Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

# Natural Language Toolkit: Utility functions 

# 

# Copyright (C) 2001-2012 NLTK Project 

# Author: Steven Bird <sb@csse.unimelb.edu.au> 

# URL: <http://www.nltk.org/> 

# For license information, see LICENSE.TXT 

from __future__ import print_function 

 

import locale 

import re 

import types 

import textwrap 

import pydoc 

import bisect 

import os 

 

from itertools import islice, chain 

from pprint import pprint 

from collections import defaultdict, deque 

 

from nltk.internals import slice_bounds 

from nltk import compat 

from nltk.compat import class_types, text_type, string_types 

 

###################################################################### 

# Short usage message 

###################################################################### 

 

def usage(obj, selfname='self'): 

    import inspect 

    str(obj) # In case it's lazy, this will load it. 

 

    if not isinstance(obj, class_types): 

        obj = obj.__class__ 

 

    print('%s supports the following operations:' % obj.__name__) 

    for (name, method) in sorted(pydoc.allmethods(obj).items()): 

        if name.startswith('_'): continue 

        if getattr(method, '__deprecated__', False): continue 

 

        args, varargs, varkw, defaults = inspect.getargspec(method) 

        if (args and args[0]=='self' and 

            (defaults is None or len(args)>len(defaults))): 

            args = args[1:] 

            name = '%s.%s' % (selfname, name) 

        argspec = inspect.formatargspec( 

            args, varargs, varkw, defaults) 

        print(textwrap.fill('%s%s' % (name, argspec), 

                            initial_indent='  - ', 

                            subsequent_indent=' '*(len(name)+5))) 

 

########################################################################## 

# IDLE 

########################################################################## 

 

def in_idle(): 

    """ 

    Return True if this function is run within idle.  Tkinter 

    programs that are run in idle should never call ``Tk.mainloop``; so 

    this function should be used to gate all calls to ``Tk.mainloop``. 

 

    :warning: This function works by checking ``sys.stdin``.  If the 

        user has modified ``sys.stdin``, then it may return incorrect 

        results. 

    :rtype: bool 

    """ 

    import sys, types 

    return (isinstance(sys.stdin, types.InstanceType) and 

            sys.stdin.__class__.__name__ == 'PyShell') 

 

########################################################################## 

# PRETTY PRINTING 

########################################################################## 

 

def pr(data, start=0, end=None): 

    """ 

    Pretty print a sequence of data items 

 

    :param data: the data stream to print 

    :type data: sequence or iter 

    :param start: the start position 

    :type start: int 

    :param end: the end position 

    :type end: int 

    """ 

    pprint(list(islice(data, start, end))) 

 

def print_string(s, width=70): 

    """ 

    Pretty print a string, breaking lines on whitespace 

 

    :param s: the string to print, consisting of words and spaces 

    :type s: str 

    :param width: the display width 

    :type width: int 

    """ 

    print('\n'.join(textwrap.wrap(s, width=width))) 

 

def tokenwrap(tokens, separator=" ", width=70): 

    """ 

    Pretty print a list of text tokens, breaking lines on whitespace 

 

    :param tokens: the tokens to print 

    :type tokens: list 

    :param separator: the string to use to separate tokens 

    :type separator: str 

    :param width: the display width (default=70) 

    :type width: int 

    """ 

    return '\n'.join(textwrap.wrap(separator.join(tokens), width=width)) 

 

 

########################################################################## 

# Indexing 

########################################################################## 

 

class Index(defaultdict): 

 

    def __init__(self, pairs): 

        defaultdict.__init__(self, list) 

        for key, value in pairs: 

            self[key].append(value) 

 

 

###################################################################### 

## Regexp display (thanks to David Mertz) 

###################################################################### 

 

def re_show(regexp, string, left="{", right="}"): 

    """ 

    Return a string with markers surrounding the matched substrings. 

    Search str for substrings matching ``regexp`` and wrap the matches 

    with braces.  This is convenient for learning about regular expressions. 

 

    :param regexp: The regular expression. 

    :type regexp: str 

    :param string: The string being matched. 

    :type string: str 

    :param left: The left delimiter (printed before the matched substring) 

    :type left: str 

    :param right: The right delimiter (printed after the matched substring) 

    :type right: str 

    :rtype: str 

    """ 

    print(re.compile(regexp, re.M).sub(left + r"\g<0>" + right, string.rstrip())) 

 

 

########################################################################## 

# READ FROM FILE OR STRING 

########################################################################## 

 

# recipe from David Mertz 

def filestring(f): 

    if hasattr(f, 'read'): 

        return f.read() 

    elif isinstance(f, string_types): 

        return open(f).read() 

    else: 

        raise ValueError("Must be called with a filename or file-like object") 

 

########################################################################## 

# Breadth-First Search 

########################################################################## 

 

def breadth_first(tree, children=iter, maxdepth=-1): 

    """Traverse the nodes of a tree in breadth-first order. 

    (No need to check for cycles.) 

    The first argument should be the tree root; 

    children should be a function taking as argument a tree node 

    and returning an iterator of the node's children. 

    """ 

    queue = deque([(tree, 0)]) 

 

    while queue: 

        node, depth = queue.popleft() 

        yield node 

 

        if depth != maxdepth: 

            try: 

                queue.extend((c, depth + 1) for c in children(node)) 

            except TypeError: 

                pass 

 

########################################################################## 

# Guess Character Encoding 

########################################################################## 

 

# adapted from io.py in the docutils extension module (http://docutils.sourceforge.net) 

# http://www.pyzine.com/Issue008/Section_Articles/article_Encodings.html 

 

def guess_encoding(data): 

    """ 

    Given a byte string, attempt to decode it. 

    Tries the standard 'UTF8' and 'latin-1' encodings, 

    Plus several gathered from locale information. 

 

    The calling program *must* first call:: 

 

        locale.setlocale(locale.LC_ALL, '') 

 

    If successful it returns ``(decoded_unicode, successful_encoding)``. 

    If unsuccessful it raises a ``UnicodeError``. 

    """ 

    successful_encoding = None 

    # we make 'utf-8' the first encoding 

    encodings = ['utf-8'] 

    # 

    # next we add anything we can learn from the locale 

    try: 

        encodings.append(locale.nl_langinfo(locale.CODESET)) 

    except AttributeError: 

        pass 

    try: 

        encodings.append(locale.getlocale()[1]) 

    except (AttributeError, IndexError): 

        pass 

    try: 

        encodings.append(locale.getdefaultlocale()[1]) 

    except (AttributeError, IndexError): 

        pass 

    # 

    # we try 'latin-1' last 

    encodings.append('latin-1') 

    for enc in encodings: 

        # some of the locale calls 

        # may have returned None 

        if not enc: 

            continue 

        try: 

            decoded = text_type(data, enc) 

            successful_encoding = enc 

 

        except (UnicodeError, LookupError): 

            pass 

        else: 

            break 

    if not successful_encoding: 

         raise UnicodeError( 

        'Unable to decode input data.  Tried the following encodings: %s.' 

        % ', '.join([repr(enc) for enc in encodings if enc])) 

    else: 

         return (decoded, successful_encoding) 

 

 

########################################################################## 

# Invert a dictionary 

########################################################################## 

 

def invert_dict(d): 

    inverted_dict = defaultdict(list) 

    for key in d: 

        if hasattr(d[key], '__iter__'): 

            for term in d[key]: 

                inverted_dict[term].append(key) 

        else: 

            inverted_dict[d[key]] = key 

    return inverted_dict 

 

 

########################################################################## 

# Utilities for directed graphs: transitive closure, and inversion 

# The graph is represented as a dictionary of sets 

########################################################################## 

 

def transitive_closure(graph, reflexive=False): 

    """ 

    Calculate the transitive closure of a directed graph, 

    optionally the reflexive transitive closure. 

 

    The algorithm is a slight modification of the "Marking Algorithm" of 

    Ioannidis & Ramakrishnan (1998) "Efficient Transitive Closure Algorithms". 

 

    :param graph: the initial graph, represented as a dictionary of sets 

    :type graph: dict(set) 

    :param reflexive: if set, also make the closure reflexive 

    :type reflexive: bool 

    :rtype: dict(set) 

    """ 

    if reflexive: 

        base_set = lambda k: set([k]) 

    else: 

        base_set = lambda k: set() 

    # The graph U_i in the article: 

    agenda_graph = dict((k, graph[k].copy()) for k in graph) 

    # The graph M_i in the article: 

    closure_graph = dict((k, base_set(k)) for k in graph) 

    for i in graph: 

        agenda = agenda_graph[i] 

        closure = closure_graph[i] 

        while agenda: 

            j = agenda.pop() 

            closure.add(j) 

            closure |= closure_graph.setdefault(j, base_set(j)) 

            agenda |= agenda_graph.get(j, base_set(j)) 

            agenda -= closure 

    return closure_graph 

 

 

def invert_graph(graph): 

    """ 

    Inverts a directed graph. 

 

    :param graph: the graph, represented as a dictionary of sets 

    :type graph: dict(set) 

    :return: the inverted graph 

    :rtype: dict(set) 

    """ 

    inverted = {} 

    for key in graph: 

        for value in graph[key]: 

            inverted.setdefault(value, set()).add(key) 

    return inverted 

 

 

 

########################################################################## 

# HTML Cleaning 

########################################################################## 

 

def clean_html(html): 

    """ 

    Remove HTML markup from the given string. 

 

    :param html: the HTML string to be cleaned 

    :type html: str 

    :rtype: str 

    """ 

 

    # First we remove inline JavaScript/CSS: 

    cleaned = re.sub(r"(?is)<(script|style).*?>.*?(</\1>)", "", html.strip()) 

    # Then we remove html comments. This has to be done before removing regular 

    # tags since comments can contain '>' characters. 

    cleaned = re.sub(r"(?s)<!--(.*?)-->[\n]?", "", cleaned) 

    # Next we can remove the remaining tags: 

    cleaned = re.sub(r"(?s)<.*?>", " ", cleaned) 

    # Finally, we deal with whitespace 

    cleaned = re.sub(r"&nbsp;", " ", cleaned) 

    cleaned = re.sub(r"  ", " ", cleaned) 

    cleaned = re.sub(r"  ", " ", cleaned) 

    return cleaned.strip() 

 

def clean_url(url): 

    html = compat.urlopen(url).read() 

    return clean_html(html) 

 

########################################################################## 

# FLATTEN LISTS 

########################################################################## 

 

def flatten(*args): 

    """ 

    Flatten a list. 

 

        >>> from nltk.util import flatten 

        >>> flatten(1, 2, ['b', 'a' , ['c', 'd']], 3) 

        [1, 2, 'b', 'a', 'c', 'd', 3] 

 

    :param args: items and lists to be combined into a single list 

    :rtype: list 

    """ 

 

    x = [] 

    for l in args: 

        if not isinstance(l, (list, tuple)): l = [l] 

        for item in l: 

            if isinstance(item, (list, tuple)): 

                x.extend(flatten(item)) 

            else: 

                x.append(item) 

    return x 

 

########################################################################## 

# Ngram iteration 

########################################################################## 

 

# add a flag to pad the sequence so we get peripheral ngrams? 

 

def ngrams(sequence, n, pad_left=False, pad_right=False, pad_symbol=None): 

    """ 

    Return a sequence of ngrams from a sequence of items.  For example: 

 

        >>> from nltk.util import ngrams 

        >>> ngrams([1,2,3,4,5], 3) 

        [(1, 2, 3), (2, 3, 4), (3, 4, 5)] 

 

    Use ingram for an iterator version of this function.  Set pad_left 

    or pad_right to true in order to get additional ngrams: 

 

        >>> ngrams([1,2,3,4,5], 2, pad_right=True) 

        [(1, 2), (2, 3), (3, 4), (4, 5), (5, None)] 

 

    :param sequence: the source data to be converted into ngrams 

    :type sequence: sequence or iter 

    :param n: the degree of the ngrams 

    :type n: int 

    :param pad_left: whether the ngrams should be left-padded 

    :type pad_left: bool 

    :param pad_right: whether the ngrams should be right-padded 

    :type pad_right: bool 

    :param pad_symbol: the symbol to use for padding (default is None) 

    :type pad_symbol: any 

    :rtype: list(tuple) 

    """ 

 

    if pad_left: 

        sequence = chain((pad_symbol,) * (n-1), sequence) 

    if pad_right: 

        sequence = chain(sequence, (pad_symbol,) * (n-1)) 

    sequence = list(sequence) 

 

    count = max(0, len(sequence) - n + 1) 

    return [tuple(sequence[i:i+n]) for i in range(count)] 

 

def bigrams(sequence, **kwargs): 

    """ 

    Return a sequence of bigrams from a sequence of items.  For example: 

 

        >>> from nltk.util import bigrams 

        >>> bigrams([1,2,3,4,5]) 

        [(1, 2), (2, 3), (3, 4), (4, 5)] 

 

    Use ibigrams for an iterator version of this function. 

 

    :param sequence: the source data to be converted into bigrams 

    :type sequence: sequence or iter 

    :rtype: list(tuple) 

    """ 

    return ngrams(sequence, 2, **kwargs) 

 

def trigrams(sequence, **kwargs): 

    """ 

    Return a sequence of trigrams from a sequence of items.  For example: 

 

        >>> from nltk.util import trigrams 

        >>> trigrams([1,2,3,4,5]) 

        [(1, 2, 3), (2, 3, 4), (3, 4, 5)] 

 

    Use itrigrams for an iterator version of this function. 

 

    :param sequence: the source data to be converted into trigrams 

    :type sequence: sequence or iter 

    :rtype: list(tuple) 

    """ 

    return ngrams(sequence, 3, **kwargs) 

 

def ingrams(sequence, n, pad_left=False, pad_right=False, pad_symbol=None): 

    """ 

    Return the ngrams generated from a sequence of items, as an iterator. 

    For example: 

 

        >>> from nltk.util import ingrams 

        >>> list(ingrams([1,2,3,4,5], 3)) 

        [(1, 2, 3), (2, 3, 4), (3, 4, 5)] 

 

    Use ngrams for a list version of this function.  Set pad_left 

    or pad_right to true in order to get additional ngrams: 

 

        >>> list(ingrams([1,2,3,4,5], 2, pad_right=True)) 

        [(1, 2), (2, 3), (3, 4), (4, 5), (5, None)] 

 

    :param sequence: the source data to be converted into ngrams 

    :type sequence: sequence or iter 

    :param n: the degree of the ngrams 

    :type n: int 

    :param pad_left: whether the ngrams should be left-padded 

    :type pad_left: bool 

    :param pad_right: whether the ngrams should be right-padded 

    :type pad_right: bool 

    :param pad_symbol: the symbol to use for padding (default is None) 

    :type pad_symbol: any 

    :rtype: iter(tuple) 

    """ 

 

    sequence = iter(sequence) 

    if pad_left: 

        sequence = chain((pad_symbol,) * (n-1), sequence) 

    if pad_right: 

        sequence = chain(sequence, (pad_symbol,) * (n-1)) 

 

    history = [] 

    while n > 1: 

        history.append(next(sequence)) 

        n -= 1 

    for item in sequence: 

        history.append(item) 

        yield tuple(history) 

        del history[0] 

 

def ibigrams(sequence, **kwargs): 

    """ 

    Return the bigrams generated from a sequence of items, as an iterator. 

    For example: 

 

        >>> from nltk.util import ibigrams 

        >>> list(ibigrams([1,2,3,4,5])) 

        [(1, 2), (2, 3), (3, 4), (4, 5)] 

 

    Use bigrams for a list version of this function. 

 

    :param sequence: the source data to be converted into bigrams 

    :type sequence: sequence or iter 

    :rtype: iter(tuple) 

    """ 

 

    for item in ingrams(sequence, 2, **kwargs): 

        yield item 

 

def itrigrams(sequence, **kwargs): 

    """ 

    Return the trigrams generated from a sequence of items, as an iterator. 

    For example: 

 

        >>> from nltk.util import itrigrams 

        >>> list(itrigrams([1,2,3,4,5])) 

        [(1, 2, 3), (2, 3, 4), (3, 4, 5)] 

 

    Use trigrams for a list version of this function. 

 

    :param sequence: the source data to be converted into trigrams 

    :type sequence: sequence or iter 

    :rtype: iter(tuple) 

    """ 

 

    for item in ingrams(sequence, 3, **kwargs): 

        yield item 

 

########################################################################## 

# Ordered Dictionary 

########################################################################## 

 

class OrderedDict(dict): 

    def __init__(self, data=None, **kwargs): 

        self._keys = self.keys(data, kwargs.get('keys')) 

        self._default_factory = kwargs.get('default_factory') 

        if data is None: 

            dict.__init__(self) 

        else: 

            dict.__init__(self, data) 

 

    def __delitem__(self, key): 

        dict.__delitem__(self, key) 

        self._keys.remove(key) 

 

    def __getitem__(self, key): 

        try: 

            return dict.__getitem__(self, key) 

        except KeyError: 

            return self.__missing__(key) 

 

    def __iter__(self): 

        return (key for key in self.keys()) 

 

    def __missing__(self, key): 

        if not self._default_factory and key not in self._keys: 

            raise KeyError() 

        else: 

            return self._default_factory() 

 

    def __setitem__(self, key, item): 

        dict.__setitem__(self, key, item) 

        if key not in self._keys: 

            self._keys.append(key) 

 

    def clear(self): 

        dict.clear(self) 

        self._keys.clear() 

 

    def copy(self): 

        d = dict.copy(self) 

        d._keys = self._keys 

        return d 

 

    def items(self): 

        # returns iterator under python 3 and list under python 2 

        return zip(self.keys(), self.values()) 

 

    def keys(self, data=None, keys=None): 

        if data: 

            if keys: 

                assert isinstance(keys, list) 

                assert len(data) == len(keys) 

                return keys 

            else: 

                assert isinstance(data, dict) or \ 

                       isinstance(data, OrderedDict) or \ 

                       isinstance(data, list) 

                if isinstance(data, dict) or isinstance(data, OrderedDict): 

                    return data.keys() 

                elif isinstance(data, list): 

                    return [key for (key, value) in data] 

        elif '_keys' in self.__dict__: 

            return self._keys 

        else: 

            return [] 

 

    def popitem(self): 

        if self._keys: 

            key = self._keys.pop() 

            value = self[key] 

            del self[key] 

            return (key, value) 

        else: 

            raise KeyError() 

 

    def setdefault(self, key, failobj=None): 

        dict.setdefault(self, key, failobj) 

        if key not in self._keys: 

            self._keys.append(key) 

 

    def update(self, data): 

        dict.update(self, data) 

        for key in self.keys(data): 

            if key not in self._keys: 

                self._keys.append(key) 

 

    def values(self): 

        # returns iterator under python 3 

        return map(self.get, self._keys) 

 

###################################################################### 

# Lazy Sequences 

###################################################################### 

 

class AbstractLazySequence(object): 

    """ 

    An abstract base class for read-only sequences whose values are 

    computed as needed.  Lazy sequences act like tuples -- they can be 

    indexed, sliced, and iterated over; but they may not be modified. 

 

    The most common application of lazy sequences in NLTK is for 

    corpus view objects, which provide access to the contents of a 

    corpus without loading the entire corpus into memory, by loading 

    pieces of the corpus from disk as needed. 

 

    The result of modifying a mutable element of a lazy sequence is 

    undefined.  In particular, the modifications made to the element 

    may or may not persist, depending on whether and when the lazy 

    sequence caches that element's value or reconstructs it from 

    scratch. 

 

    Subclasses are required to define two methods: ``__len__()`` 

    and ``iterate_from()``. 

    """ 

    def __len__(self): 

        """ 

        Return the number of tokens in the corpus file underlying this 

        corpus view. 

        """ 

        raise NotImplementedError('should be implemented by subclass') 

 

    def iterate_from(self, start): 

        """ 

        Return an iterator that generates the tokens in the corpus 

        file underlying this corpus view, starting at the token number 

        ``start``.  If ``start>=len(self)``, then this iterator will 

        generate no tokens. 

        """ 

        raise NotImplementedError('should be implemented by subclass') 

 

    def __getitem__(self, i): 

        """ 

        Return the *i* th token in the corpus file underlying this 

        corpus view.  Negative indices and spans are both supported. 

        """ 

        if isinstance(i, slice): 

            start, stop = slice_bounds(self, i) 

            return LazySubsequence(self, start, stop) 

        else: 

            # Handle negative indices 

            if i < 0: i += len(self) 

            if i < 0: raise IndexError('index out of range') 

            # Use iterate_from to extract it. 

            try: 

                return next(self.iterate_from(i)) 

            except StopIteration: 

                raise IndexError('index out of range') 

 

    def __iter__(self): 

        """Return an iterator that generates the tokens in the corpus 

        file underlying this corpus view.""" 

        return self.iterate_from(0) 

 

    def count(self, value): 

        """Return the number of times this list contains ``value``.""" 

        return sum(1 for elt in self if elt==value) 

 

    def index(self, value, start=None, stop=None): 

        """Return the index of the first occurrence of ``value`` in this 

        list that is greater than or equal to ``start`` and less than 

        ``stop``.  Negative start and stop values are treated like negative 

        slice bounds -- i.e., they count from the end of the list.""" 

        start, stop = slice_bounds(self, slice(start, stop)) 

        for i, elt in enumerate(islice(self, start, stop)): 

            if elt == value: return i+start 

        raise ValueError('index(x): x not in list') 

 

    def __contains__(self, value): 

        """Return true if this list contains ``value``.""" 

        return bool(self.count(value)) 

 

    def __add__(self, other): 

        """Return a list concatenating self with other.""" 

        return LazyConcatenation([self, other]) 

 

    def __radd__(self, other): 

        """Return a list concatenating other with self.""" 

        return LazyConcatenation([other, self]) 

 

    def __mul__(self, count): 

        """Return a list concatenating self with itself ``count`` times.""" 

        return LazyConcatenation([self] * count) 

 

    def __rmul__(self, count): 

        """Return a list concatenating self with itself ``count`` times.""" 

        return LazyConcatenation([self] * count) 

 

    _MAX_REPR_SIZE = 60 

    def __repr__(self): 

        """ 

        Return a string representation for this corpus view that is 

        similar to a list's representation; but if it would be more 

        than 60 characters long, it is truncated. 

        """ 

        pieces = [] 

        length = 5 

        for elt in self: 

            pieces.append(repr(elt)) 

            length += len(pieces[-1]) + 2 

            if length > self._MAX_REPR_SIZE and len(pieces) > 2: 

                return '[%s, ...]' % ', '.join(pieces[:-1]) 

        else: 

            return '[%s]' % ', '.join(pieces) 

 

    def __cmp__(self, other): 

        """ 

        Return a number indicating how ``self`` relates to other. 

 

        - If ``other`` is not a corpus view or a list, return -1. 

        - Otherwise, return ``cmp(list(self), list(other))``. 

 

        Note: corpus views do not compare equal to tuples containing 

        equal elements.  Otherwise, transitivity would be violated, 

        since tuples do not compare equal to lists. 

        """ 

        if not isinstance(other, (AbstractLazySequence, list)): return -1 

        return cmp(list(self), list(other)) 

 

    def __hash__(self): 

        """ 

        :raise ValueError: Corpus view objects are unhashable. 

        """ 

        raise ValueError('%s objects are unhashable' % 

                         self.__class__.__name__) 

 

 

class LazySubsequence(AbstractLazySequence): 

    """ 

    A subsequence produced by slicing a lazy sequence.  This slice 

    keeps a reference to its source sequence, and generates its values 

    by looking them up in the source sequence. 

    """ 

 

    MIN_SIZE = 100 

    """ 

    The minimum size for which lazy slices should be created.  If 

    ``LazySubsequence()`` is called with a subsequence that is 

    shorter than ``MIN_SIZE``, then a tuple will be returned instead. 

    """ 

 

    def __new__(cls, source, start, stop): 

        """ 

        Construct a new slice from a given underlying sequence.  The 

        ``start`` and ``stop`` indices should be absolute indices -- 

        i.e., they should not be negative (for indexing from the back 

        of a list) or greater than the length of ``source``. 

        """ 

        # If the slice is small enough, just use a tuple. 

        if stop-start < cls.MIN_SIZE: 

            return list(islice(source.iterate_from(start), stop-start)) 

        else: 

            return object.__new__(cls) 

 

    def __init__(self, source, start, stop): 

        self._source = source 

        self._start = start 

        self._stop = stop 

 

    def __len__(self): 

        return self._stop - self._start 

 

    def iterate_from(self, start): 

        return islice(self._source.iterate_from(start+self._start), 

                      max(0, len(self)-start)) 

 

 

class LazyConcatenation(AbstractLazySequence): 

    """ 

    A lazy sequence formed by concatenating a list of lists.  This 

    underlying list of lists may itself be lazy.  ``LazyConcatenation`` 

    maintains an index that it uses to keep track of the relationship 

    between offsets in the concatenated lists and offsets in the 

    sublists. 

    """ 

    def __init__(self, list_of_lists): 

        self._list = list_of_lists 

        self._offsets = [0] 

 

    def __len__(self): 

        if len(self._offsets) <= len(self._list): 

            for tok in self.iterate_from(self._offsets[-1]): pass 

        return self._offsets[-1] 

 

    def iterate_from(self, start_index): 

        if start_index < self._offsets[-1]: 

            sublist_index = bisect.bisect_right(self._offsets, start_index)-1 

        else: 

            sublist_index = len(self._offsets)-1 

 

        index = self._offsets[sublist_index] 

 

        # Construct an iterator over the sublists. 

        if isinstance(self._list, AbstractLazySequence): 

            sublist_iter = self._list.iterate_from(sublist_index) 

        else: 

            sublist_iter = islice(self._list, sublist_index, None) 

 

        for sublist in sublist_iter: 

            if sublist_index == (len(self._offsets)-1): 

                assert index+len(sublist) >= self._offsets[-1], ( 

                        'offests not monotonic increasing!') 

                self._offsets.append(index+len(sublist)) 

            else: 

                assert self._offsets[sublist_index+1] == index+len(sublist), ( 

                        'inconsistent list value (num elts)') 

 

            for value in sublist[max(0, start_index-index):]: 

                yield value 

 

            index += len(sublist) 

            sublist_index += 1 

 

 

class LazyMap(AbstractLazySequence): 

    """ 

    A lazy sequence whose elements are formed by applying a given 

    function to each element in one or more underlying lists.  The 

    function is applied lazily -- i.e., when you read a value from the 

    list, ``LazyMap`` will calculate that value by applying its 

    function to the underlying lists' value(s).  ``LazyMap`` is 

    essentially a lazy version of the Python primitive function 

    ``map``.  In particular, the following two expressions are 

    equivalent: 

 

        >>> from nltk.util import LazyMap 

        >>> function = str 

        >>> sequence = [1,2,3] 

        >>> map(function, sequence) 

        ['1', '2', '3'] 

        >>> list(LazyMap(function, sequence)) 

        ['1', '2', '3'] 

 

    Like the Python ``map`` primitive, if the source lists do not have 

    equal size, then the value None will be supplied for the 

    'missing' elements. 

 

    Lazy maps can be useful for conserving memory, in cases where 

    individual values take up a lot of space.  This is especially true 

    if the underlying list's values are constructed lazily, as is the 

    case with many corpus readers. 

 

    A typical example of a use case for this class is performing 

    feature detection on the tokens in a corpus.  Since featuresets 

    are encoded as dictionaries, which can take up a lot of memory, 

    using a ``LazyMap`` can significantly reduce memory usage when 

    training and running classifiers. 

    """ 

    def __init__(self, function, *lists, **config): 

        """ 

        :param function: The function that should be applied to 

            elements of ``lists``.  It should take as many arguments 

            as there are ``lists``. 

        :param lists: The underlying lists. 

        :param cache_size: Determines the size of the cache used 

            by this lazy map.  (default=5) 

        """ 

        if not lists: 

            raise TypeError('LazyMap requires at least two args') 

 

        self._lists = lists 

        self._func = function 

        self._cache_size = config.get('cache_size', 5) 

        if self._cache_size > 0: 

            self._cache = {} 

        else: 

            self._cache = None 

 

        # If you just take bool() of sum() here _all_lazy will be true just 

        # in case n >= 1 list is an AbstractLazySequence.  Presumably this 

        # isn't what's intended. 

        self._all_lazy = sum(isinstance(lst, AbstractLazySequence) 

                             for lst in lists) == len(lists) 

 

    def iterate_from(self, index): 

        # Special case: one lazy sublist 

        if len(self._lists) == 1 and self._all_lazy: 

            for value in self._lists[0].iterate_from(index): 

                yield self._func(value) 

            return 

 

        # Special case: one non-lazy sublist 

        elif len(self._lists) == 1: 

            while True: 

                try: yield self._func(self._lists[0][index]) 

                except IndexError: return 

                index += 1 

 

        # Special case: n lazy sublists 

        elif self._all_lazy: 

            iterators = [lst.iterate_from(index) for lst in self._lists] 

            while True: 

                elements = [] 

                for iterator in iterators: 

                    try: elements.append(next(iterator)) 

                    except: elements.append(None) 

                if elements == [None] * len(self._lists): 

                    return 

                yield self._func(*elements) 

                index += 1 

 

        # general case 

        else: 

            while True: 

                try: elements = [lst[index] for lst in self._lists] 

                except IndexError: 

                    elements = [None] * len(self._lists) 

                    for i, lst in enumerate(self._lists): 

                        try: elements[i] = lst[index] 

                        except IndexError: pass 

                    if elements == [None] * len(self._lists): 

                        return 

                yield self._func(*elements) 

                index += 1 

 

    def __getitem__(self, index): 

        if isinstance(index, slice): 

            sliced_lists = [lst[index] for lst in self._lists] 

            return LazyMap(self._func, *sliced_lists) 

        else: 

            # Handle negative indices 

            if index < 0: index += len(self) 

            if index < 0: raise IndexError('index out of range') 

            # Check the cache 

            if self._cache is not None and index in self._cache: 

                return self._cache[index] 

            # Calculate the value 

            try: val = next(self.iterate_from(index)) 

            except StopIteration: 

                raise IndexError('index out of range') 

            # Update the cache 

            if self._cache is not None: 

                if len(self._cache) > self._cache_size: 

                    self._cache.popitem() # discard random entry 

                self._cache[index] = val 

            # Return the value 

            return val 

 

    def __len__(self): 

        return max(len(lst) for lst in self._lists) 

 

 

class LazyZip(LazyMap): 

    """ 

    A lazy sequence whose elements are tuples, each containing the i-th 

    element from each of the argument sequences.  The returned list is 

    truncated in length to the length of the shortest argument sequence. The 

    tuples are constructed lazily -- i.e., when you read a value from the 

    list, ``LazyZip`` will calculate that value by forming a tuple from 

    the i-th element of each of the argument sequences. 

 

    ``LazyZip`` is essentially a lazy version of the Python primitive function 

    ``zip``.  In particular, an evaluated LazyZip is equivalent to a zip: 

 

        >>> from nltk.util import LazyZip 

        >>> sequence1, sequence2 = [1, 2, 3], ['a', 'b', 'c'] 

        >>> zip(sequence1, sequence2) 

        [(1, 'a'), (2, 'b'), (3, 'c')] 

        >>> list(LazyZip(sequence1, sequence2)) 

        [(1, 'a'), (2, 'b'), (3, 'c')] 

        >>> sequences = [sequence1, sequence2, [6,7,8,9]] 

        >>> zip(*sequences) == list(LazyZip(*sequences)) 

        True 

 

    Lazy zips can be useful for conserving memory in cases where the argument 

    sequences are particularly long. 

 

    A typical example of a use case for this class is combining long sequences 

    of gold standard and predicted values in a classification or tagging task 

    in order to calculate accuracy.  By constructing tuples lazily and 

    avoiding the creation of an additional long sequence, memory usage can be 

    significantly reduced. 

    """ 

    def __init__(self, *lists): 

        """ 

        :param lists: the underlying lists 

        :type lists: list(list) 

        """ 

        LazyMap.__init__(self, lambda *elts: elts, *lists) 

 

    def iterate_from(self, index): 

        iterator = LazyMap.iterate_from(self, index) 

        while index < len(self): 

            yield next(iterator) 

            index += 1 

        return 

 

    def __len__(self): 

        return min(len(lst) for lst in self._lists) 

 

 

class LazyEnumerate(LazyZip): 

    """ 

    A lazy sequence whose elements are tuples, each ontaining a count (from 

    zero) and a value yielded by underlying sequence.  ``LazyEnumerate`` is 

    useful for obtaining an indexed list. The tuples are constructed lazily 

    -- i.e., when you read a value from the list, ``LazyEnumerate`` will 

    calculate that value by forming a tuple from the count of the i-th 

    element and the i-th element of the underlying sequence. 

 

    ``LazyEnumerate`` is essentially a lazy version of the Python primitive 

    function ``enumerate``.  In particular, the following two expressions are 

    equivalent: 

 

        >>> from nltk.util import LazyEnumerate 

        >>> sequence = ['first', 'second', 'third'] 

        >>> list(enumerate(sequence)) 

        [(0, 'first'), (1, 'second'), (2, 'third')] 

        >>> list(LazyEnumerate(sequence)) 

        [(0, 'first'), (1, 'second'), (2, 'third')] 

 

    Lazy enumerations can be useful for conserving memory in cases where the 

    argument sequences are particularly long. 

 

    A typical example of a use case for this class is obtaining an indexed 

    list for a long sequence of values.  By constructing tuples lazily and 

    avoiding the creation of an additional long sequence, memory usage can be 

    significantly reduced. 

    """ 

 

    def __init__(self, lst): 

        """ 

        :param lst: the underlying list 

        :type lst: list 

        """ 

        LazyZip.__init__(self, range(len(lst)), lst) 

 

 

###################################################################### 

# Binary Search in a File 

###################################################################### 

 

# inherited from pywordnet, by Oliver Steele 

def binary_search_file(file, key, cache={}, cacheDepth=-1): 

    """ 

    Return the line from the file with first word key. 

    Searches through a sorted file using the binary search algorithm. 

 

    :type file: file 

    :param file: the file to be searched through. 

    :type key: str 

    :param key: the identifier we are searching for. 

    """ 

 

    key = key + ' ' 

    keylen = len(key) 

    start = 0 

    currentDepth = 0 

 

    if hasattr(file, 'name'): 

        end = os.stat(file.name).st_size - 1 

    else: 

        file.seek(0, 2) 

        end = file.tell() - 1 

        file.seek(0) 

 

    while start < end: 

        lastState = start, end 

        middle = (start + end) / 2 

 

        if cache.get(middle): 

            offset, line = cache[middle] 

 

        else: 

            line = "" 

            while True: 

                file.seek(max(0, middle - 1)) 

                if middle > 0: 

                    file.readline() 

                offset = file.tell() 

                line = file.readline() 

                if line != "": break 

                # at EOF; try to find start of the last line 

                middle = (start + middle)/2 

                if middle == end -1: 

                    return None 

            if currentDepth < cacheDepth: 

                cache[middle] = (offset, line) 

 

        if offset > end: 

            assert end != middle - 1, "infinite loop" 

            end = middle - 1 

        elif line[:keylen] == key: 

            return line 

        elif line > key: 

            assert end != middle - 1, "infinite loop" 

            end = middle - 1 

        elif line < key: 

            start = offset + len(line) - 1 

 

        currentDepth += 1 

        thisState = start, end 

 

        if lastState == thisState: 

            # Detects the condition where we're searching past the end 

            # of the file, which is otherwise difficult to detect 

            return None 

 

    return None 

 

###################################################################### 

# Proxy configuration 

###################################################################### 

 

def set_proxy(proxy, user=None, password=''): 

    """ 

    Set the HTTP proxy for Python to download through. 

 

    If ``proxy`` is None then tries to set proxy from environment or system 

    settings. 

 

    :param proxy: The HTTP proxy server to use. For example: 

        'http://proxy.example.com:3128/' 

    :param user: The username to authenticate with. Use None to disable 

        authentication. 

    :param password: The password to authenticate with. 

    """ 

    from nltk import compat 

 

    if proxy is None: 

        # Try and find the system proxy settings 

        try: 

            proxy = compat.getproxies()['http'] 

        except KeyError: 

            raise ValueError('Could not detect default proxy settings') 

 

    # Set up the proxy handler 

    proxy_handler = compat.ProxyHandler({'http': proxy}) 

    opener = compat.build_opener(proxy_handler) 

 

    if user is not None: 

        # Set up basic proxy authentication if provided 

        password_manager = compat.HTTPPasswordMgrWithDefaultRealm() 

        password_manager.add_password(realm=None, uri=proxy, user=user, 

                passwd=password) 

        opener.add_handler(compat.ProxyBasicAuthHandler(password_manager)) 

        opener.add_handler(compat.ProxyDigestAuthHandler(password_manager)) 

 

    # Overide the existing url opener 

    compat.install_opener(opener)