Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

# Natural Language Toolkit: Models for first-order languages with lambda 

# 

# Copyright (C) 2001-2012 NLTK Project 

# Author: Ewan Klein <ewan@inf.ed.ac.uk>, 

# URL: <http://nltk.sourceforge.net> 

# For license information, see LICENSE.TXT 

 

#TODO: 

    #- fix tracing 

    #- fix iterator-based approach to existentials 

 

""" 

This module provides data structures for representing first-order 

models. 

""" 

from __future__ import print_function 

 

from pprint import pformat 

import inspect 

import textwrap 

 

from nltk.decorators import decorator # this used in code that is commented out 

 

from nltk.sem.logic import (AbstractVariableExpression, AllExpression, 

                            AndExpression, ApplicationExpression, EqualityExpression, 

                            ExistsExpression, IffExpression, ImpExpression, 

                            IndividualVariableExpression, LambdaExpression, 

                            LogicParser, NegatedExpression, OrExpression, 

                            Variable, is_indvar) 

 

 

class Error(Exception): pass 

 

class Undefined(Error):  pass 

 

def trace(f, *args, **kw): 

    argspec = inspect.getargspec(f) 

    d = dict(zip(argspec[0], args)) 

    if d.pop('trace', None): 

        print() 

        for item in d.items(): 

            print("%s => %s" % item) 

    return f(*args, **kw) 

 

def is_rel(s): 

    """ 

    Check whether a set represents a relation (of any arity). 

 

    :param s: a set containing tuples of str elements 

    :type s: set 

    :rtype: bool 

        """ 

    # we have the empty relation, i.e. set() 

    if len(s) == 0: 

        return True 

    # all the elements are tuples of the same length 

    elif s == set([elem for elem in s if isinstance(elem, tuple)]) and\ 

         len(max(s))==len(min(s)): 

        return True 

    else: 

        raise ValueError("Set %r contains sequences of different lengths" % s) 

 

def set2rel(s): 

    """ 

    Convert a set containing individuals (strings or numbers) into a set of 

    unary tuples. Any tuples of strings already in the set are passed through 

    unchanged. 

 

    For example: 

      - set(['a', 'b']) => set([('a',), ('b',)]) 

      - set([3, 27]) => set([('3',), ('27',)]) 

 

    :type s: set 

    :rtype: set of tuple of str 

    """ 

    new = set() 

    for elem in s: 

        if isinstance(elem, str): 

            new.add((elem,)) 

        elif isinstance(elem, int): 

            new.add((str(elem,))) 

        else: 

            new.add(elem) 

    return new 

 

def arity(rel): 

    """ 

    Check the arity of a relation. 

    :type rel: set of tuples 

    :rtype: int of tuple of str 

    """ 

    if len(rel) == 0: 

        return 0 

    return len(list(rel)[0]) 

 

 

class Valuation(dict): 

    """ 

    A dictionary which represents a model-theoretic Valuation of non-logical constants. 

    Keys are strings representing the constants to be interpreted, and values correspond 

    to individuals (represented as strings) and n-ary relations (represented as sets of tuples 

    of strings). 

 

    An instance of ``Valuation`` will raise a KeyError exception (i.e., 

    just behave like a standard  dictionary) if indexed with an expression that 

    is not in its list of symbols. 

    """ 

    def __init__(self, iter): 

        """ 

        :param iter: a list of (symbol, value) pairs. 

        """ 

        dict.__init__(self) 

        for (sym, val) in iter: 

            if isinstance(val, str) or isinstance(val, bool): 

                self[sym] = val 

            elif isinstance(val, set): 

                self[sym] = set2rel(val) 

            else: 

                msg = textwrap.fill("Error in initializing Valuation. " 

                                    "Unrecognized value for symbol '%s':\n%s" % (sym, val), width=66) 

 

                raise ValueError(msg) 

 

    def __getitem__(self, key): 

        if key in self: 

            return dict.__getitem__(self, key) 

        else: 

            raise Undefined("Unknown expression: '%s'" % key) 

 

    def __str__(self): 

        return pformat(self) 

 

    @property 

    def domain(self): 

        """Set-theoretic domain of the value-space of a Valuation.""" 

        dom = [] 

        for val in self.values(): 

            if isinstance(val, str): 

                dom.append(val) 

            elif not isinstance(val, bool): 

                dom.extend([elem for tuple in val for elem in tuple if elem is not None]) 

        return set(dom) 

 

    @property 

    def symbols(self): 

        """The non-logical constants which the Valuation recognizes.""" 

        return sorted(self.keys()) 

 

 

class Assignment(dict): 

    """ 

    A dictionary which represents an assignment of values to variables. 

 

    An assigment can only assign values from its domain. 

 

    If an unknown expression *a* is passed to a model *M*\ 's 

    interpretation function *i*, *i* will first check whether *M*\ 's 

    valuation assigns an interpretation to *a* as a constant, and if 

    this fails, *i* will delegate the interpretation of *a* to 

    *g*. *g* only assigns values to individual variables (i.e., 

    members of the class ``IndividualVariableExpression`` in the ``logic`` 

    module. If a variable is not assigned a value by *g*, it will raise 

    an ``Undefined`` exception. 

 

    A variable *Assignment* is a mapping from individual variables to 

    entities in the domain. Individual variables are usually indicated 

    with the letters ``'x'``, ``'y'``, ``'w'`` and ``'z'``, optionally 

    followed by an integer (e.g., ``'x0'``, ``'y332'``).  Assignments are 

    created using the ``Assignment`` constructor, which also takes the 

    domain as a parameter. 

 

        >>> from nltk.sem.evaluate import Assignment 

        >>> dom = set(['u1', 'u2', 'u3', 'u4']) 

        >>> g3 = Assignment(dom, [('x', 'u1'), ('y', 'u2')]) 

        >>> g3 

        {'y': 'u2', 'x': 'u1'} 

 

    There is also a ``print`` format for assignments which uses a notation 

    closer to that in logic textbooks: 

 

        >>> print(g3) 

        g[u2/y][u1/x] 

 

    It is also possible to update an assignment using the ``add`` method: 

 

        >>> dom = set(['u1', 'u2', 'u3', 'u4']) 

        >>> g4 = Assignment(dom) 

        >>> g4.add('x', 'u1') 

        {'x': 'u1'} 

 

    With no arguments, ``purge()`` is equivalent to ``clear()`` on a dictionary: 

 

        >>> g4.purge() 

        >>> g4 

        {} 

 

    :param domain: the domain of discourse 

    :type domain: set 

    :param assign: a list of (varname, value) associations 

    :type assign: list 

    """ 

 

    def __init__(self, domain, assign=None): 

        dict.__init__(self) 

        self.domain = domain 

        if assign: 

            for (var, val) in assign: 

                assert val in self.domain,\ 

                       "'%s' is not in the domain: %s" % (val, self.domain) 

                assert is_indvar(var),\ 

                       "Wrong format for an Individual Variable: '%s'" % var 

                self[var] = val 

        self._addvariant() 

 

    def __getitem__(self, key): 

        if key in self: 

            return dict.__getitem__(self, key) 

        else: 

            raise Undefined("Not recognized as a variable: '%s'" % key) 

 

    def copy(self): 

        new = Assignment(self.domain) 

        new.update(self) 

        return new 

 

    def purge(self, var=None): 

        """ 

        Remove one or all keys (i.e. logic variables) from an 

        assignment, and update ``self.variant``. 

 

        :param var: a Variable acting as a key for the assignment. 

        """ 

        if var: 

            val = self[var] 

            del self[var] 

        else: 

            self.clear() 

        self._addvariant() 

        return None 

 

    def __str__(self): 

        """ 

        Pretty printing for assignments. {'x', 'u'} appears as 'g[u/x]' 

        """ 

        gstring = "g" 

        for (val, var) in self.variant: 

            gstring += "[%s/%s]" % (val, var) 

        return gstring 

 

    def _addvariant(self): 

        """ 

        Create a more pretty-printable version of the assignment. 

        """ 

        list = [] 

        for item in self.items(): 

            pair = (item[1], item[0]) 

            list.append(pair) 

        self.variant = list 

        return None 

 

    def add(self, var, val): 

        """ 

        Add a new variable-value pair to the assignment, and update 

        ``self.variant``. 

 

        """ 

        assert val in self.domain,\ 

               "%s is not in the domain %s" % (val, self.domain) 

        assert is_indvar(var),\ 

               "Wrong format for an Individual Variable: '%s'" % var 

        self[var] = val 

        self._addvariant() 

        return self 

 

 

class Model(object): 

    """ 

    A first order model is a domain *D* of discourse and a valuation *V*. 

 

    A domain *D* is a set, and a valuation *V* is a map that associates 

    expressions with values in the model. 

    The domain of *V* should be a subset of *D*. 

 

    Construct a new ``Model``. 

 

    :type domain: set 

    :param domain: A set of entities representing the domain of discourse of the model. 

    :type valuation: Valuation 

    :param valuation: the valuation of the model. 

    :param prop: If this is set, then we are building a propositional\ 

    model and don't require the domain of *V* to be subset of *D*. 

    """ 

 

    def __init__(self, domain, valuation): 

        assert isinstance(domain, set) 

        self.domain = domain 

        self.valuation = valuation 

        if not domain.issuperset(valuation.domain): 

            raise Error("The valuation domain, %s, must be a subset of the model's domain, %s"\ 

                  % (valuation.domain, domain)) 

 

    def __repr__(self): 

        return "(%r, %r)" % (self.domain, self.valuation) 

 

    def __str__(self): 

        return "Domain = %s,\nValuation = \n%s" % (self.domain, self.valuation) 

 

    def evaluate(self, expr, g, trace=None): 

        """ 

        Call the ``LogicParser`` to parse input expressions, and 

        provide a handler for ``satisfy`` 

        that blocks further propagation of the ``Undefined`` error. 

        :param expr: An ``Expression`` of ``logic``. 

        :type g: Assignment 

        :param g: an assignment to individual variables. 

        :rtype: bool or 'Undefined' 

        """ 

        try: 

            lp = LogicParser() 

            parsed = lp.parse(expr) 

            value = self.satisfy(parsed, g, trace=trace) 

            if trace: 

                print() 

                print("'%s' evaluates to %s under M, %s" %  (expr, value, g)) 

            return value 

        except Undefined: 

            if trace: 

                print() 

                print("'%s' is undefined under M, %s" %  (expr, g)) 

            return 'Undefined' 

 

 

    def satisfy(self, parsed, g, trace=None): 

        """ 

        Recursive interpretation function for a formula of first-order logic. 

 

        Raises an ``Undefined`` error when ``parsed`` is an atomic string 

        but is not a symbol or an individual variable. 

 

        :return: Returns a truth value or ``Undefined`` if ``parsed`` is\ 

        complex, and calls the interpretation function ``i`` if ``parsed``\ 

        is atomic. 

 

        :param parsed: An expression of ``logic``. 

        :type g: Assignment 

        :param g: an assignment to individual variables. 

        """ 

 

        if isinstance(parsed, ApplicationExpression): 

            function, arguments = parsed.uncurry() 

            if isinstance(function, AbstractVariableExpression): 

                #It's a predicate expression ("P(x,y)"), so used uncurried arguments 

                funval = self.satisfy(function, g) 

                argvals = tuple([self.satisfy(arg, g) for arg in arguments]) 

                return argvals in funval 

            else: 

                #It must be a lambda expression, so use curried form 

                funval = self.satisfy(parsed.function, g) 

                argval = self.satisfy(parsed.argument, g) 

                return funval[argval] 

        elif isinstance(parsed, NegatedExpression): 

            return not self.satisfy(parsed.term, g) 

        elif isinstance(parsed, AndExpression): 

            return self.satisfy(parsed.first, g) and \ 

                   self.satisfy(parsed.second, g) 

        elif isinstance(parsed, OrExpression): 

            return self.satisfy(parsed.first, g) or \ 

                   self.satisfy(parsed.second, g) 

        elif isinstance(parsed, ImpExpression): 

            return (not self.satisfy(parsed.first, g)) or \ 

                   self.satisfy(parsed.second, g) 

        elif isinstance(parsed, IffExpression): 

            return self.satisfy(parsed.first, g) == \ 

                   self.satisfy(parsed.second, g) 

        elif isinstance(parsed, EqualityExpression): 

            return self.satisfy(parsed.first, g) == \ 

                   self.satisfy(parsed.second, g) 

        elif isinstance(parsed, AllExpression): 

            new_g = g.copy() 

            for u in self.domain: 

                new_g.add(parsed.variable.name, u) 

                if not self.satisfy(parsed.term, new_g): 

                    return False 

            return True 

        elif isinstance(parsed, ExistsExpression): 

            new_g = g.copy() 

            for u in self.domain: 

                new_g.add(parsed.variable.name, u) 

                if self.satisfy(parsed.term, new_g): 

                    return True 

            return False 

        elif isinstance(parsed, LambdaExpression): 

            cf = {} 

            var = parsed.variable.name 

            for u in self.domain: 

                val = self.satisfy(parsed.term, g.add(var, u)) 

                # NB the dict would be a lot smaller if we do this: 

                # if val: cf[u] = val 

                # But then need to deal with cases where f(a) should yield 

                # a function rather than just False. 

                cf[u] = val 

            return cf 

        else: 

            return self.i(parsed, g, trace) 

 

    #@decorator(trace_eval) 

    def i(self, parsed, g, trace=False): 

        """ 

        An interpretation function. 

 

        Assuming that ``parsed`` is atomic: 

 

        - if ``parsed`` is a non-logical constant, calls the valuation *V* 

        - else if ``parsed`` is an individual variable, calls assignment *g* 

        - else returns ``Undefined``. 

 

        :param parsed: an ``Expression`` of ``logic``. 

        :type g: Assignment 

        :param g: an assignment to individual variables. 

        :return: a semantic value 

        """ 

        # If parsed is a propositional letter 'p', 'q', etc, it could be in valuation.symbols 

        # and also be an IndividualVariableExpression. We want to catch this first case. 

        # So there is a procedural consequence to the ordering of clauses here: 

        if parsed.variable.name in self.valuation.symbols: 

            return self.valuation[parsed.variable.name] 

        elif isinstance(parsed, IndividualVariableExpression): 

            return g[parsed.variable.name] 

 

        else: 

            raise Undefined("Can't find a value for %s" % parsed) 

 

    def satisfiers(self, parsed, varex, g, trace=None, nesting=0): 

        """ 

        Generate the entities from the model's domain that satisfy an open formula. 

 

        :param parsed: an open formula 

        :type parsed: Expression 

        :param varex: the relevant free individual variable in ``parsed``. 

        :type varex: VariableExpression or str 

        :param g: a variable assignment 

        :type g:  Assignment 

        :return: a set of the entities that satisfy ``parsed``. 

        """ 

 

        spacer = '   ' 

        indent = spacer + (spacer * nesting) 

        candidates = [] 

 

        if isinstance(varex, str): 

            var = Variable(varex) 

        else: 

            var = varex 

 

        if var in parsed.free(): 

            if trace: 

                print() 

                print((spacer * nesting) + "Open formula is '%s' with assignment %s" % (parsed, g)) 

            for u in self.domain: 

                new_g = g.copy() 

                new_g.add(var.name, u) 

                if trace > 1: 

                    lowtrace = trace-1 

                else: 

                    lowtrace = 0 

                value = self.satisfy(parsed, new_g, lowtrace) 

 

                if trace: 

                    print(indent + "(trying assignment %s)" % new_g) 

 

                # parsed == False under g[u/var]? 

                if value == False: 

                    if trace: 

                        print(indent + "value of '%s' under %s is False" % (parsed, new_g)) 

 

                # so g[u/var] is a satisfying assignment 

                else: 

                    candidates.append(u) 

                    if trace: 

                        print(indent + "value of '%s' under %s is %s" % (parsed, new_g, value)) 

 

            result = set(c for c in candidates) 

        # var isn't free in parsed 

        else: 

            raise Undefined("%s is not free in %s" % (var.name, parsed)) 

 

        return result 

 

 

 

 

 

#////////////////////////////////////////////////////////////////////// 

# Demo.. 

#////////////////////////////////////////////////////////////////////// 

# number of spacer chars 

mult = 30 

 

# Demo 1: Propositional Logic 

################# 

def propdemo(trace=None): 

    """Example of a propositional model.""" 

 

    global val1, dom1, m1, g1 

    val1 = Valuation([('P', True), ('Q', True), ('R', False)]) 

    dom1 = set([]) 

    m1 = Model(dom1, val1) 

    g1 = Assignment(dom1) 

 

    print() 

    print('*' * mult) 

    print("Propositional Formulas Demo") 

    print('*' * mult) 

    print('(Propositional constants treated as nullary predicates)') 

    print() 

    print("Model m1:\n", m1) 

    print('*' * mult) 

    sentences = [ 

    '(P & Q)', 

    '(P & R)', 

    '- P', 

    '- R', 

    '- - P', 

    '- (P & R)', 

    '(P | R)', 

    '(R | P)', 

    '(R | R)', 

    '(- P | R)', 

    '(P | - P)', 

    '(P -> Q)', 

    '(P -> R)', 

    '(R -> P)', 

    '(P <-> P)', 

    '(R <-> R)', 

    '(P <-> R)', 

    ] 

 

    for sent in sentences: 

        if trace: 

            print() 

            m1.evaluate(sent, g1, trace) 

        else: 

            print("The value of '%s' is: %s" % (sent, m1.evaluate(sent, g1))) 

 

# Demo 2: FOL Model 

############# 

 

def folmodel(quiet=False, trace=None): 

    """Example of a first-order model.""" 

 

    global val2, v2, dom2, m2, g2 

 

    v2 = [('adam', 'b1'), ('betty', 'g1'), ('fido', 'd1'),\ 

         ('girl', set(['g1', 'g2'])), ('boy', set(['b1', 'b2'])), ('dog', set(['d1'])), 

         ('love', set([('b1', 'g1'), ('b2', 'g2'), ('g1', 'b1'), ('g2', 'b1')]))] 

    val2 = Valuation(v2) 

    dom2 = val2.domain 

    m2 = Model(dom2, val2) 

    g2 = Assignment(dom2, [('x', 'b1'), ('y', 'g2')]) 

 

    if not quiet: 

        print() 

        print('*' * mult) 

        print("Models Demo") 

        print("*" * mult) 

        print("Model m2:\n", "-" * 14,"\n", m2) 

        print("Variable assignment = ", g2) 

 

        exprs = ['adam', 'boy', 'love', 'walks', 'x', 'y', 'z'] 

        lp = LogicParser() 

        parsed_exprs = [lp.parse(e) for e in exprs] 

 

        print() 

        for parsed in parsed_exprs: 

            try: 

                print("The interpretation of '%s' in m2 is %s" % (parsed, m2.i(parsed, g2))) 

            except Undefined: 

                print("The interpretation of '%s' in m2 is Undefined" % parsed) 

 

 

        applications = [('boy', ('adam')), ('walks', ('adam',)), ('love', ('adam', 'y')), ('love', ('y', 'adam'))] 

 

        for (fun, args) in applications: 

            try: 

                funval = m2.i(lp.parse(fun), g2) 

                argsval = tuple(m2.i(lp.parse(arg), g2) for arg in args) 

                print("%s(%s) evaluates to %s" % (fun, args, argsval in funval)) 

            except Undefined: 

                print("%s(%s) evaluates to Undefined" % (fun, args)) 

 

# Demo 3: FOL 

######### 

 

def foldemo(trace=None): 

    """ 

    Interpretation of closed expressions in a first-order model. 

    """ 

    folmodel(quiet=True) 

 

    print() 

    print('*' * mult) 

    print("FOL Formulas Demo") 

    print('*' * mult) 

 

    formulas = [ 

    'love (adam, betty)', 

    '(adam = mia)', 

    '\\x. (boy(x) | girl(x))', 

    '\\x. boy(x)(adam)', 

    '\\x y. love(x, y)', 

    '\\x y. love(x, y)(adam)(betty)', 

    '\\x y. love(x, y)(adam, betty)', 

    '\\x y. (boy(x) & love(x, y))', 

    '\\x. exists y. (boy(x) & love(x, y))', 

    'exists z1. boy(z1)', 

    'exists x. (boy(x) &  -(x = adam))', 

    'exists x. (boy(x) & all y. love(y, x))', 

    'all x. (boy(x) | girl(x))', 

    'all x. (girl(x) -> exists y. boy(y) & love(x, y))',    #Every girl loves exists boy. 

    'exists x. (boy(x) & all y. (girl(y) -> love(y, x)))',  #There is exists boy that every girl loves. 

    'exists x. (boy(x) & all y. (girl(y) -> love(x, y)))',  #exists boy loves every girl. 

    'all x. (dog(x) -> - girl(x))', 

    'exists x. exists y. (love(x, y) & love(x, y))' 

    ] 

 

 

    for fmla in formulas: 

        g2.purge() 

        if trace: 

            m2.evaluate(fmla, g2, trace) 

        else: 

            print("The value of '%s' is: %s" % (fmla, m2.evaluate(fmla, g2))) 

 

 

# Demo 3: Satisfaction 

############# 

 

def satdemo(trace=None): 

    """Satisfiers of an open formula in a first order model.""" 

 

    print() 

    print('*' * mult) 

    print("Satisfiers Demo") 

    print('*' * mult) 

 

    folmodel(quiet=True) 

 

    formulas = [ 

               'boy(x)', 

               '(x = x)', 

               '(boy(x) | girl(x))', 

               '(boy(x) & girl(x))', 

               'love(adam, x)', 

               'love(x, adam)', 

               '-(x = adam)', 

               'exists z22. love(x, z22)', 

               'exists y. love(y, x)', 

               'all y. (girl(y) -> love(x, y))', 

               'all y. (girl(y) -> love(y, x))', 

               'all y. (girl(y) -> (boy(x) & love(y, x)))', 

               '(boy(x) & all y. (girl(y) -> love(x, y)))', 

               '(boy(x) & all y. (girl(y) -> love(y, x)))', 

               '(boy(x) & exists y. (girl(y) & love(y, x)))', 

               '(girl(x) -> dog(x))', 

               'all y. (dog(y) -> (x = y))', 

               'exists y. love(y, x)', 

               'exists y. (love(adam, y) & love(y, x))' 

                ] 

 

    if trace: 

        print(m2) 

 

    lp = LogicParser() 

    for fmla in formulas: 

        print(fmla) 

        lp.parse(fmla) 

 

    parsed = [lp.parse(fmla) for fmla in formulas] 

 

    for p in parsed: 

        g2.purge() 

        print("The satisfiers of '%s' are: %s" % (p, m2.satisfiers(p, 'x', g2, trace))) 

 

 

def demo(num=0, trace=None): 

    """ 

    Run exists demos. 

 

     - num = 1: propositional logic demo 

     - num = 2: first order model demo (only if trace is set) 

     - num = 3: first order sentences demo 

     - num = 4: satisfaction of open formulas demo 

     - any other value: run all the demos 

 

    :param trace: trace = 1, or trace = 2 for more verbose tracing 

    """ 

    demos = { 

        1: propdemo, 

        2: folmodel, 

        3: foldemo, 

        4: satdemo} 

 

    try: 

        demos[num](trace=trace) 

    except KeyError: 

        for num in demos: 

            demos[num](trace=trace) 

 

 

if __name__ == "__main__": 

    demo(2, trace=0)