Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

# Natural Language Toolkit: Sourced Strings 

# 

# Copyright (C) 2001-2009 NLTK Project 

# Author: Edward Loper <edloper@gmail.com> 

# URL: <http://www.nltk.org/> 

# For license information, see LICENSE.TXT 

 

""" 

"Sourced strings" are strings that are annotated with information 

about the location in a document where they were originally found. 

Sourced strings are subclassed from Python strings.  As a result, they 

can usually be used anywhere a normal Python string can be used. 

 

    >>> from nltk.sourcedstring import SourcedString 

    >>> newt_contents = ''' 

    ... She turned me into a newt! 

    ... I got better.'''.strip() 

    >>> newt_doc = SourcedString(newt_contents, 'newt.txt') 

    >>> newt_doc 

    'She turned me into a newt!\\nI got better.'@[0:40] 

    >>> newt = newt_doc.split()[5] # Find the sixth word. 

    >>> newt 

    'newt!'@[21:26] 

 

""" 

#from __future__ import unicode_literals 

 

from abc import ABCMeta, abstractmethod 

import re, sys 

from nltk.internals import slice_bounds 

from nltk.compat import text_type, binary_type, string_types, integer_types 

 

__all__ = [ 

    'StringSource', 

    'ConsecutiveCharStringSource', 'ContiguousCharStringSource', 

    'SourcedString', 'SourcedStringStream', 'SourcedStringRegexp', 

    'SimpleSourcedString', 'CompoundSourcedString', 

    'SimpleSourcedByteString', 'SimpleSourcedUnicodeString', 

    'CompoundSourcedByteString', 'CompoundSourcedUnicodeString', 

    ] 

 

#////////////////////////////////////////////////////////////////////// 

# String Sources 

#////////////////////////////////////////////////////////////////////// 

 

class StringSource(object): 

    """ 

    A description of the location of a string in a document.  Each 

    ``StringSource`` consists of a document identifier, along with 

    information about the begin and end offsets of each character in 

    the string.  These offsets are typically either byte offsets or 

    character offsets.  (Note that for unicode strings, byte offsets 

    and character offsets are not the same thing.) 

 

    ``StringSource`` is an abstract base class.  Two concrete 

    subclasses are used depending on the properties of the string 

    whose source is being described: 

 

      - ``ConsecutiveCharStringSource`` describes the source of strings 

        whose characters have consecutive offsets (in particular, byte 

        strings w/ byte offsets; and unicode strings with character 

        offsets). 

 

      - ``ContiguousCharStringSource`` describes the source of strings 

        whose characters are contiguous, but do not necessarily have 

        consecutive offsets (in particular, unicode strings with byte 

        offsets). 

 

    :ivar docid: An identifier (such as a filename) that specifies 

        which document contains the string. 

 

    :ivar offsets: A list of offsets specifying the location of each 

        character in the document.  The *i* th character of the string 

        begins at offset ``offsets[i]`` and ends at offset 

        ``offsets[i+1]``.  The length of the ``offsets`` list is one 

        greater than the list of the string described by this 

        ``StringSource``. 

 

    :ivar begin: The document offset where the string begins.  (I.e., 

        the offset of the first character in the string.) 

        ``source.begin`` is always equal to ``source.offsets[0]``. 

 

    :ivar end: The document offset where the string ends.  (For 

        character offsets, one plus the offset of the last character; 

        for byte offsets, one plus the offset of the last byte that 

        encodes the last character).  ``source.end`` is always equal 

        to ``source.offsets[-1]``. 

    """ 

 

    __metaclass__ = ABCMeta     # XXX has no effect in Python 3 

 

    def __new__(cls, docid, *args, **kwargs): 

        # If the StringSource constructor is called directly, then 

        # choose one of its subclasses to delegate to. 

        if cls is StringSource: 

            if args: 

                raise TypeError("Specifcy either begin and end, or " 

                                 "offsets, using keyword arguments") 

            if 'begin' in kwargs and 'end' in kwargs and 'offsets' not in kwargs: 

                cls = ConsecutiveCharStringSource 

            elif ('begin' not in kwargs and 'end' not in kwargs and 

                  'offsets' in kwargs): 

                cls = ContiguousCharStringSource 

            else: 

                raise TypeError("Specify either begin and end, or offsets " 

                                 "(but not both)") 

        # Construct the object. 

        return object.__new__(cls) 

 

    def __init__(self, docid, **kwargs): 

        """ 

        Create a new ``StringSource``.  When the ``StringSource`` 

        constructor is called directly, it automatically delegates to 

        one of its two subclasses: 

 

            - If ``begin`` and ``end`` are specified, then a 

              ``ConsecutiveCharStringSource`` is returned. 

            - If ``offsets`` is specified, then a 

              ``ContiguousCharStringSource`` is returned. 

 

        In both cases, the arguments must be specified as keyword 

        arguments (not positional arguments). 

        """ 

 

    def __getitem__(self, index): 

        """ 

        Return a ``StringSource`` describing the location where the 

        specified character was found.  In particular, if ``s`` is the 

        string that this source describes, then return a 

        ``StringSource`` describing the location of ``s[index]``. 

 

        :raise IndexError: If index is out of range. 

        """ 

        if isinstance(index, slice): 

            start, stop = slice_bounds(self, index) 

            return self.__getslice__(start, stop) 

        else: 

            if index < 0: index += len(self) 

            if index < 0 or index >= len(self): 

                raise IndexError('StringSource index out of range') 

            return self.__getslice__(index, index+1) 

 

    @abstractmethod 

    def __getslice__(self, start, stop): 

        """ 

        Return a ``StringSource`` describing the location where the 

        specified substring was found.  In particular, if ``s`` is the 

        string that this source describes, then return a 

        ``StringSource`` describing the location of ``s[start:stop]``. 

        """ 

 

    @abstractmethod 

    def __len__(self): 

        """ 

        Return the length of the string described by this 

        ``StringSource``.  Note that this may not be equal to 

        ``self.end-self.begin`` for unicode strings described using 

        byte offsets. 

        """ 

 

    def __str__(self): 

        if self.end == self.begin+1: 

            return '@%s[%s]' % (self.docid, self.begin,) 

        else: 

            return '@%s[%s:%s]' % (self.docid, self.begin, self.end) 

 

    def __cmp__(self, other): 

        return (cmp(self.docid, self.docid) or 

                cmp([(charloc.begin, charloc.end) for charloc in self], 

                    [(charloc.begin, charloc.end) for charloc in other])) 

 

    def __hash__(self): 

        # Cache hash values. 

        if not hasattr(self, '_hash'): 

            self._hash = hash( (self.docid, 

                                tuple((charloc.begin, charloc.end) 

                                      for charloc in self)) ) 

        return self._hash 

 

class ConsecutiveCharStringSource(StringSource): 

    """ 

    A ``StringSource`` that specifies the source of strings whose 

    characters have consecutive offsets.  In particular, the following 

    two properties must hold for all valid indices: 

 

      - source[i].end == source[i].begin + 1 

      - source[i].end == source[i+1].begin 

 

    These properties allow the source to be stored using just a start 

    offset and an end offset (along with a docid). 

 

    This ``StringSource`` can be used to describe byte strings that are 

    indexed using byte offsets or character offsets; or unicode 

    strings that are indexed using character offsets. 

    """ 

    def __init__(self, docid, begin, end): 

        if not isinstance(begin, integer_types): 

            raise TypeError("begin attribute expected an integer") 

        if not isinstance(end, integer_types): 

            raise TypeError("end attribute expected an integer") 

        if not  end >= begin: 

            raise ValueError("begin must be less than or equal to end") 

        self.docid = docid 

        self.begin = begin 

        self.end = end 

 

    @property 

    def offsets(self): 

        return tuple(range(self.begin, self.end+1)) 

 

    def __len__(self): 

        return self.end-self.begin 

 

    def __getslice__(self, start, stop): 

        start = max(0, min(len(self), start)) 

        stop = max(start, min(len(self), stop)) 

        return ConsecutiveCharStringSource( 

            self.docid, self.begin+start, self.begin+stop) 

 

    def __cmp__(self, other): 

        if isinstance(other, ConsecutiveCharStringSource): 

            return (cmp(self.docid, other.docid) or 

                    cmp(self.begin, other.begin) or 

                    cmp(self.end, other.end)) 

        else: 

            return StringSource.__cmp__(self, other) 

 

    def __repr__(self): 

        return 'StringSource(%r, begin=%r, end=%r)' % ( 

            self.docid, self.begin, self.end) 

 

class ContiguousCharStringSource(StringSource): 

    """ 

    A ``StringSource`` that specifies the source of strings whose 

    character are contiguous, but do not necessarily have consecutive 

    offsets.  In particular, each character's end offset must be equal 

    to the next character's start offset: 

 

      - source[i].end == source[i+1].begin 

 

    This property allow the source to be stored using a list of 

    ``len(source)+1`` offsets (along with a docid). 

 

    This ``StringSource`` can be used to describe unicode strings that 

    are indexed using byte offsets. 

    """ 

    CONSTRUCTOR_CHECKS_OFFSETS = False 

    def __init__(self, docid, offsets): 

        offsets = tuple(offsets) 

        if len(offsets) == 0: 

            raise ValueError("at least one offset must be specified") 

        if self.CONSTRUCTOR_CHECKS_OFFSETS: 

            for i in range(len(offsets)): 

                if not isinstance(offsets[i], integer_types): 

                    raise TypeError("offsets must be integers") 

                if i>0 and offsets[i-1]>offsets[i]: 

                    raise TypeError("offsets must be monotonic increasing") 

        self.docid = docid 

        self.offsets = offsets 

 

    @property 

    def begin(self): return self.offsets[0] 

 

    @property 

    def end(self): return self.offsets[-1] 

 

    def __len__(self): 

        return len(self.offsets)-1 

 

    def __getslice__(self, start, stop): 

        start = max(0, min(len(self), start)) 

        stop = max(start, min(len(self), stop)) 

        return ContiguousCharStringSource( 

            self.docid, self.offsets[start:stop+1]) 

 

    def __cmp__(self, other): 

        if isinstance(other, ConsecutiveCharStringSource): 

            return (cmp(self.docid, other.docid) or 

                    cmp(self.offsets, other._offsets)) 

        else: 

            return StringSource.__cmp__(self, other) 

 

    def __repr__(self): 

        return 'StringSource(%r, offsets=%r)' % (self.docid, self.offsets) 

 

#////////////////////////////////////////////////////////////////////// 

# Base Class for Sourced Strings. 

#////////////////////////////////////////////////////////////////////// 

 

class SourcedString(object): 

    """ 

    A string that is annotated with information about the location in 

    a document where it was originally found.  Sourced strings are 

    subclassed from Python strings.  As a result, they can usually be 

    used anywhere a normal Python string can be used. 

 

    There are two types of sourced strings: ``SimpleSourcedString``s, 

    which correspond to a single substring of a document; and 

    ``CompoundSourcedString``s, which are constructed by concatenating 

    strings from multiple sources.  Each of these types has two 

    concrete subclasses: one for unicode strings (subclassed from 

    ``unicode``), and one for byte strings (subclassed from ``str``). 

 

    Two sourced strings are considered equal if their contents are 

    equal, even if their sources differ.  This fact is important in 

    ensuring that sourced strings act like normal strings.  In 

    particular, it allows sourced strings to be used with code that 

    was originally intended to process plain Python strings. 

 

    If you wish to determine whether two sourced strings came from the 

    same location in the same document, simply compare their 

    ``sources`` attributes.  If you know that both sourced strings are 

    ``SimpleSourcedStrings``, then you can compare their ``source`` 

    attribute instead. 

 

    String operations that act on sourced strings will preserve 

    location information whenever possible.  However, there are a few 

    types of string manipulation that can cause source information to 

    be discarded.  The most common examples of operations that will 

    lose source information are: 

 

      - ``str.join()``, where the joining string is not sourced. 

      - ``str.replace()``, where the original string is not sourced. 

      - String formatting (the ``%`` operator). 

      - Regular expression substitution. 

 

    :ivar sources: A sorted tuple of ``(index, source)`` pairs.  Each 

        such pair specifies that the source of 

        ``self[index:index+len(source)]`` is ``source``.  Any characters 

        for which no source is specified are sourceless (e.g., plain 

        Python characters that were concatenated to a sourced string). 

 

        When working with simple sourced strings, it's usually easier 

        to use the ``source`` attribute instead; however, the 

        ``sources`` attribute is defined for both simple and compound 

        sourced strings. 

    """ 

    def __new__(cls, contents, source): 

        # If the SourcedString constructor is called directly, then 

        # choose one of its subclasses to delegate to. 

        if cls is SourcedString: 

            if isinstance(contents, binary_type): 

                cls = SimpleSourcedByteString 

            elif isinstance(contents, text_type): 

                cls = SimpleSourcedUnicodeString 

            else: 

                raise TypeError("Expected 'contents' to be a unicode " 

                                "string or a byte string") 

 

        # Create the new object using the appropriate string class's 

        # __new__, which takes just the contents argument. 

        return cls._stringtype.__new__(cls, contents) 

 

    _stringtype = None 

    """A class variable, defined by subclasses of ``SourcedString``, 

       determining what type of string this class contains.  Its 

       value must be either str or ``unicode``.""" 

 

    #////////////////////////////////////////////////////////////////////// 

    #{ Splitting & Stripping Methods 

    #////////////////////////////////////////////////////////////////////// 

 

    def lstrip(self, chars=None): 

        s = self._stringtype.lstrip(self, chars) 

        return self[len(self)-len(s):] 

 

    def rstrip(self, chars=None): 

        s = self._stringtype.rstrip(self, chars) 

        return self[:len(s)] 

 

    def strip(self, chars=None): 

        return self.lstrip(chars).rstrip(chars) 

 

    _WHITESPACE_RE = re.compile(r'\s+') 

    def split(self, sep=None, maxsplit=None): 

        # Check for unicode/bytestring mismatches: 

        if self._mixed_string_types(sep, maxsplit): 

            return self._decode_and_call('split', sep, maxsplit) 

        # Use a regexp to split self. 

        if sep is None: sep_re = self._WHITESPACE_RE 

        else: sep_re = re.compile(re.escape(sep)) 

        if maxsplit is None: return sep_re.split(self) 

        else: return sep_re.split(self, maxsplit) 

 

    def rsplit(self, sep=None, maxsplit=None): 

        # Check for unicode/bytestring mismatches: 

        if self._mixed_string_types(sep, maxsplit): 

            return self._decode_and_call('rsplit', sep, maxsplit) 

        # Split on whitespace use a regexp. 

        if sep is None: 

            seps = list(self._WHITESPACE_RE.finditer(self)) 

            if maxsplit: seps = seps[-maxsplit:] 

            if not seps: return [self] 

            result = [self[:seps[0].start()]] 

            for i in range(1, len(seps)): 

                result.append(self[seps[i-1].end():seps[i].start()]) 

            result.append(self[seps[-1].end():]) 

            return result 

        # Split on a given string: use rfind. 

        else: 

            result = [] 

            piece_end = len(self) 

            while maxsplit != 0: 

                sep_pos = self.rfind(sep, 0, piece_end) 

                if sep_pos < 0: break 

                result.append(self[sep_pos+len(sep):piece_end]) 

                piece_end = sep_pos 

                if maxsplit is not None: maxsplit -= 1 

            if piece_end > 0: 

                result.append(self[:piece_end]) 

            return result[::-1] 

 

    def partition(self, sep): 

        head, sep, tail = self._stringtype.partition(self, sep) 

        i, j = len(head), len(head)+len(sep) 

        return (self[:i], self[i:j], self[j:]) 

 

    def rpartition(self, sep): 

        head, sep, tail = self._stringtype.rpartition(self, sep) 

        i, j = len(head), len(head)+len(sep) 

        return (self[:i], self[i:j], self[j:]) 

 

    _NEWLINE_RE = re.compile(r'\n') 

    _LINE_RE = re.compile(r'.*\n?') 

    def splitlines(self, keepends=False): 

        if keepends: 

            return self._LINE_RE.findall(self) 

        else: 

            return self._NEWLINE_RE.split(self) 

 

    #////////////////////////////////////////////////////////////////////// 

    #{ String Concatenation Methods 

    #////////////////////////////////////////////////////////////////////// 

 

    @staticmethod 

    def concat(substrings): 

        """ 

        Return a sourced string formed by concatenating the given list 

        of substrings.  Adjacent substrings will be merged when 

        possible. 

 

        Depending on the types and values of the supplied substrings, 

        the concatenated string's value may be a Python string (str 

        or ``unicode``), a ``SimpleSourcedString``, or a 

        ``CompoundSourcedString``. 

        """ 

        # Flatten nested compound sourced strings, and merge adjacent 

        # strings where possible: 

        merged = [] 

        for substring in substrings: 

            SourcedString.__add_substring_to_list(substring, merged) 

 

        # Return the concatenated string. 

        if len(merged) == 0: 

            return '' 

        elif len(merged) == 1: 

            return merged[0] 

        else: 

            return CompoundSourcedString(merged) 

 

    def __add__(self, other): 

        return SourcedString.concat([self, other]) 

 

    def __radd__(self, other): 

        return SourcedString.concat([other, self]) 

 

    def __mul__(self, other): 

        if other <= 0: 

            return self._stringtype('') 

        else: 

            result = self 

            for i in range(1, other): 

                result += self 

            return result 

 

    def __rmul__(self, other): 

        return self.__mul__(other) 

 

    def join(self, sequence): 

        seq_iter = iter(sequence) 

        # Add the first element; but if sequence is empty, return an 

        # empty string. 

        try: 

            s = next(seq_iter) 

        except StopIteration: 

            return self._stringtype('') 

 

        # Add the remaining elements, separated by self. 

        for elt in seq_iter: 

            s += self 

            s += elt 

        return s 

 

    @staticmethod 

    def __add_substring_to_list(substring, result): 

        """ 

        Helper for ``concat()``: add ``substring`` to the end of the 

        list of substrings in ``result``.  If ``substring`` is compound, 

        then add its own substrings instead.  Merge adjacent 

        substrings whenever possible.  Discard empty un-sourced 

        substrings. 

        """ 

        # Flatten nested compound sourced strings. 

        if isinstance(substring, CompoundSourcedString): 

            for s in substring.substrings: 

                SourcedString.__add_substring_to_list(s, result) 

 

        # Discard empty Python substrings. 

        elif len(substring) == 0 and not isinstance(substring, SourcedString): 

            pass # discard. 

 

        # Merge adjacent simple sourced strings (when possible). 

        elif (result and isinstance(result[-1], SimpleSourcedString) and 

              isinstance(substring, SimpleSourcedString) and 

              result[-1].end == substring.begin and 

              result[-1].docid == substring.docid): 

            result[-1] = SourcedString.__merge_simple_substrings( 

                result[-1], substring) 

 

        # Merge adjacent Python strings. 

        elif (result and not isinstance(result[-1], SourcedString) and 

              not isinstance(substring, SourcedString)): 

            result[-1] += substring 

 

        # All other strings just get appended to the result list. 

        else: 

            result.append(substring) 

 

    @staticmethod 

    def __merge_simple_substrings(lhs, rhs): 

        """ 

        Helper for ``__add_substring_to_list()``: Merge ``lhs`` and 

        ``rhs`` into a single simple sourced string, and return it. 

        """ 

        contents = lhs._stringtype.__add__(lhs, rhs) 

        if (isinstance(lhs.source, ConsecutiveCharStringSource) and 

            isinstance(rhs.source, ConsecutiveCharStringSource)): 

            source = ConsecutiveCharStringSource( 

                lhs.source.docid, lhs.source.begin, rhs.source.end) 

        else: 

            source = ContiguousCharStringSource( 

                lhs.source.docid, lhs.source.offsets+rhs.source.offsets[1:]) 

        return SourcedString(contents, source) 

 

    #////////////////////////////////////////////////////////////////////// 

    #{ Justification Methods 

    #////////////////////////////////////////////////////////////////////// 

 

    def center(self, width, fillchar=' '): 

        return (fillchar * ((width-len(self))/2)  + self + 

                fillchar * ((width-len(self)+1)/2)) 

 

    def ljust(self, width, fillchar=' '): 

        return self + fillchar * (width-len(self)) 

 

    def rjust(self, width, fillchar=' '): 

        return fillchar * (width-len(self)) + self 

 

    def zfill(self, width): 

        return self.rjust(width, '0') 

 

    #////////////////////////////////////////////////////////////////////// 

    #{ Replacement Methods 

    #////////////////////////////////////////////////////////////////////// 

 

    # [xx] There's no reason in principle why this can't preserve 

    # location information.  But for now, it doesn't. 

    def __mod__(self, other): 

        return self._stringtype.__mod__(self, other) 

 

    def replace(self, old, new, count=0): 

        # Check for unicode/bytestring mismatches: 

        if self._mixed_string_types(old, new, count): 

            return self._decode_and_call('replace', old, new, count) 

        # Use a regexp to find all occurrences of old, and replace them w/ new. 

        result = '' 

        pos = 0 

        for match in re.finditer(re.escape(old), self): 

            result += self[pos:match.start()] 

            result += new 

            pos = match.end() 

        result += self[pos:] 

        return result 

 

    def expandtabs(self, tabsize=8): 

        if len(self) == 0: return self 

        pieces = re.split(r'([\t\n])', self) 

        result = '' 

        offset = 0 

        for piece in pieces: 

            if piece == '\t': 

                spaces = 8 - (offset % tabsize) 

                # Each inserted space's source is the same as the 

                # source of the tab character that generated it. 

                result += spaces * SourcedString(' ', piece.source) 

                offset = 0 

            else: 

                result += piece 

                if piece == '\n': offset = 0 

                else: offset += len(piece) 

        return result 

 

    def translate(self, table, deletechars=''): 

        # Note: str.translate() and unicode.translate() have 

        # different interfaces. 

        if isinstance(self, text_type): 

            if deletechars: 

                raise TypeError('The unicode version of translate() does not ' 

                                'accept the deletechars parameter') 

            return SourcedString.concat( 

                [SourcedString(table.get(c,c), c.source) 

                 for c in self if table.get(c,c) is not None]) 

        else: 

            if len(table) != 256: 

                raise ValueError('translation table must be 256 characters long') 

            return SourcedString.concat( 

                [SourcedString(table[ord(c)], c.source) 

                 for c in self if c not in deletechars]) 

 

    #////////////////////////////////////////////////////////////////////// 

    #{ Unicode 

    #////////////////////////////////////////////////////////////////////// 

 

    # Unicode string -> byte string 

    def encode(self, encoding=None, errors='strict'): 

        if encoding is None: encoding = sys.getdefaultencoding() 

        if isinstance(self, binary_type): 

            return self.decode().encode(encoding, errors) 

 

        # Encode characters one at a time. 

        result = [] 

        for i, char in enumerate(self): 

            char_bytes = self._stringtype.encode(char, encoding, errors) 

            for char_byte in char_bytes: 

                if isinstance(char, SimpleSourcedString): 

                    result.append(SourcedString(char_byte, char.source)) 

                else: 

                    assert not isinstance(char, CompoundSourcedString) 

                    result.append(char_byte) 

        return SourcedString.concat(result) 

 

    # Byte string -> unicode string. 

    def decode(self, encoding=None, errors='strict'): 

        if encoding is None: encoding = sys.getdefaultencoding() 

        if isinstance(self, text_type): 

            return self.encode().decode(encoding, errors) 

 

        # Decode self into a plain unicode string. 

        unicode_chars = self._stringtype.decode(self, encoding, errors) 

 

        # Special case: if the resulting string has the same length 

        # that the source string does, then we can safely assume that 

        # each character is encoded with one byte; so we can just 

        # reuse our source. 

        if len(unicode_chars) == len(self): 

            return self._decode_one_to_one(unicode_chars) 

 

        # Otherwise: re-encode the characters, one at a time, to 

        # determine how long their encodings are. 

        result = [] 

        first_byte = 0 

        for unicode_char in unicode_chars: 

            char_width = len(unicode_char.encode(encoding, errors)) 

            last_byte = first_byte + char_width - 1 

            if (isinstance(self[first_byte], SourcedString) and 

                isinstance(self[last_byte], SourcedString)): 

                begin = self[first_byte].begin 

                end = self[last_byte].end 

                if end-begin == 1: 

                    source = StringSource(docid=self[first_byte].docid, 

                                          begin=begin, end=end) 

                else: 

                    source = StringSource(docid=self[first_byte].docid, 

                                          offsets=[begin, end]) 

                result.append(SourcedString(unicode_char, source)) 

            else: 

                result.append(unicode_char) 

 

            # First byte of the next char is 1+last byte of this char. 

            first_byte = last_byte+1 

        if last_byte+1 != len(self): 

            raise AssertionError("SourcedString.decode() does not support " 

                                 "encodings that are not symmetric.") 

 

        return SourcedString.concat(result) 

 

    @abstractmethod 

    def _decode_one_to_one(unicode_chars): 

        """ 

        Helper for ``self.decode()``.  Returns a unicode-decoded 

        version of this ``SourcedString``.  ``unicode_chars`` is the 

        unicode-decoded contents of this ``SourcedString``. 

 

        This is used in the special case where the decoded string has 

        the same length that the source string does.  As a result, we 

        can safely assume that each character is encoded with one 

        byte; so we can just reuse our source.  E.g., this will happen 

        when decoding an ASCII string with utf-8. 

        """ 

 

    def _mixed_string_types(self, *args): 

        """ 

        Return true if the list (self,)+args contains at least one 

        unicode string and at least one byte string.  (If this is the 

        case, then all byte strings should be converted to unicode by 

        calling decode() before the operation is performed.  You can 

        do this automatically using ``_decode_and_call()``. 

        """ 

        any_unicode = isinstance(self, text_type) 

        any_bytestring = isinstance(self, binary_type) 

        for arg in args: 

            any_unicode = any_unicode or isinstance(arg, text_type) 

            any_bytestring = any_bytestring or isinstance(arg, binary_type) 

        return any_unicode and any_bytestring 

 

    def _decode_and_call(self, op, *args): 

        """ 

        If self or any of the values in args is a byte string, then 

        convert it to unicode by calling its decode() method.  Then 

        return the result of calling self.op(*args).  ``op`` is 

        specified using a string, because if ``self`` is a byte string, 

        then it will change type when it is decoded. 

        """ 

        # Make sure all args are decoded to unicode. 

        args = list(args) 

        for i in range(len(args)): 

            if isinstance(args[i], binary_type): 

                args[i] = args[i].decode() 

        # Make sure self is decoded to unicode. 

        if isinstance(self, binary_type): 

            self = self.decode() 

        # Retry the operation. 

        method = getattr(self, op) 

        return method(*args) 

 

    #////////////////////////////////////////////////////////////////////// 

    #{ Display 

    #////////////////////////////////////////////////////////////////////// 

 

    def pprint(self, vertical=False, wrap=70): 

        """ 

        Return a string containing a pretty-printed display of this 

        sourced string. 

 

        :param vertical: If true, then the returned display string will 

            have vertical orientation, rather than the default horizontal 

            orientation. 

 

        :param wrap: Controls when the pretty-printed output is wrapped 

            to the next line.  If ``wrap`` is an integer, then lines are 

            wrapped when they become longer than ``wrap``.  If ``wrap`` is 

            a string, then lines are wrapped immediately following that 

            string.  If ``wrap`` is None, then lines are never wrapped. 

        """ 

        if len(self) == 0: return '[Empty String]' 

        if vertical == 1: return self._pprint_vertical() # special-cased 

 

        max_digits = len(str(max(max(getattr(c, 'begin', 0), 

                                     getattr(c, 'end', 0)) for c in self))) 

        if not isinstance(wrap, (string_types, integer_types, type(None))): 

            raise TypeError("Expected wrap to be a sring, int, or None.") 

 

        result = [] 

        prev_offset = None # most recently displayed offset. 

        prev_docid = None 

        docid_line = '' 

        output_lines = [''] * (max_digits+2) 

 

        for pos, char in enumerate(self): 

            char_begin = getattr(char, 'begin', None) 

            char_end = getattr(char, 'end', None) 

            char_docid = getattr(char, 'docid', None) 

 

            # If the docid changed, then display the docid for the 

            # previous segment. 

            if char_docid != prev_docid: 

                width = len(output_lines[0]) - len(docid_line) 

                docid_line += self._pprint_docid(width, prev_docid) 

                prev_docid = char_docid 

 

            # Put a cap on the beginning of sourceless strings 

            elif not output_lines[0] and char_begin is None: 

                self._pprint_offset(' ', output_lines) 

 

            # Display the character. 

            if char_begin != prev_offset: 

                self._pprint_offset(char_begin, output_lines) 

            self._pprint_char(char, output_lines) 

            self._pprint_offset(char_end, output_lines) 

            prev_offset = char_end 

 

            # Decide whether we're at the end of the line or not. 

            line_len = len(output_lines[0]) 

            if ( (isinstance(wrap, string_types) and 

                  self[max(0,pos-len(wrap)+1):pos+1] == wrap) or 

                 (isinstance(wrap, (integer_types)) and line_len>=wrap) or 

                 pos == len(self)-1): 

 

                # Put a cap on the end of sourceless strings 

                if char_end is None: 

                    self._pprint_offset(' ', output_lines) 

 

                # Filter out any empty output lines. 

                output_lines = [l for l in output_lines if l.strip()] 

 

                # Draw the docid line 

                width = len(output_lines[0]) - len(docid_line) 

                docid_line += self._pprint_docid(width, prev_docid) 

                result.append(docid_line) 

 

                # Draw the output lines 

                for output_line in reversed(output_lines): 

                    result.append(output_line) 

                result.append(output_lines[1]) 

 

                # Reset variables for the next line. 

                prev_offset = None 

                prev_docid = None 

                docid_line = '' 

                output_lines = [''] * (max_digits+2) 

 

        return '\n'.join(result) 

 

    def _pprint_vertical(self): 

        result = [] 

        prev_offset = None 

        max_digits = len(str(max(max(getattr(c, 'begin', 0), 

                                     getattr(c, 'end', 0)) for c in self))) 

        for pos, char in enumerate(self): 

            char_begin = getattr(char, 'begin', None) 

            char_end = getattr(char, 'end', None) 

            char_docid = getattr(char, 'docid', None) 

 

            if char_begin is None: 

                assert char_end is None 

                if pos == 0: result.append('+-----+') 

                result.append(':%s:' % 

                              self._pprint_char_repr(char).center(5)) 

                if pos == len(self)-1: result.append('+-----+') 

                prev_offset = None 

            else: 

                if char_begin != prev_offset: 

                    result.append('+-----+ %s [%s]' % ( 

                        str(char_begin).rjust(max_digits), char_docid)) 

                result.append('|%s| %s [%s]' % ( 

                    self._pprint_char_repr(char).center(5), 

                    ' '*max_digits, char_docid)) 

                result.append('+-----+ %s [%s]' % ( 

                    str(char_end).rjust(max_digits), char_docid)) 

            prev_offset = char_end 

        return '\n'.join(result) 

 

    _PPRINT_CHAR_REPRS = {'\n': r'\n', '\r': r'\r', 

                          '\a': r'\a', '\t': r'\t'} 

 

    def _pprint_docid(self, width, docid): 

        if docid is None: return ' '*width 

        else: return '[%s]' % (docid[:width-2].center(width-2, '=')) 

 

    def _pprint_char_repr(self, char): 

        # Decide how to represent this character. 

        if 32 <= ord(char) <= 127: 

            return str(char) 

        elif char in self._PPRINT_CHAR_REPRS: 

            return self._PPRINT_CHAR_REPRS[char] 

        elif isinstance(char, str): 

            return r'\x%02x' % ord(char) 

        else: 

            return r'\u%04x' % ord(char) 

 

    def _pprint_char(self, char, output_lines): 

        """Helper for ``pprint()``: add a character to the 

        pretty-printed output.""" 

        char_repr = self._pprint_char_repr(char) 

        output_lines[0] += char_repr 

        # Add fillers to the offset lines. 

        output_lines[1] += '-'*len(char_repr) 

        for i in range(2, len(output_lines)): 

            output_lines[i] += ' '*len(char_repr) 

 

    def _pprint_offset(self, offset, output_lines): 

        """Helper for ``pprint()``: add an offset marker to the 

        pretty-printed output.""" 

        if offset is None: return 

        output_lines[0] += '|' 

        output_lines[1] += '+' 

        offset_rep = str(offset).rjust(len(output_lines)-2) 

        for digit in range(len(offset_rep)): 

            output_lines[-digit-1] += offset_rep[digit] 

 

#////////////////////////////////////////////////////////////////////// 

# Simple Sourced String 

#////////////////////////////////////////////////////////////////////// 

 

class SimpleSourcedString(SourcedString): 

    """ 

    A single substring of a document, annotated with information about 

    the location in the document where it was originally found.  See 

    ``SourcedString`` for more information. 

    """ 

    def __new__(cls, contents, source): 

        # If the SimpleSourcedString constructor is called directly, 

        # then choose one of its subclasses to delegate to. 

        if cls is SimpleSourcedString: 

            if isinstance(contents, binary_type): 

                cls = SimpleSourcedByteString 

            elif isinstance(contents, text_type): 

                cls = SimpleSourcedUnicodeString 

            else: 

                raise TypeError("Expected 'contents' to be a unicode " 

                                "string or a byte string") 

 

        # Create the new object using the appropriate string class's 

        # __new__, which takes just the contents argument. 

        return cls._stringtype.__new__(cls, contents) 

 

    def __init__(self, contents, source): 

        """ 

        Construct a new sourced string. 

 

        :param contents: The string contents of the new sourced string. 

        :type contents: str or unicode 

        :param source: The source for the new string.  If ``source`` is 

            a string, then it is used to automatically construct a new 

            ``ConsecutiveCharStringSource`` with a begin offset of 

            ``0`` and an end offset of ``len(contents)``.  Otherwise, 

            ``source`` shoulde be a ``StringSource`` whose length matches 

            the length of ``contents``. 

        """ 

        if not isinstance(source, StringSource): 

            source = ConsecutiveCharStringSource(source, 0, len(contents)) 

        elif len(source) != len(contents): 

            raise ValueError("Length of source (%d) must match length of " 

                             "contents (%d)" % (len(source), len(contents))) 

 

        self.source = source 

        """A ``StringLocation`` specifying the location where this string 

           occurred in the source document.""" 

 

    @property 

    def begin(self): 

        """ 

        The document offset where the string begins.  (I.e., 

        the offset of the first character in the string.)""" 

        return self.source.begin 

 

    @property 

    def end(self): 

        """The document offset where the string ends.  (For character 

        offsets, one plus the offset of the last character; for byte 

        offsets, one plus the offset of the last byte that encodes the 

        last character).""" 

        return self.source.end 

 

    @property 

    def docid(self): 

        """ 

        An identifier (such as a filename) that specifies the document 

        where the string was found. 

        """ 

        return self.source.docid 

 

    @property 

    def sources(self): 

        return ((0, self.source),) 

 

    def __repr__(self): 

        if self.end == self.begin+1: 

            source_repr =  '@[%s]' % (self.begin,) 

        else: 

            source_repr = '@[%s:%s]' % (self.begin, self.end) 

        return self._stringtype.__repr__(self) + source_repr 

 

    def __getitem__(self, index): 

        result = self._stringtype.__getitem__(self, index) 

        if isinstance(index, slice): 

            if index.step not in (None, 1): 

                return result 

            else: 

                start, stop = slice_bounds(self, index) 

                return self.__getslice__(start, stop) 

        else: 

            return SourcedString(result, self.source[index]) 

 

    def __getslice__(self, start, stop): 

        # Negative indices get handled *before* __getslice__ is 

        # called.  Restrict start/stop to be within the range of the 

        # string, to prevent negative indices from being adjusted 

        # twice. 

        start = max(0, min(len(self), start)) 

        stop = max(start, min(len(self), stop)) 

 

        return SourcedString( 

            self._stringtype.__getslice__(self, start, stop), 

            self.source[start:stop]) 

 

    def capitalize(self): 

        result = self._stringtype.capitalize(self) 

        return SourcedString(result, self.source) 

 

    def lower(self): 

        result = self._stringtype.lower(self) 

        return SourcedString(result, self.source) 

 

    def upper(self): 

        result = self._stringtype.upper(self) 

        return SourcedString(result, self.source) 

 

    def swapcase(self): 

        result = self._stringtype.swapcase(self) 

        return SourcedString(result, self.source) 

 

    def title(self): 

        result = self._stringtype.title(self) 

        return SourcedString(result, self.source) 

 

    def _decode_one_to_one(self, unicode_chars): 

        return SourcedString(unicode_chars, self.source) 

 

#////////////////////////////////////////////////////////////////////// 

# Compound Sourced String 

#////////////////////////////////////////////////////////////////////// 

 

class CompoundSourcedString(SourcedString): 

    """ 

    A string constructed by concatenating substrings from multiple 

    sources, and annotated with information about the locations where 

    those substrings were originally found.  See ``SourcedString`` for 

    more information. 

 

    :ivar substrings: The tuple of substrings that compose this 

        compound sourced string.  Every compound sourced string is 

        required to have at least two substrings; and the substrings 

        themselves may never be CompoundSourcedStrings. 

    """ 

    def __new__(cls, substrings): 

        # If the CompoundSourcedString constructor is called directly, 

        # then choose one of its subclasses to delegate to. 

        if cls is CompoundSourcedString: 

            # Decide whether to use a unicode string or a byte string. 

            use_unicode = any(1 for substring in substrings 

                              if isinstance(substring, text_type)) 

            if use_unicode: 

                cls = CompoundSourcedUnicodeString 

            else: 

                cls = CompoundSourcedByteString 

 

        # Build the concatenated string using str.join(), which will 

        # return a str or unicode object; never a sourced string. 

        contents = ''.join(substrings) 

 

        # Create the new object using the appropriate string class's 

        # __new__, which takes just the contents argument. 

        return cls._stringtype.__new__(cls, contents) 

 

    def __init__(self, substrings): 

        """ 

        Construct a new compound sourced string that combines the 

        given list of substrings. 

 

        Typically, compound sourced strings should not be constructed 

        directly; instead, use ``SourcedString.concat()``, which 

        flattens nested compound sourced strings, and merges adjacent 

        substrings when possible. 

 

        :raise ValueError: If ``len(substrings)  < 2`` 

        :raise ValueError: If ``substrings`` contains any 

            ``CompoundSourcedString``s. 

        """ 

        if len(substrings) < 2: 

            raise ValueError("CompoundSourcedString requires at least " 

                             "two substrings") 

 

        # Don't nest compound sourced strings. 

        for substring in substrings: 

            if isinstance(substring, CompoundSourcedString): 

                raise ValueError("substrings may not contain " 

                                 "CompoundSourcedStrings.") 

 

        self.substrings = tuple(substrings) 

 

    @property 

    def sources(self): 

        index = 0 

        source_list = [] 

        for substring in self.substrings: 

            if isinstance(substring, SourcedString): 

                source_list.append( (index, substring.source) ) 

            index += len(substring) 

        return tuple(source_list) 

 

    def __repr__(self): 

        sources = [self._source_repr(s) for s in self.substrings] 

        source_str = '@[%s]' % ','.join(sources) 

        return self._stringtype.__repr__(self) + source_str 

 

    def _source_repr(self, substring): 

        if isinstance(substring, SimpleSourcedString): 

            return '%s:%s' % (substring.begin, substring.end) 

        else: 

            return '...' 

 

    def __getitem__(self, index): 

        if isinstance(index, slice): 

            if index.step not in (None, 1): 

                return self._stringtype.__getitem__(self, index) 

            else: 

                start, stop = slice_bounds(self, index) 

                return self.__getslice__(start, stop) 

        else: 

            if index < 0: index += len(self) 

            if index < 0 or index >= len(self): 

                raise IndexError('StringSource index out of range') 

            return self.__getslice__(index, index+1) 

 

    def __getslice__(self, start, stop): 

        # Bounds checking. 

        start = max(0, min(len(self), start)) 

        stop = max(start, min(len(self), stop)) 

 

        # Construct a source list for the resulting string. 

        result_substrings = [] 

        offset = 0 

        for substring in self.substrings: 

            if offset+len(substring) > start: 

                s, e = max(0, start-offset), stop-offset 

                result_substrings.append(substring[s:e]) 

            offset += len(substring) 

            if offset >= stop: break 

 

        # Concatentate the resulting substrings. 

        if len(result_substrings) == 0: 

            return '' 

        elif len(result_substrings) == 1: 

            return result_substrings[0] 

        else: 

            return SourcedString.concat(result_substrings) 

 

    def capitalize(self): 

        return SourcedString.concat([s.capitalize() for s in self.substrings]) 

 

    def lower(self): 

        return SourcedString.concat([s.lower() for s in self.substrings]) 

 

    def upper(self): 

        return SourcedString.concat([s.upper() for s in self.substrings]) 

 

    def swapcase(self): 

        return SourcedString.concat([s.swapcase() for s in self.substrings]) 

 

    def title(self): 

        return SourcedString.concat([s.title() for s in self.substrings]) 

 

    def encode(self, encoding=None, errors='strict'): 

        return SourcedString.concat([s.encode(encoding, errors) 

                                     for s in self.substrings]) 

 

    def _decode_one_to_one(self, unicode_chars): 

        index = 0 

        result = [] 

        for substring in self.substrings: 

            decoded_substring = unicode_chars[index:index+len(substring)] 

            if isinstance(substring, SourcedString): 

                result.append(SourcedString(decoded_substring, substring.source)) 

            else: 

                result.append(decoded_substring) 

            index += len(substring) 

        return SourcedString.concat(result) 

 

#////////////////////////////////////////////////////////////////////// 

# Concrete Sourced String Classes 

#////////////////////////////////////////////////////////////////////// 

 

class SimpleSourcedByteString(SimpleSourcedString, binary_type): 

    _stringtype = binary_type 

class SimpleSourcedUnicodeString(SimpleSourcedString, text_type): 

    _stringtype = text_type 

class CompoundSourcedByteString(CompoundSourcedString, binary_type): 

    _stringtype = binary_type 

class CompoundSourcedUnicodeString(CompoundSourcedString, text_type): 

    _stringtype = text_type 

    def __init__(self, substrings): 

        # If any substrings have type 'str', then decode them to unicode. 

        for i in range(len(substrings)): 

            if not isinstance(substrings[i], text_type): 

                substrings[i] = substrings[i].decode() 

        CompoundSourcedString.__init__(self, substrings) 

 

#////////////////////////////////////////////////////////////////////// 

# Sourced String Regexp 

#////////////////////////////////////////////////////////////////////// 

 

_original_re_compile = re.compile 

_original_re_sub = re.sub 

_original_re_subn = re.subn 

 

class SourcedStringRegexp(object): 

    """ 

    Wrapper for regexp pattern objects that cause the ``sub`` and 

    ``subn`` methods to return sourced strings. 

    """ 

    def __init__(self, pattern, flags=0): 

        if isinstance(pattern, string_types): 

            pattern = _original_re_compile(pattern, flags) 

        self.pattern = pattern 

    def __getattr__(self, attr): 

        return getattr(self.pattern, attr) 

 

    def subn(self, repl, string, count=0): 

        if (isinstance(repl, SourcedString) or 

            isinstance(string, SourcedString)): 

            result = '' 

            pos = 0 

            n = 0 

            for match in self.pattern.finditer(string): 

                result += string[pos:match.start()] 

                result += repl 

                pos = match.end() 

                n += 1 

                if count and n==count: break 

            result += string[pos:] 

            return result, n 

        else: 

            return self.pattern.subn(repl, string, count) 

 

    def sub(self, repl, string, count=0): 

        return self.subn(repl, string, count)[0] 

 

    @staticmethod 

    def patch_re_module(): 

        """ 

        Modify the standard ``re`` module by installing new versions of 

        the functions ``re.compile``, ``re.sub``, and ``re.subn``, 

        causing regular expression substitutions to return 

        ``SourcedStrings`` when called with ``SourcedStrings`` 

        arguments. 

 

        Use this function only if necessary: it potentially affects 

        all Python modules that use regular expressions! 

        """ 

        def new_re_sub(pattern, repl, string, count=0): 

            return re.compile(pattern).sub(repl, string, count) 

        def new_re_subn(pattern, repl, string, count=0): 

            return re.compile(pattern).subn(repl, string, count) 

        re.compile = SourcedStringRegexp 

        re.sub = new_re_sub 

        re.subn = new_re_subn 

 

    @staticmethod 

    def unpatch_re_module(): 

        """ 

        Restore the standard ``re`` module to its original state 

        (undoing the work that was done by ``patch_re_module()``). 

        """ 

        re.compile = _original_re_compile 

        re.sub = _original_re_sub 

        re.subn = _original_re_subn 

 

 

#////////////////////////////////////////////////////////////////////// 

# Sourced String Stream 

#////////////////////////////////////////////////////////////////////// 

 

class SourcedStringStream(object): 

    """ 

    Wrapper for a read-only stream that causes ``read()`` (and related 

    methods) to return ``SourcedStringBase``. 

    ``seek()`` and ``tell()`` are supported, but (currently) there are 

    some restrictions on the values that may be passed to ``seek()``. 

    """ 

    def __init__(self, stream, docid=None, byte_offsets=False): 

        self.stream = stream 

        """The underlying stream.""" 

 

        self.docid = docid 

        """The docid attribute for sourced strings""" 

 

        self.charpos = 0 

        """The current character (not byte) position""" 

 

        assert not byte_offsets, 'not supported yet!' 

 

    #///////////////////////////////////////////////////////////////// 

    # Read methods 

    #///////////////////////////////////////////////////////////////// 

 

    def read(self, size=None): 

        if size is None: return self._sourced_string(self.stream.read()) 

        else: return self._sourced_string(self.stream.read(size)) 

 

    def readline(self, size=None): 

        if size is None:  return self._sourced_string(self.stream.readline()) 

        else: return self._sourced_string(self.stream.readline(size)) 

 

    def readlines(self, sizehint=None, keepends=True): 

        """ 

        Read this file's contents, decode them using this reader's 

        encoding, and return it as a list of unicode lines. 

 

        :rtype: list(unicode) 

        :param sizehint: Ignored. 

        :param keepends: If false, then strip newlines. 

        """ 

        return self.read().splitlines(keepends) 

 

    def next(self): 

        """Return the next decoded line from the underlying stream.""" 

        line = self.readline() 

        if line: return line 

        else: raise StopIteration 

 

    def __next__(self): 

        return self.next() 

 

    def __iter__(self): 

        """Return self""" 

        return self 

 

    def xreadlines(self): 

        """Return self""" 

        return self 

 

    def _sourced_string(self, contents): 

        """Turn the given string into an sourced string, and update 

           charpos.""" 

        # [xx] currently we only support character offsets, not byte 

        # offsets! 

        source = ConsecutiveCharStringSource(self.docid, self.charpos, 

                                             self.charpos+len(contents)) 

        self.charpos += len(contents) 

        return SourcedString(contents, source) 

 

    #///////////////////////////////////////////////////////////////// 

    # Pass-through methods & properties 

    #///////////////////////////////////////////////////////////////// 

 

    @property 

    def closed(self): 

        """True if the underlying stream is closed.""" 

        return self.stream.closed 

 

    @property 

    def name(self): 

        """The name of the underlying stream.""" 

        return self.stream.name 

 

    @property 

    def mode(self): 

        """The mode of the underlying stream.""" 

        return self.stream.mode 

 

    def close(self): 

        """Close the underlying stream.""" 

        self.stream.close() 

 

    #///////////////////////////////////////////////////////////////// 

    # Seek and tell 

    #///////////////////////////////////////////////////////////////// 

 

    class SourcedStringStreamPos(int): 

        def __new__(cls, bytepos, charpos): 

            self = int.__new__(cls, bytepos) 

            self.charpos = charpos 

            return self 

 

    def seek(self, offset, whence=0): 

        if whence == 0: 

            if isinstance(offset, self.SourcedStringStreamPos): 

                self.stream.seek(offset) 

                self.charpos = offset.charpos 

            elif offset == 0: 

                self.stream.seek(0) 

                self.charpos = 0 

            else: 

                raise TypeError('seek() must be called with a value that ' 

                                'was returned by tell().') 

        elif whence == 1: 

            raise TypeError('Relative seek not supported for ' 

                            'SourcedStringStream.') 

        elif whence == 2: 

            raise TypeError('Seek-from-end not supported for ' 

                            'SourcedStringStream.') 

        else: 

            raise ValueError('Bad whence value %r' % whence) 

 

    def tell(self): 

        bytepos = self.stream.tell() 

        return self.SourcedStringStreamPos(bytepos, self.charpos)