Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

# Natural Language Toolkit: Logic 

# 

# Author: Dan Garrette <dhgarrette@gmail.com> 

# 

# Copyright (C) 2001-2012 NLTK Project 

# URL: <http://www.nltk.org> 

# For license information, see LICENSE.TXT 

 

""" 

A version of first order predicate logic, built on 

top of the typed lambda calculus. 

""" 

from __future__ import print_function 

 

import re 

import operator 

from collections import defaultdict 

from functools import reduce 

 

from nltk.internals import Counter 

 

APP = 'APP' 

 

_counter = Counter() 

 

class Tokens(object): 

    LAMBDA = '\\';     LAMBDA_LIST = ['\\'] 

 

    #Quantifiers 

    EXISTS = 'exists'; EXISTS_LIST = ['some', 'exists', 'exist'] 

    ALL = 'all';       ALL_LIST = ['all', 'forall'] 

 

    #Punctuation 

    DOT = '.' 

    OPEN = '(' 

    CLOSE = ')' 

    COMMA = ',' 

 

    #Operations 

    NOT = '-';         NOT_LIST = ['not', '-', '!'] 

    AND = '&';         AND_LIST = ['and', '&', '^'] 

    OR = '|';          OR_LIST = ['or', '|'] 

    IMP = '->';        IMP_LIST = ['implies', '->', '=>'] 

    IFF = '<->';       IFF_LIST = ['iff', '<->', '<=>'] 

    EQ = '=';          EQ_LIST = ['=', '=='] 

    NEQ = '!=';        NEQ_LIST = ['!='] 

 

    #Collections of tokens 

    BINOPS = AND_LIST + OR_LIST + IMP_LIST + IFF_LIST 

    QUANTS = EXISTS_LIST + ALL_LIST 

    PUNCT = [DOT, OPEN, CLOSE, COMMA] 

 

    TOKENS = BINOPS + EQ_LIST + NEQ_LIST + QUANTS + LAMBDA_LIST + PUNCT + NOT_LIST 

 

    #Special 

    SYMBOLS = [x for x in TOKENS if re.match(r'^[-\\.(),!&^|>=<]*$', x)] 

 

 

def boolean_ops(): 

    """ 

    Boolean operators 

    """ 

    names =  ["negation", "conjunction", "disjunction", "implication", "equivalence"] 

    for pair in zip(names, [Tokens.NOT, Tokens.AND, Tokens.OR, Tokens.IMP, Tokens.IFF]): 

        print("%-15s\t%s" %  pair) 

 

def equality_preds(): 

    """ 

    Equality predicates 

    """ 

    names =  ["equality", "inequality"] 

    for pair in zip(names, [Tokens.EQ, Tokens.NEQ]): 

        print("%-15s\t%s" %  pair) 

 

def binding_ops(): 

    """ 

    Binding operators 

    """ 

    names =  ["existential", "universal", "lambda"] 

    for pair in zip(names, [Tokens.EXISTS, Tokens.ALL, Tokens.LAMBDA]): 

        print("%-15s\t%s" %  pair) 

 

 

class Variable(object): 

    def __init__(self, name): 

        """ 

        :param name: the name of the variable 

        """ 

        assert isinstance(name, str), "%s is not a string" % name 

        self.name = name 

 

    def __eq__(self, other): 

        return isinstance(other, Variable) and self.name == other.name 

 

    def __neq__(self, other): 

        return not (self == other) 

 

    def __cmp__(self, other): 

        return cmp(type(self), type(other)) or cmp(self.name, other.name) 

 

    def substitute_bindings(self, bindings): 

        return bindings.get(self, self) 

 

    def __hash__(self): 

        return hash(self.name) 

 

    def __str__(self): 

        return self.name 

 

    def __repr__(self): 

        return "Variable('%s')" % self.name 

 

 

def unique_variable(pattern=None, ignore=None): 

    """ 

    Return a new, unique variable. 

 

    :param pattern: ``Variable`` that is being replaced.  The new variable must 

        be the same type. 

    :param term: a set of ``Variable`` objects that should not be returned from 

        this function. 

    :rtype: Variable 

    """ 

    if pattern is not None: 

        if is_indvar(pattern.name): 

            prefix = 'z' 

        elif is_funcvar(pattern.name): 

            prefix = 'F' 

        elif is_eventvar(pattern.name): 

            prefix = 'e0' 

        else: 

            assert False, "Cannot generate a unique constant" 

    else: 

        prefix = 'z' 

 

    v = Variable(prefix + str(_counter.get())) 

    while ignore is not None and v in ignore: 

        v = Variable(prefix + str(_counter.get())) 

    return v 

 

def skolem_function(univ_scope=None): 

    """ 

    Return a skolem function over the variables in univ_scope 

    param univ_scope 

    """ 

    skolem = VariableExpression(Variable('F%s' % _counter.get())) 

    if univ_scope: 

        for v in list(univ_scope): 

            skolem = skolem(VariableExpression(v)) 

    return skolem 

 

 

class Type(object): 

    def __repr__(self): 

        return str(self) 

 

    def __hash__(self): 

        return hash(str(self)) 

 

class ComplexType(Type): 

    def __init__(self, first, second): 

        assert(isinstance(first, Type)), "%s is not a Type" % first 

        assert(isinstance(second, Type)), "%s is not a Type" % second 

        self.first = first 

        self.second = second 

 

    def __eq__(self, other): 

        return isinstance(other, ComplexType) and \ 

               self.first == other.first and \ 

               self.second == other.second 

 

    def matches(self, other): 

        if isinstance(other, ComplexType): 

            return self.first.matches(other.first) and \ 

                   self.second.matches(other.second) 

        else: 

            return self == ANY_TYPE 

 

    def resolve(self, other): 

        if other == ANY_TYPE: 

            return self 

        elif isinstance(other, ComplexType): 

            f = self.first.resolve(other.first) 

            s = self.second.resolve(other.second) 

            if f and s: 

                return ComplexType(f,s) 

            else: 

                return None 

        elif self == ANY_TYPE: 

            return other 

        else: 

            return None 

 

    def __str__(self): 

        if self == ANY_TYPE: 

            return str(ANY_TYPE) 

        else: 

            return '<%s,%s>' % (self.first, self.second) 

 

    def str(self): 

        if self == ANY_TYPE: 

            return ANY_TYPE.str() 

        else: 

            return '(%s -> %s)' % (self.first.str(), self.second.str()) 

 

class BasicType(Type): 

    def __eq__(self, other): 

        return isinstance(other, BasicType) and str(self) == str(other) 

 

    def matches(self, other): 

        return other == ANY_TYPE or self == other 

 

    def resolve(self, other): 

        if self.matches(other): 

            return self 

        else: 

            return None 

 

class EntityType(BasicType): 

    def __str__(self): 

        return 'e' 

 

    def str(self): 

        return 'IND' 

 

class TruthValueType(BasicType): 

    def __str__(self): 

        return 't' 

 

    def str(self): 

        return 'BOOL' 

 

class EventType(BasicType): 

    def __str__(self): 

        return 'v' 

 

    def str(self): 

        return 'EVENT' 

 

class AnyType(BasicType, ComplexType): 

    def __init__(self): 

        pass 

 

    @property 

    def first(self): return self 

 

    @property 

    def second(self): return self 

 

    def __eq__(self, other): 

        return isinstance(other, AnyType) or other.__eq__(self) 

 

    def matches(self, other): 

        return True 

 

    def resolve(self, other): 

        return other 

 

    def __str__(self): 

        return '?' 

 

    def str(self): 

        return 'ANY' 

 

 

TRUTH_TYPE = TruthValueType() 

ENTITY_TYPE = EntityType() 

EVENT_TYPE = EventType() 

ANY_TYPE = AnyType() 

 

 

def parse_type(type_string): 

    assert isinstance(type_string, str) 

    type_string = type_string.replace(' ', '') #remove spaces 

 

    if type_string[0] == '<': 

        assert type_string[-1] == '>' 

        paren_count = 0 

        for i,char in enumerate(type_string): 

            if char == '<': 

                paren_count += 1 

            elif char == '>': 

                paren_count -= 1 

                assert paren_count > 0 

            elif char == ',': 

                if paren_count == 1: 

                    break 

        return ComplexType(parse_type(type_string[1  :i ]), 

                           parse_type(type_string[i+1:-1])) 

    elif type_string[0] == str(ENTITY_TYPE): 

        return ENTITY_TYPE 

    elif type_string[0] == str(TRUTH_TYPE): 

        return TRUTH_TYPE 

    elif type_string[0] == str(ANY_TYPE): 

        return ANY_TYPE 

    else: 

        raise ParseException("Unexpected character: '%s'." % type_string[0]) 

 

 

class TypeException(Exception): 

    def __init__(self, msg): 

        Exception.__init__(self, msg) 

 

class InconsistentTypeHierarchyException(TypeException): 

    def __init__(self, variable, expression=None): 

        if expression: 

            msg = "The variable '%s' was found in multiple places with different"\ 

                " types in '%s'." % (variable, expression) 

        else: 

            msg = "The variable '%s' was found in multiple places with different"\ 

                " types." % (variable) 

        Exception.__init__(self, msg) 

 

class TypeResolutionException(TypeException): 

    def __init__(self, expression, other_type): 

        Exception.__init__(self, "The type of '%s', '%s', cannot be " 

                           "resolved with type '%s'" % \ 

                           (expression, expression.type, other_type)) 

 

class IllegalTypeException(TypeException): 

    def __init__(self, expression, other_type, allowed_type): 

        Exception.__init__(self, "Cannot set type of %s '%s' to '%s'; " 

                           "must match type '%s'." % 

                           (expression.__class__.__name__, expression, 

                            other_type, allowed_type)) 

 

 

def typecheck(expressions, signature=None): 

    """ 

    Ensure correct typing across a collection of ``Expression`` objects. 

    :param expressions: a collection of expressions 

    :param signature: dict that maps variable names to types (or string 

    representations of types) 

    """ 

    #typecheck and create master signature 

    for expression in expressions: 

        signature = expression.typecheck(signature) 

    #apply master signature to all expressions 

    for expression in expressions[:-1]: 

        expression.typecheck(signature) 

    return signature 

 

 

class SubstituteBindingsI(object): 

    """ 

    An interface for classes that can perform substitutions for 

    variables. 

    """ 

    def substitute_bindings(self, bindings): 

        """ 

        :return: The object that is obtained by replacing 

            each variable bound by ``bindings`` with its values. 

            Aliases are already resolved. (maybe?) 

        :rtype: (any) 

        """ 

        raise NotImplementedError() 

 

    def variables(self): 

        """ 

        :return: A list of all variables in this object. 

        """ 

        raise NotImplementedError() 

 

 

class Expression(SubstituteBindingsI): 

    """This is the base abstract object for all logical expressions""" 

 

    def __call__(self, other, *additional): 

        accum = self.applyto(other) 

        for a in additional: 

            accum = accum(a) 

        return accum 

 

    def applyto(self, other): 

        assert isinstance(other, Expression), "%s is not an Expression" % other 

        return ApplicationExpression(self, other) 

 

    def __neg__(self): 

        return NegatedExpression(self) 

 

    def negate(self): 

        """If this is a negated expression, remove the negation. 

        Otherwise add a negation.""" 

        return -self 

 

    def __and__(self, other): 

        assert isinstance(other, Expression), "%s is not an Expression" % other 

        return AndExpression(self, other) 

 

    def __or__(self, other): 

        assert isinstance(other, Expression), "%s is not an Expression" % other 

        return OrExpression(self, other) 

 

    def __gt__(self, other): 

        assert isinstance(other, Expression), "%s is not an Expression" % other 

        return ImpExpression(self, other) 

 

    def __lt__(self, other): 

        assert isinstance(other, Expression), "%s is not an Expression" % other 

        return IffExpression(self, other) 

 

    def __eq__(self, other): 

        raise NotImplementedError() 

 

    def __neq__(self, other): 

        return not (self == other) 

 

    def equiv(self, other, prover=None): 

        """ 

        Check for logical equivalence. 

        Pass the expression (self <-> other) to the theorem prover. 

        If the prover says it is valid, then the self and other are equal. 

 

        :param other: an ``Expression`` to check equality against 

        :param prover: a ``nltk.inference.api.Prover`` 

        """ 

        assert isinstance(other, Expression), "%s is not an Expression" % other 

 

        if prover is None: 

            from nltk.inference import Prover9 

            prover = Prover9() 

        bicond = IffExpression(self.simplify(), other.simplify()) 

        return prover.prove(bicond) 

 

    def __hash__(self): 

        return hash(repr(self)) 

 

    def substitute_bindings(self, bindings): 

        expr = self 

        for var in expr.variables(): 

            if var in bindings: 

                val = bindings[var] 

                if isinstance(val, Variable): 

                    val = self.make_VariableExpression(val) 

                elif not isinstance(val, Expression): 

                    raise ValueError('Can not substitute a non-expression ' 

                                     'value into an expression: %r' % (val,)) 

                # Substitute bindings in the target value. 

                val = val.substitute_bindings(bindings) 

                # Replace var w/ the target value. 

                expr = expr.replace(var, val) 

        return expr.simplify() 

 

    def typecheck(self, signature=None): 

        """ 

        Infer and check types.  Raise exceptions if necessary. 

 

        :param signature: dict that maps variable names to types (or string 

            representations of types) 

        :return: the signature, plus any additional type mappings 

        """ 

        sig = defaultdict(list) 

        if signature: 

            for key in signature: 

                val = signature[key] 

                varEx = VariableExpression(Variable(key)) 

                if isinstance(val, Type): 

                    varEx.type = val 

                else: 

                    varEx.type = parse_type(val) 

                sig[key].append(varEx) 

 

        self._set_type(signature=sig) 

 

        return dict((key, sig[key][0].type) for key in sig) 

 

    def findtype(self, variable): 

        """ 

        Find the type of the given variable as it is used in this expression. 

        For example, finding the type of "P" in "P(x) & Q(x,y)" yields "<e,t>" 

 

        :param variable: Variable 

        """ 

        raise NotImplementedError() 

 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """ 

        Set the type of this expression to be the given type.  Raise type 

        exceptions where applicable. 

 

        :param other_type: Type 

        :param signature: dict(str -> list(AbstractVariableExpression)) 

        """ 

        raise NotImplementedError() 

 

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True): 

        """ 

        Replace every instance of 'variable' with 'expression' 

        :param variable: ``Variable`` The variable to replace 

        :param expression: ``Expression`` The expression with which to replace it 

        :param replace_bound: bool Should bound variables be replaced? 

        :param alpha_convert: bool Alpha convert automatically to avoid name clashes? 

        """ 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        assert isinstance(expression, Expression), "%s is not an Expression" % expression 

 

        return self.visit_structured(lambda e: e.replace(variable, expression, 

                                                         replace_bound, alpha_convert), 

                                     self.__class__) 

 

    def normalize(self): 

        """Rename auto-generated unique variables""" 

        def get_indiv_vars(e): 

            if isinstance(e, IndividualVariableExpression): 

                return set([e]) 

            elif isinstance(e, AbstractVariableExpression): 

                return set() 

            else: 

                return e.visit(get_indiv_vars, 

                               lambda parts: reduce(operator.or_, parts, set())) 

 

        result = self 

        for i,e in enumerate(sorted(get_indiv_vars(self), key=lambda e: e.variable)): 

            if isinstance(e,EventVariableExpression): 

                newVar = e.__class__(Variable('e0%s' % (i+1))) 

            elif isinstance(e,IndividualVariableExpression): 

                newVar = e.__class__(Variable('z%s' % (i+1))) 

            else: 

                newVar = e 

            result = result.replace(e.variable, newVar, True) 

        return result 

 

    def visit(self, function, combinator): 

        """ 

        Recursively visit subexpressions.  Apply 'function' to each 

        subexpression and pass the result of each function application 

        to the 'combinator' for aggregation: 

 

            return combinator(map(function, self.subexpressions)) 

 

        Bound variables are neither applied upon by the function nor given to 

        the combinator. 

        :param function: ``Function<Expression,T>`` to call on each subexpression 

        :param combinator: ``Function<list<T>,R>`` to combine the results of the 

        function calls 

        :return: result of combination ``R`` 

        """ 

        raise NotImplementedError() 

 

    def visit_structured(self, function, combinator): 

        """ 

        Recursively visit subexpressions.  Apply 'function' to each 

        subexpression and pass the result of each function application 

        to the 'combinator' for aggregation.  The combinator must have 

        the same signature as the constructor.  The function is not 

        applied to bound variables, but they are passed to the 

        combinator. 

        :param function: ``Function`` to call on each subexpression 

        :param combinator: ``Function`` with the same signature as the 

        constructor, to combine the results of the function calls 

        :return: result of combination 

        """ 

        return self.visit(function, lambda parts: combinator(*parts)) 

 

    def __repr__(self): 

        return '<%s %s>' % (self.__class__.__name__, self) 

 

    def __str__(self): 

        return self.str() 

 

    def variables(self): 

        """ 

        Return a set of all the variables for binding substitution. 

        The variables returned include all free (non-bound) individual 

        variables and any variable starting with '?' or '@'. 

        :return: set of ``Variable`` objects 

        """ 

        return self.free() | set(p for p in self.predicates()|self.constants() 

                                 if re.match('^[?@]', p.name)) 

 

    def free(self): 

        """ 

        Return a set of all the free (non-bound) variables.  This includes 

        both individual and predicate variables, but not constants. 

        :return: set of ``Variable`` objects 

        """ 

        return self.visit(lambda e: e.free(), 

                          lambda parts: reduce(operator.or_, parts, set())) 

 

    def constants(self): 

        """ 

        Return a set of individual constants (non-predicates). 

        :return: set of ``Variable`` objects 

        """ 

        return self.visit(lambda e: e.constants(), 

                          lambda parts: reduce(operator.or_, parts, set())) 

 

    def predicates(self): 

        """ 

        Return a set of predicates (constants, not variables). 

        :return: set of ``Variable`` objects 

        """ 

        return self.visit(lambda e: e.predicates(), 

                          lambda parts: reduce(operator.or_, parts, set())) 

 

    def simplify(self): 

        """ 

        :return: beta-converted version of this expression 

        """ 

        return self.visit_structured(lambda e: e.simplify(), self.__class__) 

 

    def make_VariableExpression(self, variable): 

        return VariableExpression(variable) 

 

 

class ApplicationExpression(Expression): 

    r""" 

    This class is used to represent two related types of logical expressions. 

 

    The first is a Predicate Expression, such as "P(x,y)".  A predicate 

    expression is comprised of a ``FunctionVariableExpression`` or 

    ``ConstantExpression`` as the predicate and a list of Expressions as the 

    arguments. 

 

    The second is a an application of one expression to another, such as 

    "(\x.dog(x))(fido)". 

 

    The reason Predicate Expressions are treated as Application Expressions is 

    that the Variable Expression predicate of the expression may be replaced 

    with another Expression, such as a LambdaExpression, which would mean that 

    the Predicate should be thought of as being applied to the arguments. 

 

    The LogicParser will always curry arguments in a application expression. 

    So, "\x y.see(x,y)(john,mary)" will be represented internally as 

    "((\x y.(see(x))(y))(john))(mary)".  This simplifies the internals since 

    there will always be exactly one argument in an application. 

 

    The str() method will usually print the curried forms of application 

    expressions.  The one exception is when the the application expression is 

    really a predicate expression (ie, underlying function is an 

    ``AbstractVariableExpression``).  This means that the example from above 

    will be returned as "(\x y.see(x,y)(john))(mary)". 

    """ 

    def __init__(self, function, argument): 

        """ 

        :param function: ``Expression``, for the function expression 

        :param argument: ``Expression``, for the argument 

        """ 

        assert isinstance(function, Expression), "%s is not an Expression" % function 

        assert isinstance(argument, Expression), "%s is not an Expression" % argument 

        self.function = function 

        self.argument = argument 

 

    def simplify(self): 

        function = self.function.simplify() 

        argument = self.argument.simplify() 

        if isinstance(function, LambdaExpression): 

            return function.term.replace(function.variable, argument).simplify() 

        else: 

            return self.__class__(function, argument) 

 

    @property 

    def type(self): 

        if isinstance(self.function.type, ComplexType): 

            return self.function.type.second 

        else: 

            return ANY_TYPE 

 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        self.argument._set_type(ANY_TYPE, signature) 

        try: 

            self.function._set_type(ComplexType(self.argument.type, other_type), signature) 

        except TypeResolutionException: 

            raise TypeException( 

                    "The function '%s' is of type '%s' and cannot be applied " 

                    "to '%s' of type '%s'.  Its argument must match type '%s'." 

                    % (self.function, self.function.type, self.argument, 

                       self.argument.type, self.function.type.first)) 

 

    def findtype(self, variable): 

        """:see Expression.findtype()""" 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        if self.is_atom(): 

            function, args = self.uncurry() 

        else: 

            #It's not a predicate expression ("P(x,y)"), so leave args curried 

            function = self.function 

            args = [self.argument] 

 

        found = [arg.findtype(variable) for arg in [function]+args] 

 

        unique = [] 

        for f in found: 

            if f != ANY_TYPE: 

                if unique: 

                    for u in unique: 

                        if f.matches(u): 

                            break 

                else: 

                    unique.append(f) 

 

        if len(unique) == 1: 

            return list(unique)[0] 

        else: 

            return ANY_TYPE 

 

    def constants(self): 

        """:see: Expression.constants()""" 

        if isinstance(self.function, AbstractVariableExpression): 

            function_constants = set() 

        else: 

            function_constants = self.function.constants() 

        return function_constants | self.argument.constants() 

 

    def predicates(self): 

        """:see: Expression.predicates()""" 

        if isinstance(self.function, ConstantExpression): 

            function_preds = set([self.function.variable]) 

        else: 

            function_preds = self.function.predicates() 

        return function_preds | self.argument.predicates() 

 

    def visit(self, function, combinator): 

        """:see: Expression.visit()""" 

        return combinator([function(self.function), function(self.argument)]) 

 

    def __eq__(self, other): 

        return isinstance(other, ApplicationExpression) and \ 

                self.function == other.function and \ 

                self.argument == other.argument 

 

    def __str__(self): 

        # uncurry the arguments and find the base function 

        if self.is_atom(): 

            function, args = self.uncurry() 

            arg_str = ','.join(map(str, args)) 

        else: 

            #Leave arguments curried 

            function = self.function 

            arg_str = str(self.argument) 

 

        function_str = str(function) 

        parenthesize_function = False 

        if isinstance(function, LambdaExpression): 

            if isinstance(function.term, ApplicationExpression): 

                if not isinstance(function.term.function, 

                                  AbstractVariableExpression): 

                    parenthesize_function = True 

            elif not isinstance(function.term, BooleanExpression): 

                parenthesize_function = True 

        elif isinstance(function, ApplicationExpression): 

            parenthesize_function = True 

 

        if parenthesize_function: 

            function_str = Tokens.OPEN + function_str + Tokens.CLOSE 

 

        return function_str + Tokens.OPEN + arg_str + Tokens.CLOSE 

 

    def uncurry(self): 

        """ 

        Uncurry this application expression 

 

        return: A tuple (base-function, arg-list) 

        """ 

        function = self.function 

        args = [self.argument] 

        while isinstance(function, ApplicationExpression): 

            #(\x.\y.sees(x,y)(john))(mary) 

            args.insert(0, function.argument) 

            function = function.function 

        return (function, args) 

 

    @property 

    def pred(self): 

        """ 

        Return uncurried base-function. 

        If this is an atom, then the result will be a variable expression. 

        Otherwise, it will be a lambda expression. 

        """ 

        return self.uncurry()[0] 

 

    @property 

    def args(self): 

        """ 

        Return uncurried arg-list 

        """ 

        return self.uncurry()[1] 

 

    def is_atom(self): 

        """ 

        Is this expression an atom (as opposed to a lambda expression applied 

        to a term)? 

        """ 

        return isinstance(self.pred, AbstractVariableExpression) 

 

 

class AbstractVariableExpression(Expression): 

    """This class represents a variable to be used as a predicate or entity""" 

    def __init__(self, variable): 

        """ 

        :param variable: ``Variable``, for the variable 

        """ 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        self.variable = variable 

 

    def simplify(self): 

        return self 

 

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True): 

        """:see: Expression.replace()""" 

        assert isinstance(variable, Variable), "%s is not an Variable" % variable 

        assert isinstance(expression, Expression), "%s is not an Expression" % expression 

        if self.variable == variable: 

            return expression 

        else: 

            return self 

 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        resolution = other_type 

        for varEx in signature[self.variable.name]: 

            resolution = varEx.type.resolve(resolution) 

            if not resolution: 

                raise InconsistentTypeHierarchyException(self) 

 

        signature[self.variable.name].append(self) 

        for varEx in signature[self.variable.name]: 

            varEx.type = resolution 

 

    def findtype(self, variable): 

        """:see Expression.findtype()""" 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        if self.variable == variable: 

            return self.type 

        else: 

            return ANY_TYPE 

 

    def predicates(self): 

        """:see: Expression.predicates()""" 

        return set() 

 

    def __eq__(self, other): 

        """Allow equality between instances of ``AbstractVariableExpression`` 

        subtypes.""" 

        return isinstance(other, AbstractVariableExpression) and \ 

               self.variable == other.variable 

 

    def __str__(self): 

        return str(self.variable) 

 

class IndividualVariableExpression(AbstractVariableExpression): 

    """This class represents variables that take the form of a single lowercase 

    character (other than 'e') followed by zero or more digits.""" 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        if not other_type.matches(ENTITY_TYPE): 

            raise IllegalTypeException(self, other_type, ENTITY_TYPE) 

 

        signature[self.variable.name].append(self) 

 

    def _get_type(self): return ENTITY_TYPE 

    type = property(_get_type, _set_type) 

 

    def free(self): 

        """:see: Expression.free()""" 

        return set([self.variable]) 

 

    def constants(self): 

        """:see: Expression.constants()""" 

        return set() 

 

class FunctionVariableExpression(AbstractVariableExpression): 

    """This class represents variables that take the form of a single uppercase 

    character followed by zero or more digits.""" 

    type = ANY_TYPE 

 

    def free(self): 

        """:see: Expression.free()""" 

        return set([self.variable]) 

 

    def constants(self): 

        """:see: Expression.constants()""" 

        return set() 

 

class EventVariableExpression(IndividualVariableExpression): 

    """This class represents variables that take the form of a single lowercase 

    'e' character followed by zero or more digits.""" 

    type = EVENT_TYPE 

 

class ConstantExpression(AbstractVariableExpression): 

    """This class represents variables that do not take the form of a single 

    character followed by zero or more digits.""" 

    type = ENTITY_TYPE 

 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        if other_type == ANY_TYPE: 

            #entity type by default, for individuals 

            resolution = ENTITY_TYPE 

        else: 

            resolution = other_type 

            if self.type != ENTITY_TYPE: 

                resolution = resolution.resolve(self.type) 

 

        for varEx in signature[self.variable.name]: 

            resolution = varEx.type.resolve(resolution) 

            if not resolution: 

                raise InconsistentTypeHierarchyException(self) 

 

        signature[self.variable.name].append(self) 

        for varEx in signature[self.variable.name]: 

            varEx.type = resolution 

 

    def free(self): 

        """:see: Expression.free()""" 

        return set() 

 

    def constants(self): 

        """:see: Expression.constants()""" 

        return set([self.variable]) 

 

 

def VariableExpression(variable): 

    """ 

    This is a factory method that instantiates and returns a subtype of 

    ``AbstractVariableExpression`` appropriate for the given variable. 

    """ 

    assert isinstance(variable, Variable), "%s is not a Variable" % variable 

    if is_indvar(variable.name): 

        return IndividualVariableExpression(variable) 

    elif is_funcvar(variable.name): 

        return FunctionVariableExpression(variable) 

    elif is_eventvar(variable.name): 

        return EventVariableExpression(variable) 

    else: 

        return ConstantExpression(variable) 

 

 

class VariableBinderExpression(Expression): 

    """This an abstract class for any Expression that binds a variable in an 

    Expression.  This includes LambdaExpressions and Quantified Expressions""" 

    def __init__(self, variable, term): 

        """ 

        :param variable: ``Variable``, for the variable 

        :param term: ``Expression``, for the term 

        """ 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        assert isinstance(term, Expression), "%s is not an Expression" % term 

        self.variable = variable 

        self.term = term 

 

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True): 

        """:see: Expression.replace()""" 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        assert isinstance(expression, Expression), "%s is not an Expression" % expression 

        #if the bound variable is the thing being replaced 

        if self.variable == variable: 

            if replace_bound: 

                assert isinstance(expression, AbstractVariableExpression),\ 

                       "%s is not a AbstractVariableExpression" % expression 

                return self.__class__(expression.variable, 

                                      self.term.replace(variable, expression, True, alpha_convert)) 

            else: 

                return self 

        else: 

            # if the bound variable appears in the expression, then it must 

            # be alpha converted to avoid a conflict 

            if alpha_convert and self.variable in expression.free(): 

                self = self.alpha_convert(unique_variable(pattern=self.variable)) 

 

            #replace in the term 

            return self.__class__(self.variable, 

                                  self.term.replace(variable, expression, replace_bound, alpha_convert)) 

 

    def alpha_convert(self, newvar): 

        """Rename all occurrences of the variable introduced by this variable 

        binder in the expression to ``newvar``. 

        :param newvar: ``Variable``, for the new variable 

        """ 

        assert isinstance(newvar, Variable), "%s is not a Variable" % newvar 

        return self.__class__(newvar, 

                              self.term.replace(self.variable, 

                                                VariableExpression(newvar), 

                                                True)) 

 

    def free(self): 

        """:see: Expression.free()""" 

        return self.term.free() - set([self.variable]) 

 

    def findtype(self, variable): 

        """:see Expression.findtype()""" 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        if variable == self.variable: 

            return ANY_TYPE 

        else: 

            return self.term.findtype(variable) 

 

    def visit(self, function, combinator): 

        """:see: Expression.visit()""" 

        return combinator([function(self.term)]) 

 

    def visit_structured(self, function, combinator): 

        """:see: Expression.visit_structured()""" 

        return combinator(self.variable, function(self.term)) 

 

    def __eq__(self, other): 

        r"""Defines equality modulo alphabetic variance.  If we are comparing 

        \x.M  and \y.N, then check equality of M and N[x/y].""" 

        if isinstance(self, other.__class__) or \ 

           isinstance(other, self.__class__): 

            if self.variable == other.variable: 

                return self.term == other.term 

            else: 

                # Comparing \x.M  and \y.N.  Relabel y in N with x and continue. 

                varex = VariableExpression(self.variable) 

                return self.term == other.term.replace(other.variable, varex) 

        else: 

            return False 

 

 

class LambdaExpression(VariableBinderExpression): 

    @property 

    def type(self): 

        return ComplexType(self.term.findtype(self.variable), 

                           self.term.type) 

 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        self.term._set_type(other_type.second, signature) 

        if not self.type.resolve(other_type): 

            raise TypeResolutionException(self, other_type) 

 

    def __str__(self): 

        variables = [self.variable] 

        term = self.term 

        while term.__class__ == self.__class__: 

            variables.append(term.variable) 

            term = term.term 

        return Tokens.LAMBDA + ' '.join(map(str, variables)) + \ 

               Tokens.DOT + str(term) 

 

 

class QuantifiedExpression(VariableBinderExpression): 

    @property 

    def type(self): return TRUTH_TYPE 

 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        if not other_type.matches(TRUTH_TYPE): 

            raise IllegalTypeException(self, other_type, TRUTH_TYPE) 

        self.term._set_type(TRUTH_TYPE, signature) 

 

    def __str__(self): 

        variables = [self.variable] 

        term = self.term 

        while term.__class__ == self.__class__: 

            variables.append(term.variable) 

            term = term.term 

        return self.getQuantifier() + ' ' + ' '.join(map(str, variables)) + \ 

               Tokens.DOT + str(term) 

 

class ExistsExpression(QuantifiedExpression): 

    def getQuantifier(self): 

        return Tokens.EXISTS 

 

class AllExpression(QuantifiedExpression): 

    def getQuantifier(self): 

        return Tokens.ALL 

 

 

class NegatedExpression(Expression): 

    def __init__(self, term): 

        assert isinstance(term, Expression), "%s is not an Expression" % term 

        self.term = term 

 

    @property 

    def type(self): return TRUTH_TYPE 

 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        if not other_type.matches(TRUTH_TYPE): 

            raise IllegalTypeException(self, other_type, TRUTH_TYPE) 

        self.term._set_type(TRUTH_TYPE, signature) 

 

    def findtype(self, variable): 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        return self.term.findtype(variable) 

 

    def visit(self, function, combinator): 

        """:see: Expression.visit()""" 

        return combinator([function(self.term)]) 

 

    def negate(self): 

        """:see: Expression.negate()""" 

        return self.term 

 

    def __eq__(self, other): 

        return isinstance(other, NegatedExpression) and self.term == other.term 

 

    def __str__(self): 

        return Tokens.NOT + str(self.term) 

 

 

class BinaryExpression(Expression): 

    def __init__(self, first, second): 

        assert isinstance(first, Expression), "%s is not an Expression" % first 

        assert isinstance(second, Expression), "%s is not an Expression" % second 

        self.first = first 

        self.second = second 

 

    @property 

    def type(self): return TRUTH_TYPE 

 

    def findtype(self, variable): 

        """:see Expression.findtype()""" 

        assert isinstance(variable, Variable), "%s is not a Variable" % variable 

        f = self.first.findtype(variable) 

        s = self.second.findtype(variable) 

        if f == s or s == ANY_TYPE: 

            return f 

        elif f == ANY_TYPE: 

            return s 

        else: 

            return ANY_TYPE 

 

    def visit(self, function, combinator): 

        """:see: Expression.visit()""" 

        return combinator([function(self.first), function(self.second)]) 

 

    def __eq__(self, other): 

        return (isinstance(self, other.__class__) or \ 

                isinstance(other, self.__class__)) and \ 

               self.first == other.first and self.second == other.second 

 

    def __str__(self): 

        first = self._str_subex(self.first) 

        second = self._str_subex(self.second) 

        return Tokens.OPEN + first + ' ' + self.getOp() \ 

                + ' ' + second + Tokens.CLOSE 

 

    def _str_subex(self, subex): 

        return str(subex) 

 

 

class BooleanExpression(BinaryExpression): 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        if not other_type.matches(TRUTH_TYPE): 

            raise IllegalTypeException(self, other_type, TRUTH_TYPE) 

        self.first._set_type(TRUTH_TYPE, signature) 

        self.second._set_type(TRUTH_TYPE, signature) 

 

class AndExpression(BooleanExpression): 

    """This class represents conjunctions""" 

    def getOp(self): 

        return Tokens.AND 

 

    def _str_subex(self, subex): 

        s = str(subex) 

        if isinstance(subex, AndExpression): 

            return s[1:-1] 

        return s 

 

class OrExpression(BooleanExpression): 

    """This class represents disjunctions""" 

    def getOp(self): 

        return Tokens.OR 

 

    def _str_subex(self, subex): 

        s = str(subex) 

        if isinstance(subex, OrExpression): 

            return s[1:-1] 

        return s 

 

class ImpExpression(BooleanExpression): 

    """This class represents implications""" 

    def getOp(self): 

        return Tokens.IMP 

 

class IffExpression(BooleanExpression): 

    """This class represents biconditionals""" 

    def getOp(self): 

        return Tokens.IFF 

 

 

class EqualityExpression(BinaryExpression): 

    """This class represents equality expressions like "(x = y)".""" 

    def _set_type(self, other_type=ANY_TYPE, signature=None): 

        """:see Expression._set_type()""" 

        assert isinstance(other_type, Type) 

 

        if signature is None: 

            signature = defaultdict(list) 

 

        if not other_type.matches(TRUTH_TYPE): 

            raise IllegalTypeException(self, other_type, TRUTH_TYPE) 

        self.first._set_type(ENTITY_TYPE, signature) 

        self.second._set_type(ENTITY_TYPE, signature) 

 

    def getOp(self): 

        return Tokens.EQ 

 

 

class LogicParser(object): 

    """A lambda calculus expression parser.""" 

 

    def __init__(self, type_check=False): 

        """ 

        :param type_check: bool should type checking be performed? 

        to their types. 

        """ 

        assert isinstance(type_check, bool) 

 

        self._currentIndex = 0 

        self._buffer = [] 

        self.type_check = type_check 

 

        """A list of tuples of quote characters.  The 4-tuple is comprised 

        of the start character, the end character, the escape character, and 

        a boolean indicating whether the quotes should be included in the 

        result. Quotes are used to signify that a token should be treated as 

        atomic, ignoring any special characters within the token.  The escape 

        character allows the quote end character to be used within the quote. 

        If True, the boolean indicates that the final token should contain the 

        quote and escape characters. 

        This method exists to be overridden""" 

        self.quote_chars = [] 

 

        self.operator_precedence = dict( 

                           [(x,1) for x in Tokens.LAMBDA_LIST]             + \ 

                           [(x,2) for x in Tokens.NOT_LIST]                + \ 

                           [(APP,3)]                                       + \ 

                           [(x,4) for x in Tokens.EQ_LIST+Tokens.NEQ_LIST] + \ 

                           [(x,5) for x in Tokens.QUANTS]                  + \ 

                           [(x,6) for x in Tokens.AND_LIST]                + \ 

                           [(x,7) for x in Tokens.OR_LIST]                 + \ 

                           [(x,8) for x in Tokens.IMP_LIST]                + \ 

                           [(x,9) for x in Tokens.IFF_LIST]                + \ 

                           [(None,10)]) 

        self.right_associated_operations = [APP] 

 

    def parse(self, data, signature=None): 

        """ 

        Parse the expression. 

 

        :param data: str for the input to be parsed 

        :param signature: ``dict<str, str>`` that maps variable names to type 

        strings 

        :returns: a parsed Expression 

        """ 

        data = data.rstrip() 

 

        self._currentIndex = 0 

        self._buffer, mapping = self.process(data) 

 

        try: 

            result = self.parse_Expression(None) 

            if self.inRange(0): 

                raise UnexpectedTokenException(self._currentIndex+1, self.token(0)) 

        except ParseException as e: 

            msg = '%s\n%s\n%s^' % (e, data, ' '*mapping[e.index-1]) 

            raise ParseException(None, msg) 

 

        if self.type_check: 

            result.typecheck(signature) 

 

        return result 

 

    def process(self, data): 

        """Split the data into tokens""" 

        out = [] 

        mapping = {} 

        tokenTrie = StringTrie(self.get_all_symbols()) 

        token = '' 

        data_idx = 0 

        token_start_idx = data_idx 

        while data_idx < len(data): 

            cur_data_idx = data_idx 

            quoted_token, data_idx = self.process_quoted_token(data_idx, data) 

            if quoted_token: 

                if not token: 

                    token_start_idx = cur_data_idx 

                token += quoted_token 

                continue 

 

            st = tokenTrie 

            c = data[data_idx] 

            symbol = '' 

            while c in st: 

                symbol += c 

                st = st[c] 

                if len(data)-data_idx > len(symbol): 

                    c = data[data_idx+len(symbol)] 

                else: 

                    break 

            if StringTrie.LEAF in st: 

                #token is a complete symbol 

                if token: 

                    mapping[len(out)] = token_start_idx 

                    out.append(token) 

                    token = '' 

                mapping[len(out)] = data_idx 

                out.append(symbol) 

                data_idx += len(symbol) 

            else: 

                if data[data_idx] in ' \t\n': #any whitespace 

                    if token: 

                        mapping[len(out)] = token_start_idx 

                        out.append(token) 

                        token = '' 

                else: 

                    if not token: 

                        token_start_idx = data_idx 

                    token += data[data_idx] 

                data_idx += 1 

        if token: 

            mapping[len(out)] = token_start_idx 

            out.append(token) 

        mapping[len(out)] = len(data) 

        mapping[len(out)+1] = len(data)+1 

        return out, mapping 

 

    def process_quoted_token(self, data_idx, data): 

        token = '' 

        c = data[data_idx] 

        i = data_idx 

        for start, end, escape, incl_quotes in self.quote_chars: 

            if c == start: 

                if incl_quotes: 

                    token += c 

                i += 1 

                while data[i] != end: 

                    if data[i] == escape: 

                        if incl_quotes: 

                            token += data[i] 

                        i += 1 

                        if len(data) == i: #if there are no more chars 

                            raise ParseException(None, "End of input reached.  " 

                                    "Escape character [%s] found at end." 

                                    % escape) 

                        token += data[i] 

                    else: 

                        token += data[i] 

                    i += 1 

                    if len(data) == i: 

                        raise ParseException(None, "End of input reached.  " 

                                             "Expected: [%s]" % end) 

                if incl_quotes: 

                    token += data[i] 

                i += 1 

                if not token: 

                    raise ParseException(None, 'Empty quoted token found') 

                break 

        return token, i 

 

    def get_all_symbols(self): 

        """This method exists to be overridden""" 

        return Tokens.SYMBOLS 

 

    def inRange(self, location): 

        """Return TRUE if the given location is within the buffer""" 

        return self._currentIndex+location < len(self._buffer) 

 

    def token(self, location=None): 

        """Get the next waiting token.  If a location is given, then 

        return the token at currentIndex+location without advancing 

        currentIndex; setting it gives lookahead/lookback capability.""" 

        try: 

            if location is None: 

                tok = self._buffer[self._currentIndex] 

                self._currentIndex += 1 

            else: 

                tok = self._buffer[self._currentIndex+location] 

            return tok 

        except IndexError: 

            raise ExpectedMoreTokensException(self._currentIndex+1) 

 

    def isvariable(self, tok): 

        return tok not in Tokens.TOKENS 

 

    def parse_Expression(self, context): 

        """Parse the next complete expression from the stream and return it.""" 

        try: 

            tok = self.token() 

        except ExpectedMoreTokensException: 

            raise ExpectedMoreTokensException(self._currentIndex+1, message='Expression expected.') 

 

        accum = self.handle(tok, context) 

 

        if not accum: 

            raise UnexpectedTokenException(self._currentIndex, tok, message='Expression expected.') 

 

        return self.attempt_adjuncts(accum, context) 

 

    def handle(self, tok, context): 

        """This method is intended to be overridden for logics that 

        use different operators or expressions""" 

        if self.isvariable(tok): 

            return self.handle_variable(tok, context) 

 

        elif tok in Tokens.NOT_LIST: 

            return self.handle_negation(tok, context) 

 

        elif tok in Tokens.LAMBDA_LIST: 

            return self.handle_lambda(tok, context) 

 

        elif tok in Tokens.QUANTS: 

            return self.handle_quant(tok, context) 

 

        elif tok == Tokens.OPEN: 

            return self.handle_open(tok, context) 

 

    def attempt_adjuncts(self, expression, context): 

        cur_idx = None 

        while cur_idx != self._currentIndex: #while adjuncts are added 

            cur_idx = self._currentIndex 

            expression = self.attempt_EqualityExpression(expression, context) 

            expression = self.attempt_ApplicationExpression(expression, context) 

            expression = self.attempt_BooleanExpression(expression, context) 

        return expression 

 

    def handle_negation(self, tok, context): 

        return self.make_NegatedExpression(self.parse_Expression(Tokens.NOT)) 

 

    def make_NegatedExpression(self, expression): 

        return NegatedExpression(expression) 

 

    def handle_variable(self, tok, context): 

        #It's either: 1) a predicate expression: sees(x,y) 

        #             2) an application expression: P(x) 

        #             3) a solo variable: john OR x 

        accum = self.make_VariableExpression(tok) 

        if self.inRange(0) and self.token(0) == Tokens.OPEN: 

            #The predicate has arguments 

            if not isinstance(accum, FunctionVariableExpression) and \ 

               not isinstance(accum, ConstantExpression): 

                raise ParseException(self._currentIndex, 

                                     "'%s' is an illegal predicate name.  " 

                                     "Individual variables may not be used as " 

                                     "predicates." % tok) 

            self.token() #swallow the Open Paren 

 

            #curry the arguments 

            accum = self.make_ApplicationExpression(accum, self.parse_Expression(APP)) 

            while self.inRange(0) and self.token(0) == Tokens.COMMA: 

                self.token() #swallow the comma 

                accum = self.make_ApplicationExpression(accum, self.parse_Expression(APP)) 

            self.assertNextToken(Tokens.CLOSE) 

        return accum 

 

    def get_next_token_variable(self, description): 

        try: 

            tok = self.token() 

        except ExpectedMoreTokensException as e: 

            raise ExpectedMoreTokensException(e.index, 'Variable expected.') 

        if isinstance(self.make_VariableExpression(tok), ConstantExpression): 

            raise ParseException(self._currentIndex, 

                                 "'%s' is an illegal variable name.  " 

                                 "Constants may not be %s." % (tok, description)) 

        return Variable(tok) 

 

    def handle_lambda(self, tok, context): 

        # Expression is a lambda expression 

        if not self.inRange(0): 

            raise ExpectedMoreTokensException(self._currentIndex+2, 

                                              message="Variable and Expression expected following lambda operator.") 

        vars = [self.get_next_token_variable('abstracted')] 

        while True: 

            if not self.inRange(0) or (self.token(0) == Tokens.DOT and not self.inRange(1)): 

                raise ExpectedMoreTokensException(self._currentIndex+2, message="Expression expected.") 

            if not self.isvariable(self.token(0)): 

                break 

            # Support expressions like: \x y.M == \x.\y.M 

            vars.append(self.get_next_token_variable('abstracted')) 

        if self.inRange(0) and self.token(0) == Tokens.DOT: 

            self.token() #swallow the dot 

 

        accum = self.parse_Expression(tok) 

        while vars: 

            accum = self.make_LambdaExpression(vars.pop(), accum) 

        return accum 

 

    def handle_quant(self, tok, context): 

        # Expression is a quantified expression: some x.M 

        factory = self.get_QuantifiedExpression_factory(tok) 

 

        if not self.inRange(0): 

            raise ExpectedMoreTokensException(self._currentIndex+2, 

                                              message="Variable and Expression expected following quantifier '%s'." % tok) 

        vars = [self.get_next_token_variable('quantified')] 

        while True: 

            if not self.inRange(0) or (self.token(0) == Tokens.DOT and not self.inRange(1)): 

                raise ExpectedMoreTokensException(self._currentIndex+2, message="Expression expected.") 

            if not self.isvariable(self.token(0)): 

                break 

            # Support expressions like: some x y.M == some x.some y.M 

            vars.append(self.get_next_token_variable('quantified')) 

        if self.inRange(0) and self.token(0) == Tokens.DOT: 

            self.token() #swallow the dot 

 

        accum = self.parse_Expression(tok) 

        while vars: 

            accum = self.make_QuanifiedExpression(factory, vars.pop(), accum) 

        return accum 

 

    def get_QuantifiedExpression_factory(self, tok): 

        """This method serves as a hook for other logic parsers that 

        have different quantifiers""" 

        if tok in Tokens.EXISTS_LIST: 

            return ExistsExpression 

        elif tok in Tokens.ALL_LIST: 

            return AllExpression 

        else: 

            self.assertToken(tok, Tokens.QUANTS) 

 

    def make_QuanifiedExpression(self, factory, variable, term): 

        return factory(variable, term) 

 

    def handle_open(self, tok, context): 

        #Expression is in parens 

        accum = self.parse_Expression(None) 

        self.assertNextToken(Tokens.CLOSE) 

        return accum 

 

    def attempt_EqualityExpression(self, expression, context): 

        """Attempt to make an equality expression.  If the next token is an 

        equality operator, then an EqualityExpression will be returned. 

        Otherwise, the parameter will be returned.""" 

        if self.inRange(0): 

            tok = self.token(0) 

            if tok in Tokens.EQ_LIST + Tokens.NEQ_LIST and self.has_priority(tok, context): 

                self.token() #swallow the "=" or "!=" 

                expression = self.make_EqualityExpression(expression, self.parse_Expression(tok)) 

                if tok in Tokens.NEQ_LIST: 

                    expression = self.make_NegatedExpression(expression) 

        return expression 

 

    def make_EqualityExpression(self, first, second): 

        """This method serves as a hook for other logic parsers that 

        have different equality expression classes""" 

        return EqualityExpression(first, second) 

 

    def attempt_BooleanExpression(self, expression, context): 

        """Attempt to make a boolean expression.  If the next token is a boolean 

        operator, then a BooleanExpression will be returned.  Otherwise, the 

        parameter will be returned.""" 

        while self.inRange(0): 

            tok = self.token(0) 

            factory = self.get_BooleanExpression_factory(tok) 

            if factory and self.has_priority(tok, context): 

                self.token() #swallow the operator 

                expression = self.make_BooleanExpression(factory, expression, 

                                                         self.parse_Expression(tok)) 

            else: 

                break 

        return expression 

 

    def get_BooleanExpression_factory(self, tok): 

        """This method serves as a hook for other logic parsers that 

        have different boolean operators""" 

        if tok in Tokens.AND_LIST: 

            return AndExpression 

        elif tok in Tokens.OR_LIST: 

            return OrExpression 

        elif tok in Tokens.IMP_LIST: 

            return ImpExpression 

        elif tok in Tokens.IFF_LIST: 

            return IffExpression 

        else: 

            return None 

 

    def make_BooleanExpression(self, factory, first, second): 

        return factory(first, second) 

 

    def attempt_ApplicationExpression(self, expression, context): 

        """Attempt to make an application expression.  The next tokens are 

        a list of arguments in parens, then the argument expression is a 

        function being applied to the arguments.  Otherwise, return the 

        argument expression.""" 

        if self.has_priority(APP, context): 

            if self.inRange(0) and self.token(0) == Tokens.OPEN: 

                if not isinstance(expression, LambdaExpression) and \ 

                   not isinstance(expression, ApplicationExpression) and \ 

                   not isinstance(expression, FunctionVariableExpression) and \ 

                   not isinstance(expression, ConstantExpression): 

                    raise ParseException(self._currentIndex, 

                                         "The function '" + str(expression) + 

                                         "' is not a Lambda Expression, an " 

                                         "Application Expression, or a " 

                                         "functional predicate, so it may " 

                                         "not take arguments.") 

                self.token() #swallow then open paren 

                #curry the arguments 

                accum = self.make_ApplicationExpression(expression, self.parse_Expression(APP)) 

                while self.inRange(0) and self.token(0) == Tokens.COMMA: 

                    self.token() #swallow the comma 

                    accum = self.make_ApplicationExpression(accum, self.parse_Expression(APP)) 

                self.assertNextToken(Tokens.CLOSE) 

                return accum 

        return expression 

 

    def make_ApplicationExpression(self, function, argument): 

        return ApplicationExpression(function, argument) 

 

    def make_VariableExpression(self, name): 

        return VariableExpression(Variable(name)) 

 

    def make_LambdaExpression(self, variable, term): 

        return LambdaExpression(variable, term) 

 

    def has_priority(self, operation, context): 

        return self.operator_precedence[operation] < self.operator_precedence[context] or \ 

               (operation in self.right_associated_operations and \ 

                self.operator_precedence[operation] == self.operator_precedence[context]) 

 

    def assertNextToken(self, expected): 

        try: 

            tok = self.token() 

        except ExpectedMoreTokensException as e: 

            raise ExpectedMoreTokensException(e.index, message="Expected token '%s'." % expected) 

 

        if isinstance(expected, list): 

            if tok not in expected: 

                raise UnexpectedTokenException(self._currentIndex, tok, expected) 

        else: 

            if tok != expected: 

                raise UnexpectedTokenException(self._currentIndex, tok, expected) 

 

    def assertToken(self, tok, expected): 

        if isinstance(expected, list): 

            if tok not in expected: 

                raise UnexpectedTokenException(self._currentIndex, tok, expected) 

        else: 

            if tok != expected: 

                raise UnexpectedTokenException(self._currentIndex, tok, expected) 

 

    def __repr__(self): 

        if self.inRange(0): 

            msg = 'Next token: ' + self.token(0) 

        else: 

            msg = 'No more tokens' 

        return '<' + self.__class__.__name__ + ': ' + msg + '>' 

 

 

def parse_logic(s, logic_parser=None): 

    """ 

    Convert a file of First Order Formulas into a list of {Expression}s. 

 

    :param s: the contents of the file 

    :type s: str 

    :param logic_parser: The parser to be used to parse the logical expression 

    :type logic_parser: LogicParser 

    :return: a list of parsed formulas. 

    :rtype: list(Expression) 

    """ 

    if logic_parser is None: 

        logic_parser = LogicParser() 

 

    statements = [] 

    for linenum, line in enumerate(s.splitlines()): 

        line = line.strip() 

        if line.startswith('#') or line=='': continue 

        try: 

            statements.append(logic_parser.parse(line)) 

        except ParseException: 

            raise ValueError('Unable to parse line %s: %s' % (linenum, line)) 

    return statements 

 

 

class StringTrie(defaultdict): 

    LEAF = "<leaf>" 

 

    def __init__(self, strings=None): 

        defaultdict.__init__(self, StringTrie) 

        if strings: 

            for string in strings: 

                self.insert(string) 

 

    def insert(self, string): 

        if len(string): 

            self[string[0]].insert(string[1:]) 

        else: 

            #mark the string is complete 

            self[StringTrie.LEAF] = None 

 

 

class ParseException(Exception): 

    def __init__(self, index, message): 

        self.index = index 

        Exception.__init__(self, message) 

 

class UnexpectedTokenException(ParseException): 

    def __init__(self, index, unexpected=None, expected=None, message=None): 

        if unexpected and expected: 

            msg = "Unexpected token: '%s'.  " \ 

                  "Expected token '%s'." % (unexpected, expected) 

        elif unexpected: 

            msg = "Unexpected token: '%s'." % unexpected 

            if message: 

                msg += '  '+message 

        else: 

            msg = "Expected token '%s'." % expected 

        ParseException.__init__(self, index, msg) 

 

class ExpectedMoreTokensException(ParseException): 

    def __init__(self, index, message=None): 

        if not message: 

            message = 'More tokens expected.' 

        ParseException.__init__(self, index, 'End of input found.  ' + message) 

 

 

def is_indvar(expr): 

    """ 

    An individual variable must be a single lowercase character other than 'e', 

    followed by zero or more digits. 

 

    :param expr: str 

    :return: bool True if expr is of the correct form 

    """ 

    assert isinstance(expr, str), "%s is not a string" % expr 

    return re.match(r'^[a-df-z]\d*$', expr) is not None 

 

def is_funcvar(expr): 

    """ 

    A function variable must be a single uppercase character followed by 

    zero or more digits. 

 

    :param expr: str 

    :return: bool True if expr is of the correct form 

    """ 

    assert isinstance(expr, str), "%s is not a string" % expr 

    return re.match(r'^[A-Z]\d*$', expr) is not None 

 

def is_eventvar(expr): 

    """ 

    An event variable must be a single lowercase 'e' character followed by 

    zero or more digits. 

 

    :param expr: str 

    :return: bool True if expr is of the correct form 

    """ 

    assert isinstance(expr, str), "%s is not a string" % expr 

    return re.match(r'^e\d*$', expr) is not None 

 

 

def demo(): 

    p = LogicParser().parse 

    print('='*20 + 'Test parser' + '='*20) 

    print(p(r'john')) 

    print(p(r'man(x)')) 

    print(p(r'-man(x)')) 

    print(p(r'(man(x) & tall(x) & walks(x))')) 

    print(p(r'exists x.(man(x) & tall(x) & walks(x))')) 

    print(p(r'\x.man(x)')) 

    print(p(r'\x.man(x)(john)')) 

    print(p(r'\x y.sees(x,y)')) 

    print(p(r'\x y.sees(x,y)(a,b)')) 

    print(p(r'(\x.exists y.walks(x,y))(x)')) 

    print(p(r'exists x.x = y')) 

    print(p(r'exists x.(x = y)')) 

    print(p('P(x) & x=y & P(y)')) 

    print(p(r'\P Q.exists x.(P(x) & Q(x))')) 

    print(p(r'man(x) <-> tall(x)')) 

 

    print('='*20 + 'Test simplify' + '='*20) 

    print(p(r'\x.\y.sees(x,y)(john)(mary)').simplify()) 

    print(p(r'\x.\y.sees(x,y)(john, mary)').simplify()) 

    print(p(r'all x.(man(x) & (\x.exists y.walks(x,y))(x))').simplify()) 

    print(p(r'(\P.\Q.exists x.(P(x) & Q(x)))(\x.dog(x))(\x.bark(x))').simplify()) 

 

    print('='*20 + 'Test alpha conversion and binder expression equality' + '='*20) 

    e1 = p('exists x.P(x)') 

    print(e1) 

    e2 = e1.alpha_convert(Variable('z')) 

    print(e2) 

    print(e1 == e2) 

 

def demo_errors(): 

    print('='*20 + 'Test parser errors' + '='*20) 

    demoException('(P(x) & Q(x)') 

    demoException('((P(x) &) & Q(x))') 

    demoException('P(x) -> ') 

    demoException('P(x') 

    demoException('P(x,') 

    demoException('P(x,)') 

    demoException('exists') 

    demoException('exists x.') 

    demoException('\\') 

    demoException('\\ x y.') 

    demoException('P(x)Q(x)') 

    demoException('(P(x)Q(x)') 

    demoException('exists x -> y') 

 

def demoException(s): 

    try: 

        LogicParser().parse(s) 

    except ParseException as e: 

        print("%s: %s" % (e.__class__.__name__, e)) 

 

def printtype(ex): 

    print(ex.str() + ' : ' + str(ex.type)) 

 

if __name__ == '__main__': 

    demo() 

    demo_errors()