Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

# Natural Language Toolkit: TnT Tagger 

# 

# Copyright (C) 2001-2012 NLTK Project 

# Author: Sam Huston <sjh900@gmail.com> 

# 

# URL: <http://www.nltk.org/> 

# For license information, see LICENSE.TXT 

 

''' 

Implementation of 'TnT - A Statisical Part of Speech Tagger' 

by Thorsten Brants 

 

http://acl.ldc.upenn.edu/A/A00/A00-1031.pdf 

''' 

from __future__ import print_function 

 

from nltk.probability import FreqDist, ConditionalFreqDist 

from nltk.tag.api import TaggerI 

 

class TnT(TaggerI): 

    ''' 

    TnT - Statistical POS tagger 

 

    IMPORTANT NOTES: 

 

    * DOES NOT AUTOMATICALLY DEAL WITH UNSEEN WORDS 

 

      - It is possible to provide an untrained POS tagger to 

        create tags for unknown words, see __init__ function 

 

    * SHOULD BE USED WITH SENTENCE-DELIMITED INPUT 

 

      - Due to the nature of this tagger, it works best when 

        trained over sentence delimited input. 

      - However it still produces good results if the training 

        data and testing data are separated on all punctuation eg: [,.?!] 

      - Input for training is expected to be a list of sentences 

        where each sentence is a list of (word, tag) tuples 

      - Input for tag function is a single sentence 

        Input for tagdata function is a list of sentences 

        Output is of a similar form 

 

    * Function provided to process text that is unsegmented 

 

      - Please see basic_sent_chop() 

 

 

    TnT uses a second order Markov model to produce tags for 

    a sequence of input, specifically: 

 

      argmax [Proj(P(t_i|t_i-1,t_i-2)P(w_i|t_i))] P(t_T+1 | t_T) 

 

    IE: the maximum projection of a set of probabilities 

 

    The set of possible tags for a given word is derived 

    from the training data. It is the set of all tags 

    that exact word has been assigned. 

 

    The probability of a tag for a given word is the linear 

    interpolation of 3 markov models; a zero-order, first-order, 

    and a second order model. 

 

      P(t_i| t_i-1, t_i-2) = l1*P(t_i) + l2*P(t_i| t_i-1) + 

                             l3*P(t_i| t_i-1, t_i-2) 

 

    A beam search is used to limit the memory usage of the algorithm. 

    The degree of the beam can be changed using N in the initialization. 

    N represents the maximum number of possible solutions to maintain 

    while tagging. 

 

    It is possible to differentiate the tags which are assigned to 

    capitalized words. However this does not result in a significant 

    gain in the accuracy of the results. 

    ''' 

 

    def __init__(self, unk=None, Trained=False, N=1000, C=False): 

        ''' 

        Construct a TnT statistical tagger. Tagger must be trained 

        before being used to tag input. 

 

        :param unk: instance of a POS tagger, conforms to TaggerI 

        :type  unk:(TaggerI) 

        :param Trained: Indication that the POS tagger is trained or not 

        :type  Trained: boolean 

        :param N: Beam search degree (see above) 

        :type  N:(int) 

        :param C: Capitalization flag 

        :type  C: boolean 

 

        Initializer, creates frequency distributions to be used 

        for tagging 

 

        _lx values represent the portion of the tri/bi/uni taggers 

        to be used to calculate the probability 

 

        N value is the number of possible solutions to maintain 

        while tagging. A good value for this is 1000 

 

        C is a boolean value which specifies to use or 

        not use the Capitalization of the word as additional 

        information for tagging. 

        NOTE: using capitalization may not increase the accuracy 

        of the tagger 

        ''' 

 

        self._uni  = FreqDist() 

        self._bi   = ConditionalFreqDist() 

        self._tri  = ConditionalFreqDist() 

        self._wd   = ConditionalFreqDist() 

        self._eos  = ConditionalFreqDist() 

        self._l1   = 0.0 

        self._l2   = 0.0 

        self._l3   = 0.0 

        self._N    = N 

        self._C    = C 

        self._T    = Trained 

 

        self._unk = unk 

 

        # statistical tools (ignore or delete me) 

        self.unknown = 0 

        self.known = 0 

 

    def train(self, data): 

        ''' 

        Uses a set of tagged data to train the tagger. 

        If an unknown word tagger is specified, 

        it is trained on the same data. 

 

        :param data: List of lists of (word, tag) tuples 

        :type data: tuple(str) 

        ''' 

 

        # Ensure that local C flag is initialized before use 

        C = False 

 

        if self._unk is not None and self._T == False: 

            self._unk.train(data) 

 

        for sent in data: 

            history = ['BOS', 'BOS'] 

            for w, t in sent: 

 

                # if capitalization is requested, 

                # and the word begins with a capital 

                # set local flag C to True 

                if self._C and w[0].isupper(): C=True 

 

                self._wd[w].inc(t) 

                self._uni.inc((t,C)) 

                self._bi[history[1]].inc((t,C)) 

                self._tri[tuple(history)].inc((t,C)) 

 

                history.append((t,C)) 

                history.pop(0) 

 

                # set local flag C to false for the next word 

                C = False 

 

            self._eos[t].inc('EOS') 

 

 

        # compute lambda values from the trained frequency distributions 

        self._compute_lambda() 

 

        #(debugging -- ignore or delete me) 

        #print "lambdas" 

        #print i, self._l1, i, self._l2, i, self._l3 

 

 

    def _compute_lambda(self): 

        ''' 

        creates lambda values based upon training data 

 

        NOTE: no need to explicitly reference C, 

        it is contained within the tag variable :: tag == (tag,C) 

 

        for each tag trigram (t1, t2, t3) 

        depending on the maximum value of 

        - f(t1,t2,t3)-1 / f(t1,t2)-1 

        - f(t2,t3)-1 / f(t2)-1 

        - f(t3)-1 / N-1 

 

        increment l3,l2, or l1 by f(t1,t2,t3) 

 

        ISSUES -- Resolutions: 

        if 2 values are equal, increment both lambda values 

        by (f(t1,t2,t3) / 2) 

        ''' 

 

        # temporary lambda variables 

        tl1 = 0.0 

        tl2 = 0.0 

        tl3 = 0.0 

 

        # for each t1,t2 in system 

        for history in self._tri.conditions(): 

            (h1, h2) = history 

 

            # for each t3 given t1,t2 in system 

            # (NOTE: tag actually represents (tag,C)) 

            # However no effect within this function 

            for tag in self._tri[history].samples(): 

 

                # if there has only been 1 occurrence of this tag in the data 

                # then ignore this trigram. 

                if self._uni[tag] == 1: 

                    continue 

 

                # safe_div provides a safe floating point division 

                # it returns -1 if the denominator is 0 

                c3 = self._safe_div((self._tri[history][tag]-1), (self._tri[history].N()-1)) 

                c2 = self._safe_div((self._bi[h2][tag]-1), (self._bi[h2].N()-1)) 

                c1 = self._safe_div((self._uni[tag]-1), (self._uni.N()-1)) 

 

 

                # if c1 is the maximum value: 

                if (c1 > c3) and (c1 > c2): 

                    tl1 += self._tri[history][tag] 

 

                # if c2 is the maximum value 

                elif (c2 > c3) and (c2 > c1): 

                    tl2 += self._tri[history][tag] 

 

                # if c3 is the maximum value 

                elif (c3 > c2) and (c3 > c1): 

                    tl3 += self._tri[history][tag] 

 

                # if c3, and c2 are equal and larger than c1 

                elif (c3 == c2) and (c3 > c1): 

                    tl2 += float(self._tri[history][tag]) /2.0 

                    tl3 += float(self._tri[history][tag]) /2.0 

 

                # if c1, and c2 are equal and larger than c3 

                # this might be a dumb thing to do....(not sure yet) 

                elif (c2 == c1) and (c1 > c3): 

                    tl1 += float(self._tri[history][tag]) /2.0 

                    tl2 += float(self._tri[history][tag]) /2.0 

 

                # otherwise there might be a problem 

                # eg: all values = 0 

                else: 

                    #print "Problem", c1, c2 ,c3 

                    pass 

 

        # Lambda normalisation: 

        # ensures that l1+l2+l3 = 1 

        self._l1 = tl1 / (tl1+tl2+tl3) 

        self._l2 = tl2 / (tl1+tl2+tl3) 

        self._l3 = tl3 / (tl1+tl2+tl3) 

 

 

 

    def _safe_div(self, v1, v2): 

        ''' 

        Safe floating point division function, does not allow division by 0 

        returns -1 if the denominator is 0 

        ''' 

        if v2 == 0: 

            return -1 

        else: 

            return float(v1) / float(v2) 

 

    def tagdata(self, data): 

        ''' 

        Tags each sentence in a list of sentences 

 

        :param data:list of list of words 

        :type data: [[string,],] 

        :return: list of list of (word, tag) tuples 

 

        Invokes tag(sent) function for each sentence 

        compiles the results into a list of tagged sentences 

        each tagged sentence is a list of (word, tag) tuples 

        ''' 

        res = [] 

        for sent in data: 

            res1 = self.tag(sent) 

            res.append(res1) 

        return res 

 

 

    def tag(self, data): 

        ''' 

        Tags a single sentence 

 

        :param data: list of words 

        :type data: [string,] 

 

        :return: [(word, tag),] 

 

        Calls recursive function '_tagword' 

        to produce a list of tags 

 

        Associates the sequence of returned tags 

        with the correct words in the input sequence 

 

        returns a list of (word, tag) tuples 

        ''' 

 

        current_state = [(['BOS', 'BOS'], 1.0)] 

 

        sent = list(data) 

 

        tags = self._tagword(sent, current_state) 

 

        res = [] 

        for i in range(len(sent)): 

            # unpack and discard the C flags 

            (t,C) = tags[i+2] 

            res.append((sent[i], t)) 

 

        return res 

 

 

    def _tagword(self, sent, current_states): 

        ''' 

        :param sent : List of words remaining in the sentence 

        :type sent  : [word,] 

        :param current_states : List of possible tag combinations for 

                                the sentence so far, and the probability 

                                associated with each tag combination 

        :type current_states  : [([tag, ],prob), ] 

 

        Tags the first word in the sentence and 

        recursively tags the reminder of sentence 

 

        Uses formula specified above to calculate the probability 

        of a particular tag 

        ''' 

 

        # if this word marks the end of the sentance, 

        # return the most probable tag 

        if sent == []: 

            (h,p) = current_states[0] 

            return h 

 

        # otherwise there are more words to be tagged 

        word = sent[0] 

        sent = sent[1:] 

        new_states = [] 

 

        # if the Capitalisation is requested, 

        # initalise the flag for this word 

        C = False 

        if self._C and word[0].isupper(): C=True 

 

        # if word is known 

        # compute the set of possible tags 

        # and their associated probabilities 

        if word in self._wd.conditions(): 

            self.known += 1 

 

            for (history, curr_sent_prob) in current_states: 

                probs = [] 

 

                for t in self._wd[word].samples(): 

                    p_uni = self._uni.freq((t,C)) 

                    p_bi = self._bi[history[-1]].freq((t,C)) 

                    p_tri = self._tri[tuple(history[-2:])].freq((t,C)) 

                    p_wd = float(self._wd[word][t])/float(self._uni[(t,C)]) 

                    p = self._l1 *p_uni + self._l2 *p_bi + self._l3 *p_tri 

                    p2 = p * p_wd 

 

                    probs.append(((t,C), p2)) 

 

 

                # compute the result of appending each tag to this history 

                for (tag, prob) in probs: 

                    new_states.append((history + [tag], curr_sent_prob*prob)) 

 

 

 

 

        # otherwise a new word, set of possible tags is unknown 

        else: 

            self.unknown += 1 

 

            # since a set of possible tags, 

            # and the probability of each specific tag 

            # can not be returned from most classifiers: 

            # specify that any unknown words are tagged with certainty 

            p = 1 

 

            # if no unknown word tagger has been specified 

            # then use the tag 'Unk' 

            if self._unk is None: 

                tag = ('Unk',C) 

 

            # otherwise apply the unknown word tagger 

            else : 

                [(_w, t)] = list(self._unk.tag([word])) 

                tag = (t,C) 

 

            for (history, prob) in current_states: 

                history.append(tag) 

 

            new_states = current_states 

 

 

 

        # now have computed a set of possible new_states 

 

        # sort states by prob 

        # _cmp_tup is a comparison function, 

        # set is now ordered greatest to least probability 

        new_states.sort(self._cmp_tup) 

 

        # del everything after N (threshold) 

        # this is the beam search cut 

        if len(new_states) > self._N: 

            new_states = new_states[:self._N] 

 

 

        # compute the tags for the rest of the sentence 

        # return the best list of tags for the sentence 

        return self._tagword(sent, new_states) 

 

 

 

    def _cmp_tup(self, tuple1, tuple2): 

        (_hq, p1) = tuple1 

        (_h2, p2) = tuple2 

        if (p2-p1) > 0: 

            return 1 

        else: 

            return -1 

 

 

######################################## 

# helper function -- basic sentence tokenizer 

######################################## 

 

def basic_sent_chop(data, raw=True): 

    ''' 

    Basic method for tokenizing input into sentences 

    for this tagger: 

 

    :param data: list of tokens (words or (word, tag) tuples) 

    :type data: str or tuple(str, str) 

    :param raw: boolean flag marking the input data 

                as a list of words or a list of tagged words 

    :type raw: bool 

    :return: list of sentences 

             sentences are a list of tokens 

             tokens are the same as the input 

 

    Function takes a list of tokens and separates the tokens into lists 

    where each list represents a sentence fragment 

    This function can separate both tagged and raw sequences into 

    basic sentences. 

 

    Sentence markers are the set of [,.!?] 

 

    This is a simple method which enhances the performance of the TnT 

    tagger. Better sentence tokenization will further enhance the results. 

    ''' 

 

    new_data = [] 

    curr_sent = [] 

    sent_mark = [',','.','?','!'] 

 

 

    if raw: 

        for word in data: 

            if word in sent_mark: 

                curr_sent.append(word) 

                new_data.append(curr_sent) 

                curr_sent = [] 

            else: 

                curr_sent.append(word) 

 

    else: 

        for (word,tag) in data: 

            if word in sent_mark: 

                curr_sent.append((word,tag)) 

                new_data.append(curr_sent) 

                curr_sent = [] 

            else: 

                curr_sent.append((word,tag)) 

    return new_data 

 

 

 

def demo(): 

    from nltk.tag import tnt 

    from nltk.corpus import brown 

    sents = list(brown.tagged_sents()) 

    test = list(brown.sents()) 

 

    # create and train the tagger 

    tagger = tnt.TnT() 

    tagger.train(sents[200:1000]) 

 

    # tag some data 

    tagged_data = tagger.tagdata(test[100:120]) 

 

    # print results 

    for j in range(len(tagged_data)): 

        s = tagged_data[j] 

        t = sents[j+100] 

        for i in range(len(s)): 

            print(s[i],'--', t[i]) 

        print() 

 

 

def demo2(): 

    from nltk import tag 

    from nltk.tag import tnt 

    from nltk.corpus import treebank 

 

    d = list(treebank.tagged_sents()) 

 

    t = tnt.TnT(N=1000, C=False) 

    s = tnt.TnT(N=1000, C=True) 

    t.train(d[(11)*100:]) 

    s.train(d[(11)*100:]) 

 

    for i in range(10): 

        tacc = tag.accuracy(t, d[i*100:((i+1)*100)]) 

        tp_un = float(t.unknown) / float(t.known +t.unknown) 

        tp_kn = float(t.known) / float(t.known + t.unknown) 

        t.unknown = 0 

        t.known = 0 

 

        print('Capitalization off:') 

        print('Accuracy:', tacc) 

        print('Percentage known:', tp_kn) 

        print('Percentage unknown:', tp_un) 

        print('Accuracy over known words:', (tacc / tp_kn)) 

 

        sacc = tag.accuracy(s, d[i*100:((i+1)*100)]) 

        sp_un = float(s.unknown) / float(s.known +s.unknown) 

        sp_kn = float(s.known) / float(s.known + s.unknown) 

        s.unknown = 0 

        s.known = 0 

 

        print('Capitalization on:') 

        print('Accuracy:', sacc) 

        print('Percentage known:', sp_kn) 

        print('Percentage unknown:', sp_un) 

        print('Accuracy over known words:', (sacc / sp_kn)) 

 

def demo3(): 

    from nltk import tag 

    from nltk.corpus import treebank, brown 

    from nltk.tag import tnt 

 

    d = list(treebank.tagged_sents()) 

    e = list(brown.tagged_sents()) 

 

    d = d[:1000] 

    e = e[:1000] 

 

    d10 = int(len(d)*0.1) 

    e10 = int(len(e)*0.1) 

 

    tknacc = 0 

    sknacc = 0 

    tallacc = 0 

    sallacc = 0 

    tknown = 0 

    sknown = 0 

 

    for i in range(10): 

 

        t = tnt.TnT(N=1000, C=False) 

        s = tnt.TnT(N=1000, C=False) 

 

        dtest = d[(i*d10):((i+1)*d10)] 

        etest = e[(i*e10):((i+1)*e10)] 

 

        dtrain = d[:(i*d10)] + d[((i+1)*d10):] 

        etrain = e[:(i*e10)] + e[((i+1)*e10):] 

 

        t.train(dtrain) 

        s.train(etrain) 

 

        tacc = tag.accuracy(t, dtest) 

        tp_un = float(t.unknown) / float(t.known +t.unknown) 

        tp_kn = float(t.known) / float(t.known + t.unknown) 

        tknown += tp_kn 

        t.unknown = 0 

        t.known = 0 

 

        sacc = tag.accuracy(s, etest) 

        sp_un = float(s.unknown) / float(s.known + s.unknown) 

        sp_kn = float(s.known) / float(s.known + s.unknown) 

        sknown += sp_kn 

        s.unknown = 0 

        s.known = 0 

 

        tknacc += (tacc / tp_kn) 

        sknacc += (sacc / tp_kn) 

        tallacc += tacc 

        sallacc += sacc 

 

        #print i+1, (tacc / tp_kn), i+1, (sacc / tp_kn), i+1, tacc, i+1, sacc 

 

 

    print("brown: acc over words known:", 10 * tknacc) 

    print("     : overall accuracy:", 10 * tallacc) 

    print("     : words known:", 10 * tknown) 

    print("treebank: acc over words known:", 10 * sknacc) 

    print("        : overall accuracy:", 10 * sallacc) 

    print("        : words known:", 10 * sknown) 

 

 

 

if __name__ == "__main__": 

    import doctest 

    doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)