

    def __init__(self): 

        LogicParser.__init__(self) 

 

        self.operator_precedence = dict( 

                               [(x,1) for x in DrtTokens.LAMBDA_LIST]             + \ 

                               [(x,2) for x in DrtTokens.NOT_LIST]                + \ 

                               [(APP,3)]                                          + \ 

                               [(x,4) for x in DrtTokens.EQ_LIST+Tokens.NEQ_LIST] + \ 

                               [(DrtTokens.COLON,5)]                              + \ 

                               [(DrtTokens.DRS_CONC,6)]                           + \ 

                               [(x,7) for x in DrtTokens.OR_LIST]                 + \ 

                               [(x,8) for x in DrtTokens.IMP_LIST]                + \ 

                               [(None,9)]) 

 

    def get_all_symbols(self): 

        """This method exists to be overridden""" 

        return DrtTokens.SYMBOLS 

 

    def isvariable(self, tok): 

        return tok not in DrtTokens.TOKENS 

 

    def handle(self, tok, context): 

        """This method is intended to be overridden for logics that 

        use different operators or expressions""" 

        if tok in DrtTokens.NOT_LIST: 

            return self.handle_negation(tok, context) 

 

        elif tok in DrtTokens.LAMBDA_LIST: 

            return self.handle_lambda(tok, context) 

 

        elif tok == DrtTokens.OPEN: 

            if self.inRange(0) and self.token(0) == DrtTokens.OPEN_BRACKET: 

                return self.handle_DRS(tok, context) 

            else: 

                return self.handle_open(tok, context) 

 

        elif tok.upper() == DrtTokens.DRS: 

            self.assertNextToken(DrtTokens.OPEN) 

            return self.handle_DRS(tok, context) 

 

        elif self.isvariable(tok): 

            if self.inRange(0) and self.token(0) == DrtTokens.COLON: 

                return self.handle_prop(tok, context) 

            else: 

                return self.handle_variable(tok, context) 

 

    def make_NegatedExpression(self, expression): 

        return DrtNegatedExpression(expression) 

 

    def handle_DRS(self, tok, context): 

        # a DRS 

        refs = self.handle_refs() 

        if self.inRange(0) and self.token(0) == DrtTokens.COMMA: #if there is a comma (it's optional) 

            self.token() # swallow the comma 

        conds = self.handle_conds(context) 

        self.assertNextToken(DrtTokens.CLOSE) 

        return DRS(refs, conds, None) 

 

    def handle_refs(self): 

        self.assertNextToken(DrtTokens.OPEN_BRACKET) 

        refs = [] 

        while self.inRange(0) and self.token(0) != DrtTokens.CLOSE_BRACKET: 

        # Support expressions like: DRS([x y],C) == DRS([x,y],C) 

            if refs and self.token(0) == DrtTokens.COMMA: 

                self.token() # swallow the comma 

            refs.append(self.get_next_token_variable('quantified')) 

        self.assertNextToken(DrtTokens.CLOSE_BRACKET) 

        return refs 

 

    def handle_conds(self, context): 

        self.assertNextToken(DrtTokens.OPEN_BRACKET) 

        conds = [] 

        while self.inRange(0) and self.token(0) != DrtTokens.CLOSE_BRACKET: 

            # Support expressions like: DRS([x y],C) == DRS([x, y],C) 

            if conds and self.token(0) == DrtTokens.COMMA: 

                self.token() # swallow the comma 

            conds.append(self.parse_Expression(context)) 

        self.assertNextToken(DrtTokens.CLOSE_BRACKET) 

        return conds 

 

    def handle_prop(self, tok, context): 

        variable = self.make_VariableExpression(tok) 

        self.assertNextToken(':') 

        drs = self.parse_Expression(DrtTokens.COLON) 

        return DrtProposition(variable, drs) 

 

    def make_EqualityExpression(self, first, second): 

        """This method serves as a hook for other logic parsers that 

        have different equality expression classes""" 

        return DrtEqualityExpression(first, second) 

 

    def get_BooleanExpression_factory(self, tok): 

        """This method serves as a hook for other logic parsers that 

        have different boolean operators""" 

        if tok == DrtTokens.DRS_CONC: 

            return lambda first, second: DrtConcatenation(first, second, None) 

        elif tok in DrtTokens.OR_LIST: 

            return DrtOrExpression 

        elif tok in DrtTokens.IMP_LIST: 

            def make_imp_expression(first, second): 

                if isinstance(first, DRS): 

                    return DRS(first.refs, first.conds, second) 

                if isinstance(first, DrtConcatenation): 

                    return DrtConcatenation(first.first, first.second, second) 

                raise Exception('Antecedent of implication must be a DRS') 

            return make_imp_expression 

        else: 

            return None 

 

    def make_BooleanExpression(self, factory, first, second): 

        return factory(first, second) 

 

    def make_ApplicationExpression(self, function, argument): 

        return DrtApplicationExpression(function, argument) 

 

    def make_VariableExpression(self, name): 

        return DrtVariableExpression(Variable(name)) 

 

    def make_LambdaExpression(self, variables, term): 

        return DrtLambdaExpression(variables, term) 

 

 

def demo(): 

    print('='*20 + 'TEST PARSE' + '='*20) 

    parser = DrtParser() 

    print(parser.parse(r'([x,y],[sees(x,y)])')) 

    print(parser.parse(r'([x],[man(x), walks(x)])')) 

    print(parser.parse(r'\x.\y.([],[sees(x,y)])')) 

    print(parser.parse(r'\x.([],[walks(x)])(john)')) 

    print(parser.parse(r'(([x],[walks(x)]) + ([y],[runs(y)]))')) 

    print(parser.parse(r'(([],[walks(x)]) -> ([],[runs(x)]))')) 

    print(parser.parse(r'([x],[PRO(x), sees(John,x)])')) 

    print(parser.parse(r'([x],[man(x), -([],[walks(x)])])')) 

    print(parser.parse(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])')) 

 

    print('='*20 + 'Test fol()' + '='*20) 

    print(parser.parse(r'([x,y],[sees(x,y)])').fol()) 

 

    print('='*20 + 'Test alpha conversion and lambda expression equality' + '='*20) 

    e1 = parser.parse(r'\x.([],[P(x)])') 

    print(e1) 

    e2 = e1.alpha_convert(Variable('z')) 

    print(e2) 

    print(e1 == e2) 

 

    print('='*20 + 'Test resolve_anaphora()' + '='*20) 

    print(resolve_anaphora(parser.parse(r'([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])'))) 

    print(resolve_anaphora(parser.parse(r'([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])'))) 

    print(resolve_anaphora(parser.parse(r'(([x,y],[]) + ([],[PRO(x)]))'))) 

 

    print('='*20 + 'Test pprint()' + '='*20) 

    parser.parse(r"([],[])").pprint() 

    parser.parse(r"([],[([x],[big(x), dog(x)]) -> ([],[bark(x)]) -([x],[walk(x)])])").pprint() 

    parser.parse(r"([x,y],[x=y]) + ([z],[dog(z), walk(z)])").pprint() 

    parser.parse(r"([],[([x],[]) | ([y],[]) | ([z],[dog(z), walk(z)])])").pprint() 

    parser.parse(r"\P.\Q.(([x],[]) + P(x) + Q(x))(\x.([],[dog(x)]))").pprint() 

 

 

def test_draw(): 

    expressions = [ 

            r'x', 

            r'([],[])', 

            r'([x],[])', 

            r'([x],[man(x)])', 

 

            r'([x,y],[sees(x,y)])', 

            r'([x],[man(x), walks(x)])', 

            r'\x.([],[man(x), walks(x)])', 

            r'\x y.([],[sees(x,y)])', 

            r'([],[(([],[walks(x)]) + ([],[runs(x)]))])', 

 

            r'([x],[man(x), -([],[walks(x)])])', 

            r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])' 

            ] 

 

    for e in expressions: 

        d = DrtParser().parse(e) 

        d.draw() 

 

 

if __name__ == '__main__': 

    demo()